Efficient GMM Estimation of High Order Spatial

Autoregressive Models with Autoregressive Disturbances*

Lung-fei Lee' Xiaodong Liu
Department of Economics Department of Economics
Ohio State University University of Colorado at Boulder
Columbus, OH 43210, USA Boulder, CO 80309, USA
Email: 1flee@econ.ohio-state.edu Email: xiaodong.liu@colorado.edu

First version, October 2006

Current revision, September 2008

*This version is an extension which generalizes and unifies two previous working papers with the titles “Effi-
cient GMM Estimation of High Order Spatial Autoregressive Models” and “Efficient GMM Estimation of a Spatial
Autoregressive Model with Autoregressive Disturbances”.

TWe gratefully acknowledge financial support from the National Science Foundation Grant No. SES-0519204 and
research assistantship support from the Department of Economics at the Ohio State University. We appreciate having
received valuable comments and suggestions from three anonymous referees, an associate editor, and the editor to
improve the presentation of our paper. Any remaining errors are solely ours.



Running Head: High Order Spatial Autoregressive Models

Corresponding Author: Lung-fei Lee, Department of Economics, Ohio State University, Colum-

bus, OH 43210, USA. Email: 1flee@econ.ohio-state.edu.

Abstract: In this paper, we extend the GMM framework for the estimation of the mixed-regressive
spatial autoregressive model by Lee (2007a) to estimate a high order mixed-regressive spatial au-
toregressive model with spatial autoregressive disturbances. Identification of such a general model
is considered. The GMM approach has computational advantage over the conventional ML method.
The proposed GMM estimators are shown to be consistent and asymptotically normal. The best
GMM estimator is derived, within the class of GMM estimators based on linear and quadratic mo-
ment conditions of the disturbances. The best GMM estimator is asymptotically as efficient as the
ML estimator under normality, more efficient than the QML estimator otherwise, and is efficient

relative to the G2SLS estimator.

Key Words: Spatial econometrics, spatial autoregressive models, regression, GMM, QML, effi-

ciency.

JEL Classification: C13, C21, R15.



1 Introduction

The spatial autoregressive (SAR) model with high order spatial lags can characterize spatial interde-
pendence based on different types of relationships (e.g. geographic distance, social relation) among
cross-sectional units. In this paper, we consider the estimation of a general high order SAR model
with SAR disturbances.

For the estimation of a SAR model with a first order spatial lag, the conventional estimation
method would be the quasi-maximum likelihood (QML) (Anselin, 1988). In addition to that, alter-
native estimation methods have also been proposed. In the presence of exogenous variables, the SAR
model is known as a mixed regressive, spatial autoregressive (MRSAR) model. For the first order
MRSAR model with SAR disturbances, Kelejian and Prucha (1998) introduced a general spatial
two-stage least squares (G2SLS) estimator that is consistent and asymptotically normal. Lee (2003)
discussed the best instrumental variables (IVs) selection in the last step of the G2SLS procedure,
and suggested the best one within the class of IV estimators. To further simplify the computation
involved in the best G2SLS estimator, Kelejian et al. (2004) suggested a series-type best G2SLS
estimator that is asymptotically equivalent to Lee’s (2003) estimator. Kelejian and Prucha (2007a)
considered the IV estimation of the first order MRSAR model allowing the disturbance process
for general patterns of correlation and heteroskedasticity, and proposed a spatial heteroskedasticity
and autocorrelation consistent (HAC) estimator for the variance—covariance (VC) matrix of the IV
estimator.

The various IV or G2SLS estimators have the virtue of computational simplicity but they are
inefficient relative to the ML estimator, when the disturbances are normally distributed so that
the likelihood function is correctly specified. Also, as the IVs are functions of the spatial weights
matrices and exogenous variables, the G2SLS method would not be applicable when all exogenous
variables in a model are really irrelevant. Lee (2001; 2007a) proposed a systematic generalized
method of moments (GMM) framework for the estimation of the first order SAR models, with or
without exogenous regressors. The GMM approach combines the IV estimation with a generaliza-
tion of the method of moments (MOM) in Kelejian and Prucha (1999) which has been proposed

for the estimation of SAR disturbances in a regression model. That GMM approach is computa-



tionally more complicated than the G2SLS but is simpler than the QML. The GMM estimator is
asymptotically efficient relative to the G2SLS estimator, and with proper moment equations, it can
be asymptotically as efficient as the ML estimator with normally distributed disturbances.

In this paper, we extend the GMM approach to estimate the (MR)SAR model with general
finite order spatial lags and SAR disturbances of a finite order. High order SAR models have been
specified in Blommestein (1983; 1985), Huang (1984) and some others (see Anselin and Bera, 1998).
The multiple spatial weights matrices may capture contiguity of units in various dimensions. For
example, in Tao’s (2005) strategic interaction model of local school expenditure, two spatial weights
matrices are specified — one based on geographical contiguity and the other based on economic
similarity. An alternative perspective stated in Anselin and Bera (1998, p.252) on the need for
high order models is to consider them as alternatives of a poorly specified weights matrix rather
than as a realistic data generating process. For this general model with high order spatial lags and
disturbances, the QML approach is not practical and may be, in general, infeasible as the parameter
space is quite complex and the Jacobian determinant in the log likelihood function can not be easily
evaluated. The IV and G2SLS estimation approaches are still feasible. For instance, Kelejian and
Prucha (2004) proposed the G2SLS estimation for the spatial simultaneous equation model, where a
structural equation may have spatial lags of several endogenous variables on the right hand side. Also,
Kelejian and Prucha (2007a) considered the G2SLS estimation of a structural equation with spatial
lags and endogenous regressors where general patterns of spatial correlation and heteroskedasticity
are allowed for the disturbance. The VC matrix of the G2SLS estimate can be consistently estimated
with their proposed HAC estimator. With carefully designed quadratic moment equations, the GMM
approach can be robust against unknown heteroskedasticity (see Kelejian and Prucha, 2007b; Lin
and Lee, 2006). In this paper, we are interested in efficient estimators instead of robust ones. So we
will focus on the model with homoskedastic disturbances. Under the homoskedasticity assumption,
while the G2SLS estimation approach is feasible, it would not be asymptotically efficient. We study
the identification of the model with homoskedastic disturbances and the asymptotic properties of
the proposed GMM estimator. We discuss the selection of the best moment conditions without any
specific distributional assumption, and suggest the best GMM (BGMM) estimator within the class
of GMM estimators derived from linear and quadratic moment conditions.! As the GMM objective
function is a polynomial of unknown parameters, constraints on parameters are not necessary and

the BGMM is computationally tractable. Furthermore, the BGMM estimator is asymptotically as



efficient as the ML estimator under normality, and more efficient than the QML estimator otherwise.
It is also efficient relative to the best G2SLS estimator.

We conduct a Monte Carlo experiment to study the finite sample performance of the proposed
GMM estimator. We find that the GMM estimator of the spatial effects have smaller bias and
standard deviation than those of the G2SLS and B2SLS when the variation from the exogenous
regressors relative to that of the disturbances is small. When the disturbances are asymmetrically
distributed, the proposed BGMM improves upon the QML and B2SLS, and the improvement could
be as large as 20% in terms of reduction in the standard deviation. The GMM estimators are also
relatively robust to the misspecified order of spatial lags.

This paper is organized as follows. In Section 2, we introduce the high order MRSAR model
with SAR disturbances. Section 3 discusses the existing estimators for this model. We establish
identification of the model and propose a GMM estimation approach in Section 4. Section 5 in-
vestigates consistency and asymptotic distribution of the GMM estimators. Section 6 derives the
best selection of moment functions and discusses the efficiency properties of the BGMM estimator.
Section 7 provides some Monte Carlo results of finite sample properties of estimators. Section 8

concludes. All the proofs of the results are collected in the appendices.

2 The MRSAR Model with SAR Disturbances

We consider a general p-order MRSAR model with g-order SAR disturbances (for short, SARAR(p, q))

» q
Y, = Z_j:l AjWinYn + X8 + un, Un = Zk:1 PreMintn + €n, (1)

where n is the total number of spatial units, X, is an n x k, dimensional matrix of nonstochastic
exogenous variables, and the elements €1, - , €,, of the n-dimensional vector ¢, are i.i.d. (0, 02).
Win, -, Wpn and My, -+, My, are n X n dimensional spatial weights matrices of known constants
such that Wj,,, # Wi, if j1 # jo and My, # My, if k1 # ko. However, W;, and My, may or
may not be the same for j =1,--- ;pand k =1,---,¢. The model (1) incorporates both high order
spatial lags W1, Yy, -+, W,, Y, and spatial correlated disturbances Up.2

With a given contiguity-based spatial weights matrix W,,, it seems straightforward to define high

order spatial lags operators as powers of W,, motivated as in time series. The corresponding SAR(p)



model would be Y;, = Z§:1 NWiY, + X, + €,. As emphasized in Blommestein (1985), powering
W, may result in the presence of circular and redundant routes. Proper high-order lag operators
should have those circular and redundant routes eliminated. Algorithms have been introduced in
Blommestein and Koper (1992) and Anselin and Smirnov (1996) to construct proper high-order lag
operators. Such models can be regarded as special cases in our model framework. In general, our
framework allows the several spatial matrices as (proper) high-order spatial lag operators generated
from a contiguity-based spatial weights matrix but may not be so restricted.

Let p = (p1, - ,p,)s A= (A1,-++, ), and 0 = (', N, ). In order to distinguish the true
parameters from other possible values in the parameter space, 6y = (p, A, By)’ and o2 denote the
true parameters. Denote S,(\) = I, — 37_ ) \jWj, and Ry (p) = In — >f_y ppMpn. At o, let
Sp = Sp(Ao) and R,, = R, (p,) for simplicity. (A list of special notations used for this paper has been
collected in Appendix A for convenient reference.) This model is an equilibrium model so that S,, and
R, are invertible.> The reduced form equation of (1) is Y,, = S;; 1 X,,8,+S5;, ' R,, '€,,. Furthermore, let
Gin = W;, S, b, which provide the representations W, Y,, = G, X8y +GjnR; tey for j =1, ,p.
W;,Y, is correlated with €, because, in general, E((G;, R, €,) €,) = odtr(GjnR,;") # 0. In most

cases, these correlations rule out the ordinary least squares (OLS) for the estimation of (1).*

3 Existing Estimators

From (1), if €, is N(0,0%1,), the log likelihood function of this model is

InL, = —g In(27) — glna2 +1n[S, (A) |+ In|Rn (p) |
5350 () Y = XaBY B, (9) R () [0 (0) Vo — X6, @)

To guarantee the log likelihood function is well defined, we only consider the parameter space of A and
p such that the determinants of S,,(A) and R, (p) are strictly positive, i.e., |S,(A)| > 0 and |R,,(p)| >
0. Let ||-]| be any matrix norm. One has [| 3°0_) A;Wyn|| < (32F_, |Aj)-maxj1,... »|[Wjn||. Hence,
when all Wj,, are row-normalized such that ||Wj,|lcc = 1 for j = 1,--+,p,® a possible parameter
space for A can be one satisfying Z?=1 |A;] < 1. In the event that the spatial weights matrices are not
row-normalized, then the parameter space may be taken to be Y27_ [N;] < (maxj—1,.., || Win||) .

The parameter space of p can be analogously obtained.



Even with the parameter space imposed, the ML method is still computationally cumbersome
as |S,(A\)] and |R,(p)| are difficult to evaluate.5 Therefore, it seems of interest to have available
alternative efficient estimation methods which do not involve the complicated parameter space and
computation of |S,(A)| and |R,(p)]. Towards this end, we develop the BGMM estimator in this
paper.

For the estimation of the SARAR(1,1), Kelejian and Prucha (1998) suggested a feasible G2SLS
(FG2SLS) estimation method. With a consistent initial estimator p,, for p,, the FG2SLS of §y is

defined as

8g2sls,n = [Z;LR;’L (p71)Q7L(Q{nQ7L)71Q;LRH (ﬁn)Zn]ilz:lan (Ibn)Qn(Q;LQ")ilQInRﬂ (/A)n)Yn; (3)

where Z,, = (W,,Y,,, X,,) and Q,, is a matrix of IVs. Kelejian and Prucha (1998) suggested @Q,, to be
taken as a fixed subset of the linearly independent columns of { X,,, W,, X,,, W2 X,,, - ,WiX,,, M, X,,,
M W, X, MyZW2X,,, -+, M,W3X,}, where q is a pre-selected positive integer and the subset is
required to contain at least the linearly independent columns of {X,, M, X,}. The FG2SLS esti-
mator has a closed form expression and is computationally the most simple. Lee (2003) discussed
the selection of IVs and proposed the best FG2SLS estimator with Q,, = Rn(p,,)[Grn (M) X0nf,,, Xnl,
where G,,(A\) = W,,5,;1()\).” As the various G2SLS estimators use functions of W,, and X,, as IVs,
the G2SLS would not be applicable when all exogenous variables in X, are really irrelevant. Another
unsatisfactory feature of the G2SLS estimator is that the asymptotic distribution of Sggsls’n does not
depend on the asymptotic distribution of p,, (see Kelejian and Prucha, 1999; Lee, 2003).% In a time
series model with lagged dependent variables and autoregressive disturbances, y; = Aoyi—1+x+59+us
with uy = pour—1 + €, it is known that a feasible GLS estimation of Ay and 3, based on the trans-
formed equation yr — P, yi—1 = A(Yi—1 — PpYt—2)+ (Xt — p,,x1—1) 8+ & is not efficient (Maddala, 1971).
The SARAR(1,1) includes this dynamic time series model as a special case.” With normal distur-
bances, the MLEs of p, and Ao are asymptotically correlated (e.g. Anselin and Bera, 1998), which
suggests potential inefficiency of the G2SLS. We suggest the GMM approach which estimates p, and
Ao simultaneously using quadratic moments in addition to the linear moments used in the G2SLS
or the best G2SLS. With properly constructed moments, We show the GMM can be asymptotically

more efficient than the best G2SLS.



4 GMM Estimation

The GMM method in its general setting is based on an n X kyy IV matrix @,, and the IV functions
P;e,(0) where Py, is a n x n square (constant) matrix with ¢r(P;,) = 0 for ¢ = 1,--- ;m. Let
un(8) = S,(N)Y, — X,,8 and €,(0) = R, (p)u,(8), where § = (), 8'). The GMM estimation uses

the following empirical moments!'®

gn(e) = [an Plnen(a)y ce apnmen(e)],en(a)

[Qn7 Plan(p)un(5)7 T ,Pman(p)un(5)]/Rn(p)un(5)7 (4)

where FE(g,(00)) = E[(Qun, Pin€n, - s Pmnen)'en] = 0, because E(Qhe,) = Q. E(e,) = 0 and
E(e, Piney) = odtr(Py,) = 0 for i = 1,--- ,m.! In a practical application, one has to select
specific @,, and P;,’s to implement the method. As a simple example, for the SARAR(1,1) model,
Q),, may consist of X,,, W, X, and M,X,; and Py, and P,, are, respectively, W,, and M,,, where
W,, and M,, have zero diagonals.'? The general but arbitrary set of linear and quadratic moment
conditions provides a framework to discuss the possible selection of best moment conditions.

