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1 Introduction

Social interaction models study how interaction among individuals can lead to collective behavior
and aggregate patterns (Anselin, 2006). Such models are subjects of interest in the new social
economics (Durlauf and Young, 2001). Empirical studies on social interactions can be found in Case
(1991; 1992) on consumption pattern and technology adoption; Bertrand et al. (2000) on welfare
cultures; and Sacerdote (2001), Hanushek et al. (2003) and Lin (2005; 2008) on student achievement,
to name a few. For these studies, an individual belongs to a social group. The individuals within a
group may interact with each other.

A general social interaction model incorporates endogenous effects, contextual effects, and unob-
served correlation effects. Identification of the endogenous interaction effect from the other effects is
the main interest in social interaction models (see, eg., Manski, 1993; Moffitt, 2001). In his seminal
work, Manski (1993) has shown that linear regression models where the endogenous effect is speci-
fied in terms of the group mean would suffer from the ‘reflection problem’. The various interaction
effects cannot be separately identified.

Lee (2004; 2007) recognizes that many of the empirical studies of social interactions in a group
setting have their model specifications related to the spatial autoregressive (SAR) model in the
spatial econometrics literature (see, eg., Case, 1991; Bertrand et al., 2000; Moffitt, 2001; Hanushek
et al., 2003). Lee (2007) considers the SAR model in a group setting which allows endogenous group
interactions, contextual factors, and group-specific fixed effects. Lee’s (2007) group interaction model
assumes that an individual is equally influenced by all others in that group, so that the endogenous
effect and contextual effect are specified, respectively, as the average outcomes and characteristics of
the peers. Lee (2007) shows that the identification of the various social interaction effects is possible
if there are sufficient variations in group sizes in the sample. The identification, however, can be
weak if all of the group sizes are large.

When there is no information on how individuals interact within a group, Lee’s (2007) group
interaction model is practical by assuming an individual is equally influenced by the peers. In some
data sets which are designed for the study of social interactions, information on the network structure
within a group may be available. An example is the Add Health data (Udry, 2003), where there is
information on the ‘named’ friends within a grade or a school of each student in the sample. Such

information on the connections of each individual (node) in a group (network) may be captured by



the spatial weights matrix in a SAR model. Different from the equally weighted group interaction
matrix in Lee (2007), the network weights matrix can be asymmetric and its off-diagonal entries
may be zeros. Such a weights matrix introduces more nonlinearity for identification of various social
interaction effects beyond the variation of group sizes.

Lin (2005) recognizes the value of the network structure and has estimated a network model on
student academic achievement using the Add Health data. Lin’s (2005) model has the specification
of a SAR model, which includes group-specific fixed effects, in addition to endogenous and contextual
effects. Lin (2005) has discussed the difference of the network model with the linear-in-mean model
of Manski (1993) and argued that the information on network structure helps identification. How-
ever, formal identification conditions have not been explicitly derived in that paper. Subsequently,
Bramoullé et al. (2009) investigate the identification of the network model in Lin (2005) by focusing
on the network operator of the reduced form equation.

This paper discusses the specification, identification and estimation issues of the network model.
The sample consists of many different groups and a network is formed among individuals within a
group. To capture the group unobservables, a group dummy is included. As there are many groups in
the sample, the joint estimation of the group fixed effects with the structural parameters will create
the ‘incidental parameter’ problem (Neyman and Scott, 1948). For this reason, Lee (2007) considers
the within estimation method for the group interaction model, and Lin (2005) takes the difference
of an individual’s outcome from the average outcomes of his/her named friends (or connections)
to eliminate the group fixed effects. For the within equation, Lee (2007) discusses the 2SLS and
(conditional) maximum likelihood (ML) methods for the model estimation. He shows that the ML
method is efficient relative to the 2SLS. On the other hand, the empirical model in Lin (2005) is
estimated by the 2SLS after the elimination of group fixed effects.

