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Abstract

We consider identi�cation and estimation of social network models in a system of simul-

taneous equations. We show that, with or without row-normalization of the social adjacency

matrix, the network model has di¤erent equilibrium implications, needs di¤erent identi�cation

conditions, and requires di¤erent estimation strategies. When the adjacency matrix is not row-

normalized, the variation in the Bonacich centrality across nodes in a network can be used as an

IV to identify social interaction e¤ects and improve estimation e¢ ciency. The number of such

IVs depends on the number of networks. When there are many networks in the data, the pro-

posed estimators may have an asymptotic bias due to the presence of many IVs. We propose a

bias-correction procedure for the many-instrument bias. Simulation experiments show that the

bias-corrected estimators perform well in �nite samples. We also provide an empirical example

to illustrate the proposed estimation procedure.
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1 Introduction

Since the seminal work by Manski (1993), social network models have attracted a lot of attention

(see Blume et al., 2011, for a recent survey). In a social network model, agents interact with each

other through network connections, which are captured by a social adjacency matrix. According

to Manski (1993), an agent� choice may be in�uenced by peers� choices (the endogenous e¤ect),

by peers�exogenous characteristics (the contextual e¤ect), and/or by the common environment of

the network (the correlated e¤ect). It is the main interest of social network research to separately

identify and estimate di¤erent social interaction e¤ects.

Manski (1993) considers a linear-in-means model, where the endogenous e¤ect is based on the

rational expectation of the choices of all agents in the network. Manski shows that the linear-in-

means speci�cation su¤ers from the �re�ection problem�so that endogenous and contextual e¤ects

cannot be separately identi�ed. Lee (2007) introduces a model with multiple networks where an

agent is equally in�uenced by all the other agents in the same network. Lee�s social network model

can be identi�ed by the variation in network sizes. The identi�cation, however, can be weak if all

of networks are large. Bramoullé et al. (2009) generalize Lee�s social network model to a general

local-average model, where endogenous and contextual e¤ects are represented, respectively, by the

average choice and average characteristics of an agent�s connections (or friends).1 Based on the

important observation that in a social network, an agent�s friend�s friend may not be a (direct)

friend of that agent, Bramoullé et al. (2009) use the intransitivity in network connections as an

exclusion restriction to identify di¤erent social interaction e¤ects.

Liu and Lee (2010) consider the estimation of the local-aggregate social network model, where

the endogenous e¤ect is given by the aggregate choice of an agent�s friends. They show that, for the

local-aggregate model, di¤erent positions of the agents in a network captured by the Bonacich (1987)

centrality can be used as an additional instrumental variable (IV) to improve estimation e¢ ciency.

Liu et al. (2014) give the identi�cation condition for the local-aggregate model and show that the

condition is in general weaker than that for the local-average model derived by Bramoullé et al.

(2009). They also propose a J test for the speci�cation of network models.

The above mentioned papers focus on single-equation network models involving only one activity.

However, in real life, an agent�s decision usually involves more than one activity. For example, a

1Bramoullé et al. (2009) indicate that the �rst part of Proposition 1 applies to arbitrary (non-row-normalized)
matrices.
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student may need to balance time between study and extracurriculars and a �rm may need to

allocate resources between production and R&D (König et al., 2014). In a recent paper, Cohen-

Cole et al. (2012) consider the identi�cation and estimation of local-average network models in the

framework of simultaneous equations. Besides endogenous, contextual, and correlated e¤ects as in

single-equation network models, the simultaneous equations network model also incorporates the

simultaneity e¤ect, where an agent�s choice in a certain activity may depend on his/her choice in a

related activity, and the cross-activity peer e¤ect, where an agent�s choice in a certain activity may

depend on peers� choices in a related activity. Cohen-Cole et al. (2012) derive the identi�cation

conditions for the various social interaction e¤ects and generalize the spatial two-stage least-squares

(2SLS) and three-stage least-squares (3SLS) estimators in Kelejian and Prucha (2004) to estimate

the simultaneous equations network model.

In this paper, we consider the identi�cation and e¢ cient estimation of the local-aggregate network

model in a system of simultaneous equations. We show that, similar to the single-equation network

model, the Bonacich centrality provides additional information to achieve model identi�cation and

to improve estimation e¢ ciency. We derive the identi�cation condition for the local-aggregate si-

multaneous equations network model, and show that the condition can be weaker than that for the

local-average model. For e¢ cient estimation, we suggest 2SLS and 3SLS estimators using additional

IVs based on the Bonacich centrality of each network. As the number of such IVs depends on the

number of networks, the 2SLS and 3SLS estimators would have an asymptotic many-instrument

bias (Bekker, 1994) when there are many networks in the data. Hence, we propose a bias-correction

procedure based on the estimated leading-order term of the asymptotic bias. Monte Carlo experi-

ments show that the bias-corrected estimators perform well in �nite samples. We also provide an

empirical example to illustrate the proposed estimation procedure.

The rest of the paper is organized as follows. Section 2 introduces a network game which

motivates the speci�cation of the econometric model presented in Section 3. Section 4 derives the

identi�cation conditions and Section 5 proposes 2SLS and 3SLS estimators for the model. The

regularity assumptions and detailed proofs are given in the Appendix. Monte Carlo evidence on the

�nite sample performance of the proposed estimators is given in Section 6. Section 7 provides an

empirical example. Section 8 brie�y concludes.
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2 Theoretical Model

2.1 The network game

Suppose there is a �nite set of agents N = f1; :::; ng in a network. We keep track of social connections

in the network through its adjacency matrix G = [gij ]. If the network is undirected, then G is

symmetric with gij = 1 if i and j are connected and gij = 0 otherwise. If the network is directed,

then G may be asymmetric with gij = 1 if an arc is directed from i to j and gij = 0 otherwise.2 Let

G� = [g�ij ], with g
�
ij = gij=

Pn
j=1 gij , denote the row-normalized adjacency matrix such that each

row of G� adds up to one. Figure 1 gives an example of G and G� for a undirected star-shaped

network.

3 4
1

2

G =

266666664

0 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

377777775
G� =

266666664

0 1=3 1=3 1=3

1 0 0 0

1 0 0 0

1 0 0 0

377777775
Figure 1: an example of G and G� for a undirected star-shaped network.

Given the network structure represented by G, agent i chooses y1i and y2i, the respective e¤orts

of two related activities, to maximize the following linear quadratic utility function

u(y1i; y2i) = ��1iy1i + �
�
2iy2i �

1

2
��1y

2
1i �

1

2
��2y

2
2i + �

�y1iy2i (1)

+��11
Pn

j=1 gijy1iy1j + �
�
22

Pn
j=1 gijy2iy2j + �

�
21

Pn
j=1 gijy1iy2j + �

�
12

Pn
j=1 gijy2iy1j :

As in the standard linear-quadratic utility for a single activity model (Ballester et al., 2006), ��1i

and ��2i capture ex ante individual heterogeneity. The cross-e¤ects between own e¤orts for di¤erent

activities are given by
@2u(y1i; y2i)

@y1i@y2i
= ��:

The cross-e¤ects between own and peer e¤orts for the same activity are

@2u(y1i; y2i)

@y1i@y1j
= ��11gij and

@2u(y1i; y2i)

@y2i@y2j
= ��22gij ;

2The undirected network can be considered as a special case of the directed network. The identi�cation result and
estimation method of the paper hold for both directed and undirected networks.
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which may indicate strategic substitutability or complementarity depending on the signs of ��11 and

��22. The cross-e¤ects between own and peer e¤orts for di¤erent activities are given by

@2u(y1i; y2i)

@y1i@y2j
= ��21gij and

@2u(y1i; y2i)

@y2i@y1j
= ��12gij ;

which may indicate strategic substitutability or complementarity depending on the signs of ��21 and

��12.

From the �rst order conditions of utility maximization, we have the best-response functions:

y1i = �1y2i + �11
Pn

j=1 gijy1j + �21
Pn

j=1 gijy2j + �1i; (2)

y2i = �2y1i + �22
Pn

j=1 gijy2j + �12
Pn

j=1 gijy1j + �2i; (3)

where �1 = ��=��1, �2 = ��=��2, �11 = ��11=�
�
1, �22 = ��22=�

�
2, �21 = ��21=�

�
1, �12 = ��12=�

�
2,

�1i = ��1i=�
�
1, �2i = ��2i=�

�
2. In (2) and (3), agent i�s best-response e¤ort of a certain activity

depends on the aggregate e¤orts of his/her friends of that activity and a related activity. Therefore,

we call this model the local-aggregate network game. In matrix form, the best-response functions

are

Y1 = �1Y2 + �11GY1 + �21GY2 +�1; (4)

Y2 = �2Y1 + �22GY2 + �12GY1 +�2; (5)

where Yk = (yk1; � � � ; ykn)0 and �k = (�k1; � � � ; �kn)0 for k = 1; 2.

The reduced-form equations of (4) and (5) are

SY1 = (I � �22G)�1 + (�1I + �21G)�2;

SY2 = (I � �11G)�2 + (�2I + �12G)�1;

where I is a conformable identity matrix and

S = (1� �1�2)I � (�11 + �22 + �1�12 + �2�21)G+ (�11�22 � �12�21)G2: (6)
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If S is nonsingular,3 then the local-aggregate network game has a unique Nash equilibrium in pure

strategies with the equilibrium e¤orts given by

Y �1 = S�1[(I � �22G)�1 + (�1I + �21G)�2]; (7)

Y �2 = S�1[(I � �11G)�2 + (�2I + �12G)�1]: (8)

2.2 Local aggregate versus local average: equilibrium comparison

In a recent paper, Cohen-Cole et al. (2012) consider a network game with utility function

u(y1i; y2i) = ��1iy1i + �
�
2iy2i �

1

2
��1y

2
1i �

1

2
��2y

2
2i + �

�y1iy2i (9)

+��11
Pn

j=1 g
�
ijy1iy1j + �

�
22

Pn
j=1 g

�
ijy2iy2j + �

�
21

Pn
j=1 g

�
ijy1iy2j + �

�
12

Pn
j=1 g

�
ijy2iy1j :

From the �rst order conditions of maximizing (9), the best-response functions of the network game

are

y1i = �1y2i + �11
Pn

j=1 g
�
ijy1j + �21

Pn
j=1 g

�
ijy2j + �1i;

y2i = �2y1i + �22
Pn

j=1 g
�
ijy2j + �12

Pn
j=1 g

�
ijy1j + �2i;

or, in matrix form,

Y1 = �1Y2 + �11G
�Y1 + �21G

�Y2 +�1; (10)

Y2 = �2Y1 + �22G
�Y2 + �12G

�Y1 +�2: (11)

As G� is row-normalized, in (10) and (11), agent i�s best-response e¤ort of a certain activity depends

on the average e¤orts of his/her friends of that activity and a related activity. Therefore, we call

this model the local-average network game. Cohen-Cole et al. (2012) show that, if S� is nonsingular,

where

S� = (1� �1�2)I � (�11 + �22 + �1�12 + �2�21)G� + (�11�22 � �12�21)G�2;
3A su¢ cient condition for the nonsingularity of S is j�1�2j + j�11 + �22 + �1�12 + �2�21j � jjGjj1 + j�11�22 �

�12�21j � jjGjj21 < 1, where jj � jj1 is the row-sum matrix norm.
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then the network game with payo¤s (9) has a unique Nash equilibrium in pure strategies given by

Y �1 = S��1[(I � �22G�)�1 + (�1I + �21G�)�2]; (12)

Y �2 = S��1[(I � �11G�)�2 + (�2I + �12G�)�1]: (13)

Although the best-response functions of the local-aggregate and local-average network games

share similar functional forms, they have di¤erent implications. As pointed out by Liu et al. (2014),

in the local-aggregate game, even if agents are ex ante identical in terms of individual attributes �1

and �2, agents with di¤erent positions in the network would have di¤erent equilibrium payo¤s. On

the other hand, the local-average game is based on the mechanism of social conformism.4 As the

positions in the network do not matter in the local-average game, the equilibrium e¤orts and payo¤s

would be the same if all agents are ex ante identical.

To illustrate this point, suppose the agents in a network are ex ante identical such that �1 = �1ln

and �2 = �2ln, where �1; �2 are constant scalars and ln is an n�1 vector of ones. As G�ln = G�2ln =

ln, it follows from (12) and (13) that Y �1 = c1ln and Y
�
2 = c2ln, where

c1 = [(1� �22)�1 + (�1 + �21)�2]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21) + (�11�22 � �12�21)];

c2 = [(1� �11)�2 + (�2 + �12)�1]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21) + (�11�22 � �12�21)]:

Thus, for the local-average network game, the equilibrium e¤orts and payo¤s are the same for all

agents. On the other hand, for the local-aggregate network game, it follows from (7) and (8) that

Y �1 = S�1[(I � �22G)�1 + (�1I + �21G)�2]ln;

Y �2 = S�1[(I � �11G)�2 + (�2I + �12G)�1]ln:

Thus, the agents would have di¤erent equilibrium e¤orts and payo¤s if Gln is not proportional to

ln.5

4Liu et al. (2014) show that the best-response function of the local-average network game can be derived from a
setting where an agent will be punished if he deviates from the �social norm� (the average behavior of his friends).
Therefore, if the agents are identical ex ante, they would behave the same in equilibrium.

5 If Gln = cln for some constant scalar c, i.e., all agents have the same number of friends, then it follows from (7)
and (8) that Y �1 = c3ln and Y

�
2 = c4ln, where

c3 = [(1� �22c)�1 + (�1 + �21c)�2]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21)c+ (�11�22 � �12�21)c2];
c4 = [(1� �11c)�2 + (�2 + �12c)�1]=[(1� �1�2)� (�11 + �22 + �1�12 + �2�21)c+ (�11�22 � �12�21)c2]:
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Therefore, the local-aggregate and local-average network games have di¤erent equilibrium and

policy implications. Understanding the di¤erent micro-foundations of the two models, including

their di¤erent equilibrium implications, may help us to understand which model is more appropriate

for a certain economic context.6 The following sections show that the econometric model for the

local-aggregate network game has some interesting features that requires di¤erent identi�cation

conditions and estimation methods from those for the local-average model studied by Cohen-Cole

et al. (2012).