There are two motivations to use quadratic moments in addition to linear moments for the GMM
estimation. As will be shown below, one motivation is that the score vector of the likelihood function
essentially consists of linear combinations of linear and quadratic moments functions. Another
rationale is by the construction of IVs for the estimation of dg. Consider the MRSAR model Y,, =
ALY, + X8, + €, for an illustration. As W,Y,, = G, X,B¢ + Gnén, an 1V for W, Y, may
be a function of exogenous variables that approximates G, X, 03, the deterministic component of
W, Y,. This motivates the use of linear moments. The quadratic moments are motivated by using

the instrumental function P, ¢, which should be correlated with G,¢,,, the stochastic component of

W, Y., but uncorrelated with e,,.

5 Consistency and Asymptotic Distributions

To proceed, we follow the regularity assumptions in Lee (2007a) with proper modifications to fit in
the current model.
Assumption 1 The €,;’s are i.i.d. with zero mean, variance o and that a moment of order

higher than the fourth exists.



Assumption 2 The elements of X,, are uniformly bounded constants, X, has full column rank
ks, and lim,,_, %X;Xn exists and is nonsingular.

Assumption 3 The zero diagonal spatial weights matrices {Wj,}, {Mp,} (7 =1,---,p, k =
1,--+,q) and the corresponding {S; '}, {R,;'} are uniformly bounded in both row and column sums
in absolute value.'

Assumption 4 The matrices Py, s with tr (P;,) = 0, for i = 1,--- ,m, are uniformly bounded
in both row and column sums in absolute value, and elements of @, are uniformly bounded.

The disturbances in Assumption 1 are in the form of triangular arrays for generality. It in-
cludes the case that €,; = ¢;, independent of the sample size n. The higher than the fourth
moment condition in Assumption 1 is needed in order to apply the central limit theorem of Kele-
jlan and Prucha (2001) for triangular arrays of random variables. The nonstochastic X, and its
uniform boundedness conditions in Assumption 2 are for analytical simplicity. The elements of
X, as well as those of Wj,’s and My,’s, in their generality, may depend on n too. Assump-
tion 3 limits the spatial dependence among the units to a tractable degree and is originated by
Kelejian and Prucha (1999). It rules out the unit root case (in time series as a special case).
I Z§:1 A0jWinlloo < 1if ( ?:1 |Aoj|) maxj—1.... , [[Wjn|l,, < 1. A sufficient condition for S, ! to
be uniformly bounded in row sums in absolute value is that °7_; [Aoj| < 1/ maxj—1 ... p [[Winl|
because S;; 1 = I, + ( 5?:1 Ao Win) + ( ?:1 AojWijn)? + . Similarly, S,;! is uniformly bounded
in column sums in absolute value if >37_; [Ao;| < 1/max;—1,...  [Wjnll;. With an analogous argu-
ment, R, ! is uniformly bounded in both row and column sums in absolute value if 7 _, |por| <
1/ maxg=1,... ¢{|[Mknlly || Mknl.}- The uniform boundedness assumptions of both S, * and R;;! in
Assumption 3 are assumed to be valid at Ao and py. But with the uniform boundedness of Wj,’s
and My,’s, S;;1(A\) and R, *(p) will also be uniformly bounded, uniformly in a neighbor of Ay and
po, respectively (Lee, 2004). The spatial weights matrices are assumed to have zero diagonals to
facilitate the interpretation of a spatial effect and exclude self-influence. For analytical tractability,
in Assumption 4, P;,’s are assumed to have the uniformly boundedness properties as the spatial

weights matrices.



For any feasible 6, the model (1) implies that

QR (p)dn(9)
d,,(8) Ry, (p) Pin R (p)dn (8) + o3tr[E, " F}(p, \) PinFr(p, ) F iy 1]

n

B (9,(0)) = | e
dp, (8) Ry, (p) Prun B (p)dn (6) + UgtT[F;«ler/L (P, A) P Fr(ps N Y

where dn(é) = ;;‘):1 (>‘Oj_)\j)Gannﬂ0+Xn(BO_B)a Fn(pa /\) = Rn(p)Sn()‘) and F, = Fn(pOa /\0)'14
Let A, = (GlanﬁO7 t 5Gp7lX7l/807 Xn)~
Assumption 5 Fither (i) lim,_ %Q;LRn(p)An has full rank (p + ks) for each possible p in its

parameter space, and the moment equations
tr[R, Ry, (p) Pin R (p) Ry, '] = 0, (6)

for i = 1,---,m, have the unique solution at py, or (ii) lim, e Q) Ry(p)Ay, has column rank
(p+ ki —po) for some 1 < py < p for each possible p in its parameter space, and the moment
equations

tr[E,7VE) (0, X) Pin Fu (p, N E 1] = 0, (7)

for i =1,--- ,m, have the unique solution at the true parameter values.
Assumption 5 summarizes some sufficient conditions for the identification of 8. We provide
identification conditions for the moment equations (6) and (7) in Propositions 7 and 8 in Appendix

B.
Proposition 1 Under Assumptions 1-5, E (gn(0)) = 0 has a unique solution at 0 = 6.

The moment conditions (7) correspond to those of a pure SARAR(p, ¢) process,

p q
Y, = ijl AojWinYn + un, Up, = Zk:l Pore Mintn + €. (8)

For this process, €, (0) = F,(p, \)F; '€, and, hence, E[€.,(0) Pinen(0)] = o2tr[F, " F.(p, \) Pin Fy(p, N F 1]
for i = 1,--- ,m. This pure SAR process implies the transformed process Y,, = ZZ:l PorMinYn +
> A0 WinYn — 320 D PokA0j MiknWinYn + €n. For the pure SAR process with p = g,

identification of p, and Ay separately would not be possible if W;,, = Mj, for j = 1,---,p.



This is because the transformed equation would be reduced to Y, = >>7_ (po; + Aoj)WjnYs —
‘;:1 > 1 PokAojWinWin Yy + €,, and, hence, p, and Ao would not be distinguished from each
other.!®
Let Q,, = var (g, (60)). £ involves variances and covariances of linear and quadratic forms
of €,. For any square matrix A, vecp(A) = (a1, -+ ,any)" is the column vector formed with the

diagonal elements of A, and A* = A+ A’. It follows from Lee (2007a) that

0 3@ Wnm
Q, = krv xXkrv :U‘SQ +V,, (9)

lu’dw;zan (,LL4 - Saé)w%mwrnn

with wpm = [veep(Pry), -+ ,vecp(Pmy)], and
:%Q;LQTL Ok[vxl e Ok]\/)(l
S A S 1y
V. — o OleJIV tT(P1nP1n) tT(P1ann) _ 04 o2 QnQn OkIV xm ’ (10)
OkaIV Amn
Ovxkyy (P Pin) -+ tr( Py Pon)

where Orx; denote the zero matrix of dimension k x I, us and p, are, respectively, the third and
fourth moments of €,;, and A, = [vec(Py,), - ,vec(Ps,)] [vec(Piy), - -+ ,vec(Pmy)]. When e,
is normally distributed, Q,, is simplified to V,, because pu; = 0 and p, = 303. In general, (2, is
nonsingular if and only if both matrices (vec(Piy,), -+ ,vec(Pyy)) and @, have full column ranks.
As elements of P;,’s and @, are uniformly bounded by Assumption 4, and P}, P, is bounded in row
or column sums, %Qn = O(1). It is thus meaningful to impose the following conventional regularity
condition on the limit of %Qn:

Assumption 6 The limit of %Qn exists and is a nonsingular matriz.

The asymptotic analysis in this paper assumes each unit has only a finite (bounded) number
of neighbors which does not increase as n increases. The spatial weights matrices may be sparse.
Assumption 6 and parts of Assumption 5 provide the regular conditions for estimators to have the
usual y/n-rate of convergence.!®

The following proposition provides the asymptotic distribution of a GMM estimator with a linear
transformation of the moment equations, a,g,(0), where a, is a matrix with full row rank greater

than or equal to the number of unknown parameters (k; +p+ ¢). The a,, is assumed to converge to



a constant matrix ag which has also full row rank. This corresponds to the Hansen’s GMM setting,
which illustrates the optimal weighting issue. As usual for nonlinear estimation, the parameter space
O of 0 will be taken to be a bounded set with g in its interior.!”

Assumption 7 The 0q is in the interior of the parameter space ©, which is a bounded subset of

Rkw+p+q'
Let
OE(gn(00))
D, = ————= 11
/ a0’ (11)
Okfvxl te OkIV x1 Q/nGIanXnBO e Q/n(;ananﬁo Q/anXn
- J%tr(Planln) e Jgt?’(anan) UgtT(anCr’ln) e J(%tr(PlsnGP") 01><km
U(QJt""(PrimHln) T U%tT(PSanqn) U%tT(Prfméln) T U%tT(Pr?mGWL) 01xk,

where Gjn = RnGjnRgl and Hy, = My, R,  forj=1,--- ;pand k=1,---,¢.*

Proposition 2 Under Assumptions 1-7, suppose g, (0) is given by (4) so that lim,,_, a, F(g,(0)) =
0 has a unique root at Oy in ©. Then, the GMM estimator 0,, derived from mingee ¢, (0)a’,angn(6)

is a consistent estimator of 0, and \/n(0, — 0o) 5 N(0,%), where

—1 —1
1 1 1 1 1 1 1

Y=l =Dj)a, n(=Dn =Dj)a, n *Qn , n(=Dn —D))a, n(=Dn ;

i | (= Dp)apan(—Da)| (= Dn)anan(—Qn)anan(—Da) | (—Dy)anan(—Dn)

n
n—oo

with D,, in (11) under the assumption that lim, .o ta, D, exists and has the full rank (k, +p+q).

n

From Proposition 2, with g,(f) in (4), the optimal choice of a weighting matrix a/,a, is Q,*
by the generalized Schwartz inequality. As , involves unknown parameters o2, u; and py,, the
optimal GMM objective function will be formulated with a two-step feasible approach by estimating
consistently o2, as well as 5 and j14 in the first step. That can be done by using estimated residuals

of €, from an initial consistent estimate of 6y.!?

The €2, can then be consistently estimated as
Q.. The following proposition shows that the feasible optimum GMM estimator with a consistently
estimated €2,, has the same limiting distribution of the optimum GMM estimator based on §2,,. With

the optimum GMM objective function, an overidentification test is available, which can be used as

a goodness-of-fit test for the selection of the order of spatial lags.

10



Proposition 3 Under Assumptions 1-7, suppose that (SZL")_1 - (%)_1 = 0,(1), then the feasible
optimal GMM estimator 9fo’n derived from mingee g’,(0)%; g, (0) based on g,(0) in (4) has the
asymptotic distribution

V(0 fom — 00) 2 N(0, ( lim lD;Q;an)*l). (12)

n—oo N

Furthermore, gil(én)Q;lgn(@n) 5 X2((m + kry) — (ke +p+q)), where (m + kry) > (ks +p + q).

6 Efficiency and the BGMM estimator

Consider now the issue of selecting the best P;,’s and the best IV matrix @,,. By transforming u,
into €, free of spatial correlation, the model (1) implies that a SAR(p) process for the transformed

variables Y,, = R,)Y,, and X,, = R, X,,,
= P P — _ _
Yn = Zj:l )\OjRnanYn + RanBO + €n — Z]’:l )\OjonYn —+ Xnﬂo —+ €n, (13)

where an = RnanRT_Ll.

First, consider the case that €, is normally distributed. Under normality, u, = 30§ and pg = 0.
Hence, the VC matrix ,, = V,, in (10) is a block diagonal matrix. This VC matrix and the derivative
matrix in (11) together imply the asymptotic precision matrix (the inverse of the asymptotic VC

matrix of an estimator, see p.101, Davidson and MacKinnon, 2004) of éfo,n as

—1
D;QT_Lan _ AnB, A O(ptq) x ke I Ogxq Ogx (p+k.) , (14)
Ok, x(p+a)  Okpxky O(p+ka)xq 0.71[2)Cn
where
tr(Pp,Hin) - tr(Ph, Hin)
tr(PS Hyn) - tr(PS, Hen 1
Rl IEY |
t’I“(PlsnGln) s tT(P;LnGln)
tT(P;LnPlSn) e tT(PSLnPrfm)

tT(PlsnGPn) T tT(PTSnnGPn)

11



and Cyy = (GinXnBor -+ s Com XnBos Xn) Qn (@ Q) 10" (GrnXnBos - s Com KBy Xn). With the
asymptotic precision matrix in (14), it follows from the generalized Schwartz inequality that the best
selection of Q,, is (G1, X80, - ,G‘anan X,,), and the best selection of P,’s are Gjn — @In
and H;m—%[n forj=1,---,pand k=1,--- ,q

Let Pi1, denote the class of P,’s satisfying Assumption 4. The subclass Ps, of Py, consisting
of P,’s with zero diagonals is also interesting. The corresponding GMM estimator with P,’s from
Pan is robust against distributional assumptions, because, when vecp(P;,) = 0 for ¢ = 1,---  m,
Q, = V, regardless of the values of u; and p, — 303.2° Based on the Schwartz inequality, the
best selection of IV matrix Q,, is still (G1, X80, , GnXnBy, Xn) but the best P,’s from Py, are
Gjn— D(Gj,) and Hy,, — D(Hyy,), for j=1,--- ,pand k=1, - - , g, under homoskedasticity. D(A)
denotes a diagonal matrix with diagonal elements being those of A if A is a vector, or the diagonal
elements of A if A is a square matrix.

When the distribution of €, is unknown, the following proposition provides the best linear and
quadratic moments for the estimation of the SARAR(p, ¢) model via selecting the best P,’s and
Qn.2' If an intercept appears in X,,, define X as the submatrix of X,, with the intercept column
deleted. Thus, X,, = [X}, c(pg)ln], where c(py) is a scalar function of p, and [,, is an n-dimensional
vector of ones.?? Otherwise )_(;: = X,,. Suppose there are k% columns in )_(;:. Let )_(nj be the jth

column of X,,, and )_(:L- be the jth column of X*. Denote X d X* — %lnl; the deviation

TLJ’
of X . from its sample mean. Let G =Gj, — %D(@jn) - WD(GJ'”X”BO) and
3
H}, = Hp, — MD(H;W), for j =1,---,pand k = 1,---,q, where 13 = u3/03 being the

(ny—1) 773

skewness of the disturbance, and 7, = u,/0¢ being the kurtosis of the disturbance. And denote
M, = {90n} the class of optimal GMM estimators derived from linear and quadratic moment

conditions (4), with P,’s and @, satisfying Assumption 4.

