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Proof of Lemma A.1. Consider the risk neutral bidding function sRN;n(�) given by the di¤erential

equation

v � sRN;n(v) =
1

n� 1
F (v)

f(v)
s0RN;n(v):

Let GRN;n(�) be the distribution function of the equilibrium bids b = sRN;n(v) and gRN;n(�) be its

density. As GRN;n(b) = F (v) and gRN;n(b) = f(v)=s0RN;n(v), the corresponding inverse bidding

function is s�1RN;n(b) = b+
1

n�1
GRN;n(b)
gRN;n(b)

. Guerre, Perrigne and Vuong (2000) have shown gRN;n (b) �

cg > 0 for all n. As limn!1 sRN;n(v) = v by Proposition 1 in Fibich and Gavious (2010), we have

limn!1 gRN;n (sRN;n(v)) = f(v) where f(v) � cf > 0 by the de�nition of FR. It follows that

limn!1 sup js�1RN;n(b)� bj = 0 or, equivalently, limn!1 sup jv � sRN;n(v)j = 0. As 0 � v � sn (v) �

v � sRN;n (v) for all v 2 S (F ) (Riley and Samuelson, 1981), the uniform equicontinuity of sn (�)

follows by the uniform convergence of sn (v) and the compactness of S (F ) (Rudin, 1976, Theorem

7.24).

Proof of Lemma A.2. It follows from Proposition 3 that

~Gn (b) =
1

nL

P
i;l 1 (Bil � b) =

1

nL

P
i;l 1 (Gn (Bil) � Gn (b)) =

1

nL

P
i;l 1 (uil � Gn (b)) ;

where uil = Gn (Bil) is uniformly distributed on [0; 1] since Bil � Gn (�). Hence,

j ~Gn (b)�Gn (b) j0;S(Gn) = j 1
nL

P
i;l

1 (uil � Gn (b))�Gn (b) j0;S(Gn)

= j 1
nL

P
i;l

1 (uil � u)� uj0;[0;1] = O(1=rG);

where the last step holds because the empirical distribution of uniform distribution on [0; 1] (which

does not depend on n) converges uniformly to the true distribution at the rate of rG by the Chung-

Smirnov theorem (Chung, 1949).

Proof of Lemma A.3. Following the proof of Lemma B.2 in Guerre, Perrigne and Vuong (2000),
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the proof is divided into three steps. The �rst step studies the uniform bias of ~gn (�), the second step

studies its uniform variance bound, and the last step establishes the exponential-type inequality.

Step 1 (Uniform Bias). E[~gn (b)] = E[ 1
nLh

P
i;lK(

Bil�b
h )] =

R
K (u) gn (b+ hu) du. Without loss

of generality, suppose u � 0. Then for b 2 Cn and L su¢ ciently large, ~b 2 [b; b+ hu] � C 0n, where C 0n
is a closed inner subset of S (Gn). Since gn (�) admits R continuous derivatives, a Taylor expansion

gives gn (b+ hu)� gn (b) � hug(1)n (b) + � � �+ (hu)R�1

(R�1)! g
(R�1)
n (b) + jhujR

R! jgnjR;C0
n
. As K (�) is of order

R, moments of order strictly smaller than R vanish. We have

jE[~gn (b)]� gn (b)j0;Cn = supb2Cn j
Z
K (u) (gn (b+ hu)� gn (b)) duj � hRMR jgnjR;C0

n
;

where MR = 1
R!

R
jujRK (u) du. It follows from the de�nition of rg and h that

rg jE[~gn (b)]� gn (b)j0;Cn � �
RMR jgnjR;C0

n
: (1)

Step 2 (Uniform Variance). Consider a density g�n (b), such that g
�
n (b) = gn (b) if b 2 S (Gn) and

g�n (b) = 0 otherwise. For b 2 C1, where C1 = limn!1 Cn, Var[~gn (b)] = Var[ 1
nLh

P
i;lK(

Bil�b
h )] =

1
nLh2Var[K(

B�b
h )] � 1

nLh2E[K(
B�b
h )]2 = 1

nLh

R
K2 (u) g�n (b+ hu) du: Let Q =

R
K2 (u) du, we have

jVar[~gn (b)]j0;C1 � 1

nLh
Q jg�nj0;C1 � 1

�r2g log (nL)
Q jgnj0 : (2)

Step 3 (Exponential-type Inequality). In this step, we establish the exponential-type inequality

for the probability of deviation of ~gn (b)�gn (b) in sup-norm over Cn. Let e (c1; c2) = c1+2c2jKj1+