3 Econometric Model

3.1 The local-aggregate simultaneous equations network model

The econometric network model follows the best-response functions (4) and (5). Suppose the n

observations in the data are partitioned into �r networks, with nr agents in the r-th network. For

the r-th network, let

�1;r = Xr�1 +GrXr1 + �1;rlnr + �1;r;

�2;r = Xr�2 +GrXr2 + �2;rlnr + �2;r:

where Xr is an nr � kx matrix of exogenous variables, Gr is the adjacency matrix of network r, lnr
is an nr � 1 vector of ones, and �1;r; �2;r are nr � 1 vectors of disturbances.7 It follows by (4) and

(5) that Y1;r and Y2;r, which are nr � 1 vectors of observed choices of two related activities for the

agents in the r-th network, are given by

Y1;r = �1Y2;r + �11GrY1;r + �21GrY2;r +Xr�1 +GrXr1 + �1;rlnr + �1;r;

Y2;r = �2Y1;r + �22GrY2;r + �12GrY1;r +Xr�2 +GrXr2 + �2;rlnr + �2;r:

Let diagfAsg denote a �generalized�block diagonal matrix with diagonal blocks being ns �ms

matrices As�s. For k = 1; 2, let Yk = (Y 0k;1; � � � ; Y 0k;�r)0, X = (X 0
1; � � � ; X 0

�r)
0, �k = (�k;1; � � � ; �k;�r)0,

Thus, all agents have the same equilibrium payo¤s according to (1).
6 It may not always obvious to see whether the local-average or local-aggregate model is more appropriate just by

economic intuition. Sometimes, a speci�cation test is needed. Liu et al. (2014) extend the J test to network models.
7The speci�cation of �1;r and �2;r is quite common for network models (see, e.g., Calvó-Armengol et al., 2009;

Bramoullé et al., 2009; Liu and Lee, 2010). In spatial econometrics literature, this speci�cation is known as the spatial
Durbin model (LeSage and Pace, 2009). Essentially this model speci�cation imposes exclusion restrictions such that
�1;r and �2;r do not depend on the characteristics of indirect connections.
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�k = (�
0
k;1; � � � ; �0k;�r)0, L = diagflnrg�rr=1 and G = diagfGrg�rr=1. Then, for all the �r networks,

Y1 = �1Y2 + �11GY1 + �21GY2 +X�1 +GX1 + L�1 + �1; (14)

Y2 = �2Y1 + �22GY2 + �12GY1 +X�2 +GX2 + L�2 + �2: (15)

For �1 = (�11; � � � ; �1n)0 and �2 = (�21; � � � ; �2n)0, we assume E(�1i) = E(�2i) = 0, E(�21i) = �21, and

E(�22i) = �22. Furthermore, we allow the disturbances of the same agent to be correlated across

equations by assuming E(�1i�2i) = �12 and E(�1i�2j) = 0 for i 6= j. When S given by (6) is

nonsingular, the reduced-form equations of the model are

Y1 = S�1[X(�1�2 + �1) +GX(�21�2 � �22�1 + �12 + 1) +G2X(�212 � �221)

+L(�1�2 + �1) +GL(�21�2 � �22�1)] + S�1u1; (16)

Y2 = S�1[X(�2�1 + �2) +GX(�12�1 � �11�2 + �21 + 2) +G2X(�121 � �112)

+L(�2�1 + �2) +GL(�12�1 � �11�2)] + S�1u2; (17)

where

u1 = (I � �22G)�1 + (�1I + �21G)�2; (18)

u2 = (I � �11G)�2 + (�2I + �12G)�1: (19)

In this model, we allow network-speci�c e¤ects �1;r and �2;r to depend on X and G by treating

�1 and �2 as �r � 1 vectors of unknown parameters (as in a �xed e¤ect panel data model). When

the number of network �r is large, we may have the �incidental parameter�problem (Neyman and

Scott, 1948). To avoid this problem, we transform (14) and (15) using a deviation from group mean

projector J = diagfJrg�rr=1 where Jr = Inr � 1
nr
lnr l

0
nr . This transformation is analogous to the

�within�transformation for �xed e¤ect panel data models. As JL = 0, the transformed equations
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are

JY1 = �1JY2 + �11JGY1 + �21JGY2 + JX�1 + JGX1 + J�1; (20)

JY2 = �2JY1 + �22JGY2 + �12JGY1 + JX�2 + JGX2 + J�2: (21)

Our identi�cation results and estimation methods are based on the transformed model.

3.2 Identi�cation challenges

Analogous to the local-average simultaneous equations network model studied by Cohen-Cole et al.

(2012), the local-aggregate simultaneous equations network model given by (14) and (15) incorpo-

rates (within-activity) endogenous e¤ects, contextual e¤ects, simultaneity e¤ects, cross-activity peer

e¤ects, network correlated e¤ects and cross-activity correlated e¤ects. It is the main purpose of this

paper to establish identi�cation conditions and propose e¢ cient estimation methods for the various

social interaction e¤ects.

3.2.1 Endogenous e¤ect and contextual e¤ect

The endogenous e¤ect, where an agent�s choice may depend on choices of his/her friends in the same

activity, is captured by the coe¢ cients �11 and �22. The contextual e¤ect, where an agent�s choice

may depend on the exogenous characteristics of his/her friends, is captured by 1 and 2.

The non-identi�cation of a social interaction model caused by the coexistence of those two e¤ects

is known as the �re�ection problem� (Manski, 1993). For example, in a linear-in-means model,

where an agent is equally a¤ected by all the other agents in the network and by nobody outside

the network, the mean of endogenous regressor is perfectly collinear with the exogenous regressors.

Hence, endogenous and contextual e¤ects cannot be separately identi�ed.

In reality, an agent may not be evenly in�uenced by all the other agents in a network. In a

network model, it is usually assumed that an agent is only directly in�uenced by his/her friends.

Note that, if individuals i; j are friends and j; k are friends, it does not necessarily imply that i; k

are also friends. Thus, the intransitivity in network connections provides an exclusion restriction to

identify the model. Bramoullé et al. (2009) show that if intransitivities exist in a network so that

I;G�; G�2 are linearly independent, then the characteristics of an agent�s second-order (indirect)

friends G�2X can be used as IVs to identify the endogenous e¤ect from the contextual e¤ect in the
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local-average model.8

On the other hand, when Gr does not have constant row sums, the number of friends represented

by the element of Grlnr varies across agents. For a local-aggregate model, Liu and Lee (2010) show

that the Bonacich (1987) centrality, which has Grlnr as the leading-order term, can also be used as an

IV for the endogenous e¤ect. For the a local-aggregate seemingly unrelated regression (SUR) network

model with �xed network e¤ect, we show in the following section that identi�cation is possible

through the intransitivity in network connections and/or the variation in Bonacich centrality.

3.2.2 Simultaneity e¤ect and cross-activity peer e¤ect

The simultaneity e¤ect, where an agent�s choice in an activity may depend on his/her choice in a

related activity, can be seen in the coe¢ cients �1 and �2. The cross-activity peer e¤ect, where an

agent�s choice may depend on those of his/her friends in a related activity, is represented by the

coe¢ cients �21 and �12.

For a standard simultaneous equations model without social interaction e¤ects, simultaneity leads

to a well known identi�cation problem and the usual remedy is to impose exclusion restrictions on

the exogenous variables. Cohen-Cole et al. (2012) show that, with the simultaneity e¤ect or the

cross-activity peer e¤ect (but not both), the local-average network model can be identi�ed without

imposing any exclusion restrictions on X, as long as J; JG�; JG�2; JG�3 are linearly independent.

In this paper, we show that, by exploiting the variation in Bonacich centrality, the local-aggregate

network model with the simultaneity e¤ect or the cross-activity peer e¤ect (but not both) can be

identi�ed under weaker conditions.

However, neither the intransitivity in G nor the variation in Bonacich centrality would be enough

to identify the simultaneous equations network model with both simultaneity and cross-activity peer

e¤ects. One possible approach to achieve identi�cation is to impose exclusion restrictions on X. We

show that, with exclusion restrictions onX, the local-aggregate network model with both simultaneity

and cross-activity peer e¤ects can be identi�ed under weaker conditions than the local-average model.

3.2.3 Network correlated e¤ect and cross-activity correlated e¤ect

Furthermore, the structure of the simultaneous equations network model is �exible enough to allow

us to incorporate two types of correlated e¤ects.

First, the network �xed e¤ect given by �1;r and �2;r captures the network correlated e¤ect

8A stronger identi�cation condition is needed if the network �xed e¤ect is also included in the model.
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where agents in the same network may behave similarly as they have similar unobserved individual

characteristics or they face similar institutional environment. Therefore, the network �xed e¤ect

serves as a (partial) remedy for the selection bias that originates from the possible sorting of agents

with similar unobserved characteristics into a network.

Second, in the simultaneous equations network model, the error terms of the same agent is

allowed to be correlated across equations. The correlation structure of the error term captures the

cross-activity correlated e¤ect so that the choices of the same agent in related activities could be

correlated. As our identi�cation results are based on the mean of reduce-form equations, they are

not a¤ected by the correlation structure of the error term. However, for estimation e¢ ciency, it is

important to take into account the correlation in the disturbances. The estimators proposed in this

paper extend the generalized spatial 3SLS estimator in Kelejian and Prucha (2004) to estimate the

simultaneous equations network model in the presence of many IVs.

4 Identi�cation Results

Among the regularity assumptions listed in Appendix A, Assumption 4 is a su¢ cient condition for

identi�cation of the simultaneous equations network model. Let Z1 and Z2 denote the matrices of

right-hand-side (RHS) variables of (14) and (15). For Assumption 4 to hold, E(JZ1) and E(JZ2)

need to have full column rank for large enough n. In this section, we provide su¢ cient conditions

for E(JZ1) to have full column rank. The su¢ cient conditions for E(JZ2) to have full column rank

can be analogously derived.

In this paper, we focus on the case where Gr does not have constant row sums for some network

r. When Gr has constant column sums for all r, the equilibrium implication of the local-aggregate

network game is similar to that of the local-average network game (see footnote 5) and the identi-

�cation conditions are analogous to those given in Cohen-Cole et al. (2012). Henceforth, let � and

� (possibly with subscripts) denote some generic constant scalars that may take di¤erent values for

di¤erent uses. For ease of presentation, we assume G and X are nonstochastic. Furthermore, in this

section, we assume X is a column vector.

12



4.1 Identi�cation of the SUR network model

First, we consider the seemingly unrelated regression (SUR) network model where �1 = �2 = �21 =

�12 = 0. Thus, (4) and (5) become

Y1 = �11GY1 +X�1 +GX1 + L�1 + �1; (22)

Y2 = �22GY2 +X�2 +GX2 + L�2 + �2: (23)

For the SUR network model, an agent�s choice is still allowed to be correlated with his/her own

choices in related activities through the correlation structure of the disturbances. When �1 = �2 =

�21 = �12 = 0, it follows from the reduced-form equation (16) that

E(Y1) = (I � �11G)�1(X�1 +GX1 + L�1): (24)

For (22), let Z1 = [GY1; X;GX]. Identi�cation of (22) requires E(JZ1) = [E(JGY1); JX; JGX] to

have full column rank. As (I��11G)�1 = I+�11G(I��11G)�1 and (I��11G)�1G = G(I��11G)�1,

it follows from (24) that

E(JGY1) = JGX�1 + JG
2(I � �11G)�1X(�11�1 + 1) + JG(I � �11G)�1L�1:

If �11�1 + 1 6= 0, JG2(I � �11G)�1X, with the leading order term JG2X, can be used as IVs for

the endogenous regressor JGY1. On the other hand, if Gr does not have constant row sums for all

r = 1; � � � ; �r, then JG(I � �11G)�1L 6= 0. As pointed out by Liu and Lee (2010), the Bonacich

centrality given by G(I � �11G)�1L, with the leading order term GL, can be used as additional

IVs for identi�cation. The following proposition gives a su¢ cient condition for E(JZ1) to have full

column rank.

Proposition 1 Suppose Gr has non-constant row sums for some network r. For equation (22),

E(JZ1) has full column rank if

(i) �1;r 6= 0 or �11�1 + 1 6= 0, and Inr ; Gr; G2r are linearly independent; or

(ii) G2r = �1Inr + �2Gr and �1;r(1� �2�11 � �1�211) 6= 0.

The identi�cation condition for the local-aggregate SUR model given in Proposition 1 is, in

general, weaker than that for the local-average SUR model. As pointed out by Bramoullé et al.
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(2009),9 identi�cation of the local-average model requires the linear independence of I;G�; G�2; G�3.

Consider a data set with �r networks, where all networks in the data are represented by the graph

in Figure 1. For the �r networks, G = diagfGrg�rr=1 where Gr is given by the adjacency matrix in

Figure 1. For the row normalized adjacency matrix G�, it is easy to see that G�3 = G�. Therefore, it

follows by Proposition 5 of Bramoullé et al. (2009) that the local-average SUR model is not identi�ed.

On the other hand, for the network in Figure 1, Gr has non-constant row sums and I4; Gr; G2r are

linearly independent. Hence, by Proposition 1(i), the local-aggregate SUR model can be identi�ed

if �1;r 6= 0 or �11�1 + 1 6= 0.

1 2 3 Gr =

266664
0 0 0

1 0 1

0 0 0

377775
Figure 2: an example where the local-aggregate model can be identi�ed by Proposition 1(ii).

Figure 2 gives an example where the condition in Proposition 1(ii) is satis�ed. For the directed

graph in Figure 2, it is easy to see that G2r = �1I3 + �2Gr for �1 = �2 = 0. As the row sums of Gr

are not constant, by Proposition 1(ii), the local-aggregate SUR model is identi�ed if �1;r 6= 0.

The following corollary shows that for a network with symmetric adjacency matrix Gr, the

local-aggregate SUR model can be identi�ed if Gr has non-constant row sums.

Corollary 1 Suppose �11�1 + 1 6= 0 or �1;r 6= 0 for some network r. Then, for equation (22),

E(JZ1) has full column rank if Gr is symmetric and has non-constant row sums.

4.2 Identi�cation of the simultaneous equations network model

4.2.1 Identi�cation under the restrictions �21 = �12 = 0

For the simultaneous equations network model, besides the endogenous, contextual and correlated

e¤ects, �rst we incorporate the simultaneity e¤ect so that an agent�s choice is allowed to depend on

his/her own choice in a related activity. However, we assume that an agent�s choice is not a¤ected

by the friends�choices in related activities. Under the restrictions �21 = �12 = 0, (14) and (15)

9As the identi�cation conditions given in Bramoullé et al. (2009) are based on the mean of reduce-form equations,
they are not a¤ected by the correlation structure of the error term. Hence, they can be applied to the SUR model.
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become

Y1 = �1Y2 + �11GY1 +X�1 +GX1 + L�1 + �1; (25)

Y2 = �2Y1 + �22GY2 +X�2 +GX2 + L�2 + �2: (26)

For (25), let Z1 = [Y2; GY1; X;GX]. For identi�cation of the simultaneous equations model, E(JZ1)

is required to have full column rank for large enough n. The following proposition gives su¢ cient

conditions for E(JZ1) to have full column rank.

Proposition 2 Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent for

some network r.

� When [lnr ; Grlnr ; G2rlnr ] has full column rank, E(JZ1) of equation (25) has full column rank if

(i) Inr ; Gr; G
2
r; G

3
r are linearly independent and D1 given by (43) has full rank; or

(ii) G3r = �1Inr + �2Gr + �3G
2
r and D

�
1 given by (44) has full rank.

� When G2rlnr = �1lnr + �2Grlnr , E(JZ1) of equation (25) has full column rank if

(iii) Inr ; Gr; G
2
r; G

3
r are linearly independent and D

y
1 given by (45) has full rank; or

(iv) G3r = �1Inr + �2Gr + �3G
2
r and D

z
1 given by (46) has full rank.

Cohen-Cole et al. (2012) show that a su¢ cient condition to identify the local-average simulta-

neous equations model under the restrictions �21 = �12 = 0 requires that J; JG�; JG�2; JG�3 are

linearly independent. The su¢ cient conditions to identify the restricted local-aggregate simultane-

ous equations model given by Proposition 2 are weaker in general. Consider a data set, where all

networks are given by the graph in Figure 3. It is easy to see that, for the row-normalized adjacency

matrix G� = diagfG�rg�rr=1, where G�r is given in Figure 3, G�3 = � 1
4I +

1
4G

� +G�2. Therefore, the

condition to identify the local-average model does not hold. On the other hand, for the r-th network

in the data, G2rl5 = 4l5+Gl5. As the row sums of Gr are not constant and I5; Gr; G
2
r; G

3
r are linearly

independent, the local-aggregate model can be identi�ed according to Proposition 2(iii).