Proposition 4 Let P;, = G3, — %tr(@;n)fn for g = 1,---,p, B}

1
p+kn Hl:n - ﬁtT(Hl:n)I"

for k = 1,---,q, and Pp+q+ln = D(X;’;fl) forl = 1,--- kX Let QfF = (QF,,@5,,Q%5,) with
Qin = Q1. ,Q;np) and Q3 = Q41+ Qi) such that Qf, = X + (X,
L1,0X0), Qb = GinXnBy + W(G]nxnﬁo — 3l GjnXuBo) — 2tz lveen (Gin) —
%tr(éjn)ln], for 5 =1,---.,p, and Q3,, = vecp(Hyn) — %tr(Hkn)ln, fork =1,---,q. Within
the class of optimal GMM estimators M, under Assumptions 1-7, the estimator 9;,7,” derived from

mingee g, (0) 7" g;, (0), where @, = var (g;; (60)) and g;,(0) = [Q5, Piren(0), -+, Pyyg e nén(0))'en(0),
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is the BGMM estimator with the limiting distribution /n(0y,, — Ho)gN(O, ¥, 1), where

_ 2n */ Vv
) Xn Y12 ool D17 Q3n Xn
Eb = nh—{go g 2/12 222 JazQ;;Xn 3
2 Y * —2 v * —2 v *
—WMXLQ% 0o 2X7/1Q2n ) 2X’:LQ1’IL

and

tr(P;jLnHln) cee tr(P;j_q,nHln) tr(PysHy,) - tr(P;fLHln)
Y= : : , Y12 = : : )

tr(P;il,ann) T tT(P;iq,ann) tr( Py qn> T tT(P;erqn)

0'52 (GIanBO)I Q;nl +tr (P{kiéln) ce 0'0_2 (Glanﬁo)/ Q;np +ir (Pgiéln)
Yoo = : :

— a Y% ! yx *S (Y — 8 7% ! *5 ()
09 ? (GPanBO) Qan +ir (PlnGZm) 0 Og ? (GPHXHBO) Q2np +ir (PpnGjlm)
The moment functions [Py ,€.(0), -, Py, ,€n(0)]'€n(0) are apparently designed for the esti-

mation of py in u, = ZZ:I PorMpntn+€n. Due to the correlation between linear and quadratic mo-
ment functions, it is more involved than the best moment function for estimating the (pure) SAR(q)
process Yy, = 320, porMynYy + €,.%* And the selection of (Pl Py Prygiins s Py girs n)
and (Q3,,, @35, @%,) corresponds to the selection of the best quadratic moment functions and the
best IV matrix for the estimation of the transformed MRSAR model (13). These two sets of mo-
ment functions estimate p, and Jp simultaneously. The best selections of P,’s and @, from Py,
under normality assumption are special cases of P;’s and @}, given in Proposition 4. When ¢,

is normally distributed, G;n and H}, reduce to C_?jn and Hyg,, respectively, for j = 1,--- ,p and

k=1,---,q. Hence, it follows that P}, = Gjn — @In, Bk

= Hpyp — W{Tkn)lnv Q?[Kn = Xnv
and Q3, = (G1,XnBy, s GpnXnBy) asny =0,forj=1,--- ;pand k=1, ,¢. And it follows ar-

guments in Breusch et al. (1999) that moment functions [Q%,,, D(X;%)e,(6),-- -, D(X;g;)en(e)]'en 9)

nl
are redundant given [QF,,Q3,, Pl .en(0),- -, Pry, ,€n(0)]'en(0) under normality.>*
The moment function g (#) of the BGMM and its VC matrix Q¥ involve the unknown parameters

00,02, 5 and 1. In practice, with initial y/n-consistent estimators 0,, 62 fis,, and fi,,, P and Q7

in g (0) can be replaced by their estimated counterparts p;L and Q:‘w fori=1,--- ,k;+p+gq, and
Q*

n

can be estimated accordingly as QZ The following proposition shows that the feasible BGMM
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estimator has the same limiting distribution as the BGMM estimator in Proposition 4.

Proposition 5 Let P, Q% and 0 be the estimated counterparts of Pf, Q¥ and QF, for i =
1,--- ,ki4+p+q, with the unknown parameters replaced by their \/n-consistent estimators O, &i, sy,

and jiy,. Then, under Assumptions 1-7, the estimator 0y, from mingee ¢/ (0) Q1% (0) with
35(0) = [Q%, Pt en(0), - - ,]5]2‘*+p+qynen(9)]’en(0) has the same limiting distribution of 0y, derived

from mingee g5’ (0) 4,7 g5, (0).

Lastly, we compare the asymptotic efficiency of the BGMM estimator with that of the conven-
tional QML estimator and the best G2SLS estimator in Lee (2003). As the first order conditions of
the log likelihood function (2) are asymptotically equivalent to some linear and quadratic moment
conditions in the sense that their consistent roots have the same limiting distribution, the QML
estimator is asymptotically equivalent to some GMM estimator based on those linear and quadratic
moment conditions. The BGMM estimator is asymptotically as efficient as the ML estimator when
€ns’s are 1.i.d. normally distributed. When ¢,,;’s are i.i.d. non-normal errors, the extremum estimator
based on the normal likelihood function is a QML estimator. The BGMM estimator improves the
efficiency of such a QML estimator by using the best linear and quadratic moment conditions via
the selection of P’s and @, and by using the optimal weighting matrix €27. On the other hand,
the BGMM estimator improves the best G2SLS estimator via joint estimation of p, and §y using
the quadratic moment conditions in addition to the linear moment conditions used in the G2SLS.
The additional quadratic moment conditions provide the additional information on the correlation
structure of the reduced form disturbances for the estimation. The result is summarized in the

following proposition.

Proposition 6 Under Assumptions 1-7, the BGMM estimator is asymptotically efficient relative to

the QML estimator and the best G2SLS estimator.

7 Monte Carlo Study

In the Monte Carlo study, we first consider the SARAR(1,1) model specified as Y,, = AW,.Y,, +
anﬁl +Xn2ﬁ2+una where Up = anun +€n7 an = (xlla e 7xn1)/ and XnZ = (3312a e 7xn2)/~ Ti1
and ;5 are independently generated standard normal variables for all ¢, and ¢,,;’s are independently

generated from the following 3 distributions, all of which are scaled to have mean 0 and variance
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2: (a) normal, €,; ~ N (0,2), (b) symmetric bimodal mixture normal, €,; = 1/2/17u where u ~
SN (—4,1)+.5N (4,1), and (c) gamma, €,; = u—2 where u ~ gamma (2,1). The skewness (n3) and
kurtosis (n,) of these distributions are correspondingly: (a) ny =0, n, = 3; (b)n; =0, n, ~ 1.228;
and (c) n3 = V2, n, = 6. Normal distribution is the basis for comparison. Symmetric bimodal
mixture normal distribution and gamma distribution will study the effects of skewness and kurtosis
excess on the finite sample performance of various estimators. Asymptotically, the feasible BGMM
estimator proposed in Proposition 5 is as efficient as the MLE under (a), and is more efficient than
the QML estimator under (b) and (c).

Let W4 denote the weights matrix for the study of crimes across 49 districts in Columbus, Ohio
in Anselin (1988). For moderate sample sizes of n = 245 and 490, the corresponding spatial weights
matrices in the Monte Carlo study are given by Is ® W4 and I;9 ® W4 respectively, where ® denotes
the Kronecker product operator. The true Ag and p, are set to be 0.4 in the data generating process.
We use different 3, in different experiments.

The estimation methods considered are: (1) the G2SLS and B2SLS: the G2SLS approach in
Kelejian and Prucha (1998) and the best G2SLS method in Lee (2003);2° (2) the QML: the quasi
maximum likelihood method;?¢ (3) the GMM1: the feasible best optimal GMM in the class of Pa; (4)
the GMM2: the feasible best optimal GMM under the normality assumption; and (5) the BGMM:
the general feasible best GMM described in Proposition 5.

The number of repetitions is 1,000 for each case in the Monte Carlo experiment. The regressors
are randomly redrawn for each repetition. In each case, we report the mean ‘Mean’ and standard
deviation ‘SD’ of the empirical distributions of the estimates. To facilitate the comparison of various
estimators, their root mean square errors ‘RMSE’ are also reported.

Computationally, the G2SLS is the most simple. The best G2SLS involves S, 1()), and the
GMM1, GMM2, and BGMM involve both S;;1()\) and R, *(\), hence they are more complicated than
the G2SLS but much simpler than the conventional QML because they do not need the computation
of |S,(\)| and |R,(p)|, and S;*(\) and R;!(\) are evaluated only once at an initial consistent

estimate.
[Tables 1-3 approximately here]

Tables 1-3 report the results of the case that 8y, = 1 and Sy, = —1, which will be referred to as

the case with strong x. The ratio of the variance of x;1 /5,5 + ;25 over the sum of the variances
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of ;1819 + Zi2fs and ¢; is 0.5. In this case, we use the G2SLS estimate as the initial estimate
to implement the B2SLS and the various feasible optimal GMM.?" For sample size n = 245, the
G2SLS estimates of p, are biased downwards by about 12%, under all disturbance specifications.
As the sample size increases to n = 490, biases in the G2SLS estimates of p, reduce to 5 ~ 7%.
When n = 245, the G2SLS estimates of )y are slightly biased upwards, and the B2SLS and various
GMM estimates of A\ as well as the QML estimates of Ag and p, are slightly biased downwards. All
the estimates of 5,; and 3, are essentially unbiased for both sample sizes considered. In terms of
SD and RMSE, the G2SLS estimates are almost as good as those of the QML, GMM1 and GMMZ2,
under all disturbance specifications. The B2SLS estimates of Ay have slightly larger SDs than those
of the G2SLS estimates for n = 245. Other than that, the B2SLS and the G2SLS estimates are
similar for both sample sizes considered. The good finite sample performance of the G2SLS similar
to that of the QML has been noted in Kelejian et al. (2004) when X’s have strong effects. When
the disturbances are normally distributed, for sample size n = 245, the QML, GMM1 and GMM2
estimates of A\g and p, are better than the BGMM estimates in terms of smaller SD and RMSE. The
performance of the BGMM estimates is as good as the others when n = 490. When the disturbances
are symmetric and platykurtic, the BGMM estimates of 3, are a little better than the others. When
the disturbances follow gamma distribution that has 15 # 0, the BGMM estimators have smaller SD
and RMSE than the other estimates for both sample sizes considered. For example, when n = 490,
the percentage reduction in SD of the BGMM estimates of Ao, py, Bo; and B, relative to the QML

estimates is, respectively, 23%, 16%, 23% and 24%.%8
[Figures 1-3 approximately here]

To illustrate whether the finite sample distributions of the estimates can be approximated by the
normal distribution in the experiment, we report quantile-quantile plots from the computer package
S-Plus with the BGMM estimates for samples size 490 in Figures 1-3. The quantile-quantile plots
have similar features for other estimators. As the plotted lines mostly lie on straight lines, the

normal approximations seem adequate (Chambers et al., 1983).
[Table 4 approximately here]

Table 4 reports the results of the case that 8y, = 0.4 and 3y, = —0.4, which will be referred to

as the case with weak z. The ratio of the variance of ;15,7 + %234, over the sum of the variances
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of ;18,0 + ®i2fso and ¢; is about 0.14. Hence )¢ may be difficult to estimate by the G2SLS. As
the feasible B2SLS and GMM estimators may be sensitive to initial consistent estimates, we use
the unweighted GMM with Q,, = (X,,, W, X,,, W2X,,) for linear moments, Py, = W,, and Py, =
W2 — %tr(Wﬁ)In for quadratic moments and I,, as the weighting matrix to get initial estimates.?’
The G2SLS estimates of Ay are biased upwards and those of p, are biased downwards. For instance,
when n = 490 and the disturbances follow the gamma distribution, the G2SLS estimator of Ag is
upward biased by 21% and that of p, is downward biased by 37%. The biases of the QML estimates
of Ao and p, are in the same direction as those of the G2SLS estimates but smaller in magnitude.
The B2SLS and various GMM estimates of A\g are downward biased and the B2SLS estimates of p,
are upward biased. When n = 490, the biases in the GMM estimators are less than 15% for the
normal error and less than 10% for the other error distributions considered. The other estimates
are essentially unbiased. The GMM1 and GMM2 estimates of Ay and p, have the smallest SDs
for all error distributions considered. For instance, when n = 490 and the disturbances follows the
normal distribution, the percentage reduction in SD of the GMM2 (the best GMM under normality
assumption) estimates of Ag and p, relative to the B2SLS estimates is, respectively, 31% and 18%.
On the other hand, when the disturbances are asymmetrically distributed, the BGMM estimates of
By have smaller SD and RMSE than the other estimates, as in the case with strong .3’

To study the properties of the estimators when the order of the spatial lags is misspecified,
we consider a SARAR(2,1) specified as Y,, = M W1, Y, + AaWa, Y, + X181 + Xn2Bs + uy, where
Uy = pWipuy, + €,. Wy, and Wy, correspond to the row-normalized weights matrices for the
study of local school expenditure across 612 urban school districts in Ohio in Tao (2005). Before
row normalization, Wi, is based on neighbors with common borders: wi;; = 1 if ¢ and j share
a border and wy;; = 0 otherwise. Wb, has weights based on the inverse of income differences:
waij = 1/[INCOME; — INCOME;|, with INCOM E; being median per capita income in district
1 over the sample period, for all urban school districts j within the same metropolitan area as 1.
In the data generating process, we use Ag1 = 0.4, Ao2 = 0.2, p9 = 0.4, 8y; = 1 and By, = —1. The
misspecified model has mistakenly excluded W5,Y,, in the estimation. The estimation results are

reported in Tables 5-7.
[Tables 5-7 approximately here]

To facilitate the comparison, we report the various estimates of the correctly specified model in
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the upper panels of Tables 5-7.3! We use the G2SLS estimate as the initial estimate for the various
feasible estimators. Except that the B2SLS estimates of Ago is distorted by outliers, we observe
a similar pattern as the results reported in Tables 1-3. We also estimate the misspecified model,
i.e., under the exclusion restriction of A\g2 = 0, and the results are reported in the lower panels of
Tables 5-7. The omitted economic interaction effect represented by Wa,,Y,, is partly captured by the
effect of W1,Y,,, but not much. For the misspecified model, the G2SLS estimates of A\g; are biased
upwards by about 7% and those of p, are biased downwards by about 5%. The QML and various
GMM estimates of Ag; are slightly upward biased. The other estimates are essentially unbiased.
The estimates of Ao and p, in the misspecified model also have slightly larger SDs. Overall, the
exclusion of a spatial lag seems to have small effects on the estimates of the remaining parameters.

In summary, the GMM approaches with both linear and quadratic moments can improve upon
the G2SLS and B2SLS in the finite sample when the variation from the exogenous regressors relative
to that of the innovations is small. The proposed BGMM improves upon the QML and B2SLS when
disturbances are asymmetrically distributed, and the improvement could be as large as 20% in terms
of reduction in SD. Furthermore, the GMM estimators are relatively robust to the misspecified order

of spatial lags.

8 Conclusion

In this paper, we consider the GMM estimation of high order MRSAR models with SAR disturbances.
The proposed GMM approach improves upon the G2SLS in Kelejian and Prucha (1998) and the
best G2SLS in Lee (2003) in asymptotic efficiency. Among the optimal GMM estimators, we show
the existence of the BGMM estimator that is asymptotically as efficient as MLE under normality,
and more efficient than the QML estimator when the disturbances are not normally distributed.
Some evidence from Monte Carlo experiments confirms that the proposed GMM may improve upon

the finite sample performance of the conventional QML and the best G2SLS approaches.

