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Abstract

This paper considers the estimation of a network model with sampled networks.

Chandrasekhar and Lewis (2011) show that the estimation with sampled networks

could be biased due to measurement error induced by sampling and propose a bias

correction by restricting the estimation to sampled nodes to avoid measurement error

in the regressors. However, measurement error may still exist in the instruments and

thus induce the weak instrument problem when the sampling rate is low. For a local-

aggregate model, we show that the instrument based on the outdegrees of sampled

nodes is free of measurement error and thus remains informative even if the sampling

rate is low. Simulation studies suggest that the 2SLS estimator with the proposed

instrument works well when the sampling rate is low and the other instruments are

weak.
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1 Introduction

In recent years, the literature on identi�cation and estimation of social network models

has progressed signi�cantly (see Blume et al., 2011, for a recent survey). In his seminal

work, Manski (1993) introduces a linear-in-means social interaction model with endogenous

e¤ects, contextual e¤ects, and correlated e¤ects. Manski shows that this model su¤ers

from the re�ection problem and the above-mentioned e¤ects cannot be separately identi�ed.

Bramoullé et al. (2009) generalize Manski�s linear-in-means model to a local-average network

model, where the endogenous e¤ect is represented by the average outcome of an agent�s

friends. They provide identi�cation conditions for the local-average model and suggest using

the characteristics of indirect friends as an instrument for the endogenous e¤ect. Liu and

Lee (2010) consider a local-aggregate network model where the endogenous e¤ect is given

by the aggregate outcome of the friends. They show that in the local-aggregate model, the

Bonacich centrality (Bonacich, 1987) can be used as an additional instrument to achieve

identi�cation and improve estimation e¢ ciency.

The above-mentioned papers assume that the outcomes, covariates and connections of

the agents in a network can be fully observed, which may be unrealistic in some practical

applications. Sojourner (2011) considers a linear-in-means model with missing data on co-

variates. He shows that random assignment of agents to peer groups can help to overcome

the missing data problem. On the other hand, Chandrasekhar and Lewis (2011) consider the

missing data problem on network connections. They show that the estimation of sampled

networks could be biased due to the measurement error induced by sampling. They propose

a simple bias correction by restricting the estimation to the sampled agents, whose friends

are observed, to avoid measurement error in the regressors. However, measurement errors

may still exist in the instruments. For the local-average model, the instrument based on

the characteristics of indirect friends is less informative when the sampling rate is low and

thus may induce the weak instrument problem. In this paper, we show that, for the local-

aggregate model with sampled network data, the instrument based on the number of direct
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connections, which is the leading-order term of the Bonacich centrality, has no measurement

error and thus remains informative even if the sampling rate is low.

The rest of the paper is organized as follows. Section 2 introduces basic concepts and no-

tations. Section 3 discusses identi�cation and estimation of the network model with sampled

networks. Section 4 provides simulation evidence for the �nite sample performance of the

estimator. Section 5 concludes and generalizes the proposed estimator to estimate a network

model with network �xed e¤ects.

2 Networks and Sampling

A network is represented by a graph G = (V;E) where V is a set of n nodes and E is a set

of ordered pairs of nodes called arcs. An arc eij = (i; j) is considered to be directed from i

to j where j is called the head and i is called the tail of the arc.1 We assume there is no arc

that points to itself so that eii =2 E for all i 2 V .

Figure 1: (a) the full network; (b) a star subgraph with S = f1; 2; 3g:

Denote the set of m randomly sampled nodes by S. Following Chandrasekhar and Lewis

(2011), there are two di¤erent sampling schemes. In the �rst sampling scheme, the researcher

surveys a set of m nodes and asks each node to nominate his/her friends among the other

m � 1 nodes sampled. The sampled network GjS = (S;EjS), where EjS = feijjeij 2 E; i 2
1In this paper, we focus on the estimation of directed graphs. The estimators can be easily modi�ed to

estimate a undirected graph.
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S; j 2 Sg, is called the induced subgraph. In the second sampling scheme, the researcher has

information of all the nodes in V and survey a set ofm nodes and asks each node to nominate

his/her friends from the list of the n nodes in V . The sampled network GS = (V;ES), where

ES = feijjeij 2 E; i 2 S; j 2 V g, is called the star subgraph. In this paper, we focus on the

estimation of a star subgraph. Figure 1 gives an example of a star subgraph.

