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Proof of Lemma A.1. Consider the risk neutral bidding function spy »(-) given by the differential

equation

! Fj((:j))SIRN,n (’U)

v — SRN,n(U) = n_1

Let Gry,n(-) be the distribution function of the equilibrium bids b = sgn ., (v) and grn () be its

density. As Grnn(b) = F(v) and grnn(b) = f(v)/sky,(v), the corresponding inverse bidding

function is nglv,n (b) = b+ ﬁ i’:ﬁ“((:))

. Guerre, Perrigne and Vuong (2000) have shown grn.., (b) >
cg > 0 for all n. As lim,, o Sgn,»(v) = v by Proposition 1 in Fibich and Gavious (2010), we have
limy, o0 grNn (SRNn(V)) = f(v) where f(v) > ¢y > 0 by the definition of Fr. It follows that
lim,, oo SUp \nglvm(b) —b| = 0 or, equivalently, lim,,_,oo sup |v — sgn (V)] =0. As 0 < v — s, (v) <
v — $pn (v) for all v € S(F) (Riley and Samuelson, 1981), the uniform equicontinuity of sy, ()
follows by the uniform convergence of s, (v) and the compactness of S (F') (Rudin, 1976, Theorem

7.24). m

Proof of Lemma A.2. It follows from Proposition 3 that

1 1 1

G (b) = — Yial(Ba<b)= L Zu 1(G, (By) <Gy (b)) = oy

nL & > L(ua <Gy (D),

where u;; = G, (Bj;;) is uniformly distributed on [0, 1] since By ~ G, (+). Hence,

LS 1 (i < G (0) — G () s

‘Gn (b) -Gy (b) |0»S(Gn) - nL il

1
= | L (ua < u) —uloo = O(1/re),

il

where the last step holds because the empirical distribution of uniform distribution on [0, 1] (which
does not depend on n) converges uniformly to the true distribution at the rate of r¢ by the Chung-

Smirnov theorem (Chung, 1949). m

Proof of Lemma A.3. Following the proof of Lemma B.2 in Guerre, Perrigne and Vuong (2000),



the proof is divided into three steps. The first step studies the uniform bias of g, (-), the second step

studies its uniform variance bound, and the last step establishes the exponential-type inequality.
Step 1 (Uniform Bias). E[g, (b)] = E[— >, 1K Bu=b)) = [K (u) gn (b+ hu) du. Without loss

of generality, suppose u > 0. Then for b € C,, and L sufficiently large, b € [b,b+ hu] C C’,, where C",

is a closed inner subset of S (Gy,). Since gy, (-) admits R continuous derivatives, a Taylor expansion

gives g, (b+ hu) — g, (b) < hugl” (b) + - (ZL;) 1;1 gy (b) + |hu| |9nlg,c; - As K (¢) is of order

R, moments of order strictly smaller than R vanish. We have

[l ()] — g B)lo.c, = subpec, | / K (w) (g (b4 hu) — gy (b)) du| < WM g, ] 0

where M® = & lu|® K (u) du. Tt follows from the definition of 7, and & that

g [EGn (0)] = g0 (Ol < O"MP (gl ¢ - (1)

Step 2 (Uniform Variance). Consider a density g (b), such that g (b) = g, (b) if b € S (G,,) and
g5 (b) = 0 otherwise. For b € Cwo, where Coy = lim,,_,oc Cyy, Var[gy (b)] = Var[—1- > K(Bi= Buzby) —
s Var[K(270)] < A5 BIK(E))2 = L [ K% (u) gf (b+ hu) du. Let Q = [ K? (u) du, we have

[Var(gn (0)]o.c,, <

Q|gn|OC Q‘gn‘o (2)

1
- nLh - ¢7“§ log (nL)