Notes

IThe best GMM estimator is the optimal GMM estimator with the best linear and quadratic moment conditions.
It is called the “best” because it is the most efficient one within the class of GMM estimators derived from linear and

quadratic moment conditions.
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2The feature of (1) is that the A’s and p’s are unknown parameters. If the spatial lag components have a form like
Azg.’:l wiWinYn = AW}Y,, where the weight parameters w;’s are known and determined outside the model, then
such an alternative model is technically a SAR model of the first order as analyzed in Lee (2007a).

3 As the values of the dependent variable are determined by the model with X, and €, the model is, therefore, an
equilibrium one. This feature differs from a time series autoregressive model where there is an initial value problem.

4Lee (2002) has identified a subclass of models for which the OLS estimator can be consistent.

5For any n x n matrix Ap = [ay;;], the row sum matrix norm is defined by ||An|lcc = max;=1,... n > lanagl,
and the column sum matrix norm is defined by ||An||1 = maxj—1,... n > ry |an,ijl-

6With a single weights matrix W, the Ord device (Ord, 1975), explained as follows, can simplify the evaluation
of |I, — AWy |. When W, is diagonalizable, we have W,, = RnDnR;l7 where D,, is a diagonal matrix of eigenvalues
and R, is the corresponding eigenvector matrix. It follows that |I, — AWy, | = |I, — )\RnDnR;1| = |In — ADy| =
H?:l(l — Adni), where dy;’s are diagonal elements in Dy,,. The Ord device is to compute the eigenvalues of the spatial
weights matrix once and then use them to evaluate the determinant at different values of A. However, the Ord device
will not be applicable to the current model with a few exceptions. For a simple illustration, consider two matrices Wiy,
and Wa, that are both diagonalizable, i.e., Wj, = RjnDjnR;nl, 7 =1,2. Unless R1n = Rayp, they can not be canceled
out in |In—A1 RlnDlnR;,}*)\QRgnDan;nl |. The R1p might be equal to Ray, in some special situations. A well-known
case is when both Wi, and Wa,, can be simultaneously diagonalizable. However, to be simultaneously diagonalizable,
the sufficient conditions are that both Wi, and Wa, are symmetric and commutative, i.e., Wi, Wa,, = Wa, W1,
(see Dhrymes, 1978). Another case is the high order spatial lags model with Wj,, = Wﬂl j=1,---,p, generated as
powers of a diagonalizable Wy,. In this case, [I, — ?:1 AjW7{| =|In — ?:1 )\jRnDZLR;H =|I, — ;7:1 )\jDﬁ.L\ =

- 521 Ajd{n). However, the Ord device would not be applicable if redundant and circular routes of the
high order spatial operators are eliminated (Blommestein, 1985). The ML method may be practically tractable when
all the spatial weights matrices are sparse such that S, (\) and Ry (p) can be effectively evaluated by sparse matrix
techniques.

"To simplify the computation involved in the best FG2SLS estimator, Kelejian et al. (2004) suggested the best
series FG2SLS estimator that is also an asymptotically efficient estimator within the class of IV estimators, with
Qn = Rn(py,)] 220 ;\fLWTIf+1Xan, Xn)] and rp is some sequence of natural numbers going to infinite.

8In the regression model with SAR disturbances, as all the explanatory variables in the main equation are exogenous
variables, the asymptotic distribution of p,, in Kelejian and Prucha (1999) via the least squares residual does not
depend on the asymptotic distribution of the least squares estimator of 3,. For the SARAR(1,1) model, as the second
step estimator, the asymptotic distribution of p,, depends on the asymptotic distribution of the first step estimator
of dp via the estimated residual @, in the presence of the spatial lag W,Y, in the main equation (Kelejian and
Prucha, 2007b).

9Tt has a special spatial weights matrix of a single neighbor for each spatial unit and yo = 0.

10These moments have been designed to focus on the estimation of §. If we are also interested in the estimation of
o2. Tt can be estimated by the empirical second moment with estimated residuals of €,,. In Liu et al. (2006), we show
that this approach will not lose asymptotic efficiency by focusing on 6.

HHowever, the zero trace assumption of Pp’s is not sufficient for consistency of the GMM estimator in the presence

of the heteroskedasticity of unknown form. Under heteroskedasticity, we need to use P,’s with zero diagonals to
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ensure consistency. (Lin and Lee, 2006)

12For the SARAR(1,1) model, Kelejian et al. (2004) suggested the use of the linearly independent columns of
[Xn, WnXn, MpXn, Mp Wy Xy for Qpn in the G2SLS procedure for estimating the main equation, and use M, and
M M,, to set up moments via estimated residuals of the first stage to estimate the disturbance process.

13 A sequence of square matrices {Ay}, where A, = [@n,ij], is said to be uniformly bounded in row sums (column
sums) in absolute value if the sequence of row sum matrix norm ||Ay||ec (column sum matrix norm ||A,||1) are
bounded. (Horn and Johnson, 1985)

MDerivation of (5) is given in the Lemma C.9.

15Tt is noted that when the identification of the MRSAR model via linear moments is possible, Wi, is not required
to be distinct from M,,.

When X, = I, (i.e., only intercept) and M, = W, is row normalized, A, will not have a full column rank. In
this case, the parameters can not be identifiable. When X,, = I, and W, is row-normalized, G Xn By = Xnc where
c=Bo/(1L = Xo). Thus, Ap, = (GnXnBy, Xn) does not have the full column rank.

In practice, if there is a need to specify an M, for the error process, which should be different from Wy, a
possible thinking is, while the spatial weight matrix W), for the main equation may be designed to capture reactions
of economic competitors, there might still be autocorrelation in variables not crucial to the model. Autocorrelated
disturbances might then be considered to capture such correlations. This interpretation has been offered, e.g., in
Benirschka and Binkley (1994) for a model of agricultural land values. In that case, the correlation of disturbances
may be captured by the specification of a spatial correlated process with M, representing geographic proximity.

16There are scenarios where the number of neighbors increases as m increases. Those are large group interaction
scenarios, which are relevant for in-filling asymptotics. In Lee (2004), it is shown that such scenarios might imply
estimates to have lower than the usual y/n-rate of convergence. The analysis in this paper can be extended to
incorporate the large group interaction scenarios but will involve much complicated notations. For additional and
related analyses for GMM estimation with large group interactions, see Lee (2007b).

1TNote that it is unnecessary to require that, for each 6 in ©, |S,,()\)| is positive. The property of such a determinant
does not play a role in the GMM estimation. In theory, any bounded set in Assumption 7 will do as long as 6g is in
the interior of the parameter space and other assumptions are satisfied at § = 6. The boundedness (or compactness)
assumption of the parameter space is needed for asymptotic analysis in proving the uniform convergence in probability
of the GMM objective function. In this regard, the G2SLS estimation has the theoretical advantage as restrictions on
the parameter space is not explicitly needed even though there are implicit restrictions due to the uniform boundedness
of Sn(A) and Rn(py). The disadvantage of the G2SLS may simply be due to inefficiency, in particular, when exogenous
variables in X, have small effects (relative to disturbances) on the outcomes.

18 The derivation of (11) is given in the Lemma C.10.

1 The detailed proof is straightforward and is omitted here.

201t is also robust against unknown heteroskedasticity (Lin and Lee, 2006).

21'When the disturbances are normally distributed, it is quite easy to identify the best moments via the generalized
Schwartz matrix as shown above. Without normality, it is not so. In general, the key ingredient is to incorporate
proper diagonal elements of Gy, in the construction of additional moment conditions. The final derivation of the best

moments is based on such an insight and trial by errors.
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22When M, is row-normalized, Mpl, = l, and In — poMn)’lln =(1- po)*lln. Hence, Rpln = Mn(In —
poMn) "y = (In — poMn) "I Myuly, = (1 — pg) ~1yn. In this case, cn(pg) = (1 — pg) L.

23For the pure SAR(q) process, the BGMM estimator uses the quadratic moment conditions with pPro= H}é7L —

Zi:?D(Hfm) for k=1,---,q (Liu et al., 2006), where A* = A — %tr (A) I, for an n X n matrix A.

24We note that the quadratic moments with P,’s from Pi, but not Pa, will not be robust when e,;’s have
heteroskedastic variances (Lin and Lee, 2006). The quadratic moments with P}’s given in Proposition 4 can improve
asymptotic efficiency only under the homoskedasticity assumption.

25Ty estimate the SARAR(1,1) model, we use Qn = (Xn,Wan,WT%Xn) as the IV matrix for the G2SLS.
In general, a valid IV matrix could be (Xpn, WnXn, - ,WIX,) for some ¢ > 1. We have tried different val-
ues of g. We found that as more spatial lags of X, are included as IVs, the SD of the estimated (Ao, py) will
decrease slightly while the bias will increase a lot. To balance the tradeoff between SD and bias, we picked
the @n according to the RMSE for illustration. To estimate the SARAR(2,1) model presented later, we use
Qn = (Xn, WinXn, Wan Xn, WE, Xn, W2 Xn, WinWan Xpn, Wap Win Xn) as the IV matrix for the G2SLS.

26The QML estimator is calculated using sac.m in Econometrics Toolbox (version 7) by James P. Lesage. Function
option info.lflag = 0 for full computation (instead of approximation), and other options are set to the default values.

2"The G2SLS estimates of (Ao, py) lie in (—1,1)2 for all replications.

28 We also estimated the model by the iterated G2SLS and B2SLS. In the 1000 repetitions, only about 650 repetitions
generated convergent estimates. Also the convergent iterated estimates of py are severely downward biased. To save
space, the Monte Carlo results of the iterated G2SLS and B2SLS estimators are not reported in this paper.

29We impose a restricted parameter space on the simple unweighted GMM, so that the estimated (;\n,[)n) lie in
(=1,1)2. There are a few divergent cases. For n = 490, the numbers of divergent cases are from 15 to 17 with different
error specifications. Additional replications are generated to have a total of 1000 convergent cases for the reported
results.

30 Additional Monte Carlo results can be found in our previous two working papers. We considered alternative
disturbance distributions (t distribution and asymmetric bimodal mixture normal distribution) and weights matrix
for the SARAR(1,1) model. The general conclusions are similar. We also considered smaller values of 8 for the
case with weak z. We found that as the variation from the exogenous regressors relative to that of the disturbances
becomes smaller (than 0.14), the biases and SDs in the G2SLS and B2SLS estimates of (Ao, py) dramatically increases,
while the various GMM estimators are still reasonably good. Also, there are additional results on the SARAR(2,0)
model.

31 As the QML approach is hard to implement for high order MRSAR models, we did not report the QML estimates

for the correctly specified model.
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APPENDICES

A Summary of Notations

D (A) = Diag (A) is a diagonal matrix with diagonal elements being those of A if A is a vector, or
diagonal elements of A if A is a square matrix.
vecp (A) is a column vector formed by the diagonal elements of a square matrix A.
A5 = A+ A’ where A is a square matrix.
Al = A — Lir (A) I, where A is an n x n matrix.
AT is a linearly transformed square matrix of A which preserves the uniform boundedness property.
5= (N0 0= (/.5
Sn(N) = LI = Y20_ 1 AiWin; Sn = Sn(M); Ru(p) = In = 24—y preMin; Rn = Rn(po)-
G (V) = WS (N); Gy = G (30): Hin () = Mion R ()3 Hin = Hin(py).
En(p, A) = Ru(p)Sn(A); F = RnShn.
un(6) = Sn(MN)Yn = Xnf3; €n(0) = Rn(p)un(0).

Yu(p) = Ru(p)Yni Xn(p) = Ru(p)Xn; Win(p) = Ru(p)Wjn Ry, (p)-

n(p;A) = Bn(p)Sn (/\)Rﬁl(ﬂ); Gin(p: A) = Win(p) S (p, ).

(Po) Xn = Xn(Po)? Win = Wjﬂ(ﬂO)? Sjn = Sjﬂ(ﬂOv)\O); éjn = éjn(p07>\0)~

CQ I

“< I

Y, =
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l, is an n x 1 vector of ones.
ek; is the jth unit column vector in RF.
If an intercept appears in X,, such that X,, = [X*, c(py)ln], where c(p,) is a scalar function of py,

X7 is the submatrix of X,, with the intercept term removed. Otherwise X = X,,.

X;‘j = X;] L0 X*» is the deviation of observation X* from its sample mean.

. _ 3

Gjn = Gjn — HD(G n) = mD(Gannﬁo)a where 73 = Ms/go and 7, = u4/03.
X 3

H}, = Hyn — HD(HM).

B Identification

In this appendix, we first estabish the identication of the GMM. Then, we provide identification
conditions for the moment equations (6) and (7) in Assumption 5 in the following two subsections.
Proof of Proposition 1. From (5), Q) R.(p)d,(d) = 0 is explicitly @), Ry (p)An(do — &) = 0,
which has the unique solution d¢ if Q] R, (p)A,, where A, = (G1, X80, , GpnXnBy, Xn), has
full column rank (k, + p) for each possible p in its parameter space. With dg identified, because
F.(p,\)F,; ! = R,(p)R;! and d,,(6p) = 0, the remaining moment equations in (5) become (6).
The identification of p, via these moment conditions is the same as that of the pure SAR process
Up = > 41 PeMinty + €, via the moments [Py, Ry, (p)un, - » PmnRy(p)un] Rn(p)uy as if u, were
observable. The necessary and sufficient condition, as well as some other sufficient conditions, for
the identification of p, via (6) is given in Proposition 7.

On the other hand, if A, does not have a full column rank (k, + p), then d,(6) = 0 alone
could not identify dg. Suppose X, has full column rank k,. Without loss of generality, assume
that (Gpo+1,0 X080+ » GpnXnBo, X») has full rank (p + k; — po), for some 1 < py < p, and there

exist constant vectors a; and constants c;; such that G;,X,5, = Zf:poJrl GinXnBocji + Xna; for

j=1,---,po. Hence, the linear moment equations @', R,,(p)d(6) = 0 from (5) reduce to

P Po Po
> GunXauB, Z Do = Ag) et + Qo = )]+ Xal Y (og = Ag) a; + (8o = B)]} =0,
I=po+1 j=1 =1
which have all its solutions satisfying
DPo Po
A= Ao + ijl (Aoj = Aj) e, B= Z (Aoj = Aj) a; + By, (15)
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for il =po+1,---,p. From (15), By and Aoy (I = po + 1,---,p) are identifiable once Ao, -, Aop,
are identified. With d,,(6) = 0, the identification of Ag1,- -, Agp, based on (5) will reduce to (7).
Let v, = F; ¢, be the disturbance vector of that equation. The reduced form equation becomes
Y, = X,[B + Z?f’:l Aoja;] + Zf:pm—l GinXnBolNot + Z;’O:l Xojcji] + vpn. The moment equations (7)
correspond to a pure SARAR(p, ¢) process,

p q
Un = Zj:l AojWinvn + tn, Uy = Zk:l PorMintn + €. (16)

We provide the necessary and sufficient condition for the identification of the moment equations

(7) in Proposition 8, and we also discuss some weaker sufficient conditions for identification. With

Pbs Ao1, ", Aop, ) identified, as shown above, the remaining parameters can be identified from the
0 Po

linear moment conditions. m

B.1 Identification of a Pure SAR(q) Process

In this subsection, we discuss the identification of the pure SAR process u, = ZZ:l PreMpnun + €y,
via the quadratic moment equations (6). Let ¢, and ¢;; be m-dimensional vectors with the ith

element being, respectively, oy, ; = tr(P};, Hrn) and @ ; = tr(HJ’-anHk”).