15



3

52

4
1 Gr =

266666666664

0 1 1 1 1

1 0 1 0 0

1 1 0 0 0

1 0 0 0 1

1 0 0 1 0

377777777775
G�r =

266666666664

0 1=4 1=4 1=4 1=4

1=2 0 1=2 0 0

1=2 1=2 0 0 0

1=2 0 0 0 1=2

1=2 0 0 1=2 0

377777777775
Figure 3: an example where the local-aggregate model can be identi�ed by Proposition 2(iii).

For another example where identi�cation is possible for the local-aggregate model but not for the

local-average model, let us revisit the network given by the graph in Figure 1. For a data set with

�r such networks, as G�3 = G�, the condition to identify the local-average simultaneous equations

model given by Cohen-Cole et al. (2012) does not hold. On the other hand, for the adjacency matrix

without row-normalization, G3r = 3Gr and G2rl4 = 3l4. As the row sums of Gr are not constant

and I4; Gr; G2r are linearly independent, the local-aggregate simultaneous equations model can be

identi�ed according to Proposition 2(iv).

Figure 4 provides an example where the condition in Proposition 2(ii) is satis�ed. For the

directed network in Figure 4, G3r = 0. As [l3; Grl3; G2rl3] has full column rank and I3; Gr; G
2
r are

linearly independent, the local-aggregate simultaneous equations model can be identi�ed according

to Proposition 2(ii).

1 2 3 Gr =

266664
0 1 0

0 0 1

0 0 0

377775
Figure 4: an example where the local-aggregate model can be identi�ed by Proposition 2(ii).

4.2.2 Identi�cation under the restrictions �1 = �2 = 0

Next, let us consider the simultaneous equations model where an agent�s choice is allowed to depend

on his/her friends�choices of the same activity and a related activity. This speci�cation incorporates

the endogenous, contextual, correlated, and cross-activity peer e¤ects, but excludes the simultaneity
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e¤ect. Under the restrictions �1 = �2 = 0, (14) and (15) become

Y1 = �11GY1 + �21GY2 +X�1 +GX1 + L�1 + �1; (27)

Y2 = �22GY2 + �12GY1 +X�2 +GX2 + L�2 + �2: (28)

For (27), let Z1 = [GY1; GY2; X;GX]. The following proposition gives su¢ cient conditions for

E(JZ1) to have full column rank.

Proposition 3 Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent for

some network r.

� When [lnr ; Grlnr ; G2rlnr ] has full column rank, E(JZ1) of equation (27) has full column rank if

(i) Inr ; Gr; G
2
r; G

3
r are linearly independent and D2 given by (47) has full rank; or

(ii) G3r = �1Inr + �2Gr + �3G
2
r and D

�
2 given by (48) has full rank.

� When G2rlnr = �1lnr + �2Grlnr , E(JZ1) of equation (27) has full column rank if

(iii) Inr ; Gr; G
2
r; G

3
r are linearly independent and D

y
2 given by (49) has full rank; or

(iv) G3r = �1Inr + �2Gr + �3G
2
r and D

z
2 given by (50) has full rank.

For the local-average simultaneous equations model under the restrictions �1 = �2 = 0, Cohen-

Cole et al. (2012) give a su¢ cient identi�cation condition that requires J; JG�; JG�2; JG�3 to be

linearly independent. The su¢ cient identi�cation conditions for the local-aggregate model given by

Proposition 3 are weaker in general. As explained in the preceding subsection, for the network given

by the graph in Figure 1 or Figure 3, the identi�cation condition for the local-average model does

not hold. On the other hand, if Gr is given by Figure 3, the local-aggregate model can be identi�ed

according to Proposition 3(iii) since the row sums of Gr are not constant, G2rl5 = 4l5 + Gl5, and

I5; Gr; G
2
r; G

3
r are linearly independent. Similarly, if Gr is given by Figure 1, the local-aggregate

model can be identi�ed according to Proposition 3(iv) since the row sums of Gr are not constant,

G2rl4 = 3l4, G
3
r = 3Gr, and I4; Gr; G

2
r are linearly independent.

4.2.3 Non-identi�cation of the general simultaneous equations model

For the general simultaneous equations model given by (14) and (15), the various social interaction

e¤ects cannot be separately identi�ed through the mean of the RHS variables without imposing any
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exclusion restrictions. This is because E( �Z1) and E( �Z2), where �Z1 = [Y2; GY1; GY2; X;GX;L] and

�Z2 = [Y2; GY1; GY2; X;GX;L], do not have full column rank as shown in the following proposition.

Proposition 4 For (14) and (15), E( �Z1) and E( �Z2) do not have full column rank.

Proposition 4 shows that, for the general simultaneous equations model with both simultaneity

and cross-activity peer e¤ects, exploiting the intransitivities in social connections and/or variations

in Bonacich centrality does not provide enough exclusion restrictions for identi�cation. One way to

achieve identi�cation is to impose exclusion restrictions on the exogenous variables. Consider the

following model

Y1 = �1Y2 + �11GY1 + �21GY2 +X1�1 +GX11 + L�1 + �1; (29)

Y2 = �2Y1 + �22GY2 + �12GY1 +X2�2 +GX22 + L�2 + �2; (30)

where, for ease of presentation, we assume X1; X2 are column vectors and [X1; X2] has full column

rank.10 From the reduced-form equations (16) and (17), we have

E(Y1) = S�1[X1�1 +GX1(1 � �22�1)�G2X1�221 +X2�1�2 +GX2(�21�2 + �12) +G2X2�212

+L(�1 + �1�2) +GL(�21�2 � �22�1)]; (31)

E(Y2) = S�1[X2�2 +GX2(2 � �11�2)�G2X2�112 +X1�2�1 +GX1(�12�1 + �21) +G2X1�121

+L(�2 + �2�1) +GL(�12�1 � �11�2)]; (32)

where S is given by (6). For (29), let Z1 = [Y2; GY1; GY2; X1; GX1]. The following proposition gives

su¢ cient conditions for E(JZ1) to have full column rank.

Proposition 5 Suppose Gr has non-constant row sums for some network r.

� When [lnr ; Grlnr ; G2rlnr ] has full column rank, E(JZ1) of equation (29) has full column rank if

(i) Inr ; Gr; G
2
r; G

3
r are linearly independent and D3 given by (51) has full rank; or

(ii) Inr ; Gr; G
2
r are linearly independent, G

3
r = �1Inr + �2Gr + �3G

2
r and D

�
3 given by (52) has

full rank.
10When X1; X2 are matrices, we need [X1; X2] to have higher column rank than X1 and X2.
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� When G2rlnr = �1lnr + �2Grlnr , E(JZ1) of equation (29) has full column rank if

(iii) Inr ; Gr; G
2
r; G

3
r are linearly independent and D

y
3 given by (53) has full rank;

(iv) Inr ; Gr; G
2
r are linearly independent, G

3
r = �1Inr + �2Gr + �3G

2
r and D

z
3 given by (54) has

full rank; or

(v) G2r = �1Inr + �2Gr and D
]
3 given by (55) has full rank.

For the general local-average simultaneous equations model, Cohen-Cole et al. (2012) provide a

su¢ cient identi�cation condition that requires J; JG�; JG�2 to be linearly independent. Suppose

G� = diagfG�rg�rr=1 where G�r is given by Figure 1. It is easy to see that JG�2 = �JG�. Therefore,

the identi�cation condition for the local-average model does not hold. On the other hand, as Gr given

by Figure 1 has non-constant row sums and I4; Gr; G2r are linearly independent, the local-aggregate

model given by (29) and (30) can be identi�ed according to Proposition 5(iv).

5 Estimation

5.1 The 2SLS estimator with many IVs

The general simultaneous equations model given by (29) and (30) can be written more compactly as

Y1 = Z1�1 + L�1 + �1 and Y2 = Z2�2 + L�2 + �2; (33)

where Z1 = [Y2; GY1; GY2; X1; GX1], Z2 = [Y1; GY2; GY1; X2; GX2], �1 = (�1; �11; �21; �
0
1; 

0
1)
0, and

�2 = (�2; �22; �12; �
0
2; 

0
2)
0. As JL = 0, the within transformation with projector J gives JY1 =

JZ1�1 + J�1 and JY2 = JZ2�2 + J�2. From the reduced-form equations (16) and (17), we have

JZ1 = E(JZ1) + U1 = F1 + U1; and JZ2 = E(JZ2) + U2 = F2 + U2; (34)

where F1 = J [E(Y2); GE(Y1); GE(Y2); X1; GX1], F2 = J [E(Y1); GE(Y2); GE(Y1); X2; GX2], U1 =

J [S�1u2; GS
�1u1; GS

�1u2; 0], and U2 = J [S�1u1; GS�1u2; GS�1u1; 0], with E(Y1);E(Y2) given by

(31) and (32), S given by (6), and u1; u2 given by (18) and (19).

Based on (34), the best IVs for JZ1 and JZ2 are F1 and F2 respectively (Lee, 2003). However,

both F1 and F2 are infeasible as they involve unknown parameters. Hence, we use linear combinations

of feasible IVs to approximate F1 and F2 as in Kelejian and Prucha (2004) and Liu and Lee (2010).

Let �G = �1�2I+(�11+�22+�1�12+�2�21)G�(�11�22��12�21)G2. Under some regularity conditions
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(see footnote 3), we have jj �Gjj1 < 1. Then, S�1 = (I � �G)�1 =
P1

j=0
�Gj =

Pp
j=0

�Gj + �Gp+1S�1.

It follows that jjS�1 �
Pp

j=0
�Gj jj1 � jj �Gjjp+11 jjS�1jj1. As jj �Gjj1 < 1, the approximation error ofPp

j=0
�Gj diminishes in a geometric rate as p ! 1. Since

Pp
j=0

�Gj can be considered as a linear

combination of [I;G; � � � ; G2p], the best IVs F1 and F2 can be approximated by a linear combination

of an n�K IV matrix

QK = J [X1; GX1; � � � ; G2p+3X1; X2; GX2; � � � ; G2p+3X2; GL; � � � ; G2p+2L] (35)

with an approximation error diminishing very fast when K (or p) goes to in�nity, as required by

Assumption 5 in Appendix A. Let PK = QK(Q0KQK)
�Q0K . The many-instrument 2SLS estimators

for �1 and �2 are �̂1;2sls = (Z 01PKZ1)
�1Z 01PKY1 and �̂2;2sls = (Z

0
2PKZ2)

�1Z 02PKY2.
11

Let H11 = limn!1
1
nF

0
1F1 and H22 = limn!1

1
nF

0
2F2. The following proposition establishes the

consistency and asymptotic normality of the many-instrument 2SLS estimator.

Proposition 6 Under Assumptions 1-5, if K !1 and K=n! 0, then
p
n(�̂1;2sls� �1� b1;2sls)

d!

N(0; �21H
�1
11 ) and

p
n(�̂2;2sls��2�b2;2sls)

d! N(0; �22H
�1
22 ), where b1;2sls = (Z

0
1PKZ1)

�1E(U 01PK�1) =

Op(K=n) and b2;2sls = (Z 02PKZ2)
�1E(U 02PK�2) = Op(K=n).

From Proposition 6, when the number of IVs K grows at a rate slower than the sample size n, the

2SLS estimators are consistent and asymptotically normal. However, the asymptotic distribution of

the 2SLS estimator may not center around the true parameter value due to the presence of many-

instrument bias (see, e.g., Bekker, 1994). If K2=n ! 0, then
p
nb1;2sls

p! 0,
p
nb2;2sls

p! 0 and the

2SLS estimators are properly centered.

The condition that K=n ! 0 is crucial for the 2SLS estimator to be consistent. To see this,

we look at the �rst-order conditions of the 2SLS, 1
nZ

0
1PK(Y1 � Z1�̂1;2sls) = 0 and 1

nZ
0
2PK(Y2 �

Z2�̂2;2sls) = 0. At the true parameter values, E[ 1nZ
0
1PK(Y1�Z1�1)] = 1

nE(U
0
1PK�1) and E[

1
nZ

0
2PK(Y2�

11The �nite sample properties of IV-based estimators can be sensitive to the number of IVs. In a recent paper,
Liu and Lee (2013) derive the Nagar-type approximate MSE of the 2SLS estimator for spatial models, which can
be minimized to choose the optimal number of IVs as in Donald and Newey (2001). The approximate MSE can be
derived in a similar way for the proposed estimators in the paper.
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Z2�2)] =
1
nE(U

0
2PK�2), where

E(U 01PK�1) =

266666664

(�12 + �2�
2
1)tr(PKS

�1) + (�12�
2
1 � �11�12)tr(PKS�1G)

(�21 + �1�12)tr(PKGS
�1) + (�21�12 � �22�21)tr(PKGS�1G)

(�12 + �2�
2
1)tr(PKGS

�1) + (�12�
2
1 � �11�12)tr(PKGS�1G)

02kx�1

377777775
= O(K) (36)

E(U 02PK�2) =

266666664

(�12 + �1�
2
2)tr(PKS

�1) + (�21�
2
2 � �22�12)tr(PKS�1G)

(�22 + �2�12)tr(PKGS
�1) + (�12�12 � �11�22)tr(PKGS�1G)

(�12 + �1�
2
2)tr(PKGS

�1) + (�21�
2
2 � �22�12)tr(PKGS�1G)

02kx�1

377777775
= O(K) (37)

by Lemma C.2 in the Appendix. Therefore, E[ 1nZ
0
1PK(Y1 � Z1�1)] and E[ 1nZ

0
2PK(Y2 � Z2�2)] may

not converge to zero and, thus, the 2SLS estimators may not be consistent, if the number of IVs

grows at the same or a faster rate than the sample size.

Note that the submatrix GL in the IV matrix QK given by (35) has �r columns, where �r is the

number of networks. Hence, K=n ! 0 implies �r=n = 1=�nr ! 0, where �nr = n=�r is the average

network size. So for the 2SLS estimator with the IV matrix QK to be consistent, the average network

size needs to be large. On the other hand, K2=n ! 0 implies �r2=n = �r=�nr ! 0. So for the 2SLS

estimator to be properly centered, the average network size needs to be large relative to the number

of networks.

The many-instrument bias of the 2SLS estimator can be corrected by the estimated leading-

order biases b1;2sls and b2;2sls given in Proposition 6. Let ~�1 = (~�1;
~�11; ~�21; ~�

0
1; ~

0
1)
0 and ~�2 =

(~�2;
~�22; ~�12; ~�

0
2; ~

0
2)
0 be

p
n-consistent preliminary 2SLS estimators based on a �xed number of

IVs (e.g., Q = J [X1; GX1; G
2X1; X2; GX2; G

2X2]). Let ~�1 = J(Y1 � Z1~�1) and ~�2 = J(Y2 �

Z2~�2). The leading-order biases can be estimated by b̂1;2sls = (Z 01PKZ1)
�1Ê(U 01PK�1) and b̂2;2sls =

(Z 02PKZ2)
�1Ê(U 02PK�2), where Ê(U

0
1PK�1) and Ê(U

0
2PK�2) are obtained by replacing the unknown

parameters in (36) and (37) by ~�1; ~�2 and

~�21 = ~�
0
1~�1=(n� �r); ~�21 = ~�

0
2~�2=(n� �r); �̂12 = ~�01~�2=(n� �r): (38)

The bias-corrected 2SLS (BC2SLS) estimators are given by �̂1;bc2sls = �̂1;2sls� b̂1;2sls and �̂2;bc2sls =
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�̂2;2sls � b̂2;2sls.

Proposition 7 Under Assumptions 1-5, if K ! 1 and K=n ! 0, then
p
n(�̂1;bc2sls � �1)

d!

N(0; �21H
�1
11 ) and

p
n(�̂2;bc2sls � �2)

d! N(0; �22H
�1
22 ).

For the IV matrix QK , K=n! 0 implies 1=�nr ! 0. It follows that the BC2SLS estimators have

properly centered asymptotic normal distributions as long as the average network size �nr is large.