3 Social Network Models with Sampled Networks

In a social network model, the connections in a network G = (V;E) are represented by an

n� n adjacency matrix A = [aij] where aij = 1 if eij 2 E and aij = 0 otherwise. The model

of the full network is given by

Y = �0AY + �0ln +X�0 + AX
0 + �: (1)

Here, Y = (y1; � � � ; yn)0 where yi is the observed outcome of the ith node. ln is an n�1 vector

of ones. X = (x01; � � � ; x0n)0 where xi is a 1� k vector of exogenous characteristics of the ith

node. � is an n � 1 vector of i.i.d. innovations. According to Manski (1993), �0 captures

the endogenous e¤ect, where an agent�s outcome may depend on the outcomes of his/her

friends, and 
0 captures the exogenous (contextual) e¤ect, where an agent�s outcome may

depend on the exogenous characteristics of his/her friends. How to identify and estimate

those two di¤erent e¤ects has been a main interest for social interaction models.

If (In � �0A) is invertible, the reduced form equation of (1) is given by

Y = (In � �0A)
�1(�0ln +X�0 + AX
0 + �): (2)

For identi�cation and estimation of model (1), we need to �nd instruments for AY . As

(In � �0A)
�1 = In + �0(In � �0A)

�1A, from (2), we have

E(AY jA;X) = �0A(In � �0A)
�1ln + AX�0 + A2(In � �0A)

�1X(�0�0 + 
0): (3)
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We will discuss the potential instruments implied by (3) in the following subsections.

Suppose we can observe (yi; xi) for all i 2 V and arcs eij if and only if i 2 S in the data.

In other words, the sampled network can be represented by a star subgraph GS = (V;ES).

As argued by Chandrasekhar and Lewis (2011), this sampling scheme is quite common. For

instance, consider the network data collected by Banerjee et al. (2011) from 43 villages in

Karnataka, India, in order to study the di¤usion of micro�nance. The data includes a full

census that collected demographic data on all households in the villages and a follow-up

survey to a subsample of villagers asking them to nominate their social connections with

other villagers. The resulting sampled network can be considered as a star subgraph.

Denote the corresponding adjacency matrix based on the sampled arcs by A� = [a�ij],

where a�ij = 1 if eij 2 ES and a�ij = 0 otherwise. The model with a sampled network is given

by

Y = �0A
�Y + �0ln +X�0 + A�X
0 + �: (4)

For the estimation of model (4), we consider two di¤erent speci�cations of the network model,

namely, the local-average model and the local-aggregate model.

3.1 The Local-Average Model

For network models, it is quite common to row-normalize the adjacency matrix A such that

the sum of each row of A is unity. Let di =
Pn

j=1 aij denote the outdegree of node i (i.e.

the number of tails adjacent to a node). The row-normalized A is given by �A = [�aij] where

�aij = aij=di.2 With a row-normalized adjacency matrix, the network model is

Y = �0 �AY + �0ln +X�0 + �AX
0 + �;

where �AY and �AX represent the average outcome and average characteristics of the connec-

tions respectively. Therefore, we call this model the local-average model.

We assume that j�0j < 1 so that (In � �0 �A)
�1 =

P1
j=0(�0

�A)j. As �Aln = ln, we have

2For simplicity, we assume that di > 0 for all i 2 V .
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�0 �A(In � �0 �A)
�1ln =

�0
1��0 ln. Hence, it follows from (3) that

E( �AY j �A;X) = �0
1� �0

ln + �AX�0 + ( �A
2X + �0 �A

3X + � � � )(�0�0 + 
0):

If �0�0 + 
0 = 0, E( �AY j �A;X) becomes a linear combination of ln and �AX, and thus the

local-average model cannot be identi�ed. If �0�0 + 
0 6= 0, then �A2X can be used as an

instrument for �AY under the identi�cation condition given by Bramoullé et al. (2009). Let

�Z = [ �AY; ln; X; �AX], Q1 = [ln; X; �AX; �A2X], and P1 = Q1(Q
0
1Q1)

�1Q01. The 2SLS estimator

of �0 = (�0; �0; �
0
0; 


0
0)
0 is given by �̂n = ( �Z 0P1 �Z)�1 �Z 0P1Y .