Step 3 (Exponential-type Inequality). In this step, we establish the exponential-type inequality
for the probability of deviation of g, (b) — gn, (b) in sup-norm over C,,. Let e (c1,¢2) = ¢1 + 2¢2| K1 +
quM R |gn Rr.cr» Where ¢, ¢y are strictly positive constants. From the triangular inequality and (1),

we have

Pr [y 9n () = 90 B)lo.c, > € (e1,e2)| < Pr [y |G (0) = Bl W)]lo ¢, > e (er,e2) = 6™ M |gul o
(3)
Let G (b) = E[gn (0)] = (1/nL) X272, ¢ r, (0), where ¢, (8) = §EK(%57) = JE[K(%=)). By

the triangular inequality we have |7"ng wn| < 2% |K|, = #gj:(nm |K]y- As the (;,.’s are in-
: . :

dependent zero-mean random variables, it follows from (2) that Var (ry¢;,.) = nLr2Var(g,) <



nL
¢log(nL)

@ |gnly- Hence, the Bernstein inequality gives
$c3log (nL)
2Q |gnlo + der [Kly / (3rg)”
(4)

Prlrg [gn (b) — E[gn (b)]| > 1] = Pr]] i?’gém (0) | > nLei] < 2exp|—

for any b € C,,, c1, n and L.

Note that C,, C C for all n < oo and Cy, = C (V). Suppose Cw, is covered by T intervals of
the form B, = B (b;, A) ={be S(F):be [by — A, b + Al}, where b; € C, and A > 0. Consider a
minimal covering (i.e. a covering with the smallest T') for C, with the covering number denoted by

T (A). For any b € By, by the triangular inequality,

~ ~ n r nL
7y |gn (b) — Elgn (b)]| < sup  sup L wr (00)—=Conp O]+ sup  |=L 302 o (Be)
010 ) =Bl O] < sup - sup |76 5L ()G O _sup 78S G 00

which implies that

Pr [ry supec,, 1n () = Elgn (0)]] > € (e1,2) = 0" M gu| o, |

el

r n
< Pr [SUP1gth(A) SUPpe B, |ﬁ Zjil (Cj,nL (bt) = Cjmi (b)) | >e(cr,e2) —e1 — ¢t M" |9n

r nL
+Pr [supycyeria) |5 S35 G ()] > e - (5)
By the mean value theorem, |+K(Z5%) — LK(£72) < A',fﬁl. Therefore, by the triangular in-
equality, |¢; g (be) = Cjng ()] < 2k 4 B[AEL] = 28KL 1ot A = ¢3h%/ry. 1Tt follows that

IS L 2rgA|K|, :
SUP1<t<T(A) SUPpe B, |t Z?:l (Cj,nL (b) = CjnL (b)) | < % = 2c2 |K[; . Hence, by the defini-

tion of e (c1, ¢2),

T nlL
Pr [SUP1gth(A) SUPpe B, |ﬁ Zj:l (Cj,nL (b) — §j,nL (b)) | >e(cr,e2) —c1 — ¢RMR ‘gn‘R,C;}

T n
= Pr [Suplgth(A) SUPpe B, |n7gL Zjil (Cj,nL (b) — Cj,nL (b)) | > 2co |K|1} =0. (6)



2
Let P (c1,c2) = 2T (cah® /1) exp[— 2Q\gnﬁciifl(?<ﬁ/(3rg)]' It follows from (3), (5), (6) and (4) that

Prlrg |Gn () = g D)y, > €(cr,2)] < Prlrg |Gn () — Elgn (0)]lo ., > e (e, c2) — 6" M |gul g o ]
< Prlrgsupi<i<r(ay Gn (br) = E[gn (be)]] > c1]
LY Prfrg [ (br) — E[gn (be)]] > 1]

S P(Cl,CQ).

IA

The covering number 7' (A) is of order A~%. Hence T' (c2h?/r,) = O([nL/log (nL)](F+2)/(2E+1)),
By taking ¢; sufficiently large, P (¢1,c2) converges as nL — oo. By Proposition 3, e (¢1,c2) = O (1).

The desired result follows from the Borel-Cantelli Lemma. m
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