Proposition 7 The necessary and sufficient condition for (6) to have the unique solution at py is
that the vectors @, ’s and ;. ’s do not have a linear combination with nonlinear coefficients in the

form that
q q q
Zk:l (;kspk + Zj:l Zk:l 5j6k50jk =0, (17)

for some nonzero constants 1, - ,0,.

Proof. As Ry (p) Ry' = In+1_y (pox — 1) Hkns tr[Ry PRy, (p) Pin R (p) Ry ) = Y00y (Pok — 1) it
4 2k (Poj = ;) (Pox — p1) @i for i =1,--- ,m. Tt is apparent that p; is a common solution
of these m moment equations. The desired result follows. m
A sufficient identification condition for the pure SAR(¢g) model is that the ¢’s are linearly inde-
pendent. Weaker sufficient conditions are available. If there exists a solution p; not equal to py;, one
has 67 # 0 in (17). This will imply that either ¢, or ¢;; will be linearly dependent on all the other

@’s. So it is sufficient to identify p; if each of ¢; and ¢4 is linearly independent of the other ¢’s.
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With p; being identified, (17) becomes Y f_, drpp + D5 _5 > f_g0;0kp ), = 0. Similar arguments

apply to the identification of pyy, and so on.

B.2 Identification of a Pure SARAR(p, q) Process

When A,, does not have full column rank, the identification of the original model (1) reduces to
the identification of a pure SARAR(p, ¢) process (16), as shown in the proof of Proposition 1. The
identification conditions of (16) can be derived by investigating some characteristics of the moment

equations (7). Let hj,, = Gjn — Z?:po+1 cjlélm ap, i = tr(Pj, Hep), ax;i = tr(Pfhjn), Qpy i =

m

tT(H;ﬁnPinszn) ) IfT(h Plnh ) Op, A;i = (PS Hknhjn-i-HknPSh ) apklk‘Z)\j’i =

11]2,1 in wm m

tT(HI/ﬁannHk2nhjn)7 O‘pk)\ (h P Hknhjzn) and aPklk A

jinT in

Jp— !/ / . .
G1dost G1dast tT(hjlnHklnpmHk2nhjzn)'

Let a,, be the m-dimensional vector with c,, ; as its ith element. Similarly, ay, etc., are defined.

Proposition 8 Suppose A, has column rank (p + ki — po), for some 1 < pg < p. The necessary
and sufficient condition for (7) and (15) to have the unique solution at (pjy, Ao1,- - , Aop,) @5 that the

vectors a’s do mot have a linear combination with nonlinear coefficients in the form that

q Po
Zk:l apkék + ZJ AN ’Yj + an ko=1 pk1k2 6k15k2 + ZJlJ? 1
Po
+ Z =1 Zk:l Oépk')‘j(sk’yj + Zj:l Zlﬁ,ngl apklkZ)‘j 5k1 6k2’7j+

q
Zh ga=1 Zk 1 ®pi iy s 5k7]1’}/]2 + Zh Jo=1 Zlﬁ,l@:l apk1k2’\1'11'2 5k16k27j1fyj2 =0, (18)

Nivia Vi1 Vg2

for some nonzero constants d1,-+-,04 0T V1, Yy, -

Proof. For the identification of the pure SARAR(p,q) process in (16), as F,(p,\) = F, +
ZZ=1(POk *pk)MannJFZ?:ﬁ/\Oj *Aj)Rnan+Z?=1 Zzzl(pok = Pi)(Aoj = Aj) My Wip, it implies
that Fy,(p, \)F,, " = I, + Zk 1(Pore — P ) Hin + ZJ 1(Aoj — ) jn t Z ZZ:1(POI€ = pr)(Aoj —
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)\j)HknGjn. It follows that

tr(Fy, " E) (p, A) Pin Fu(p, N )
q —
= Zkzl(POk pi)tr (P, Hen) Z (Xoj — A\)tr(P;,Gin)

q
+ Z ks _1(P0k1 — P1,) (Pory — P )t (Hy, Pin Hyom)
+ Zh a=1 /\Ojl - )‘]'1)(/\0]'2 - )‘ )tT(G_]lTLPZ"G]Qn)
+ Zj:l Zkzl(/’ok = i) (Noj = Nj)tr (P, HinGjn + Hi Py G jn)

P q
i1 Do (0 = P (0, = i) Poj = A)r (B P Hion Gin)

q

+ Zhdz ) Zkzl(%k = ) Qoji = i) Noja = Ajo )17 (G, Pl HenGian)

q _
+ 2]1712 1 Zkl,kQ:l(pOkl - pkl)(pokg - pkg)(/\oh - )‘j1)(/\0j2 - )‘ )tr(GglnHllflnPinH’anszn)7

for i =1,---,m. Substitution of (15) gives

tr(F, F)(p, A Pin Fu(p, N F )

n

q Po
= Z _ (o = pr)ap, i + ijl()\Oj = Aja i

k=1
DPo

+ Zzl)kzzl(/’om = Piy ) (Poky = Pry) Oy s, i T ijé:l

+ZZ')O ZZ 1(p0k = i) (Aoj = Aj)ap,n, i

+Z Zkl kg1 (Por, = Pry ) (Poky = Pry)(Aoj = Aj)ap, o a;
Zp(’m ) Zk 1 (Por — Pi) Aojr = Ajn ) (Noj — Ajn)p, n; i

3

(Aojr = A ) (Aoga — Ajo)an; 5, i

Zkhkg:l Poky = Py ) (Pory = Pry) (Moji = Xji) (Moja = Aja )@y 42550

J1,52=1

It is apparent that (o, Ao1,- -, Aop,) 1S @ common solution of these m moment equations. The
desired result follows. m

A sufficient identification condition is that the a’s are linearly independent. Weaker sufficient
conditions are available. If there exists a solution p; not equal to py;, one has 61 # 0 in (18). This
will imply that either o, or «,  will be linearly dependent on all the other a’s. So it is sufficient

to identify pgy; if both a, and «,,, are linearly independent of all the other a’s. With py; being
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identified, (18) becomes

SIRITES SARTRS SN RS 3y
ke2 Qp, 0k + =1 ;Y T Ky ko=2 Cppe, 1y Ok1 Ok + J1ja=1 CNj1is V2 Vi
Po q Po q
* Zj:1 Zk:2 Qi Ok + Zj:l Zkl,kgzz Cpgy iy hs Oks Oka Y57+

Po q Po q
Zjl,j2=1 Zkzz Qo rs s 08V Vg + Zj17j2=1 Zkl,k2=2 Xk ky Nz Ok 0k2 Y5, V52 = 05 (19)

Then similar arguments apply to the identification of py,, and so on. With p, being identified, (19)

further reduces to

Po DPo
Z.iZl AN T + Z ONjrin Vi1 Vg2 = 0. (20)

J1,J2=1

So it is sufficient to identify Ag; if both ay, and ay,, are linearly independent of all the other
a’s in (20). Then similar arguments apply to the identification of Ag2, and so on. By symmetric
arguments, a similar set of sufficient conditions can be stated for the identification of A\q first and then
the identification of p,. As a general principle, the true (py, Ag) may be identifiable when sufficient
distinct moment equations are used and their solution sets intersect only at the true parameter
vector. As the GMM estimation with those moment functions can be rewritten in a nonlinear least
squares estimation framework with nonlinearity only in parameters, sufficient identification condition

can also be derived from the corresponding nonlinear regression equation.

C Some Useful Lemmas

In this appendix, we list some lemmas which are useful for the proofs of the results in the text. First,
we state some basic properties. The central limit theorem C.5 is in Kelejian and Prucha (2001).

The other properties in C.1-C.8 are either trivial or can be found in Lee (2004; 2007a).

C.1 Suppose that the elements of the sequences of n-dimensional column vectors {z1n} and {zan}
are uniformly bounded. If the n x n dimensional matrices {A,} are uniformly bounded in either row

or column sums in absolute value, then |2{,, Anzon| = O(n).

C.2 Suppose that €,1, - ,€nn are i.i.d. Tandom variables with zero mean and finite variance o

and finite fourth moment p,. Then, for any two n x n matrices A, and B,,, E (€),Ané€y, - €, Bnen) =

(,u4 - 304) vecy, (A,) veep (By) + ot [tr (An) tr (B,) +tr (A, BS)], where BS = B,, + B,.
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C.3 Suppose that {A,} are uniformly bounded in both row and column sums in absolute value.
€nl, " €nn oT€ i.0.d. with zero mean and finite fourth moment. Then, E(e, Apen) = O(n), var(e, Anen) =

O(n), €, Apen, = Op(n), and %e;Anen — %E(e;Anen) = o,(1).

C.4 Suppose that A, is an n X n matriz with its column sums being uniformly bounded in absolute
value, elements of the n X k, matriz C,, are uniformly bounded, and €,1,- - , €ny are i.i.d. with zero
mean and finite variance o2. Then, ﬁC’;Anen = 0,(1) and %C’,’IAnen = 0,(1). Furthermore, if the
limit of%C;ZAnA;lCn exists and is positive definite, then %C;Anen A N(0,02lim,, o %C%ARA’TLCR).

C.5 Suppose that {A,} is a sequence of symmetric n X n matrices with row and column sums

uniformly bounded in absolute value and b, = (bp1, - ,bnn)’ is an n-dimensional vector such that
1 n 24m, .. . .

Sup,, 7 > iy |bnil < o0 for somen; > 0. €41, , €np are i.i.d. random variables with zero mean

and finite variance o, and its moment E(|e|*T?%) for some § > 0 exists. Let 05, be the variance

of Qn, where Q,, = €, Apen + b€, — 0?tr(A,). Assume that the variance O'?Qn is bounded away from

zero at the rate n. Then, UQT" 5 N(0,1).

C.6 Let 0, and 92 be, respectively, the minimizers of F,(0) and F%(0) in ©. Suppose that
L(Fn(0) — F(0)) converges in probability to zero uniformly in 6 € ©, where 0y is in the interior of
O, and {1F ,(0)} satisfies the uniqueness identification condition at 0g. If L(F%(0)—F »(0)) = 0,(1)
uniformly in 0 € ©, then both 0,, and é; converge in probability to 0.

" 1 9% w(6)

In addition, suppose that ;- =5p5o7 converges in probability to a well defined limiting matriz,

uniformly in 6 € ©, which is nonsingular at 0y, and ﬁwgiéeo) =0,(1). If %(8281(;(%0(,0) — 82/(;59(,0)) =

op(1) uniformly in 6 € © and ﬁ(argéeo) — argé‘%)) = 0,(1), then \/ﬁ(éz —0y) and /n(0,, — )

have the same limiting distribution.

C.7 Under Assumption 2, the projectors X, (X! X,,) 1 X! and I,, — X,,(X} X,,) "1 X!, are uniformly

bounded in both row and column sums in absolute value.

C.8 Suppose that {||Wjn|l}, {[|Mknll}, {I1S7 M}, and {||R; |}, where || - || is a matriz norm, are
bounded for j = 1,--- ,p and k = 1,--- ,q. Then {||S,(A)7||} and {||R.(p)7 ||} are uniformly
bounded in a neighborhood of Ao and p, respectively.

The following are two facts for the model (1).
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C.9 Forthe model (1), €,(0) = Ry, (p)dn(0)+Fy(p, N\ F; tey, where d,, (§) = > 1 (X0j= )G jn X0 Bo+
Xn(Bo = B)-

Proof. As S, (A)S, " = 327_1(Aoj=A))GjntIn, €0(0) = Ru(p)[Sn(N)Y—X0B] = Ru(p)[Sn(N)(S, ' XnBo+
Sr;lR:Llﬁn) - Xnﬁ} = Rn(p)[ ?:1(/\0]' - /\j)Gannﬁo + Xn(/BO - /8)] + Rn(P)Sn(/\)SglRﬁl%- u

C.10 For the model (1), D, 89’ E(gn(00)) is given by (11).

Proof. The derivatives of g, (6) in (4) with respect to p;,, A, and 3 are 398’;'310) = —[Qn, Pi, Rn(p)un(d),

and 8%%(/0) - _[Q’I’HanRn(p)un((S)) e 7P7§Lan(p)un(6)]/Rn(p)Xn7 fOI’j = 1a e 7pandk = 17 g

At 0y, as u, = R, ‘e, and W;,Y,, = G, X, 8 + Gjn R, '€y, (11) follows from Assumption 1. m

The following properties are specific to the model in this paper. C.11 is a trivial extension of Liu

et al. (2006). The proofs of C.12 and C.13 will be presented subsequently.

C.11 Suppose that z1, and za, are n-dimensional column vectors of constants of which elements are
uniformly bounded, the n X n constant matriz A, is uniformly bounded in column sums in absolute
value, the n X n constant matrices By, and Bs, are uniformly bounded in both row and column sums
in absolute value, and €p1,--- ,€pn are i.i.d. random variables with zero mean and finite second
moment. \/n(é, —ag) = O,(1) where ag is a r-dimensional vector in the interior of its parameter

space. The n x n matriz C,,(&y,) has the expansion that

Cp(by) — Cp(ag) = Z Z Z Gnjy, — 0jy) -+ (G, — 4, ) Kin (0)

=1 j1=1 Jji=1

+ Z Z Qnjy — aojy) (G, — @04, ) Kmn (), (21)

J1=1 Jm=1

for some m > 2, where Cy(ag) and Ky, () are uniformly bounded in both row and column sums in
absolute value fori=1,--- ,m—1, and K, () is uniformly bounded in both row and column sums
in absolute value, uniformly in a small neighborhood of cy. Then, (a) 221, (Cp(ay) — Cnlan))z2n =
0p(1); (8) %24, (Culén) = Cul@0)) Anen = 0p(1); (¢) 1B} (Culén) = Cula0)) Banen = 0p(1), if
(21) holds for m > 3; and (d) ﬁe;(Cn(dn) — Ch(ag))en = 0p(1), if (21) holds for m > 4 with
tr(Kin (o)) =0 fori=1,--- ,m—1.
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Furthermore, suppose /n(¥,, —vo) = Op(1) where vy is a s-dimensional vector in the interior

of its parameter space, and the matriz D, (¥,,) has the expansion that

3

Dn(%,) = Dn(vg) = ZZ Z"yml Yoir) *** Fngi = Yoj0) Lin (70)

=1 j1=1 ]7—1

+ Z e Z Fnjr = Yoj ) g = Yojo ) Lamn () (22)
=l Gm=1

for some m > 2, where Dy (vy) and Ly (o) are uniformly bounded in both row and column sums
in absolute value for i = 1,- — 1, and Lpyn(y) is uniformly bounded in both row and col-
umn sums in absolute value, uniformly in a small neighborhood of vy. Then, (a’) 221, (Cp(ay) —
Cr(0))(Dn(Fn) — Dn(v0))22n = 0p(1); (b7) =210 (Cu(Gn) — Cr(@0))(Dn(F,) — Du(v0))Anen =
0p(1); (¢”) €, B1,(Cr(ém) — Cn(a0))(Dn(¥5) = Dn(¥o))Banén = 0p(1), if (21) and (22) hold for
m > 3; and (d’) ﬁe%(Cn(dn) — Cn(@0))(Dn(3,) — Dn(v0))en = 0p(1), if (21) and (22) hold for
m >4 with tr(K;, () Ljn (7)) =0 fori,j=1,--- ,m—1.