For a star subgraph, let �A� denote the row-normalized A�. As �A� is misspeci�ed, it in-

troduces measurement errors to both regressors and instruments. Chandrasekhar and Lewis

(2011) show that the 2SLS estimator for the local-average model with sampled networks is

inconsistent because the measurement error in the instruments is correlated with that in

the regressors. They propose a simple correction by estimating the model only with the

sampled nodes. Let �ai (�a�i ) denote the ith row of �A ( �A
�). As �a�i = �ai for i 2 S, there is no

measurement error in the regressors [�a�iY; 1; xi; �a
�
iX] of a sampled node. Measurement error

may still exist in the instruments, but they are uncorrelated with �i. Therefore, the 2SLS

estimator is consistent.

Without loss of generality, suppose the �rstm nodes are sampled. The observed outcomes

of the sampled nodes Y S = (y1; � � � ; ym)0 are given by

Y S = �0 �A
SY + �0lm +XS�0 + �ASX
0 + �S; (5)

where �AS = (�a01; � � � ; �a0m) is an m � n matrix consisting of the �rst m rows of �A, XS =

(x01; � � � ; x0m)0 is an m � k matrix of exogenous characteristics of the sampled nodes, and

�S is an m � 1 vector of corresponding error terms. Let �ZS = [ �ASY; lm; X
S; �ASX], QS1 =

[lm; X
S; �ASX; �AS �A�X], and P S1 = QS1 (Q

S0
1 Q

S
1 )
�1QS01 . The bias-corrected 2SLS estimator

proposed by Chandrasekhar and Lewis (2011) is given by �̂n = ( �ZS0P S1 �Z
S)�1 �ZS0P S1 Y

S.
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However, the misspeci�ed adjacency matrix �A� introduces measurement error to the in-

strument �AS �A�X in QS1 . When the sampling rate m=n is low, the instrument is less informa-

tive. This can be seen from Figure 1. The instrument �AS �A�X represents the characteristics

of �second-order�connections. For the full network, following the arrows, nodes 3 and 4 are

indirect connections of node 1 through node 5, and thus the characteristics of nodes 3 and

4 provide useful information for the identi�cation of the endogenous e¤ect. However, due to

sampling, the arcs pointing from node 5 to nodes 3 and 4 are missing. Hence, the instrument

based on the characteristics of friends�friends is not available in the sampled network.

3.2 The Local-Aggregate Model

Without row normalization of the adjacency matrix, AY and AX represent, respectively, the

aggregate outcome and aggregate characteristics of the connections. Hence, we call model (1)

the local-aggregate model. Let jj � jj1 denote the row sum matrix norm. If sup jj�0Ajj1 < 1,

then (In � �0A)
�1 =

P1
j=0(�0A)

j. It follows from (3) that

E(AY jA;X) = �0(Aln + �0A
2ln + � � � ) + AX�0 + (A

2X + �0A
3X + � � � )(�0�0 + 
0):

The term Aln + �0A
2ln + � � � represents the Bonacich centrality (Bonacich, 1987), which

is a sum of a node�s direct and indirect connections discounted by �0. As pointed out by

Liu and Lee (2010), the Bonacich centrality of a network in general is not proportional to

ln and thus provides information for identi�cation.3 Hence, unlike the local-average model,

the local-aggregate model can be identi�ed even if �0�0 + 
0 = 0. For the estimation,

we use the vector of outdegrees Aln, which is the leading order component of the Bonacich

centrality, as an additional instrument. Let Z = [AY; ln; X;AX], Q2 = [ln; X;AX;A2X;Aln],

and P2 = Q2(Q
0
2Q2)

�1Q02. The 2SLS estimator of the local-aggregate model is given by

�̂n = (Z
0P2Z)

�1Z 0P2Y .

For a star subgraph, the observed outcomes of the sampled nodes Y S = (y1; � � � ; ym)0 are
3An exception would be the complete network where A = lnl0n � In. In this case, the Bonacich centrality

of each node is the same.
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given by

Y S = �0A
SY + �0lm +XS�0 + ASX
0 + �S; (6)

whereAS is anm�nmatrix consisting of the �rstm rows ofA. Let ZS = [ASY; lm; XS; ASX],

QS2 = [lm; X
S; ASX;ASA�X;ASln], and P S2 = QS2 (Q

S0
2 Q

S
2 )
�1QS02 . The bias-corrected 2SLS

estimator for the sampled network is given by �̂n = (ZS0P S2 Z
S)�1ZS0P S2 Y

S. For the sampled

nodes, their outdegrees do not have measurement error and thus the instrument ASln is

informative even if the sampling rate is low.