5.2 The 3SLS estimator with many IVs

The 2SLS and BC2SLS estimators consider equation-by-equation estimation and are ine¢ cient as

they do not make use of the cross-equation correlation in the disturbances. To fully utilize the

information in the system, we extend the 3SLS estimator proposed by Kelejian and Prucha (2004)

to estimate the local-aggregate network model in the presence of many IVs.

We stack the equations in the system (33) as

Y = Z� + (I2 
 L)�+ �;

where Y = (Y 01 ; Y
0
2)
0, Z = diagfZ1; Z2g, � = (�01; �

0
2)
0, � = (�01; �

0
2)
0, and � = (�01; �

0
2)
0. As (I2 


J)(I2
L) = 0, the within transformation with projector J gives (I2
J)Y = (I2
J)Z�+(I2
J)�.

Let

� =

264 �21 �12

�12 �22

375 and ~� =

264 ~�21 ~�12

~�12 ~�22

375 ; (39)

where ~�21; ~�
2
1; ~�12 are given by (38). As E(��

0) = �
 I, the 3SLS estimator with the IV matrix QK

is given by �̂3sls = [Z 0(~��1 
 PK)Z]�1Z 0(~��1 
 PK)Y .

Let F = diagfF1; F2g, U = diagfU1; U2g, and H = limn!1
1
nF

0(��1 
 I)F . The following

proposition gives the asymptotic distribution of the many-instrument 3SLS estimator.

Proposition 8 Under Assumptions 1-5, if K !1 and K=n! 0, then

p
n(�̂3sls � � � b3sls)

d! N(0;H�1)
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where b3sls = [Z 0(��1 
 PK)Z]�1E[U 0(��1 
 PK)�] = Op(K=n) and

E[U 0(��1 
 PK)�] =

2666666666666666666664

�2tr(PKS
�1) + �12tr(PKS

�1G)

tr(PKGS
�1)� �22tr(PKGS�1G)

�2tr(PKGS
�1) + �12tr(PKGS

�1G)

02kx�1

�1tr(PKS
�1) + �21tr(PKS

�1G)

tr(PKGS
�1)� �11tr(PKGS�1G)

�1tr(PKGS
�1) + �21tr(PKGS

�1G)

02kx�1

3777777777777777777775

: (40)

Similar to the 2SLS estimator, when the number of IVs goes to in�nity at a rate slower than the

sample size, the 3SLS estimator is consistent and asymptotically normal with an asymptotic bias

given by
p
nb3sls. If K2=n ! 0, then

p
nb3sls

p! 0 and the 3SLS estimator is properly centered

and e¢ cient as the covariance matrix H�1 attains the e¢ ciency lower bound for the class of IV

estimators.

The leading-order asymptotic bias of the 3SLS estimator given in Proposition 8 can be estimated

to correct the many-instrument bias. Let the estimated bias be

b̂3sls = [Z
0(~��1 
 PK)Z]�1bE[U 0(��1 
 PK)�];

where ~� is given by (39) and bE[U 0(��1
PK)�] is obtained by replacing the unknown parameters in
(40) by

p
n-consistent preliminary 2SLS estimators ~�1 and ~�2. The bias-corrected 3SLS (BC3SLS)

estimator is given by �̂bc3sls = �̂3sls � b̂3sls. The following proposition shows that the BC3SLS

estimator is properly centered and asymptotically e¢ cient if the number of IVs increases slower

than the sample size.

Proposition 9 Under Assumptions 1-5, if K !1 and K=n! 0, then

p
n(�̂bc3sls � �)

d! N(0;H�1):
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6 Monte Carlo Experiments

To investigate the �nite sample performance of the 2SLS and 3SLS estimators, we conduct a limited

simulation study based on the following model

Y1 = �1Y2 + �11GY1 + �21GY2 +X1�1 +GX11 + L�1 + �1; (41)

Y2 = �2Y1 + �22GY2 + �12GY1 +X2�2 +GX22 + L�2 + �2: (42)

For the experiment, we consider four samples with di¤erent numbers of networks �r and network

sizes nr. Samples 1, 2 and 3 have �r = 30 equal-sized networks with nr = 10, nr = 15 and nr = 30

respectively. Sample 4 has �r = 60 equal-sized networks with nr = 15. For each network, the

adjacency matrix Gr is generated in a similar way as in Liu and Lee (2010). First, for the i-th

row of Gr (i = 1; � � � ; nr), we generate an integer pri uniformly at random from the set of integers

f1; 2; 3g. Then, if i+ pri � nr, we set the (i+ 1)-th; � � � ; (i+ pri)-th entries of the i-th row of Gr to

be ones and the other entries in that row to be zeros; otherwise, the entries of ones will be wrapped

around such that the �rst (i+ pri � nr) entries of the i-th row will be ones. We choose this design

to generate Gr as it allows us to easily control the parameter space and the variance of row sums.12

We conduct 500 repetitions for each speci�cation in this Monte Carlo experiment. In each

repetition, for j = 1; 2, the n � 1 vector of exogenous variables Xj is generated from N(0; I), and

the �r � 1 vector of network �xed e¤ect coe¢ cients �j is generated from N(0; I�r). The error terms

� = (�01; �
0
2)
0 is generated from N(0;�
 I), where � is given by (39). In the data generating process

(DGP), we set �21 = �22 = 1 and let �12 vary in the experiment. For the other parameters in the

model, we set �1 = �2 = 0:2 and �11 = �22 = �12 = �21 = 0:1.
13 We consider di¤erent values for �

and  in the experiment.

We consider the following estimators in the simulation experiment: (i) 2SLS-1 and 3SLS-1 with

the IV matrix Q1 = J [X1; GX1; G2X1; X2; GX2; G2X2]; (ii) 2SLS-2 and 3SLS-2 with the IV matrix

Q2 = [Q1; JGL]; and (iii) BC2SLS and BC3SLS. The IV matrix Q1 is based on the exogenous

attributes of direct and indirect friends. The IV matrix Q2 also uses the numbers of friends given by

GL as additional IVs to improve estimation e¢ ciency. Note that GL has �r columns. So the number

12Note that the parameter space of ��s and ��s depends on jjGjj1 (see footnote 3). If jjGjj1 varies in the experiment,
so does the parameter space. To facilitate comparison, we keep jjGjj1 = 3 in the experiments. We have tried di¤erent
values for jjGjj1. The simulation results are similar to those reported here.
13We choose ��s and ��s so that the S is invertible according to footnote 3.
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of IVs in Q2 increases with the number of networks.

The estimation results of equation (41) are reported in Tables 1-8. We report the mean and

standard deviation (SD) of the empirical distributions of the estimates. To facilitate the comparison

of di¤erent estimators, we also report their root mean square errors (RMSE). The main observations

from the experiment are summarized as follows.

[Insert Tables 1-8 here]

(a) The additional IVs based on the numbers of friends in Q2 reduce SDs of 2SLS and 3SLS

estimators. When the IVs in Q1 are strong (i.e., �1 = �2 = 1 = 2 = 0:8 as in Tables 1-4) and the

correlation across equations is weak (�12 = 0:1), for the sample with nr = 10 and �r = 30 in Table

1, SD reductions of 2SLS-2 estimators of �1; �11; �21; �1; 1 (relative to 2SLS-1) are, respectively,

about 3.9%, 17.1%, 14.7%, 1.5%, and 5.4%. As the correlation across equations increases, the SD

reduction also increases. When �12 = 0:9 (see the bottom panel of Table 1), SD reductions of

2SLS-2 estimators of �1; �11; �21; �1; 1 are, respectively, about 13.7%, 22.9%, 20.6%, 10.6%, and

10.9%. Furthermore, the SD reduction is more signi�cant when the IVs in Q1 are less informative

(i.e., �1 = �2 = 1 = 2 = 0:4 as in Tables 5-8). When �12 = 0:1 (see the top panel of Table 5), SD

reductions of 2SLS-2 estimators of �1; �11; �21; �1; 1 are, respectively, about 18.1%, 37.5%, 33.8%,

6.0%, and 12.3%. The SD reduction of the 3SLS estimator with Q2 follows a similar pattern.

(b) The additional IVs in Q2 introduce biases into 2SLS and 3SLS estimators. The size of the

bias increases as the correlation across equations �12 increases and as the IVs in Q1 becomes less

informative (i.e., �1; �2; 1; 2 become smaller). The size of the bias reduces as the network size

increases. The impact of the number of networks on the bias is less obvious.

(c) The proposed bias-correction procedure substantially reduces the many-instrument bias for

both the 2SLS and 3SLS estimators. For example, in Table 1, bias reductions of BC3SLS estimators

of �1; �11; �21 (relative to 3SLS-2) are, respectively, 100.0%, 100.0%, and 66.7%, when �12 = 0:1.

(d) The 3SLS estimator improves the e¢ ciency upon the 2SLS estimator. The improvement is

more prominent when the correlation across equations is strong. In Table 1, when �12 = 0:9, SD

reductions of BC3SLS estimators of �1; �11; �21; �1; 1 (relative to BC2SLS) are, respectively, about

8.5%, 9.7%, 3.2%, 25.4%, and 14.5%.
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7 Empirical Example

To illustrate the proposed estimators, we study the peer e¤ect of sporting activities on juvenile

delinquency using a unique and now widely used data set provided by the National Longitudinal

Study of Adolescent Health (Add Health). The Add Health data provides national representative

information on 7th-12th graders in the United States. The in-school survey was conducted during

the 1994-1995 year with four follow-up in-home interviews. Here we only use the �rst wave of Add

Health data.

In this empirical example, we consider the estimation of (29) and (30) where Y1 and Y2 are

indices of participation in delinquent conducts and sporting activities respectively. To be more

speci�c, the Add Health survey reports the frequency of the following delinquent behaviors in the

past 12 months, namely, smoking cigarettes; drinking beer, wine, or liquor; getting drunk; racing on

a bike, on a skateboard or roller blades, or in a boat or car; doing something dangerous due to dare;

lying to parents or guardians; and skipping school without an excuse, coded using an ordinal scale

as 0 (never), 1 (once or twice), 2 (once a month or less), 3 (2 or 3 days a month), 4 (once or twice

a week), 5 (3-5 days a week), and 6 (nearly everyday). Y1 is given by the average frequency of the

above delinquent behaviors.14 Y2 corresponds to the average frequency of participating the following

sporting activities in the past week, including going roller-blading, roller-skating, skate-boarding,

or bicycling; playing an active sport, such as baseball, softball, basketball, soccer, swimming, or

football; and doing exercise, such as jogging, walking, karate, jumping rope, gymnastics or dancing,

coded as 0 (not at all), 1 (1 or 2 times), 2 (3 or 4 times), and 3 (5 or more times).

The adjacency matrix G = [gij ] is constructed based on the friend-nomination information in

the Add Health data. In the survey, the respondent is asked to nominate his/her best friends (up

to 5 male friends and 5 female friends) from a school roster.15 We assume friendship is reciprocal.

Thus, for students i and j, gij = 1 if either i nominates j or j nominates i as a friend and gij = 0

otherwise.16 After removing isolated students and pairs (i.e. network with only two students),

the sample consists of 8,236 students distributed over 515 networks17 , with network size ranging

14 In the sample considered, less than 5% of the students claimed they never committed the above delinquent
conducts in the past 12 months.
15Less than 1% of the students in the sample nominated 10 friends and thus the bound on the number of friend-

nominations is not binding.
16We also consider an alternative speci�cation of the adjacency matrix G = [gij ] without assuming friendship is

receprocal so that gij = 1 if i nominates j as a friend and gij = 0 otherwise. The estimation result is similar to the
one reported here.
17Here, a network is de�ned as the largest set of students who are directly or indirectly connected through friend-
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from 3 to 949. Because the strength of peer e¤ect may vary with network sizes (Calvó-Armengol

et al., 2009), we exclude networks larger than the 99th percentile of the network size distribution.

Our selected sample consists of 5,947 students distributed over 509 networks, with network sizes

ranging from 3 to 140. The mean and the standard deviation of network size are 11.68 and 22.62.

Furthermore, in our sample, the average number of friends of a student is 2.74 with the standard

deviation 2.09. A summary of the data can be found in Table 9.

[Insert Table 9 here]

From the discussion in Subsection 4.2.3, we understand to identify the peer e¤ects in (29) and

(30), we need to introduce some IVs (or exclusion restrictions), at least one for each activity. The

IVs for the delinquency index Y1 of a student are indicator variables of whether the parent smokes

cigarettes and whether the parent took the student to a religious service in the past four weeks. The

IVs for participation in sporting activities Y2 are indicator variables of whether whether the parent

played a sport with the student in the past four weeks and whether the student is well coordinated.

The coe¢ cient estimates of the IVs are all statistically signi�cant with signs consistent with our

expectations. The �rst-stage F test statistics also suggest the IVs are relevant and informative. The

p-values of over-identi�cation restrictions (OIR) test are larger than the conventional signi�cance

levels, lending some evidence to the validity of the IVs.

[Insert Table 10 here]

We consider the 2SLS and 3SLS estimators with the IV matrix Q1 = J [X;GX;G2X], where X

contains the linearly independent columns in [X1; X2], and the BC2SLS and BC3SLS estimators with

the IV matrix Q2 = [Q1; JGL], where JGL are additional IVs based on the numbers of friends. The

estimation result of equation (29) is reported in Table 10.18 The estimates from di¤erent estimators

are largely consistent with each other. Interestingly, we can see that delinquent behavior of a

student increases delinquent behavior of his/her friend (�̂11 > 0). On the other hand, participation

in sporting activities not only reduces a student�s own delinquent behavior (�̂1 < 0) but also reduces

delinquent behavior of his/her friend (�̂12 < 0). Finally, we conduct a J test as in Liu et al. (2014)

nomination. By this de�nition, students from two di¤erent networks cannot be friends.
18To save space, we only report the �rst-stage F test statistic from the estimation of equation (30). The estimation

result of equation (30) is available upon request.
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against the alternative speci�cation of a local-average model. The p-value of the J test is 0.823,

suggesting that the local-aggregate model is indeed a better model for the data.

8 Conclusion

In this paper, we consider speci�cation, identi�cation and estimation of network models in a system

of simultaneous equations. We show that, with or without row-normalization of the network adja-

cency matrix, the network model has di¤erent equilibrium implications, needs di¤erent identi�cation

conditions, and requires di¤erent estimation strategies. When the network adjacency matrix is not

row-normalized, the Bonacich (1987) centrality based on the number of direct and indirect friends

of agents in a network can be used to identify social interaction e¤ects and improve estimation

e¢ ciency. We derive the identi�cation conditions for some speci�cations of the simultaneous equa-

tions network model with a non-row-normalized adjacency matrix, and show that the identi�cation

conditions are in general weaker than those for the model with a row-normalized adjacency matrix.

For e¢ cient estimation, we propose 2SLS and 3SLS estimators for the simultaneous equations

network model using a set of feasible IVs to approximate the best (infeasible) IVs given by the

reduced-form equations of the model. When the network adjacency matrix is not row-normalized,

the set of feasible IVs includes the leading order terms of the Bonacich centrality for each network,

and thus the number of IVs depends on the number of networks. When there are many networks

in the data, we would have many IVs. We show that the proposed 2SLS and 3SLS estimators are

consistent and asymptotically normally distributed (with an asymptotic bias) when the number of

IVs increases at a rate slower than the sample size. We also propose a bias-correction procedure

based on the estimated leading-order term of the many-instrument bias. The bias-corrected 2SLS

and 3SLS estimators have an properly centered asymptotic normal distribution when the number

of IVs grows slower than the sample size (or, when the average network size is large). Monte Carlo

experiments show that the IVs based on the Bonacich centrality reduce the standard errors of the

2SLS and 3SLS estimators and the bias-corrected estimators perform well with a moderate network

size.