C.12 Suppose that z1, and z9, are n-dimensional column vectors of constants of which their ele-
ments are uniformly bounded, the n X n constant matriz A,, is uniformly bounded in column sums in
absolute value, and the n X n constant matrices By, and Bs, are uniformly bounded in both row and
column sums in absolute value. Let @n,&i,[@m and fiy, be, respectively, \/n-consistent estimates

of 00,03, 113 and py. Let C, be either Gjn or Hyp, and C}; be either G* |, H

Jjn’ kn>’

or D( nl) for
j=1L-pk=1--,qandl =1,--- kI

x

Let C’n and C’;‘L be the estimated counterparts of C,
and C}. For these C,, (resp. C;) matrices, CL (resp. C*F) represents its linear transformed matrix
which preserves the uniform boundedness in row and column sums property. Furthermore, let D,
be a stochastic matriz that can be expanded to the form of (21). Then, under Assumptions 1-3, (a)
2210 (Cl, = C) P zzn = 0p(1), =21, (G = Cn)F Aen = 0p(1)

e, B} (C’ — Cn) ' Bone, = op(
: /(én - Cn)ten = Op( ) (b) " 1n<C’;’kLl C:LI)LZQ"L = Op(1)7 LZﬂn(c:;l - C:LI)LAnen = Op(l
(

)nn

van VR

Let,BY, (G — C3)-Banen = 0,(1), el (€ — C2)len = 0,(1); () Lvechy (G — Co)Ezan = o,

ﬁvec’D(C’n—Cn)LAnen = o0,(1); and (d) %vec’D(CA’,*l—C Ve zon = 0p(1), Ltr[Al, (Cx—C)E]) = 0,(1).
In addition, if D, (v) is uniformly bounded in both row and column sums in absolute value,

uniformly in a small neighborhood of 7, that is in the interior of its parameter space, then (e)

Lr[D], (3,,) (Cx — Ci)F] = 0,(1), where 4, — 74 = op(1).
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C.13 Suppose that z, is an n-dimensional column vector of constants which are uniformly bounded,
and the n x n constant matriz A, is uniformly bounded in column sums in absolute value. Let
00,62, fis,, and fi,, be, respectively, /n-consistent estimates of 00,03, 113 and py. Let C,, be either
G’jn or Hgpn, for j = 1,--- p and k = 1,--- ,q, with C, being the estimated counterpart. Let
T =Xn+ ﬁ(‘?ﬂ — %lnl;Xn), Ton = Cn Xy + ﬁ(cnxnﬂo - %lnl;zCanﬂo)r and
Ts, = %vecD(C};), with Tln, Ton, and T, being their estimated counterparts. Then, under
Assumptions 1-3, (a) %(Tm —Tin) zn = 0p(1); and (b) ﬁ(fm —Tin) Apen = 0p(1), fori=1,2,3.

Furthermore, let D, (%,,) be a stochastic matriz that can be expanded to the form of (22) for some

m > 3. Then, (¢) (Tin — Ti)' Dn(3,) = 0p(1), fori=1,2,3.

To show the proposed moment conditions are optimal, we show adding additional moment condi-
tions to the moment conditions does not increase the asymptotic efficiency of the GMM estimator us-
ing the conditions for redundancy in Breusch et al. (1999). Their definition of redundancy is given as
follows. “Let @ be the optimal GMM estimator based on a set of (unconditional) moment conditions
E[g1 (y,0)] = 0. Now add some extra moment conditions F [g3 (y,6)] = 0 and let § be the optimal
GMM estimator based on the whole set of moment conditions E [g (y, 0)] = E [¢} (y,0) , g5 (y,0)] = 0.
We say that the moment conditions F [gs (y,0)] = 0 are redundant given the moment conditions

E[g: (y,0)] = 0, or simply that gy is redundant given gy, if the asymptotic variances of 6 and 0

Q Q
are the same.” (Breusch et al., 1999, p. 90) Let Q = E[g(y,0) ¢ (y,0)] = e , with
Qo1 Qo

Q= Elgj(y,0) 9, (y,0)] for j,l =1,2. And define D; = E [ng (y,0) /89/] for j = 1,2. Suppose

the dimensions of ¢1 (y,0), g2 (y,0) and 6 are, respectively, k1, ko and ky.

C.14 (Theorem 1 in Breusch et al., 1999) The following statements are equivalent. (a) ga is
redundant given g1; (b) Dy = leQfllDl; and (c¢) there exists a ky xkg matriz A such that D1 = Q11 A
and D2 = QzlA.

/

C.15 (Theorem 2 in Breusch et al., 1999) Suppose E[g(0)] = E[¢} (0),45(6),95(0)] = 0,
or simply g = (g, 95, 9%). Then (gh,g5)" is redundant given g, if and only if g is redundant given

g1 and g3 is redundant given g .
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D Proofs

Proofof C.12. AsS,—S,
SR (A

J= 1(5‘
— Xo0j)Gjn]. By induction,

m—1 p P
S;l - S;l - Sn ! Z nj )\Oj ]Tl + S Z >‘0J J"]m
i=1 j=1 j=1
m—1 p P
- Z Z nj1 /\031 o (Anh /\sz)(sglGjm T Gjm)
=1 j1:1 Ji=1
EX Y G ) G~ A )8 GGy (29
Ji=1 Jm=1
for any m > 2. Hence, it follows that
R m—1 p p )
(Gln - Gln)L = Z c Z (>‘nj1 - /\0j1 o (/\ruz )‘OJZ)(GlnGJm e Gjm)L
=1 j1=1 Ji=1
p A~ A~
+ Z Z nj1 )‘011 o (/\njm - /\ij)(GlnGjm T Gjmn)Lv (24)
Ji=1 Jm=1
which conforms to the expansion (21) with K;;, (o) = (G1,Gyyn - - - Gj,n) ™ and K,,m( n) = (Gh, Gjin -
Analogously, we have,
. m—1 q q
R'rjl _Rgl = Z o Z(pnkl pOkl)"'(i)’nki _pOk,)(R'r:lHklnlen)
i=1 ki=1  k;=1
q q R
+ Z Z (Prky = Poky) " (Prk,, — POk,,L)(RZIHkm o Hy,n), (25)
ki=1  knm=1
for any m > 2, and
R m—1 q q
(Hln - Hln)L = Z Z pnkl pOkl (Z)nk‘i - pOki)(HlTkal’ﬂ e Hkin)L
i=1 ky=1  k;=1
q q .
Z Z Prky = Poky) " (P, — Pty ) (HinHpgyn - - Hk:mn)L- (26)
(26) conforms to the expansion (21) with Kiy, (pg) = (HinHpyn - - Hin) %, and Kpn (p,,) = (Hin Hpyn - -
As Gy = RuGuR-Y, we have G — G = (Rn — Rp)Gn RV + Ry (G — Go) (Rt — RV + Ry (G —

Go) R '+ R, Gp (R —R;Y). (R, —R,)GR R
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—X0;)Wjn, it follows that S-S =

=34 (Pork — Prg) MinGn R 1. On the other hand,

Gjm")L'

“Hy, o)k,
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G, and R1 can be expanded to the form of (21) by (24) and (25) respectively. Note that when the
transformation -‘is taken, the deterministic parts of the expansions of R, (G, — G,)(R;' — R;Y),
Ry (G, — Go)R; and R,G,(R;' — R;') have a zero trace by construction. Hence (a) follows
from C.11, where the uniform boundedness in a neighborhood of the true parameters of the relevant
matrices in the remainder terms follow from C.8.

For (b), first consider the case that C is either C;';?n or H} forj=1,--- ,pandk=1,---,q. We

have G, = G —"=278 D(G)— 22 D(Gyy X By) and H,, = Hyn—""278 D(Hyy), for j = 1,--- ,p

and k =1,--- ,q, where k = 03(py —08) — 3. Let &, be r’s estimated counterpart, and Uy,, = [C,, —
Rn—2(82)° A Kk—205 A 2(0 (62)% 208
2 D(C)] = [Cr = =2 D(C)] = (Cr = Cr) = (1— )D(C— )+ (A2l — 290y D(Cy).

As (2(62)% )k, — 208/K) = 0,(1), it follows from (a) and C.1 that Lo (Ul) 22 = 0p(1). On
the other hand, let Uy, = — 232 D(C, X, (p,)B, — CuXnfy) — (Zfsn — 7)) D(C, X,.5,) =

An
—%ulan D(C, — C) KBy + CuXn(By — Bo) + Cu(Xin(p) — Xa)B,] — (Daken - %a3)D(C, X, B,),
where C), — C,, takes the general form C, — C, = 37", ! D e (Qngy — aggy) e (G, —
;) Kin (0) + 305 _y == 205 _1(Qnjy, —0jy) - -+ (G, — @05, ) K (i), in the proof of (a). There-
fore, D[(én —Cn)XnBo] = Y Zh 17" 'Z] _1(6mjy — awjy) -+ (G, — 0, ) D[Kin (o) XnBo) +
251:1 e ngzl(dnjl —apj,)  (Gnj,, — a0, ) DKo (6) X0 Bo]- As conditions in C.11 are satis-
fied via C.8, it follows that %zinD’[(CA'n — Cp)X0BolEz2n = 0p(1). Let ex; be the jth unit column
vector in R*, then %z:’lnD’[CA’n)_(n(Bn — Bo)lz2n = 130, Z1n.iZon.i€niCn Xn (B — Bo) = 0,(1),
as =3 | ZipiZon i€.CoX, = 0,(1) and 3, — B, = o0,(1). Similarly, %zinD’[C’n()_(n(f)n) -
K010 = S0 (P —P) 20 D' (CoMin X B 230 = 0p(1). The remaining term in 124, (U3,)" 22,
is 0,(1) as (62 fis, /fin — 0343 /K) = 0,(1). And with similar arguments and corresponding results in
C.11, the other results in (b) follow, when C? is either C_?;k-n or H} forj=1,--- ,pandk=1,---,q
When C: = D(X*), for | = 1,--- k%, we have C* — C* = D(R,(p,)X7 ;) — D(Ry(po)X7;) =
S0 (o — Do) DM X2 Because (g — p,) = 0p(1) and (o — ) = Op(1), the 4 claims in
(b) hold for Cy; = D(X:;) by C.1, C.4, C.3, and C.5 respectively.

For (c), as vecy, (Cp, — Cy)* = I/, D(C,, — C,,)", the results follow from similar argument as in the
proof of (a).

For (d), as vec, (C — C*)E =1/, D(C — C*)L, it follows from similar arguments as in the proof
of (b) that %vec’D(CA’; —C) Lz, = 0,(1). To prove %tr[A;L(CA’; —C)E] = 0,(1), first we consider the
case when C is either G’;?n or Hf forj=1,--- ,pandk =1,---,¢. Asinthe proof of (a), for m = 2,

Cr = Cr = 3y (i — ) Kin (0) + 325y 3751 (Ginjy — 05,) (Gmjy, — 0, ) Kan (én). Hence, it
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follows Lir[Al(C, —Cn)t] = Sy (g — agg) tr(AL KT, (a0)) + 305 21 205, 4 (G, — 0, ) (G —
o)y ) 2tr(AlL KL (&) = op(1), because 2tr(Al Kf;, (ag)) = O(1), 1tr(A, K% (&) = Op(1), and
Gy — g = 0p(1). Similarly,%tr[A;D(CA’an(ﬁn)Bn — CuXuBo)] = Lvec (An)[(Crn — Cu) X8y +
Co(Zn(p) = K)o+ CnXn(B, — Bo)] = 0p(1), because Luecly(An)(Cn — Co) KBy = Sy (éns —
ao;) yvecp (An) Kin (a0) XnBo + 37 21 327,21 (Gnjy — a0jy ) (ngy — 00j,) vec (An) K2n (6) X By,
Luechy(An)Cn(Kn(Pr)— ) B = 0 (Pon =) 206Chy (An)Co Mt X B, and Lvechy(An) G Ko(B,,—
Bo) are 0,(1). As Ltr[A! D(C,,)] = O(1), Ltr[A! D(C,, X, 8y)] = O(1), and &7, fig,,, iy, are consistent
estimates, it follows that %tr[A;(é; — CHE] = 0,(1). When C; = D(X})), for I = 1,--- k%, we
have Ltr[A,(C — C2)%) = 0 (Po, — D) Hr1AL DMy X20)] = 0,(1), because py — pr, = 0p(1)
and Ltr[A) D(My,X7,)] = O(1).

(e) As D, (v) is uniformly bounded in both row and column sums in absolute value, uniformly
in a small neighborhood of v, and 4,, — vy = 0,(1), it follows that D,,(¥,,) is uniformly bounded in

both row and column sums in absolute value with probability one. The remaining arguments will

be similar to those of the part 2 of (d). m

Proof of C.13. As k = 03(u, — o) — p3, with pug = n308 and p, = n,08, we have

2

A . _ 1 - =
Ty —Tin = (X’n(pn) - X5) + ’L;?m (I, — Elnl;z)(X’n(pn) - Xy)
~2 2
H3n  H3 L5
- In - *lnl Xn; 2
HE B0 ) (27)
. . . _ Q2 1 . . _
Top —Top, = (Can(f)n)Bn - CanﬁO) + %(In - Elnl;)( n n(i)n)ﬁn - CanﬁO)
~2 2
1 _
+(%3nn - %)(In - Elnl;z)Can/Bov (28)

and Ts,, — T3, = %vec,;(én —C’n)t—&—(% - %)vecD(Cﬁ). Let T, be either I,, or I, —
Ll L (T~ Tin) 20 = 0p(1) since 2(%,(p) — ) T = S0 (b — ) H (Mo X T2 =
0,(1) and fi3,/kn — p3/k = 0,(1). For the first two terms in %(Tgn — Toy) 2, since %[(C’n -
Co) R (p) KBl Ty 20 = 03(1) by C.12, 1Co(Fo(Pr) = Ke) Bl T2 = S0y (=) - (CoMin X, Ty 2 =
0,(1), and (3, — Bo) :(CrXp)Thzn = 0p(1), it follows that %(C’n)_(n(ﬁn)ﬁn — Cn X)) T2 =
%[(C’n — C)Ru () X0, + Cr(Xn(p) — X0)B,, + Cu X (B, — Bo)Thzn = 0p(1). The remaining
term in %(Tgn — Ty)' 2y 18 0,(1) because i3, /iy — p3/k = op(1) and 1(T,CX,B,) 2, = O(1).
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For the first term in %(Tgn — T3,) 2zp, it follows from C.12 that %vec’D(én — Cn)lzn = o0p(1).
And the remaining term in %(Tg,n — Ts,) 2, is 0,(1) because (62)2fis,,/kn — Tous/k = 0p(1) and
Lyec),(Ct)z, = O(1). This proves (a).