The usefulness of the additional instrument ASln can be seen in Figure 1. Although the

star subgraph in Figure 1 (b) cannot be identi�ed for a local-average model, it is identi�able

for a local-aggregate model. For the sampled nodes, the outdegrees of nodes 1 and 3 are

two and the outdegree of node 2 is zero. The variation in outdegrees provides an additional

channel for identi�cation.

4 Simulation Evidence

To investigate the �nite sample performance of the estimators, we conduct a limited simu-

lation experiment for the local-aggregate model (1). We consider a network with n = 500

nodes. The sampled network is a star subgraph withm sampled nodes,m 2 f100; 200; 300; 400; 500g,

with the corresponding sampling rates  2 f20%; 40%; 60%; 80%; 100%g. The number of

simulation repetitions is 50000. For each repetition, node i, i = 1; � � � ; n, is assigned an out-

degree di 2 f1; 2; 3g with equal probability and randomly nominates di friends. The (i; j)th

element of adjacency matrix A is one if node i nominates j as a friend and zero otherwise.

X and � are generated from N(0; In) and N(0; �2In) respectively. The data are generated

with �0 = 0:1, �0 = 1, �0 = 0:5, 
0 = 0:1, and �
2 = 2.

We consider three estimators, (i) the IV estimator based on the n observations and the

misspeci�ed adjacency matrix, �̂IV�1 = (Q�01 Z
�)�1Q�01 Y; where Z

� = [A�Y; ln; X;A
�X] and

Q�1 = [ln; X;A
�X; (A�)2X]; (ii) the IV estimator based on the m sampled nodes, �̂IV�2 =

(QS01 Z
S)�1QS01 Y

S, where ZS = [ASY; lm; X
S; ASX] and QS1 = [lm; X

S; ASX;ASA�X]; and
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(iii) the 2SLS estimator based on the m sampled nodes and an additional instrument on out-

degrees, �̂2SLS = (ZS0P S2 Z
S)�1ZS0P S2 Y

S, whereQS2 = [Q
S
1 ; A

Sln] and P S2 = QS2 (Q
S0
2 Q

S
2 )
�1QS02 .

We report the mean, standard deviation (SD), and root mean square error (RMSE) of the

empirical distribution of the estimates. The �rst two estimators are unstable with extremely

large SD when the sampling rate is low. To reduce the impact of outliers, we drop the es-

timates below the 1st percentile and above the 99th percentile of the empirical distribution

when calculating the mean, SD and RMSE. As a measure for the quality of the instruments,

we also report the �rst-stage partial F-statistics of each estimator.

The simulations results are reported in Table 1. The IV estimator based on the misspec-

i�ed adjacency matrix �̂IV�1 is severely biased for a moderate sampling rate ( � 60%).

When the sampling rate is low ( = 20%), �̂IV�1 is downwards biased by 58%, �̂IV�1 is

upwards biased by 22:8% and 
̂IV�1 is upwards biased by 28%. The IV estimator �̂IV�2

based on the sampled nodes and IV matrix QS1 is also biased when the sampling rate is low

( = 20%), �̂IV�2 is upwards biased by 26% and 
̂IV�2 is downwards biased by 12%. The

bias reduces as the sampling rate increases to 40%. The IV estimators �̂IV�1 and �̂IV�2 are

unstable with extremely large SDs when the sampling rate is low. The SDs remain quite

large for a moderate sampling rate. As indicated by the �rst-stage partial F-statistics, the

instrument ASA�X in QS1 is not very informative in the simulation experiment. The 2SLS

estimator �̂2SLS with an additional instrument of outdegrees ASln is essentially unbiased for

all sampling rates considered. It also has much smaller SDs than the other two estimators.

5 Concluding Remarks

In this paper, we consider the estimation of a network model with sampled networks. Chan-

drasekhar and Lewis (2011) show that the estimates with sampled networks could be biased

due to measurement error induced by sampling and propose a simple bias correction by

restricting the estimation to sampled nodes to avoid measurement error in the regressors.

However, measurement error may still exist in the instruments and thus induce the weak
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instrument problem when the sampling rate is low. For the local-aggregate model, we show

that the instrument based on outdegrees is free of measurement error and thus remains in-

formative even if the sampling rate is low. Simulation studies show that the 2SLS estimator

with the additional instrument based on outdegrees works well in �nite samples when the

sampling rate is low and other instruments are weak.

The 2SLS estimator can be easily generalized to estimate a model with R networks.