APPENDIX
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A Assumptions

In this appendix, we list regularity conditions for the asymptotic properties of the proposed estima-

tors. Henceforth, uniformly bounded in row (column) sums in absolute value of a sequence of square

matrices fAg will be abbreviated as UBR (UBC), and uniformly bounded in both row and column

sums in absolute value as UB.19

Assumption 1 The vector of disturbances is given by � = (�01; �
0
2)
0 = (�0� 
 In)v, where �0� is a

nonsingular matrix such that �0��� = � and the elements of v are i.i.d. with zero mean, unit

variance and �nite fourth moments. Furthermore, the diagonal elements of � are bounded by

some �nite constant.

Assumption 2 The matrix of exogenous (nonstochastic) regressors X has full column rank (for n

su¢ cient large). The elements of X are uniformly bounded in absolute value.

Assumption 3 The matrix S is nonsingular. The sequences of matrices fGg and fS�1g are UB.

Assumption 4 Let Fi = E(JZi) for i = 1; 2, and F = diagfF1; F2g. Then, Hij = limn!1
1
nF

0
iFj ,

for i; j = 1; 2, and H = limn!1
1
nF

0(��1 
 I)F are �nite nonsingular matrices.

Assumption 5 There exist matrices �1 and �2 such that, for i = 1; 2, jjFi � QK�ijj1 ! 0 as

n;K !1.

Assumption 1-3 originate in Kelejian and Prucha (2004). The matrix of exogenous regressors

X is assumed to be nonstochastic for ease of presentation. If X is allowed to be stochastic, then

appropriate moment conditions need to be imposed, and the results presented in this paper can be

considered as conditional on X instead.

Assumption 3 requires the row and column sums of the adjacency matrix G to be uniformly

bounded, which in turn requires the the number of direct links of each node in a network to be

bounded for the local-aggregate model. Intuitively, this assumption says, as the sample size increases,

the number of �close� friends of a person cannot go to in�nity. Note that, Assumption 3 does not

require the network size to be bounded. In fact, the network size is allowed to go to in�nity as the

sample size increases. In another word, the number of �indirect� friends of a person (i.e. friends�

19A sequence of square matrices fAg, where A = [Aij ], is said to be UBR (UBC) if the sequence of row sum matrix
norm jjAjj1 = maxi=1;��� ;n

Pn
j=1 jAij j (column sum matrix norm jjAjj1 = maxj=1;��� ;n

Pn
i=1 jAij j) is bounded.

(Horn and Johnson, 1985)
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friends, friends�friends�friends, etc.) is allowed to go to in�nity. From this perspective, Assumption

3 is not too restrictive.

Assumption 4 is for the identi�cation of the network model. It also implies the concentration

parameter grows at the same rate as the sample size (Liu and Lee, 2010). Assumption 5 requires the

(infeasible) best IV matrix Fi (for i = 1; 2) can be well approximated by a certain linear combination

of the feasible IV matrix QK as the number of IVs increases with the sample size. This condition

is commonly assumed in the many-instrument literature (see, eg., Donald and Newey, 2001; Hansen

et al., 2008; Hausman et al., 2012).

B Rank Conditions

In this appendix, we list the matrices whose rank conditions are used for the identi�cation of the

simultaneous equations model.

Let

A1 =

266666664

a1;1

a2;1

a3;1

a4;1

377777775
=

266666664

�2�1 + �2 0 1� �1�2 0 0

�21 + 2 � �11�2 �1 + �1�2 �(�11 + �22) 1� �1�2 0

��112 1 + �12 � �22�1 �11�22 �(�11 + �22) 0

0 ��221 0 �11�22 0

377777775
;

C1 =

266664
c1;1

c2;1

c3;1

377775 =
266664
�2�1 + �2 0 0 0 1� �1�2
��11�2 �1 + �1�2 0 0 �(�11 + �22)

0 ��22�1 0 0 �11�22

377775 :
Let A�1 = [(a1;1+�1a4;1)

0; (a2;1+�2a4;1)
0; (a3;1+�3a4;1)

0]0 and C�1 = [(c1;1+�1c3;1)
0; (c2;1+�2c3;1)

0]0.

Then,

D1 = [A01; C
0
1]
0 (43)

D�
1 = [A�01 ; C

0
1]
0 (44)

Dy
1 = [A01; C

�0
1 ]
0 (45)

Dz
1 = [A�01 ; C

�0
1 ]
0: (46)
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Let

A2 =

266666664

a1;2

a2;2

a3;2

a4;2

377777775
=

266666664

0 0 1 0 0

�1 �2 �(�11 + �22) 1 0

�21�2 � �22�1 + 1 �12�1 � �11�2 + 2 �11�22 � �12�21 �(�11 + �22) 0

�212 � �221 �121 � �112 0 �11�22 � �12�21 0

377777775
;

C2 =

266664
c1;2

c2;2

c3;2

377775 =
266664

0 0 0 0 1

�1 �2 0 0 �(�11 + �22)

�21�2 � �22�1 �12�1 � �11�2 0 0 �11�22 � �12�21

377775 :
Let A�2 = [(a1;2+�1a4;2)

0; (a2;2+�2a4;2)
0; (a3;2+�3a4;2)

0]0 and C�2 = [(c1;2+�1c3;2)
0; (c2;2+�2c3;2)

0]0.

Then,

D2 = [A02; C
0
2]
0 (47)

D�
2 = [A�02 ; C

0
2]
0 (48)

Dy
2 = [A02; C

�0
2 ]
0 (49)

Dz
2 = [A�02 ; C

�0
2 ]
0: (50)

Let

A3 =

266666664

a1;3

a2;3

a3;3

a4;3

377777775
=

266666664

�2�1 0 0 1� �1�2 0 0

�12�1 + �21 �1 �2�1 ! 1� �1�2 0

�121 1 � �22�1 �12�1 + �21 �11�22 � �12�21 ! 0

0 ��221 �121 0 �11�22 � �12�21 0

377777775
;

B3 =

266666664

b1;3

b2;3

b3;3

b4;3

377777775
=

266666664

�2 0 0 0 0 0

2 � �11�2 �1�2 �2 0 0 0

��112 �21�2 + �12 2 � �11�2 0 0 0

0 �212 ��112 0 0 0

377777775
;
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C3 =

266664
c1;3

c2;3

c3;3

377775 =
266664

�2;r + �2�1;r 0 0 0 0 1� �1�2
�12�1;r � �11�2;r �1;r + �1�2;r �2;r + �2�1;r 0 0 !

0 �21�2;r � �22�1;r �12�1;r � �11�2;r 0 0 �11�22 � �12�21

377775 ;
where ! = �(�11+�22+�1�12+�2�21). Let A�3 = [(a1;3+�1a4;3)0; (a2;3+�2a4;3)0; (a3;3+�3a4;3)0]0,

B�3 = [(b1;3 + �1b4;3)
0; (b2;3 + �2b4;3)

0; (b3;3 + �3b4;3)
0]0, and C�3 = [(c1;3 + �1c3;3)

0; (c2;3 + �2c3;3)
0]0.

Let A��3 = [(a1;3 + �1a3;3 + �1�2a4;3)
0; (a2;3 + �2a3;3 + �1a4;3 + �

2
2a4;3)

0]0 and B��3 = [(b1;3 + �1b3;3 +

�1�2b4;3)
0; (b2;3 + �2b3;3 + �1b4;3 + �

2
2b4;3)

0]0. Then,

D3 = [A03; B
0
3; C

0
3]
0 (51)

D�
3 = [A�03 ; B

�0
3 ; C

0
3]
0 (52)

Dy
3 = [A03; B

0
3; C

�0
3 ]
0 (53)

Dz
3 = [A�03 ; B

�0
3 ; C

�0
3 ]
0 (54)

D]
3 = [A��03 ; B��03 ; C�03 ]

0: (55)

C Lemmas

In this appendix, we provide some useful lemmas for the proofs of the asymptotic properties of

the proposed estimators. To simplify notations, we drop the K subscript on QK and PK . Let

kAk =
p
tr(A0A) denote the Frobenius (Euclidean) norm for an m � n matrix A unless noted

otherwise.

Lemma C.1 Under Assumption 5, there exist matrices �1 and �2 such that, for i = 1; 2, 1
n jjFi �

QK�ijj2 ! 0 as n;K !1.

Proof. See Liu and Lee (2010).

Lemma C.2 (i) tr(P ) = K. (ii) Suppose that fAg is a sequence of n�n UB matrices. For B = PA,

tr(B) = O(K), tr(B2) = O(K), and
P

iB
2
ii = O(K), where Bii�s are diagonal elements of B.

Proof. See Liu and Lee (2010).

Lemma C.3 Let fAg and fBg be sequences of n � n UB matrices. For i; j = 1; 2, (i) �ij =

1
n tr(F

0
i (I � P )Fj) = o(1); (ii) 1

nF
0
iPA�j = Op(

p
K=n); (iii) 1

n�
0
iB

0PA�j = Op(K=n); (iv) 1p
n
F 0i (I �

P )A�j = Op(
p
�ii); and (v) 1p

n
[�0iPA�j � E(�0iPA�j)] = Op(

p
K=n):
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Proof. For (i), 1n tr(F
0
i (I � P )Fj) = 1

n tr((Fi � Q�i)
0(I � P )(Fj � Q�j)) � [ 1n tr((Fi � Q�i)

0(Fi �

Q�i))]
1=2[ 1n tr((Fj � Q�j)

0(I � P )(Fj � Q�j))]
1=2 � [ 1n tr((Fi � Q�i)

0(Fi � Q�i))]
1=2[ 1n tr((Fj �

Q�j)
0(Fj � Q�j))]1=2 = [ 1n jjFi � Q�ijj

2]1=2[ 1n jjFj � Q�j jj
2]1=2 ! 0, by Assumption 5 and Lemma

C.1. For (ii) and (iii), see Liu and Lee (2010). For (iv), as Var[ 1p
n
F 0i (I � P )A�j ] =

�2j
n F

0
i (I �

P )AA(I � P )Fi �
�2j
n F

0
i (I � P )FijjAAjj1 = O(�ii), we have 1p

n
F 0i (I � P )A�j = Op(

p
�ii) by

Markov�s inequality. For (v), let M = PA. E(�0jM
0�i�

0
iM�j) � E(�0jM 0�i)E(�

0
iM�j) = c1

P
sM

2
ss +

c2tr(M
2) + c3tr(M

0M), where c1; c2; c3 are functions of moments of �i; �j and they are bounded by

�nite constants by Assumption 1. As
P

sM
2
ss; tr(M

2); tr(M 0M) are O(K) by Lemma C.2, we have

1p
n
[�0iPA�j � E(�0iPA�j)] = Op(

p
K=n) by Markov�s inequality.

D Proofs

Proof of Proposition 1. E(JZ1) = J [E(GY1); X;GX] has full column rank if, for some r,

Jr[E(GrY1;r)d1 +Xrd2 +GrXrd3] = 0 (56)

implies d1 = d2 = d3 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (56) can be rewritten as

E(GrY1;r)d1 +Xrd2 +GrXrd3 + lnr� = 0; (57)

where � = � 1
nr
l0nr [E(GrY1;r)d1 +Xrd2 +GrXrd3]. Premultiply (57) by (Inr � �11Gr). As

(Inr � �11Gr)E(GrY1;r) = GrXr�1 +G2rXr1 +Grlnr�1;r

from the reduced-form equation, we have

Xrd2 +GrXr(�1d1 � �11d2 + d3) +G2rXr(1d1 � �11d3) + lnr�+Grlnr (�1;rd1 � �11�) = 0:

SupposeGr has non-constant row sums. We consider 2 cases. (i) Inr ; Gr; G
2
r are linearly independent.

In this case, d2 = �1d1 � �11d2 + d3 = 1d1 � �11d3 = � = �1;rd1 � �11� = 0, which implies

d1 = d2 = d3 = � = 0 if �1;r 6= 0 or �11�1 + 1 6= 0. (ii) G2r = �1Inr + �2Gr. In this case,

d2+�1(1d1��11d3) = �1d1��11d2+d3+�2(1d1��11d3) = � = �1;rd1��11� = 0, which implies

d1 = d2 = d3 = � = 0 if �1;r 6= 0 and 1� �2�11 � �1�211 6= 0.

33



Proof of Corollary 1. For a symmetric adjacency matrix G, I;G;G2 are linearly independent if

G has non-constant row sums. This can be shown by contradiction. As elements of G are either one

or zero, the i-th diagonal element of G2 equals
P

j gijgji =
P

j g
2
ij =

P
j gij . Therefore, if I;G;G

2

are linearly dependent such that G2 = �1I+�2G, then all the diagonal elements of G
2 equal �1, i.e.,P

j gij = �1 for all i. This is a contradiction as G has non-constant row sums. The desired result

follows from Proposition 1(i).

Proof of Proposition 2. E(JZ1) = J [E(Y2);E(GY1); X;GX] has full column rank if, for some r,

Jr[E(Y2;r)d1 + E(GrY1;r)d2 +Xrd3 +GrXrd4] = 0 (58)

implies d1 = d2 = d3 = d4 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (58) can be rewritten as

E(Y2;r)d1 + E(GrY1;r)d2 +Xrd3 +GrXrd4 + lnr� = 0; (59)

where � = � 1
nr
l0nr [E(Y2;r)d1 + E(GrY1;r)d2 + Xrd3 + GrXrd4]. Under the exclusion restrictions

�21 = �12 = 0, the reduced-form equations (16) and (17) become

S�;rE(Y1;r) = Xr(�1�2 + �1) +GrXr(1 + �12 � �22�1)�G2rXr�221

+lnr (�1�2;r + �1;r)�Grlnr�22�1;r (60)

S�;rE(Y2;r) = Xr(�2�1 + �2) +GrXr(2 + �21 � �11�2)�G2rXr�112

+lnr (�2�1;r + �2;r)�Grlnr�11�2;r (61)

where S�;r = (1 � �1�2)Inr � (�11 + �22)Gr + �11�22G2r. Premultiply (59) by S�;r. As GrS�;r =

S�;rGr, it follows from (60) and (61) that

Xra1 +GrXra2 +G
2
rXra3 +G

3
rXra4 + lnrc1 +Grlnrc2 +G

2
rlnrc3 = 0;
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where

a1 = (�2�1 + �2)d1 + (1� �1�2)d3

a2 = (�21 + 2 � �11�2)d1 + (�1 + �1�2)d2 � (�11 + �22)d3 + (1� �1�2)d4

a3 = ��112d1 + (1 + �12 � �22�1)d2 + �11�22d3 � (�11 + �22)d4

a4 = ��221d2 + �11�22d4

and

c1 = (�2�1;r + �2;r)d1 + (1� �1�2)�

c2 = ��11�2;rd1 + (�1;r + �1�2;r)d2 � (�11 + �22)�

c3 = ��22�1;rd2 + �11�22�:

Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent. First, we

consider the case that [lnr ; Grlnr ; G
2
rlnr ] has full column rank. In this case, if Inr ; Gr; G

2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 =

d4 = � = 0 if D1 given by (43) has full rank. If G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 =

a2 + �2a4 = a3 + �3a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 = d4 = � = 0 if D
�
1 given by

(44) has full rank.

Next, we consider the case that G2rlnr = �1lnr + �2Grlnr . In this case, if Inr ; Gr; G
2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies

d1 = d2 = d3 = d4 = � = 0 if D
y
1 given by (45) has full rank. If G

3
r = �1Inr + �2Gr + �3G

2
r, then

a1 + �1a4 = a2 + �2a4 = a3 + �3a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 =

� = 0 if Dz
1 given by (46) has full rank.