For (b), the first two terms in f(Tln Tin) Apen are o,(1) because f(X (D) — X)) T Apen, =
k=1 Vnlpor— Pnk) (MinXn)' T, Anén = 0p(1), where v/n(po,—pni) = Op(1) and %(Mann)T;zAnen =
op(1) by C4 for k =1,---,¢. Similarly, the remaining term in ﬁ(jﬂln — T'y,) Aney, is also 0,(1).

For the first two terms in ﬁ(j—bn —Top) Apen, we have

1 A = ~ _

1 ~ ~
= n - “n an /F/ An n
\/ﬁ[(C Cn)Rn X3, T, Ane

+ Zz:l \/ﬁ(f’ok - pnk)ﬁ (Mkn n) C’:LFIIL n€n + \/’ﬁ(/@ - BO) X’:LC:LF’/HA €n- (29)

= 7[(C’n - Cn)(Rn(pn) - Rn)Xan]T/nAnén +

The first two terms of (29) are 0,(1) by C.12. And the remaining terms of (29) are o,(1) because
%(Mann)’C;lF;LAnen = 0,(1) and X,’LC%F;L n€n = 0p(1) by C.4. Similarly, the remaining term

Ty — Tyy,) A€ is also 0,(1). The first term in Ty, — T3,,) Anep is 0,(1) by C.12, and the

1

n ﬁ( f(

remaining term is also o, (1) because Lvec),(C!)A,€, = 0,(1) by C.4. The desired results follow.
For (c), as the arguments are similar to those in the proof of (a), we only give the proof for

%(Tgn — Tgn)’ﬁn = 0,(1). For its first two terms, we have

n)Bn - Canﬂ())/F;an

—~

= 3
9 :
|
&
>

)X ﬁ ] F%Dn + [Zizl(%k - ﬁnk)éﬂManan + Can(Bn - 50)]T;zﬁn(30)

SI=3+

where the first term can be rewritten as 7[(0 —C) X B, )T (D — D) +%[(C’n —Cn) X3, T, D
and it is 0, (1) by C.12. The remaining term of (30) is also 0, (1) because p,, — py = 0,(1), B, —Bo =
0p,(1), and (0',,C,, My X,))'Dyy = O,(1), ([,CrXn)' Dy, = O,(1). Similarly, we have (fi3,/kn —
13/6)(CnCX0B) Dy = 0,(1). Hence, L(Tb, — T5,)' Dy, = 0,(1). W

Proofs of Propositions 2 and 3. With the basic properties in C.1 - C.5 and our assumptions,
the proofs of these two propositions will be similar to the arguments in Lee (2007a) and, hence, are

omitted. m
Proof of Proposition 4. Consider the moment conditions E (g (60) , gn (60))’ = 0, where g,, (6)
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is a vector of arbitrary moment functions taking the form of (4). To show the desired results, it is
sufficient to show that g, is redundant given g}, or equivalently that there exists an A,, invariant

with Pj, (¢ =1,--- ,m) and @, st. Dy = Q21 A,, according to C.14 (c), where

OE(gn (o))
Dy = =g
0k1v><q Q%(Glanﬂ(), T aépnxnﬂo) Q;Xn
o o (tr(P Hin), - s tr(PhHgn))  og(tr(Pf,Gin), - s tr(Pf,Gyn))  O1x,
U%(tr(PsmHln)’ e 7tT(P';3Lan7l)) U(ZJ(tT(PjanG_(ln)v e 7tr(P;jznGP")) Olew
and
Qo1 = E(gn(60) g, (60))
UgQ%QZ p3Quueep (P,) -+ /ng;zvecD(P;-s-ﬁk;,n)
| ey (P@ PP odr (PP )
/»1'37166/[) (Pmn) QTL Uét’l"(P,;j”Lan) e Uétr(P7§L’rLP;+q+k;,n)
OkIVXkIV 0k1v><(P+q+k;)
01k vecy, (Priy) (veep (Py,) -+ ,veep (P e )
+(M4 B 30_3) v p+q+ky,
Ole[V U@C/D (Pmn) (UGCD (an) y ?UeCD(P;+q+k;7n))

With k= 0§ [(ny — 1) = 13] = 05 (g — 05) — 113, let

0'2 —
0q><kz 0q><]n _%L} O(IXP ) Iq Oqu;
A== Ok, 00"y Opxg 05 T Opxg Opxry |
oy %Iy, Ok, xp Ok, xq Okoxp Ok, xq b
where b = (b}, ,b}.)" with b = — (uz/k)ey ; for I = 1,---  k;. To check Dy = Q91 4,, the

following identities are helpful. For j =1,--- ,p, k =1,---,q, and | = 1,--- ,k}, (a) vecp(P},) =
208 ~ tr(Gjn) 02/13 ~ T i !~ T . * _ 208
“wvecp(Gjn — =2 10) =722 (G Xn By — 2 lnly, Gjn XnBy); (b) vecD(Pp+k7n) = “vecp(Hpn —

Hen) 1 Y: (c) veep (P ) = X =11, X7 and (d) 25, veen (P gitn)hs = Xn—Llnll, X,

p+q+i,n
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It follows from (a), (b) and (d), respectively, to have that (e) 03@Q3,; + psvecn (Py,) = 053G jnXnB0;
(f) %Q;nk = vecp(P)yy.,), and (g) @7, — ”—fzgl veep (P yiin)€h, = X,. For an arbitrary
n X n matrix P, with tr (P,) = 0, we have: (h) vech(P,)Q%,, = (03(1y — 03)/K)vecy(Py)Xy; (i)
pyvechy(Pa) Qg +obtr (P3P, ) +(s—308vec)y (Pu)vec(Ph,) = abtr(P3Gin)s () — 28 uec) (Pu) @yt

obtr(P3Ps ) —30dvec(Pu)veen (Pl ) = obtr(PiHi)s and (k) obtr(PSPs, oy )+ (1=

3og)vech (Po)veen(Pyygpn) = (g — og)vec (Pn)veen (P g p)-

It follows from identity (f) the (1,1) block of Q214 is Ok, x ¢, it follows from identity (e) that
the (1,2) block of Qa1 4,, is —Q)(G1nXnBo, s GpnXnBy), and it follows from identity (g) that
the (1,3) block of Q91 4,, is —Q!, X,,. Identity (j) implies that the (i + 1,1) blocks of Q21 A4,, are
—o3(tr(PS,Hup), - tr(Pg, Hyy)) for i = 1,--- ,m, identity (i) implies that the (i + 1,2) blocks of
Qo1 A, are —o3(tr(P5,G1y), -+, tr(Pg,Gpn)) for i = 1,--- ,m, and identities (d), (h) and (k) imply
that the remaining blocks of Q91 A,, are zeros. Therefore, Q91 A, = Ds.

Furthermore, as g (6) is a special case of g,, (#), and A,, is invariant with P,,’s and Q,,, it follows
that D; = Q11 4,, and hence Q! Dy = Ay, where Q11 = QF = var (g% (6)) and D, = E (f’gn("O)).
Hence Xy, = lim,HOO =D1Q7; D1 = lim,_ oo D’lAn. After some tedious but straightforward alge-

bra, the desired result follows. m

Proof of Proposition 5. We shall show that £ (0) = g/ (0)2:~ % (0) and F ,(0) = ¢/ (0)2: g% (6)
will satisfy the conditions in C.6. If so, the GMM estimator from the minimization of £ () will have
the same limiting distribution as that of the minimization of F,(#). The difference of F 7 (0) and
F »(0) and its derivatives involve the difference of ¢ () and g (0) and their derivatives. Furthermore,
one has to consider the difference of Q% and Q.

First, consider (g5 (0) — g;(0)). Let m* =k} + p + q. Explicitly,

L(820) ~ 930 = [ (@5~ QLY O (P = Pi)y e a0} (Pie — Py len(6):

The ea(0) is related 10 6, a5 €0(0) = e0(0) + (I + S (P — i) Hion) (I + 5y Oy = A)Ginen
where ea(8) = (I + 51 (i — 1) Hin) [0y (o — )G KBl + X (By — )] T follows that
1@~ QaYenl8) = H(Q3 ~ Q3+ ey o = pu)Hin) (I + Sy Oy = Ap)Ginden + (05 -
Q) en(6) = 0,(1) uniformly in 6 € © by C.13. From C.12, it follows that Le/,(8)(P;, — Pr,)en(6) =
op(1), for i = 1,---,m*, uniformly in § € ©. Hence, we conclude that 1 (g% (0) — g;(6)) = 0,(1)

uniformly in 0 € ©.
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Consider the derivatives of §*(6) and g*(0):

w1 Den () 1 0%€n(0)
Q' =50 Q' “5g507
x5 O€n (0 de 0) pxs Oen (0 x5 0%€n (0
dg:(0) en(0)Pr ae(' ) and P?gr(0) % )Pm ae(' Lt €, (0) P aaaé/)
90 : ’ 0000 :
xs Oen(0 86 4 xs Oen(0 xs O0%€n(0
(6P, 2 9, (0) prs Oeal0) 4 o1 (g)prs Lcall)
The first order derivatives of €,(0) are 863"79(,9) = —[M1pun(0),- -, Mgnun(0), Rn(p)Win Yy, - -,

Rn(p)anY;Lv Rn(p)XnL where un(d) = (In - 2521 A]WJH)YTL — X0, Rn( ) =1, — 22:1 pk;Mk'n

and Y,, = S;'X,8, + S, R te,. The second derivatives of €,(f) are g;%(;)) = M, W;, Y,

3821"6(2? = My, X, and g;"ag,) = 0. It follows from C.12 and C.13 that * (89"(6) 6g§é0)) = 0p(1)
and %(8;%6()?) — a;gégf)) = 0p(1) uniformly in 6 € ©.

: 70 a3l
Consider £ (2 —Q7), where Q0 = E g7, (00) g, (00)] = o 8 "
P Qr OGAL + (1y — 300 )W) w)e

with w? . = [veep(Py,), - ,vecp(Pr.,)] and
tr (PraPr,) o tr (PR B)
AY L=
First, consider the block matrix oA .+ (py —308)wii. . It follows from C.12 that tT(P;;fP* )—

1tr(P;;fP]*n) = ftr[(P*"’ P;;f)Pj*n—l—Pi*s(P* —Pj*n)} and vecD(P* )UecD(P* )—fvecD (P, )vecD(Pj’-“n) =
fvecD(P* )vecD(P - P+ vecD(P* Py )vecp(P},) are op(1) for 4,5 = 1,--- ,m*. Hence,
S (67)2tr (P Py = obtr (P Pr,) and (g, —3(67)% Jvecs (P, Jveen (P, ) = (ny =30 vecy (P}, Jveen (P,)

are op(1) for i, =1,---,m*.

Next consider the block matrix p3Q¥w?,.. It follows from C.12 and C.13 that * Q*’vecD(P* ) —

LQtveen(PL) = L(Qn — Qu)veep(Pr) + LQveen(Pr, — PL) = op(1), for i = 1, ,m*.
Hence, %(ﬂng:;’vecD(P{;) — pu3Qyvecp(P},)) = H3nn(Q*/U€CD(P*) Qyveep(Py,)) + (i, —
MB)lelvecD(P;n) =op(l),fori=1,--- ,m*.

Lastly, consider the remaining block matrix 02Q'Q%. C.13 implies that 1 =( Q. — QY

inYjin n jn)_

LiQu( jn— )+ ( )r —Qr) Q%] = 0,(1), for i, j = 1,2, 3. Therefore, it follows that %(&i@;’@;—

n in

o3QrQr) = 62l(Q;’Q* QYO+ (U —0’0) Q1 QF = 0p(1). In conclusion, %sz — %Q’fl = 0p(1).
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As the limit of %Q; exists and is a nonsingular matrix (as the moments are not linearly dependent
with probability 1), it follows that (%Q;‘L)_l —(2Q%)7! = 0,(1) by the continuous mapping theorem
(White, 1984, Proposition 2.30).
Furthermore, because = (g5 (0) — gi(6)) = 0,(1), and 2[g;(0) — E(g;(0))] = 0p(1) uniformly in
0 € ©, and supyee = |E(g5(6))] = O(1) (see proof of Proposition 3), hence 1g7(0) and 17 (9) are
109,(0) 109,(0) 19%95(0) . 4 18%5,(0)

O, (1), uniformly in 6 € ©. Similarly, - =57~ -~ =25=, - =555 ~~5a50~ are Op(1), uniformly

inf € 6.

With the uniform convergence in probability and uniformly stochastic boundedness proper-
ties, the difference of /7 (6) and F ,,(f) can be investigated. By expansion, L (F % (0) — F ,(0)) =

5 0n (0),71(G5(0) — 95 (0) + 195 () (™" = Q7G5 (0) + 197 ()27 (95.(6) — 97,(8)) = 0p(1), uni-

2 ~ A~
formly in 0 € ©. Similarly, for cach component 6 of 0, L Z1a(@) _ 194 (0) _ 2 (25, (0) ¢ye—100u(0)

0 % x—107g,(0 _
Vg gy () S 00] = 0,(1).

. «_10%G(0 392 (0) yx—1 99
gn/(a)ﬂ ! 0910(9') ( gdaf )Q ! gde('

Finally, because (22x(0)qx-1 _ 29, 0)yx=1) —_ 4, (1) as above, and Z=95(00) = O,(1) by

the central limit theorems in C.4 and C.5, ﬁ(wgéa") S/ (00)) = 2{69" (00) (y+—1 ( *(00) —

" 892 (00) Ax— 892" (00) yx— " 83 (0 "
95 (80)) + (PaPed (r=t — 20 o) ety g (9)} = 2 20 o) (10 ) =L (g7 (00) — 97 (09)) + 0p(1):

As (gn(ﬁo) g5 (00)) = 0p(1) by C.12 and C.13, \lr(a'fgé%) - a,faée )) = 0p(1). The desired

result follows from C.6. m

Proof of Proposition 6. The log-likelihood function for the SARAR(p,q) model is given

) alnL — 202 +

by (2) and its derivatives are % = %(Rn (p) Xn) en(0) = % X5 (p)e
seren(0)en(), Zp5En = —tr(Gn(p, M)+ 2 {G

S(p, N) = Ru(p)Sn(MR (p), and Gjn(p,A) = Win(p)S:t(\), for j = 1,--- ;pand k = 1,--- ,q.

jn
The QML estimator of o2 is &?nlm(ﬁ) = Lel (0)e,(0) for a given value 0. Substitution of 6 Umz 2(0)
in the remaining likelihood equations shows that the QML estimator is characterized by the equa-
tions £4(p)en®) = 0, [Gin(p N Z(p) B en(6) + y(8)[Grn(p A) — Ltr(Giyn(p, \)]en(6) = 0, and
e () [Hin(p) — 2tr(Hpn(p))]en () =0, for j=1,--- ,pand k=1,--- ,q. Denote the QML estima-

L 0 0 0
tor of # by 9ml,n. Obviously éml’n is the solution of ay,Gmi,n(8) = 0, with a,, = 0 I, I, 0

0 0 0 I
and gml,n(‘g) = [Xn(lbml,n)7 Gln(i)ml,nv ;\MZ,H)Xn(pml,n)Bml,n’ T G (Pl o ml n)Xn

G

éﬁn(i)ml,nv xml7n)6n(0)’ T 7;m(pml,n7 5‘771177l)6n('9)7 an(pml,n)en (0)3 T an(pml n)en

Pmi n) ml,n>

(P
(0
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n(0
{Gjn(p. N Xn(p)BY €n(0)+ 326, (0)Gjn(p, Nen (), Tl =
—tr(Hin(p))+52€,(0) Hinen(0), where Yo, (p) = R (p)Yn, Xn(p) = Ru(p) X, Win(p) = Ru(p)Wjn R,
A

Y(p),

)) €,(0), where



At = A — %tr (A) I, for a square matrix A. And it follows by similar arguments as in the proof
Proposition 5 that an,gmi..(0) = 0 is asymptotically equivalent to angmin(0) = 0, where g, (0) =
(X, G XuBins+  GonXnBnins Gin€n(0), -+, GLoen(0), Hien(0), - Hipen(0))€n(9), in the
sense that their consistent roots have the same limiting distribution. The vector of empirical mo-
ments gmi.n(0) consists of linear and quadratic functions of €,(6), hence the corresponding optimal
GMM estimator derived from min gjnl’n(Q)legmlyn(G) is in the class M,,. As the BGMM estima-
tor is the most efficient estimator in M,,, the BGMM estimator is efficient relative to the QML
estimator.