�RMR jgnjR;C0
n
, where c1; c2 are strictly positive constants. From the triangular inequality and (1),

we have

Pr
h
rg j~gn (b)� gn (b)j0;Cn > e (c1; c2)

i
� Pr

h
rg j~gn (b)� E[~gn (b)]j0;Cn > e (c1; c2)� �

RMR jgnjR;C0
n

i
:

(3)

Let ~gn (b) � E[~gn (b)] = (1=nL)
PnL

j=1 �j;nL (b), where �j;nL (b) =
1
hK(

Bj�b
h ) � 1

hE[K(
Bj�b
h )]. By

the triangular inequality we have
��rg�j;nL�� � 2rg

h jKj0 = 2nL
�rg log(nL)

jKj0. As the �j;nL�s are in-

dependent zero-mean random variables, it follows from (2) that Var
�
rg�j;nL

�
= nLr2gVar (~gn) �
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nL
� log(nL)Q jgnj0. Hence, the Bernstein inequality gives

Pr [rg j~gn (b)� E[~gn (b)]j > c1] = Pr[j
nLP
j=1

rg�j;nL (b) j > nLc1] � 2 exp[�
�c21 log (nL)

2Q jgnj0 + 4c1 jKj0 = (3rg)
];

(4)

for any b 2 Cn, c1, n and L.

Note that Cn � C1 for all n < 1 and C1 = C(V ). Suppose C1 is covered by T intervals of

the form Bt � B (bt;�) = fb 2 S (F ) : b 2 [bt ��; bt +�]g, where bt 2 C1 and � > 0. Consider a

minimal covering (i.e. a covering with the smallest T ) for C1 with the covering number denoted by

T (�). For any b 2 Bt, by the triangular inequality,

rg j~gn (b)� E[~gn (b)]j � sup
1�t�T (�)

sup
b2Bt

j rg
nL

PnL
j=1[�j;nL (bt)��j;nL (b)]j+ sup

1�t�T (�)
j rg
nL

PnL
j=1 �j;nL (bt) j;

which implies that

Pr
h
rg supb2Cn j~gn (b)� E[~gn (b)]j > e (c1; c2)� �

RMR jgnjR;C0
n

i
� Pr

h
sup1�t�T (�) supb2Bt

j rg
nL

PnL
j=1

�
�j;nL (bt)� �j;nL (b)

�
j > e (c1; c2)� c1 � �RMR jgnjR;C0

n

i
+Pr

h
sup1�t�T (�) j

rg
nL

PnL
j=1 �j;nL (bt) j > c1

i
: (5)

By the mean value theorem, j 1hK(
B�bt
h ) � 1

hK(
B�b
h )j � �jKj1

h2 . Therefore, by the triangular in-

equality,
���j;nL (bt)� �j;nL (b)�� � �jKj1

h2 + E[
�jKj1
h2 ] =

2�jKj1
h2 : Let � = c2h

2=rg. It follows that

sup1�t�T (�) supb2Bt
j rgnL

PnL
j=1

�
�j;nL (bt)� �j;nL (b)

�
j � 2rg�jKj1

h2 = 2c2 jKj1 : Hence, by the de�ni-

tion of e (c1; c2),

Pr
h
sup1�t�T (�) supb2Bt

j rg
nL

PnL
j=1

�
�j;nL (bt)� �j;nL (b)

�
j > e (c1; c2)� c1 � �RMR jgnjR;C0

n

i
= Pr

h
sup1�t�T (�) supb2Bt

j rg
nL

PnL
j=1

�
�j;nL (bt)� �j;nL (b)

�
j > 2c2 jKj1

i
= 0: (6)
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Let P (c1; c2) = 2T
�
c2h

2=rg
�
exp[� �c21 log(nL)

2Qjgnj0+4c1jKj0=(3rg)
]. It follows from (3), (5), (6) and (4) that

Pr[rg j~gn (b)� gn (b)j0;Cn > e (c1; c2)] � Pr[rg j~gn (b)� E[~gn (b)]j0;Cn > e (c1; c2)� �
RMR jgnjR;C0

n
]

� Pr[rg sup1�t�T (�) j~gn (bt)� E[~gn (bt)]j > c1]

�
PT (�)

t=1 Pr[rg j~gn (bt)� E[~gn (bt)]j > c1]

� P (c1; c2) :

The covering number T (�) is of order ��1. Hence T
�
c2h

2=rg
�
= O([nL= log (nL)](R+2)=(2R+1)).

By taking c1 su¢ ciently large, P (c1; c2) converges as nL!1. By Proposition 3, e (c1; c2) = O (1).

The desired result follows from the Borel-Cantelli Lemma.
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