Proof of Proposition 3. E(JZ1) = J [E(GY1);E(GY2); X;GX] has full column rank if, for some

r,

Jr[E(GrY1;r)d1 + E(GrY2;r)d2 +Xrd3 +GrXrd4] = 0 (62)

implies d1 = d2 = d3 = d4 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (62) can be rewritten as

E(GrY1;r)d1 + E(GrY2;r)d2 +Xrd3 +GrXrd4 + lnr� = 0; (63)
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where � = � 1
nr
l0nr [E(GrY1;r)d1 + E(GrY2;r)d2 +Xrd3 +GrXrd4]. Under the exclusion restrictions

�1 = �2 = 0, the reduced-form equations (16) and (17) become

S�;rE(Y1;r) = Xr�1 +GrXr(�21�2 � �22�1 + 1) +G2rXr(�212 � �221)

+lnr�1;r +Grlnr (�21�2;r � �22�1;r) (64)

S�;rE(Y2;r) = Xr�2 +GrXr(�12�1 � �11�2 + 2) +G2rXr(�121 � �112)

+lnr�2;r +Grlnr (�12�1;r � �11�2;r) (65)

where S�;r = Inr � (�11 + �22)Gr + (�11�22 � �12�21)G2r. Premultiply (63) by S�;r. As GrS�;r =

S�;rGr, it follows from (64) and (65) that

Xra1 +GrXra2 +G
2
rXra3 +G

3
rXra4 + lnrc1 +Grlnrc2 +G

2
rlnrc3 = 0;

where

a1 = d3

a2 = �1d1 + �2d2 � (�11 + �22)d3 + d4

a3 = (�21�2 � �22�1 + 1)d1 + (�12�1 � �11�2 + 2)d2 + (�11�22 � �12�21)d3 � (�11 + �22)d4

a4 = (�212 � �221)d1 + (�121 � �112)d2 + (�11�22 � �12�21)d4

and

c1 = �

c2 = �1;rd1 + �2;rd2 � (�11 + �22)�

c3 = (�21�2;r � �22�1;r)d1 + (�12�1;r � �11�2;r)d2 + (�11�22 � �12�21)�:

Suppose Gr has non-constant row sums and Inr ; Gr; G
2
r are linearly independent. First, we

consider the case that [lnr ; Grlnr ; G
2
rlnr ] has full column rank. In this case, if Inr ; Gr; G

2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 =
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d4 = � = 0 if D2 given by (47) has full rank. If G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 =

a2 + �2a4 = a3 + �3a4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 = d4 = � = 0 if D
�
2 given by

(48) has full rank.

Next, we consider the case that G2rlnr = �1lnr + �2Grlnr . In this case, if Inr ; Gr; G
2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies

d1 = d2 = d3 = d4 = � = 0 if D
y
2 given by (49) has full rank. If G

3
r = �1Inr + �2Gr + �3G

2
r, then

a1 + �1a4 = a2 + �2a4 = a3 + �3a4 = c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 =

� = 0 if Dz
2 given by (50) has full rank.

Proof of Proposition 4. E( �Z1) = [E(Y2);E(GY1);E(GY2); X;GX;L] has full column rank if and

only if

E(Y2)d1 + E(GY1)d2 + E(GY2)d3 +Xd4 +GXd5 + Ld6 = 0 (66)

implies d1 = d2 = d3 = d4 = d5 = d6 = 0. Premultiply (66) by S. As GS = SG, it follows from (16)

and (17) that

Xa1 +GXa2 +G
2Xa3 +G

3Xa4 + Lc1 +GLc2 +G
2Lc3 = 0;

where

a1 = (�2�1 + �2)d1 + (1� �1�2)d4

a2 = (�12�1 � �11�2 + �21 + 2)d1 + (�1�2 + �1)d2 + (�2�1 + �2)d3

�(�11 + �22 + �1�12 + �2�21)d4 + (1� �1�2)d5

a3 = (�121 � �112)d1 + (�21�2 � �22�1 + �12 + 1)d2 + (�12�1 � �11�2 + �21 + 2)d3

+(�11�22 � �12�21)d4 � (�11 + �22 + �1�12 + �2�21)d5

a4 = (�212 � �221)d2 + (�121 � �112)d3 + (�11�22 � �12�21)d5

and

c1 = (�2�1 + �2)d1 + (1� �1�2)d6

c2 = (�12�1 � �11�2)d1 + (�1�2 + �1)d2 + (�2�1 + �2)d3 � (�11 + �22 + �1�12 + �2�21)d6

c3 = (�21�2 � �22�1)d2 + (�12�1 � �11�2)d3 + (�11�22 � �12�21)d6:
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Then, if [X;GX;G2X;G3X;L;GL;G2L] has full column rank, we have a1 = a2 = a3 = a4 = c1 =

c2 = c3 = 0, which implies d2 = (�12 + �2�11)d1=(�1�2 � 1), d3 = (�22 + �2�21)d1=(�1�2 � 1),

d4 = (�2 + �2�1)d1=(�1�2 � 1), d5 = (2 + �21)d1=(�1�2 � 1) and d6 = (�2 + �2�1)d1=(�1�2 � 1).

Therefore, E( �Z1) does not have full column rank. We can show that E( �Z2) does not have full column

rank by the same token.

Proof of Proposition 5. E(JZ1) = J [E(Y2);E(GY1);E(GY2); X1; GX1] has full column rank if,

for some r,

Jr[E(Y2;r)d1 + E(GrY1;r)d2 + E(GrY2;r)d3 +X1;rd4 +GrX1;rd5] = 0 (67)

implies d1 = d2 = d3 = d4 = d5 = 0. As Jr = Inr � 1
nr
lnr l

0
nr , (67) can be rewritten as

E(Y2;r)d1 + E(GrY1;r)d2 + E(GrY2;r)d3 +X1;rd4 +GrX1;rd5 + lnr� = 0; (68)

where � = � 1
nr
l0nr [E(Y2;r)d1 + E(GrY1;r)d2 + E(GrY2;r)d3 +X1;rd4 +GrX1;rd5]. Premultiply (68)

by Sr. As GrSr = SrGr, it follows from (31) and (32) that

0 = X1;ra1 +GrX1;ra2 +G
2
rX1;ra3 +G

3
rX1;ra4 +X2;rb1 +GrX2;rb2 +G

2
rX2;rb3 +G

3
rX2;rb4

+lnrc1 +Grlnrc2 +G
2
rlnrc3;

where

a1 = �2�1d1 + (1� �1�2)d4

a2 = (�12�1 + �21)d1 + �1d2 + �2�1d3 � (�11 + �22 + �1�12 + �2�21)d4 + (1� �1�2)d5

a3 = �121d1 + (1 � �22�1)d2 + (�12�1 + �21)d3 + (�11�22 � �12�21)d4 � (�11 + �22 + �1�12 + �2�21)d5

a4 = ��221d2 + �121d3 + (�11�22 � �12�21)d5
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b1 = �2d1

b2 = (2 � �11�2)d1 + �1�2d2 + �2d3

b3 = ��112d1 + (�21�2 + �12)d2 + (2 � �11�2)d3

b4 = �212d2 � �112d3

and

c1 = (�2;r + �2�1;r)d1 + (1� �1�2)�

c2 = (�12�1;r � �11�2;r)d1 + (�1;r + �1�2;r)d2 + (�2;r + �2�1;r)d3 � (�11 + �22 + �1�12 + �2�21)�

c3 = (�21�2;r � �22�1;r)d2 + (�12�1;r � �11�2;r)d3 + (�11�22 � �12�21)�:

Suppose Gr has non-constant row sums, X1;r; X2;r are vectors and [X1;r; X2;r] has full column

rank. First, we consider the case that [lnr ; Grlnr ; G
2
rlnr ] has full column rank. In this case, if

Inr ; Gr; G
2
r; G

3
r are linearly independent, then a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = c1 = c2 =

c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0 ifD3 given by (51) has full rank. If Inr ; Gr; G
2
r

are linearly independent and G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 = a2 + �2a4 = a3 + �3a4 =

b1+ �1b4 = b2+ �2b4 = b3+ �3b4 = c1 = c2 = c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0

if D�
3 given by (52) has full rank.

Next, we consider the case that G2rlnr = �1lnr + �2Grlnr . In this case, if Inr ; Gr; G
2
r; G

3
r are

linearly independent, then a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = c1+�1c3 = c2+�2c3 = 0, which

implies d1 = d2 = d3 = d4 = d5 = � = 0 if D
y
3 given by (53) has full rank. If Inr ; Gr; G

2
r are linearly

independent and G3r = �1Inr + �2Gr + �3G
2
r, then a1 + �1a4 = a2 + �2a4 = a3 + �3a4 = b1 + �1b4 =

b2 + �2b4 = b3 + �3b4 = c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0

if Dz
3 given by (54) has full rank. Finally, if G

2
r = �1Inr + �2Gr, then G

3
r = �1�2Inr + (�1 + �

2
2)Gr,

then a1 + �1a3 + �1�2a4 = a2 + �2a3 + (�1 + �
2
2)a4 = b1 + �1b3 + �1�2b4 = b2 + �2b3 + (�1 + �

2
2)b4 =

c1 + �1c3 = c2 + �2c3 = 0, which implies d1 = d2 = d3 = d4 = d5 = � = 0 if D
]
3 given by (55) has

full rank.

Proof of Proposition 6. In this proof, we focus on �̂1;2sls. The results for �̂2;2sls can be

derived by the same argument.
p
n(�̂1;2sls � �1 � b1;2sls) = ( 1nZ

0
1PZ1)

�1 1p
n
[Z 01P�1 � E(U 01P�1)].

As JZ1 = F1 + U1, we have 1
nZ

0
1PZ1 =

1
nF

0
1F1 � 1

nF
0
1(I � P )F1 + 1

nF
0
1PU1 +

1
nU

0

1PF1 +
1
nU

0

1PU1
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and 1p
n
[Z 01P�1 � E(U 01P�1)] = 1p

n
F 01�1 � 1p

n
F 01(I � P )�1 + 1p

n
[U 01P�1 � E(U 01P�1)]. As K=n ! 0

and U1 = J [S�1u2; GS
�1u1; GS

�1u2; 0], where u1 = (I � �22G)�1 + (�1I + �21G)�2 and u2 =

(I��11G)�2+(�2I+�12G)�1, it follows by Lemma C.3 that 1nZ
0
1PZ1 = H11+O(�11)+Op(

p
K=n) =

H11+ op(1) and 1p
n
[Z 01P�1�E(U 01P�1)] = 1p

n
F 01�1+Op(

p
�11)+Op(

p
K=n) = 1p

n
F 01�1+ op(1). As

1p
n
F 01�1

d! N(0; �21H11) by Theorem A in Kelejian and Prucha (1999), the asymptotic distribution

of �̂1;2sls follows by Slutsky�s theorem. Furthermore, as 1
nE(U

0
1P�1) given by (36) is O(K=n) by

Lemma C.2, b1;2sls = Op(K=n).

Proof of Proposition 7. From the proof of Proposition 6, it is su¢ cient to show that 1p
n
[Ê(U 01P�1)�

E(U 01P�1)] = op(1) and 1p
n
[Ê(U 02P�2) � E(U 02P�2)] = op(1). Here, we show the �rst element of

1p
n
[Ê(U 01P�1) � E(U 01P�1)], i.e. 1p

n
[(~�12 + ~�2~�

2
1)tr(P

~S�1)� (�12 + �2�21)tr(PS�1)] + 1p
n
[(~�12~�

2
1 �

~�11~�12)tr(P ~S
�1G) � (�12�21 � �11�12)tr(PS�1G)], is op(1), where ~S = (1 � ~�1~�2)I � (~�11 + ~�22 +

~�1
~�12 + ~�2

~�21)G+ (~�11~�22 � ~�12~�21)G2. Convergence of other terms in 1p
n
[Ê(U 01P�1)� E(U 01P�1)]

and 1p
n
[Ê(U 02P�2) � E(U 02P�2)] follows a similar argument. As ~�1; ~�2; ~�21; ~�22; ~�12 are

p
n-consistent

estimators and
p
n( ~S�1 � S�1) =

p
nS�1(S � ~S) ~S�1 =

p
n(~�1

~�2 � �1�2)S�1 ~S�1 + [
p
n(~�11 �

�11)+
p
n(~�22��22)+

p
n(~�1

~�12��1�12)+
p
n(~�2

~�21��2�21)]S�1G ~S�1+[
p
n(~�12~�21��12�21)�

p
n(~�11~�22��11�22)]S�1G2 ~S�1, it follows that 1p

n
[(~�12+~�2~�

2
1)tr(P ~S

�1)�(�12+�2�21)tr(PS�1)] =

[
p
n(~�12��12)+

p
n(~�2~�

2
1��2�21)] 1n tr(P ~S

�1)+(�12+�2�
2
1)
1
n tr(P

p
n( ~S�1�S�1)) = Op(K=n) and

1p
n
[(~�12~�

2
1� ~�11~�12)tr(P ~S�1G)�(�12�21��11�12)tr(PS�1G)] = [

p
n(~�12~�

2
1��12�21)�

p
n(~�11~�12�

�11�12)]
1
n tr(P

~S�1G) + (�12�
2
1 � �11�12) 1n tr(GP

p
n( ~S�1 � S�1)) = Op(K=n). The desired result

follows as K=n! 0.

Proof of Proposition 8. First, we consider the infeasible 3SLS estimator ~�3sls = [Z 0(��1 


P )Z]�1Z 0(��1 
 P )Y such that
p
n(~�3sls � � � b3sls) = [ 1nZ

0(��1 
 P )Z]�1 1p
n
fZ 0(��1 
 P )� �

E[U 0(��1
P )�]g. As (I2
J)Z = F +U , we have 1
nZ

0(��1
P )Z = 1
nF

0(��1
 I)F � 1
nF

0[��1


(I � P )]F + 1
nF

0(��1 
 P )U + 1
nU

0(��1 
 P )F + 1
nU

0(��1 
 P )U and 1p
n
fZ 0(��1 
 P )� �

E[U 0(��1
P )�]g = 1p
n
F 0(��1
I)�� 1p

n
F 0[��1
(I�P )]�+ 1p

n
fU 0(��1
P )��E[U 0(��1
P )�]g.

As F = diagfF1; F2g and U = diagfU1; U2g, where U1 = J [S�1u2; GS
�1u1; GS

�1u2; 0], U2 =

J [S�1u1; GS
�1u2; GS

�1u1; 0], u1 = (I � �22G)�1 + (�1I + �21G)�2, and u2 = (I � �11G)�2 +

(�2I + �12G)�1, it follows by Lemma C.3 and K=n! 0 that 1
nZ

0(��1 
 P )Z = 1
nF

0(��1 
 I)F +

O(maxi;jf�ijg)+Op(
p
K=n) = H+op(1) and 1p

n
fZ 0(��1
P )��E[U 0(��1
P )�]g = 1p

n
F 0(��1


I)�+Op(maxi;jf
p
�ijg)+Op(

p
K=n) = 1p

n
F 0(��1
I)�+op(1). As 1p

n
F 0(��1
I)� d! N(0;H) by
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Theorem A in Kelejian and Prucha (1999), it follows by Slutsky�s theorem that
p
n(~�3sls���b3sls)

d!

N(0;H�1). As 1
nE[U

0(��1 
 P )�] given by (40) is O(K=n) by Lemma C.2, b3sls = Op(K=n).