Suppose the observed outcomes of the mr sampled nodes in network r are given by (6)

for r = 1; � � � ; R. Let diagfBkg denote a �generalized�block diagonal matrix in which the

diagonal blocks are mk � nk matrices Bk�s. For the R sampled networks, we have

Y S = �0A
SY + LS�+XS�0 + ASX
0 + �S;

where Y S = (Y S0
1 ; � � � ; Y S0

R )
0, XS = (XS0

1 ; � � � ; XS0
R )

0, �S = (�S01 ; � � � ; �S0R )0, AS = diagfASr gRr=1
and LS = diagflmrgRr=1. The vector of unknown parameters � = (�1; � � � ; �R)0 captures

network-speci�c �xed e¤ects. To avoid the incidental parameter problem induced by �, we

conduct a within transformation with a projector JS = diagfJSr gRr=1 where JSr = Imr �
1
mr
lmr l

0
mr
. As JSLS = 0, the transformed model is

JSY S = �0J
SASY + JSXS�0 + JSASX
0 + JS�S:

Like for the case with a single sampled network, we can use the characteristics of in-

direct friends ASA�X and the number of direct friends ASln as instruments. Let ZS =

JS[ASY;XS; ASX], QS = JS[XS; ASX;ASA�X;ASln], and P S = QS(QS0QS)�1QS0. The

2SLS estimator of �0 = (�0; �
0
0; 


0
0)
0 is given by �̂2sls = (ZS0P SZS)�1ZS0P SJSY S.4

4Note that the 2SLS estimator �̂2sls is consistent but may not be e¢ cient. To improve estimation e¢ ciency,
consider the many-instrument 2SLS estimator in Liu and Lee (2010).
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Table 1: Estimation of a Sampled Network
�0 = 0:1 �0 = 1 �0 = 0:5 
0 = 0:1 F -stat

sampling rate: 20%
�̂IV�1 0:042(1:504)[1:505] 1:228(0:738)[0:773] 0:499(0:098)[0:098] 0:128(0:714)[0:714] 8:708

�̂IV�2 0:126(2:189)[2:189] 0:933(5:440)[5:441] 0:499(0:427)[0:427] 0:088(1:079)[1:079] 8:608

�̂2SLS 0:099(0:134)[0:134] 1:002(0:357)[0:357] 0:500(0:138)[0:138] 0:100(0:119)[0:119] 73:312
sampling rate: 40%

�̂IV�1 0:077(1:288)[1:288] 1:172(1:270)[1:281] 0:500(0:105)[0:105] 0:113(0:585)[0:585] 6:622

�̂IV�2 0:095(1:472)[1:472] 1:014(3:670)[3:670] 0:501(0:215)[0:215] 0:103(0:718)[0:718] 7:279

�̂2SLS 0:100(0:092)[0:092] 1:000(0:246)[0:246] 0:500(0:095)[0:095] 0:100(0:082)[0:082] 70:086
sampling rate: 60%

�̂IV�1 0:085(0:959)[0:959] 1:123(1:415)[1:421] 0:500(0:097)[0:097] 0:108(0:428)[0:428] 6:963

�̂IV�2 0:107(0:893)[0:893] 0:982(2:205)[2:205] 0:499(0:123)[0:123] 0:097(0:431)[0:431] 8:103

�̂2SLS 0:100(0:074)[0:074] 0:999(0:197)[0:197] 0:500(0:077)[0:077] 0:100(0:066)[0:066] 70:023
sampling rate: 80%

�̂IV�1 0:101(0:627)[0:627] 1:047(1:234)[1:235] 0:500(0:081)[0:081] 0:100(0:289)[0:289] 8:283

�̂IV�2 0:104(0:521)[0:521] 0:989(1:294)[1:294] 0:500(0:085)[0:085] 0:098(0:254)[0:254] 9:407

�̂2SLS 0:100(0:063)[0:063] 0:999(0:170)[0:170] 0:500(0:067)[0:067] 0:100(0:057)[0:057] 70:646
sampling rate: 100%

�̂IV�1 0:102(0:333)[0:333] 0:995(0:827)[0:827] 0:500(0:069)[0:069] 0:100(0:166)[0:166] 10:964

�̂IV�2 0:102(0:333)[0:333] 0:995(0:827)[0:827] 0:500(0:069)[0:069] 0:100(0:166)[0:166] 10:964

�̂2SLS 0:100(0:056)[0:056] 0:999(0:151)[0:151] 0:500(0:060)[0:060] 0:100(0:051)[0:051] 71:597

Mean(SD)[RMSE]
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