The best G2SLS estimator of Lee (2003) is consistent and asymptotic normal with \/ﬁ(sbggsls’n -
50) 2N (0,03 (limy, oo LA, R, RyA,) L), where A, = (G XnBos -+ s Gypn X0 By, Xn). The asymp-
totic variance of the best G2SLS estimator can be easily compared with the asymptotic variance
of the BGMM estimator in Ps,. With the best P,’s in Ps,, the asymptotic variance of éb,n is the
inverse of the asymptotic precision matrix in (14). By the inverse formula of a partitioned matrix,

the corresponding asymptotic variance of the component Sb,n of éb,n is

Ch (AnB, AL )20 — (AnszlA/n)Ql(ATLBElA/n)l_ll(AnBrle;L)12 Opxk,

g Ok, xp Ok, xk, 7
where (A, B, 1A!)11 is the first ¢ x ¢ diagonal block in A, B,1A!, (A,B; A )2 is the other
p X p diagonal block in A, B, 1A, and (A, B, 1Al )s and (A, B, *A’)s are, respectively, the p x ¢
lower block and the ¢ x p upper block in A, B, A/,. In Pa,, the best selection of IVs is given by
Q! = R,A, and, hence, C,, = A/, R/, R,\,,. As A, B, 1A, is nonnegative definite, the asymptotic
variance of the BGMM estimator in Ps, is relatively smaller than the asymptotic variance of the
best G2SLS estimator. As Py, is a broader class containing Ps,,, the BGMM estimator in Py, given

in Proposition 4 is therefore efficient relative to the best G2SLS estimator. m
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Table 1: Estimation of the SARAR(1,1) model with strong x’s (normal)

Ao = 0.4 0o =0.4 Bio=1.0 Bog = —1.0
n = 245
G2SLS  .412(.137)[.138]  .351(.154)[.162] .995(.087)[.087] —.998(.092)[.092]
B2SLS  .387(.159)[.160] .351(.154)[.162] .992(.091)[.091] —.996(.092)[.092]
QML .389(.135)[.136] .383(.153)[.154] .993(.087)[.087] —.996(.092)[.092]
GMM1  .387(.136)[.137] .393(.152)[.153] .993(.087)[.087] —.996(.093)[.093]
GMM?2  .387(.136)[.137] .392(.152)[.152] .993(.087)[.088] —.996(.092)[.093]
BGMM  .384(.149)[.150] .400(.162)[.162] .992(.089)[.089] —.995(.095)[.095]
n = 490
G2SLS  .400(.096)[.096] .381(.110)[.112] .998(.062)[.063] —.996(.064)[.064]
B2SLS  .389(.095)[.096] .381(.110)[.112] .997(.063)[.063] —.995(.064)[.064]
QML .388(.096)[.096] .398(.106)[.106] .997(.062)[.063] —.995(.064)[.064]
GMMI1  .386(.096)[.097] .403(.105)[.105] .997(.063)[.063] —.995(.064)[.064]
CGMM2  .386(.096)[.097] .403(.105)[.105] .997(.063)[.063] —.995(.064)[.064]
BGMM  .385(.099)[.100] .406(.107)[.107] .996(.064)[.064] —.994(.064)[.064]

Mean(SD)RMSE]

Table 2: Estimation of the SARAR(1,1) model with strong x’s (symmetric mixture normal)

A =04 po = 0.4 Bio=1.0 Boy = —1.0

n = 245
G2SLS  .413(.135)[.136] .350(.155)[.163] .993(.089)[.089] —1.001(.090)[.090]
B2SLS  .390(.137)[.137]  .350(.155)[.163] .991(.089)[.090] —.999(.091)[.091]
QML .391(.134)[.135]  .383(.153)[.154] .991(.089)[.089] —1.000(.090)[.090]
GMM1  .389(.134)[.135] .393(.149)[.149] .991(.089)[.090] —.999(.090)[.090]
GMM2  .389(.133)[.133] .392(.148)[.148] .991(.089)[.089] —.999(.090)[.090]
BGMM  .384(.137)[.138] .401(.147)[.148] .991(.085)[.085] —.998(.084)[.085]

n = 490
G2SLS  .404(.094)[.094] .378(.107)[.109] .998(.064)[.064] —1.000(.063)[.063]
B2SLS  .394(.093)[.093] .378(.107)[.109] .998(.064)[.064] —1.000(.063)[.063]
QML .394(.094)[.094]  .392(.105)[.105] .998(.063)[.063] —1.000(.063)[.063]
GMM1  .392(.095)[.095] .398(.104)[.104] .997(.064)[.064] —.999(.063)[.063]
GMM2  .392(.094)[.094] .398(.104)[.104] .997(.064)[.064] —.999(.063)[.063]
BGMM .392(.093)[.093] .400(.103)[.103] .997(.061)[.061] —.998(.061)[.061]

Mean(SD)[RMSE]
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Table 3: Estimation of the SARAR(1,1) model with strong x’s (gamma)

A =04 po =04 Bio=1.0 Bag = —1.0

n = 245
G2SLS  .411(.133)[.133]  .354(.154)[.161] .998(.087)[.087] —.996(.094)[.094]
B2SLS  .383(.150)[.151] .354(.154)[.161] .995(.090)[.091] —.995(.096)[.096]
QML .383(.137)[.138]  .389(.155)[.156] .995(.087)[.087] —.993(.094)[.094]
GMM1  .380(.139)[.141] .400(.151)[.151] .995(.088)[.088] —.993(.095)[.095]
GMM2  .380(.141)[.143] .400(.154)[.154] .994(.088)[.089] —.993(.095)[.095]
BGMM  .385(.121)[.122] .402(.139)[.139] .997(.069)[.069] —.994(.073)[.073]

n =490
G2SLS  .411(.092)[.092] .373(.109)[.112] .995(.064)[.064] —.996(.063)[.063]
B2SLS  .400(.093)[.093] .373(.109)[.112] .995(.064)[.064] —.995(.063)[.063]
QML .399(.095)[.095] .388(.108)[.109] .994(.064)[.064] —.995(.063)[.063]
GMM1  .398(.094)[.094] .394(.105)[.106] .994(.064)[.064] —.995(.063)[.063]
GMM2  .398(.095)[.095] .393(.107)[.107] .994(.064)[.065] —.995(.063)[.063]
BGMM  .397(.073)[.073] .399(.091)[.091] .996(.049)[.049] —.996(.048)[.048]
Mean(SD)[RMSE]

Table 4: Estimation of the SARAR(1,1) model with weak x’s (n=490)
Ao =04 po =04 Bo1 = 0.4 Boz = —0.4

normal
G2SLS  .449(.243)[.247] .282(.245)[.272]  .395(.064)[.065] —.393(.065)[.065]
B2SLS  .346(.296)[.301] .432(.245)[.247] .394(.066)[.066] —.392(.066)[.066]
QML .407(.203)[.203]  .347(.216)[.223]  .396(.063)[.063] —.394(.063)[.064]
GMM1  .352(.205)[.211] .411(.199)[.199] .395(.063)[.063] —.393(.064)[.064]
GMM2  .352(.205)[.211] .411(.199)[.200] .395(.063)[.063] —.393(.063)[.064]
BGMM  .344(.224)[.231] .416(.214)[.215] .393(.064)[.065] —.392(.064)[.065]

symmetric mixture normal
G2SLS  .453(.248)[.254] .276(.239)[.269] .394(.065)[.065] —.397(.064)[.064]
B2SLS  .361(.269)[.272] .427(.237)[.238] .394(.066)[.067] —.397(.066)[.067]
QML 417(.200)[.201]  .337(.214)[.223] .397(.063)[.063] —.399(.063)[.063]
GMM1  .368(.205)[.207] .397(.200)[.200] .395(.064)[.064] —.397(.063)[.063]
GMM2  .371(.198)[.200] .395(.194)[.194] .395(.064)[.064] —.398(.063)[.063]
BGMM  .369(.201)[.203] .399(.196)[.196] .395(.062)[.062] —.397(.061)[.061]

gamma
G2SLS  .485(.219)[.235] .253(.233)[.275] .392(.065)[.066] —.394(.064)[.065]
B2SLS  .377(.318)[.319] .424(.251)[.252] .390(.069)[.069] —.394(.066)[.066]
QML A428(.195)[.197]  .329(.209)[.221]  .394(.064)[.064] —.395(.063)[.063]
GMM1  .376(.197)[.198] .391(.193)[.193] .392(.064)[.065] —.394(.063)[.063]
GMM2  .374(.203)[.205] .392(.198)[.198] .392(.064)[.065] —.394(.063)[.064]
BGMM  .365(.223)[.226] .400(.213)[.213] .392(.050)[.051] —.393(.050)[.050]

Mean(SD)RMSE]
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Table 5: Estimation of the SARAR(2,1) model (normal)

A1 = 0.4 Ag2 = 0.2 =04 Bo1 = 1.0 Bo2 = —1.0
G2SLS  .419(.090)[.092] .241(.134)[.140] .339(.104)[.120] .995(.059)[.059] —.996(.055)[.055]
B2SLS  .389(.201)[.201] .157(.746)[.747] .339(.104)[.120] .993(.064)[.065] —.995(.061)[.061]
GMM1  .393(.092)[.092] .204(.089)[.089] .399(.105)[.105] .994(.059)[.059] —.995(.055)[.055]
GMM2  .393(.097)[.097] .202(.088)[.088] .400(.108)[.108] .993(.059)[.060] —.995(.056)[.056]
BGMM  .392(.098)[.098] .201(.087)[.087] .403(.111)[.111] .993(.060)[.060] —.995(.056)[.057]
Under the exclusion restriction Aoy = 0
G2SLS  .428(.090)[.095] — B78(L111)[113]  .999(.059)[.059]  —.999(.055)[.055]
B2SLS  .418(.089)[.091] — B78(L111)[113]  .998(.059)[.059]  —.999(.055)[.055]
QML .417(.095)[.097) — .398(.111)[.111]  .998(.059)[.059] —.998(.056)[.056]
GMM1  .414(.099)[.100] — 404(.112)[.113]  .997(.059)[.059] —.998(.056)[.056]
GMM2  .414(.098)[.099] — 404(.112)[.112]  .997(.059)[.059]  —.998(.056)[.056]
BGMM  .414(.100)[.101] — 405(.113)[.113]  .997(.059)[.060] —.998(.056)[.056]

Mean(SD)[RMSE]

Table 6: Estimation of the SARAR(2,1) model (symmetric mixture normal)

A1 = 0.4 Ag2 = 0.2 po = 0.4 Bo1 = 1.0 Bo2 = —1.0
G2SLS  .420(.086)[.088] .245(.131)[.138] .339(.100)[.117] .999(.056)[.056] —.999(.056)[.056]
B2SLS  .395(.104)[.104] .186(.360)[.361] .339(.100)[.117] .998(.057)[.057) —.998(.057)[.057]
GMM1  .392(.105)[.105] .206(.104)[.105] .402(.106)[.106] .997(.058)[.058] —.998(.057)[.057]
GMM2  .391(.108)[.108] .205(.106)[.106] .403(.105)[.105] .997(.058)[.058] —.998(.057)[.057]
BGMM  .392(.098)[.098] .198(.094)[.094] .406(.106)[.106] .997(.055)[.055] —.998(.055)[.055]
Under the exclusion restriction A\gy = 0
G2SLS  .428(.088)[.092] — .378(.106)[.108]  1.003(.057)[.057] —1.003(.056)[.056]
B2SLS  .418(.087)[.088] — .378(.106)[.108]  1.002(.057)[.057] —1.002(.056)[.056]
QML .417(.092)[.093] — .402(.108)[.108]  1.002(.057)[.057] —1.002(.056)[.056]
GMM1  .414(.094)[.095] — .407(.109)[.109]  1.002(.057)[.057] —1.002(.056)[.056]
GMM2  .415(.093)[.094] — .406(.108)[.109]  1.002(.057)[.057] —1.002(.056)[.056]
BGMM  .415(.092)[.093] — .407(.106)[.106]  1.001(.055)[.055] —1.002(.055)[.055]
Mean(SD)[RMSE]
Table 7: Estimation of the SARAR(2,1) model (gamma)
A1 = 0.4 Ag2 = 0.2 =04 Bo1 = 1.0 Boa = —1.0
G2SLS  .416(.093)[.094] .244(.132)[.139] .341(.105)[.120] .998(.056)[.056] —.997(.059)[.059]
B2SLS  .392(.163)[.164] .185(.800)[.800] .341(.105)[.120] .996(.059)[.059] —.998(.079)[.080]
GMM1  .388(.101)[.102] .200(.081)[.081] .405(.107)[.107] .997(.057)[.057) —.996(.059)[.060]
GMM2  .388(.105)[.106] .199(.085)[.085] .405(.107)[.108] .997(.058)[.058] —.996(.060)[.060]
BGMM  .393(.080)[.080] .197(.081)[.082] .403(.093)[.093] .998(.043)[.043] —1.000(.044)[.044]
Under the exclusion restriction Ags = 0

G2SLS  .423(.094)[.097] — .382(.111)[.112]  1.002(.056)[.056] —1.001(.059)[.059]
B2SLS  .414(.093)[.094] — .382(.111)[.112]  1.002(.056)[.056]  —1.000(.059)[.059]
QML .411(.100)[.101] — .403(.113)[.113]  1.001(.057)[.057] —1.000(.059)[.059]
GMM1  .410(.099)[.100] — 4409(.111)[.112]  1.001(.056)[.056] —1.000(.059)[.059]
GMM2  .409(.100)[.100] — .4409(.112)[.112]  1.001(.056)[.056] —1.000(.059)[.059]
BGMM  .414(.079)[.080] - 408(.094)[.095]  1.001(.042)[.042]  —1.004(.044)[.044]

Mean(SD)[RMSE]
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Figure 1: Quantile-quantile Plots for the BGMMESs (normal)
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Figure 2: Quantile-quantile Plots for the BGMMESs (symmetric mixture normal)
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Figure 3: Quantile-quantile Plots for the BGMMESs (gamma)
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