Then, to obtain the asymptotic distribution of the feasible 3SLS �̂3sls, it is su¢ cient to show

that
p
n(�̂3sls� ~�3sls) = op(1).

p
n(�̂3sls� ~�3sls) = [ 1nZ

0(~��1
P )Z]�1 1nZ
0[
p
n(~��1���1)
P ]��

[ 1nZ
0(~��1
P )Z]�1f 1nZ

0[
p
n(~��1���1)
P ]Zg[ 1nZ

0(��1
P )Z]�1 1nZ
0(��1
P )�. As

p
n(~��1�

��1) = Op(1), it follows by a similar argument as above that 1
nZ

0(��1 
P )Z = Op(1), 1nZ
0(~��1 


P )Z = Op(1), and 1
nZ

0[
p
n(~��1���1)
P ]Z = Op(1). On the other hand, 1nZ

0[
p
n(~��1���1)


P ]� = 1
nF

0[
p
n(~��1���1)
P ]�+ 1

nU
0[
p
n(~��1���1)
P ]� = Op(

p
K=n) = op(1) and 1

nZ
0(��1


P )� = 1
nF

0(��1
P )�+ 1
nU

0(��1
P )� = Op(
p
K=n) = op(1). Therefore,

p
n(�̂3sls�~�3sls) = op(1)

and the desired result follows.

Proof of Proposition 9. From the proof of Proposition 8, it is su¢ cient to show that
p
n(b̂3sls�

b3sls) = R1 �R2 = op(1), where R1 = [ 1nZ
0(~��1 
P )Z]�1 1p

n
fÊ[U 0(��1 
P )�]�E[U 0(��1 
P )�]g

and R2 = [ 1nZ
0(~��1 
 P )Z]�1f 1nZ

0[
p
n(~��1 � ��1)
 P ]Zg[ 1nZ

0(��1 
 P )Z]�1 1nE[U
0(��1 
 P )�].

By a similar argument as in the proof of Proposition 7, 1p
n
fÊ[U 0(��1 
P )�]�E[U 0(��1 
P )�]g =

Op(K=n). By a similar argument as in the proof of Proposition 8, 1
nZ

0(��1 
 P )Z = Op(1),

1
nZ

0(~��1 
 P )Z = Op(1), and 1
nZ

0[
p
n(~��1 � ��1)
 P ]Z = Op(1). By Lemma C.2, 1nE[U

0(��1 


P )�] = O(K=n) = o(1). Therefore, R1 = op(1) and R2 = op(1) as K=n! 0.
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Table 1: 2SLS and 3SLS Estimation (𝑛𝑟 = 10, �̅� = 30) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.8 𝛾1 = 0.8 

𝜎12 = 0.1      
2SLS-1 .202(.051)[.051] .100(.035)[.035] .100(.034)[.034] .806(.066)[.067] .803(.056)[.056] 
2SLS-2 .223(.049)[.054] .093(.029)[.030] .095(.029)[.029] .799(.065)[.065] .802(.053)[.053] 
BC2SLS .198(.055)[.055] .100(.030)[.030] .101(.030)[.030] .806(.066)[.066] .803(.054)[.054] 
3SLS-1 .202(.051)[.051] .100(.035)[.035] .100(.034)[.034] .806(.066)[.066] .804(.056)[.056] 
3SLS-2 .216(.053)[.056] .093(.029)[.030] .097(.030)[.030] .800(.065)[.065] .805(.053)[.053] 
BC3SLS .200(.054)[.054] .100(.030)[.030] .101(.030)[.030] .806(.066)[.066] .803(.054)[.054] 
𝜎12 = 0.5      
2SLS-1 .203(.051)[.051] .100(.035)[.035] .099(.034)[.034] .806(.066)[.066] .803(.056)[.056] 
2SLS-2 .253(.047)[.071] .094(.028)[.029] .086(.028)[.032] .794(.063)[.063] .794(.051)[.052] 
BC2SLS .193(.057)[.057] .101(.030)[.030] .102(.031)[.031] .807(.066)[.066] .804(.054)[.054] 
3SLS-1 .203(.051)[.051] .099(.034)[.034] .099(.034)[.034] .806(.062)[.062] .805(.053)[.053] 
3SLS-2 .217(.052)[.055] .093(.029)[.030] .095(.029)[.029] .806(.060)[.060] .809(.049)[.050] 
BC3SLS .200(.054)[.054] .100(.030)[.030] .101(.030)[.030] .805(.061)[.061] .803(.051)[.051] 
𝜎12 = 0.9      
2SLS-1 .204(.051)[.051] .100(.035)[.035] .099(.034)[.034] .806(.066)[.066] .803(.055)[.056] 
2SLS-2 .282(.044)[.093] .095(.027)[.027] .076(.027)[.036] .790(.059)[.060] .785(.049)[.051] 
BC2SLS .188(.059)[.060] .101(.031)[.031] .104(.031)[.031] .808(.067)[.067] .805(.055)[.055] 
3SLS-1 .204(.051)[.051] .098(.031)[.031] .099(.033)[.033] .806(.049)[.050] .807(.045)[.046] 
3SLS-2 .219(.052)[.055] .092(.027)[.028] .093(.028)[.029] .814(.049)[.051] .815(.046)[.048] 
BC3SLS .202(.054)[.054] .100(.028)[.028] .100(.030)[.030] .805(.050)[.050] .805(.047)[.047] 
Mean(SD)[RMSE] 

 

  



Table 2: 2SLS and 3SLS Estimation (𝑛𝑟 = 15, �̅� = 30) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.8 𝛾1 = 0.8 

𝜎12 = 0.1      
2SLS-1 .202(.039)[.039] .101(.025)[.025] .099(.025)[.025] .796(.050)[.050] .802(.045)[.045] 
2SLS-2 .216(.037)[.040] .099(.022)[.022] .095(.021)[.022] .793(.050)[.050] .800(.043)[.043] 
BC2SLS .199(.039)[.039] .100(.022)[.022] .100(.022)[.022] .796(.050)[.050] .803(.043)[.044] 
3SLS-1 .202(.039)[.039] .101(.025)[.025] .099(.025)[.025] .797(.050)[.050] .802(.045)[.045] 
3SLS-2 .211(.038)[.040] .099(.022)[.022] .096(.022)[.022] .795(.050)[.050] .801(.043)[.043] 
BC3SLS .200(.039)[.039] .100(.022)[.022] .099(.022)[.022] .797(.050)[.050] .802(.044)[.044] 
𝜎12 = 0.5      
2SLS-1 .202(.039)[.039] .101(.025)[.025] .099(.025)[.025] .796(.050)[.050] .802(.045)[.045] 
2SLS-2 .235(.036)[.050] .099(.021)[.021] .088(.021)[.024] .790(.049)[.050] .794(.042)[.042] 
BC2SLS .196(.040)[.040] .100(.022)[.022] .100(.022)[.022] .797(.050)[.050] .804(.044)[.044] 
3SLS-1 .203(.039)[.039] .101(.025)[.025] .098(.024)[.024] .799(.047)[.047] .800(.043)[.043] 
3SLS-2 .212(.038)[.040] .099(.021)[.021] .095(.021)[.022] .801(.046)[.046] .803(.042)[.042] 
BC3SLS .201(.040)[.040] .101(.022)[.022] .099(.022)[.022] .799(.047)[.047] .801(.043)[.043] 
𝜎12 = 0.9      
2SLS-1 .203(.039)[.039] .101(.025)[.025] .098(.024)[.025] .796(.050)[.050] .802(.045)[.045] 
2SLS-2 .253(.034)[.063] .100(.020)[.020] .081(.020)[.027] .787(.047)[.049] .789(.041)[.042] 
BC2SLS .193(.042)[.042] .101(.022)[.022] .101(.022)[.022] .797(.051)[.051] .804(.044)[.044] 
3SLS-1 .203(.039)[.039] .102(.023)[.023] .098(.024)[.024] .802(.037)[.037] .800(.037)[.037] 
3SLS-2 .213(.041)[.043] .098(.020)[.020] .094(.021)[.022] .807(.039)[.040] .806(.039)[.039] 
BC3SLS .202(.042)[.042] .102(.021)[.021] .098(.022)[.022] .801(.040)[.040] .800(.040)[.040] 
Mean(SD)[RMSE] 

 

  



Table 3: 2SLS and 3SLS Estimation (𝑛𝑟 = 30, �̅� = 30) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.8 𝛾1 = 0.8 

𝜎12 = 0.1      
2SLS-1 .200(.029)[.029] .101(.016)[.016] .099(.018)[.018] .800(.034)[.034] .799(.033)[.033] 
2SLS-2 .207(.028)[.029] .100(.015)[.015] .097(.016)[.017] .799(.034)[.034] .798(.031)[.031] 
BC2SLS .199(.029)[.029] .100(.015)[.015] .100(.017)[.017] .801(.034)[.034] .800(.032)[.032] 
3SLS-1 .200(.029)[.029] .101(.016)[.016] .099(.018)[.018] .800(.034)[.034] .799(.033)[.033] 
3SLS-2 .205(.029)[.029] .100(.015)[.015] .098(.016)[.017] .800(.034)[.034] .799(.032)[.032] 
BC3SLS .199(.029)[.029] .100(.015)[.015] .100(.016)[.016] .800(.034)[.034] .800(.032)[.032] 
𝜎12 = 0.5      
2SLS-1 .200(.029)[.029] .101(.016)[.016] .099(.018)[.018] .800(.034)[.034] .799(.033)[.033] 
2SLS-2 .216(.028)[.032] .100(.014)[.014] .094(.016)[.017] .798(.034)[.034] .795(.031)[.031] 
BC2SLS .197(.029)[.029] .100(.015)[.015] .100(.017)[.017] .801(.034)[.034] .800(.032)[.032] 
3SLS-1 .200(.029)[.029] .100(.016)[.016] .099(.018)[.018] .800(.032)[.032] .800(.031)[.031] 
3SLS-2 .205(.028)[.029] .099(.014)[.014] .098(.016)[.016] .801(.032)[.032] .801(.030)[.030] 
BC3SLS .200(.029)[.029] .100(.014)[.014] .099(.016)[.016] .800(.032)[.032] .800(.030)[.030] 
𝜎12 = 0.9      
2SLS-1 .201(.029)[.029] .101(.016)[.016] .099(.018)[.018] .800(.034)[.034] .799(.033)[.033] 
2SLS-2 .225(.027)[.037] .101(.014)[.014] .090(.016)[.019] .796(.033)[.033] .793(.031)[.032] 
BC2SLS .196(.030)[.030] .100(.015)[.015] .101(.017)[.017] .801(.034)[.034] .801(.032)[.032] 
3SLS-1 .201(.029)[.029] .100(.015)[.015] .099(.018)[.018] .800(.027)[.027] .800(.027)[.027] 
3SLS-2 .205(.029)[.030] .099(.014)[.014] .098(.016)[.017] .803(.027)[.027] .803(.027)[.027] 
BC3SLS .200(.030)[.030] .100(.014)[.014] .099(.017)[.017] .800(.028)[.028] .800(.027)[.027] 
Mean(SD)[RMSE] 

 

  



Table 4: 2SLS and 3SLS Estimation (𝑛𝑟 = 15, �̅� = 60) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.8 𝛾1 = 0.8 

𝜎12 = 0.1      
2SLS-1 .200(.029)[.029] .098(.018)[.018] .101(.020)[.020] .798(.035)[.035] .802(.032)[.032] 
2SLS-2 .213(.028)[.031] .096(.016)[.016] .097(.017)[.018] .795(.035)[.035] .800(.031)[.031] 
BC2SLS .198(.030)[.030] .099(.016)[.016] .102(.018)[.018] .799(.035)[.035] .802(.031)[.031] 
3SLS-1 .200(.029)[.029] .098(.018)[.018] .101(.020)[.020] .798(.035)[.035] .802(.032)[.032] 
3SLS-2 .208(.030)[.031] .096(.016)[.016] .099(.018)[.018] .797(.035)[.035] .802(.031)[.031] 
BC3SLS .199(.030)[.030] .099(.016)[.016] .101(.018)[.018] .798(.035)[.035] .802(.031)[.031] 
𝜎12 = 0.5      
2SLS-1 .200(.029)[.029] .098(.018)[.018] .101(.019)[.020] .798(.035)[.035] .802(.032)[.032] 
2SLS-2 .231(.028)[.042] .097(.016)[.016] .091(.017)[.019] .792(.034)[.035] .795(.030)[.031] 
BC2SLS .196(.030)[.031] .099(.016)[.016] .102(.018)[.018] .799(.035)[.035] .802(.031)[.031] 
3SLS-1 .200(.029)[.029] .098(.018)[.018] .101(.019)[.019] .799(.033)[.033] .802(.031)[.031] 
3SLS-2 .209(.030)[.031] .095(.016)[.016] .098(.018)[.018] .800(.033)[.033] .805(.029)[.030] 
BC3SLS .199(.030)[.030] .099(.016)[.016] .101(.018)[.018] .798(.033)[.033] .801(.030)[.030] 
𝜎12 = 0.9      
2SLS-1 .200(.029)[.029] .098(.018)[.018] .101(.019)[.019] .798(.035)[.035] .802(.032)[.032] 
2SLS-2 .250(.027)[.056] .097(.015)[.015] .084(.017)[.023] .789(.033)[.035] .789(.029)[.031] 
BC2SLS .195(.031)[.032] .099(.016)[.016] .102(.018)[.019] .799(.035)[.035] .803(.031)[.032] 
3SLS-1 .200(.029)[.029] .098(.017)[.017] .101(.019)[.019] .800(.028)[.028] .801(.027)[.027] 
3SLS-2 .210(.031)[.032] .095(.015)[.016] .097(.018)[.018] .805(.028)[.029] .807(.027)[.028] 
BC3SLS .200(.031)[.031] .099(.015)[.015] .101(.018)[.018] .799(.029)[.029] .801(.027)[.027] 
Mean(SD)[RMSE] 

 

  



Table 5: 2SLS and 3SLS Estimation (𝑛𝑟 = 10, �̅� = 30) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.4 𝛾1 = 0.4 

𝜎12 = 0.1      
2SLS-1 .210(.105)[.106] .097(.072)[.072] .100(.065)[.065] .406(.067)[.067] .405(.057)[.057] 
2SLS-2 .272(.086)[.112] .078(.045)[.050] .092(.043)[.044] .396(.063)[.063] .402(.050)[.050] 
BC2SLS .194(.120)[.120] .098(.050)[.050] .104(.049)[.049] .406(.065)[.066] .405(.053)[.053] 
3SLS-1 .210(.106)[.106] .097(.072)[.072] .100(.065)[.065] .406(.067)[.067] .405(.057)[.057] 
3SLS-2 .253(.111)[.122] .080(.046)[.050] .096(.046)[.046] .397(.064)[.064] .403(.051)[.051] 
BC3SLS .199(.112)[.112] .098(.050)[.050] .103(.048)[.048] .406(.065)[.066] .404(.053)[.053] 
𝜎12 = 0.5      
2SLS-1 .213(.104)[.105] .098(.071)[.071] .098(.065)[.065] .406(.066)[.067] .404(.056)[.056] 
2SLS-2 .360(.078)[.178] .078(.042)[.047] .069(.041)[.051] .389(.058)[.059] .390(.046)[.047] 
BC2SLS .178(.126)[.128] .099(.051)[.051] .108(.051)[.052] .407(.066)[.067] .407(.054)[.054] 
3SLS-1 .213(.105)[.106] .097(.069)[.069] .097(.064)[.065] .407(.062)[.062] .406(.054)[.054] 
3SLS-2 .258(.104)[.119] .080(.045)[.049] .091(.045)[.046] .406(.059)[.059] .410(.047)[.048] 
BC3SLS .204(.111)[.111] .098(.050)[.050] .102(.049)[.049] .406(.061)[.062] .403(.051)[.051] 
𝜎12 = 0.9      
2SLS-1 .216(.103)[.104] .099(.070)[.070] .096(.065)[.065] .406(.066)[.066] .404(.055)[.056] 
2SLS-2 .441(.065)[.250] .081(.035)[.040] .046(.036)[.065] .384(.047)[.050] .378(.039)[.045] 
BC2SLS .167(.145)[.149] .100(.055)[.055] .111(.056)[.057] .409(.068)[.069] .409(.056)[.056] 
3SLS-1 .215(.104)[.105] .095(.063)[.063] .096(.064)[.064] .409(.049)[.050] .409(.046)[.047] 
3SLS-2 .264(.100)[.119] .081(.044)[.048] .086(.045)[.047] .421(.051)[.055] .422(.047)[.052] 
BC3SLS .214(.111)[.112] .098(.050)[.050] .102(.051)[.051] .409(.052)[.053] .408(.048)[.049] 
Mean(SD)[RMSE] 

 

  



Table 6: 2SLS and 3SLS Estimation (𝑛𝑟 = 15, �̅� = 30) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.4 𝛾1 = 0.4 

𝜎12 = 0.1      
2SLS-1 .204(.078)[.078] .100(.052)[.052] .098(.050)[.050] .396(.051)[.051] .403(.045)[.046] 
2SLS-2 .250(.067)[.083] .095(.034)[.034] .087(.034)[.036] .392(.049)[.050] .398(.040)[.040] 
BC2SLS .194(.084)[.084] .100(.035)[.035] .101(.037)[.037] .397(.050)[.050] .404(.042)[.042] 
3SLS-1 .204(.078)[.078] .100(.052)[.052] .098(.050)[.050] .397(.050)[.051] .403(.045)[.046] 
3SLS-2 .236(.078)[.086] .096(.034)[.034] .090(.035)[.037] .394(.049)[.049] .400(.041)[.041] 
BC3SLS .198(.081)[.081] .101(.035)[.035] .100(.036)[.036] .398(.050)[.050] .403(.042)[.042] 
𝜎12 = 0.5      
2SLS-1 .206(.078)[.078] .100(.051)[.051] .097(.049)[.050] .396(.051)[.051] .403(.045)[.045] 
2SLS-2 .311(.061)[.126] .095(.032)[.032] .070(.032)[.044] .388(.046)[.048] .390(.038)[.039] 
BC2SLS .184(.088)[.090] .101(.036)[.036] .103(.038)[.038] .397(.051)[.051] .405(.043)[.043] 
3SLS-1 .206(.078)[.078] .102(.050)[.050] .096(.049)[.049] .400(.047)[.047] .402(.043)[.043] 
3SLS-2 .239(.077)[.086] .095(.034)[.034] .088(.034)[.036] .403(.045)[.045] .405(.040)[.040] 
BC3SLS .201(.083)[.083] .102(.035)[.035] .098(.036)[.037] .399(.047)[.047] .401(.042)[.042] 
𝜎12 = 0.9      
2SLS-1 .207(.078)[.079] .101(.051)[.051] .096(.049)[.050] .396(.051)[.051] .403(.045)[.045] 
2SLS-2 .368(.052)[.176] .095(.028)[.029] .053(.029)[.055] .384(.041)[.044] .382(.034)[.039] 
BC2SLS .173(.096)[.100] .103(.037)[.037] .104(.039)[.039] .398(.052)[.052] .406(.044)[.044] 
3SLS-1 .208(.078)[.078] .102(.047)[.047] .094(.048)[.048] .404(.037)[.038] .402(.037)[.037] 
3SLS-2 .241(.080)[.090] .094(.033)[.033] .087(.034)[.036] .413(.038)[.040] .412(.038)[.039] 
BC3SLS .204(.084)[.084] .102(.034)[.035] .096(.036)[.037] .403(.039)[.040] .402(.039)[.039] 
Mean(SD)[RMSE] 

  



Table 7: 2SLS and 3SLS Estimation (𝑛𝑟 = 30, �̅� = 30) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.4 𝛾1 = 0.4 

𝜎12 = 0.1      
2SLS-1 .200(.058)[.058] .101(.033)[.033] .099(.037)[.037] .400(.034)[.034] .400(.033)[.033] 
2SLS-2 .224(.052)[.057] .099(.024)[.024] .092(.026)[.028] .398(.034)[.034] .397(.029)[.030] 
BC2SLS .195(.058)[.058] .100(.024)[.024] .101(.028)[.028] .401(.034)[.034] .401(.030)[.030] 
3SLS-1 .200(.058)[.058] .101(.033)[.033] .099(.037)[.037] .400(.034)[.034] .400(.033)[.033] 
3SLS-2 .216(.056)[.059] .099(.024)[.024] .095(.027)[.028] .399(.034)[.034] .399(.030)[.030] 
BC3SLS .197(.057)[.057] .100(.024)[.024] .100(.028)[.028] .401(.034)[.034] .400(.030)[.030] 
𝜎12 = 0.5      
2SLS-1 .201(.058)[.058] .101(.033)[.033] .098(.037)[.037] .400(.034)[.034] .400(.033)[.033] 
2SLS-2 .256(.050)[.074] .099(.023)[.023] .083(.026)[.031] .396(.033)[.033] .393(.029)[.029] 
BC2SLS .189(.060)[.061] .101(.024)[.024] .102(.029)[.029] .401(.034)[.034] .401(.030)[.030] 
3SLS-1 .201(.058)[.058] .100(.032)[.032] .098(.036)[.036] .400(.032)[.032] .400(.031)[.031] 
3SLS-2 .217(.056)[.058] .098(.023)[.023] .094(.027)[.028] .402(.031)[.031] .402(.028)[.028] 
BC3SLS .198(.058)[.058] .100(.024)[.024] .099(.028)[.028] .400(.032)[.032] .400(.029)[.029] 
𝜎12 = 0.9      
2SLS-1 .202(.058)[.058] .101(.033)[.033] .098(.037)[.037] .400(.034)[.034] .399(.033)[.033] 
2SLS-2 .286(.046)[.098] .099(.022)[.022] .073(.024)[.036] .393(.031)[.032] .389(.027)[.029] 
BC2SLS .183(.063)[.065] .101(.025)[.025] .104(.029)[.030] .402(.035)[.035] .402(.031)[.031] 
3SLS-1 .202(.057)[.057] .100(.030)[.030] .098(.036)[.036] .401(.027)[.027] .401(.027)[.027] 
3SLS-2 .218(.058)[.060] .096(.023)[.023] .095(.027)[.028] .406(.027)[.028] .406(.026)[.027] 
BC3SLS .199(.060)[.060] .100(.023)[.023] .099(.029)[.029] .401(.028)[.028] .401(.027)[.027] 
Mean(SD)[RMSE] 

 

  



Table 8: 2SLS and 3SLS Estimation (𝑛𝑟 = 15, �̅� = 60) 
 𝜑1 = 0.2 𝜆11 = 0.1 𝜆21 = 0.1 𝛽1 = 0.4 𝛾1 = 0.4 

𝜎12 = 0.1      
2SLS-1 .199(.059)[.059] .096(.036)[.036] .103(.039)[.039] .398(.035)[.035] .402(.032)[.032] 
2SLS-2 .244(.050)[.067] .091(.025)[.026] .092(.027)[.028] .394(.035)[.035] .398(.028)[.028] 
BC2SLS .193(.062)[.062] .099(.025)[.025] .103(.029)[.030] .399(.035)[.035] .402(.029)[.030] 
3SLS-1 .199(.059)[.059] .096(.036)[.036] .103(.039)[.039] .398(.035)[.035] .402(.032)[.032] 
3SLS-2 .228(.060)[.066] .091(.025)[.026] .096(.029)[.029] .396(.035)[.035] .401(.029)[.029] 
BC3SLS .195(.060)[.060] .099(.025)[.025] .102(.029)[.029] .399(.035)[.035] .401(.029)[.029] 
𝜎12 = 0.5      
2SLS-1 .200(.059)[.059] .096(.036)[.036] .103(.039)[.039] .398(.035)[.035] .402(.032)[.032] 
2SLS-2 .303(.047)[.114] .090(.024)[.025] .075(.026)[.036] .389(.032)[.034] .390(.027)[.029] 
BC2SLS .187(.065)[.066] .099(.026)[.026] .104(.031)[.031] .399(.035)[.035] .402(.030)[.030] 
3SLS-1 .200(.059)[.059] .096(.035)[.036] .103(.039)[.039] .399(.033)[.033] .402(.031)[.031] 
3SLS-2 .230(.060)[.067] .090(.025)[.027] .094(.029)[.029] .401(.033)[.033] .406(.027)[.028] 
BC3SLS .197(.063)[.063] .099(.026)[.026] .102(.030)[.030] .398(.034)[.034] .401(.029)[.029] 
𝜎12 = 0.9      
2SLS-1 .200(.059)[.059] .096(.036)[.036] .102(.039)[.039] .398(.035)[.035] .402(.032)[.033] 
2SLS-2 .360(.041)[.165] .092(.021)[.023] .058(.024)[.048] .385(.029)[.032] .382(.024)[.030] 
BC2SLS .181(.069)[.072] .099(.026)[.026] .106(.032)[.033] .400(.036)[.036] .403(.031)[.031] 
3SLS-1 .201(.058)[.058] .096(.033)[.034] .102(.038)[.038] .401(.028)[.028] .402(.027)[.027] 
3SLS-2 .232(.062)[.069] .090(.025)[.027] .092(.029)[.030] .409(.028)[.030] .411(.026)[.028] 
BC3SLS .198(.064)[.064] .099(.026)[.026] .101(.031)[.031] .400(.029)[.029] .401(.027)[.027] 
Mean(SD)[RMSE] 

  



Table 9: Data Summary 
Variable Definition Mean SD 

Delinquency In the text    1.25    0.70 
Sports In the text    1.16    1.04 
Age Age    15.47    1.68 
Female  1 if the respondent is female    0.54    0.50 
(White) 1 if the respondent is white    0.62    0.49 
African American  1 if the respondent is African American    0.18    0.38 
Asian American 1 if the respondent is Asian American    0.05    0.22 
Other race 1 if the respondent is not white or African American    0.15    0.36 
Grade Grade, coded as 1 if the respondent is in grade 6, 2 if the 

respondent is in grade 7, etc. 
   3.55    1.62 

Both parents 1 if the respondent lives with both parents    0.75    0.43 
Parental care 1 if the respondent thinks parents care about him/her very much     0.85    0.36 
(Less than HS) 1 if the parent’s education is less than high school (HS)    0.12    0.33 
HS graduate 1 if the parent’s education is HS or higher but no college degree    0.54    0.50 
College graduate 1 if the parent’s education is college or higher    0.29    0.45 
Education missing 1 if the parent’s education information is missing    0.04    0.20 
Professional 1 if the parent’s job is a doctor, lawyer, scientist, teacher, 

librarian, nurse, manager, executive, director, computer 
specialist, and radiologist 

   0.29    0.45 

Office worker 1 if the parent’s job is office worker, bookkeeper, clerk, 
secretary, sales worker, insurance agent and store clerk 

   0.23    0.42 

Other job 1 if the parent’s job is not listed above    0.30    0.46 
(Unemployed) 1 if the parent is unemployed    0.12    0.33 
Job missing 1 if the parent’s job information is missing    0.05    0.21 
Living condition 1 if the building in which the respondent lives is very well kept    0.61    0.49 
Parent smoking 1 if the parent of the respondent smokes cigarettes    0.64    0.48 
Parent religious 1 if the parent went to a religious service with the respondent in 

the past 4 weeks 
   0.43    0.49 

Parent sports 1 if the parent played a sport with the respondent in the past 4 
weeks 

   0.27    0.45 

Coordination 1 if the respondent is well coordinated    0.35    0.48 
The variable in the parentheses is the reference category.  
If both parents are in the household, the education and job of the father is considered. 
 

 

  



Table 10: Estimation of Peer Effects in Juvenile Delinquency 
 2SLS BC2SLS 3SLS BC3SLS 

Simultaneity effect 𝜑1   -0.2916***  -0.3746***  -0.3666***  -0.2738*** 
  (0.0878)  (0.0562)  (0.0865)  (0.0488) 
Endogenous peer effect 𝜆11   0.0590***   0.0376***   0.0573***   0.0355*** 
  (0.0152)  (0.0126)  (0.0151)  (0.0122) 
Cross-activity peer effect 𝜆12  -0.0448***  -0.0272**  -0.0424***  -0.0264** 
  (0.0141)  (0.0118)  (0.0140)  (0.0115) 
Age  -0.0024  -0.0026  -0.0039   0.0015 
  (0.0217)  (0.0219)  (0.0220)  (0.0215) 
Female   -0.4333***  -0.4567***  -0.4533***  -0.4289*** 
  (0.0360)  (0.0313)  (0.0360)  (0.0299) 
African American  -0.3201***  -0.3294***  -0.3306***  -0.3283*** 
  (0.0603)  (0.0610)  (0.0610)  (0.0599) 
Asian American  -0.4782***  -0.4907***  -0.4864***  -0.4835*** 
  (0.0850)  (0.0860)  (0.0861)  (0.0846) 
Other race  -0.1048**  -0.1009**  -0.1057**  -0.1061** 
  (0.0463)  (0.0469)  (0.0469)  (0.0461) 
Grade  -0.0100  -0.0144  -0.0152  -0.0099 
  (0.0266)  (0.0267)  (0.0269)  (0.0262) 
Both parents  -0.0097  -0.0074  -0.0054  -0.0092 
  (0.0336)  (0.0340)  (0.0339)  (0.0333) 
Parental care  -0.4632***  -0.4639***  -0.4644***  -0.4668*** 
  (0.0386)  (0.0391)  (0.0391)  (0.0385) 
HS graduate  -0.0145  -0.0144  -0.0152  -0.0228 
  (0.0441)  (0.0446)  (0.0447)  (0.0438) 
College graduate   0.0263   0.0262   0.0225   0.0116 
  (0.0517)  (0.0521)  (0.0523)  (0.0510) 
Education missing  -0.0726  -0.0817  -0.0880  -0.0838 
  (0.0788)  (0.0798)  (0.0796)  (0.0783) 
Professional   0.0104   0.0124   0.0112   0.0084 
  (0.0475)  (0.0482)  (0.0481)  (0.0474) 
Office worker   0.0355   0.0350   0.0336   0.0360 
  (0.0480)  (0.0486)  (0.0486)  (0.0478) 
Other job  -0.0321  -0.0348  -0.0338  -0.0311 
  (0.0459)  (0.0464)  (0.0464)  (0.0457) 
Job missing   0.0894   0.0922   0.0844   0.0879 
  (0.0758)  (0.0769)  (0.0767)  (0.0755) 
Living condition  -0.0492*  -0.0492*  -0.0516*  -0.0505* 
  (0.0289)  (0.0293)  (0.0292)  (0.0288) 
Parent smoking   0.1737***   0.1756***   0.1330***   0.1516*** 
  (0.0289)  (0.0292)  (0.0237)  (0.0240) 
Parent religious  -0.1382***  -0.1370***  -0.1286***  -0.1494*** 
  (0.0297)  (0.0298)  (0.0236)  (0.0244) 
First Stage F test statistic 11.590    
OIR test p-value 0.470    
J test p-value 0.823    
Standard errors in parentheses. Statistical significance: ***p<0.01; **p<0.05; *p<0.1. 
Contextual effects and network fixed effects are considered for all estimators. 
 