The model considered in this paper has a similar specification as the network model in Lin (2005).
In addition, we allow the disturbances of connected individuals to be correlated, so that the selection
effect in a network can be partially captured.! We characterize the identification conditions of the
extended SAR model based on features of the network structure, the role of exogenous variables, and

the presence of correlated disturbances. We propose an alternative method to eliminate the group

LIf the network formation is endogenous due to the similar preference of connected individuals as argued in Moffitt
(2001), disturbances of connected individuals may be correlated. Therefore, correlated disturbances shall be allowed in
order to capture the endogenous network formation, which is regarded as an important selection issue in the empirical
literature. Although network formation is assumed exogenous in this paper, such a specification of disturbances is in
the right direction for a better model.



fixed effects. We compare the performance of the proposed elimination method with that of Lin
(2005) in terms of estimation efficiency. For the estimation, we propose a quasi-maximum likelihood
(QML) method which is computationally tractable and efficient relative to the 2SLS method. This
likelihood is a partial likelihood in the terminology of Cox (1975).

The rest of the paper is organized as follows. Section 2 presents the SAR model with network
structures. We interpret the specification of the model and discuss identification and estimation
issues. Section 3 suggests a transformation of the model to eliminate group fixed effects. The
implementation of the QML estimation of the transformed model is discussed in Section 4. Section
5 characterizes the identification conditions of the model and establishes the consistency of the QML
estimator (QMLE). Section 6 derives the asymptotic distribution of the QMLE and compares the
efficiency properties of the QMLE with the 2SLS estimator (2SLSE). Section 7 investigates the
finite sample performance of the estimation methods, and consequences of model misspecifications

via Monte Carlo experiments. Section 8 briefly concludes.?

2 The Network Model with Macro Groups

The model under consideration has the specification

an = )\OWTLT’YTLT’ + anﬁl() + WannrﬁQO + lmrar() + Unr, (1)

where un, = pgMprtn, + €y for r =1,--- 7. 7 is the total number of groups in the sample, m,
is the number of individuals in the rth group, and n = ZLI m, is the total number of sample
observations. Yy, = (y1r,- - ,Ym,.r) is an m,-dimensional vector of y;., where y;, is the observed
outcome of the ¢th member in the macro group r. W,,,- and M,,,. are nonstochastic m,. x m, network
weights matrices, which may or may not be the same.* X, is an m, x k matrix of exogenous
variables.! [,, is an m,-dimensional vector of ones. €,, = (€nr1, " €nrm,.)" is an m,-dimensional
vector of disturbances, where €, ;’s are i.i.d. with zero mean and variance a%.

The specification of the weights matrices W,,,. and M, in (1) captures the network structure

2 An empirical application to illustrate the practical use of the specified model and the proposed estimation method
can be found in the working paper version of this paper and Lin (2008).

3Some empirical studies assume M, = W, (see, e.g., Cohen, 2002; Fingleton, 2008). On the other hand, some
discussions on the possibility that M, # W, can be found in LeSage (1999, pp. 87-88).

4Sometimes, model (1) can be specified as Ynr = AoWnrYnr + XinrB10 + WnrXonrBag + lm,.ro + tnr with
Unr = PogMnrtnr + €nr. Here we assume X1pr = Xopr = Xpr wlog. If X1, and Xop, are not the same, they may
be expanded to an Xy, which contains all the distinct columns of Xip, and Xay,,-. In that case, 815 and 8oy will
have zero restrictions in some of their entries.



> In a group interaction model, with no information on how individuals

of the macro group r.
interact within a group, it is typical to assume that each group member is equally affected by all

the other members in that group, so that the weights matrix takes the special form Wy, = M. =

mil (L, Uy — I, ). On the other hand, some data sets (e.g. the Add Health data as mentioned
above) have information on the network structure. With such information, the (¢,7) entry of the
weights matrix is a non-zero constant if ¢ is influenced by j, and zero otherwise. In principle, the
influence is not necessarily reciprocal, and hence the weights matrices can be asymmetric. In the
paper, we focus on the case that W,,,. and M,,, are row-normalized such that the sum of each row
is unity, i.e., Wyplm, = Mprly, = by, . Row normalization is popular in empirical studies of social
interactions as W, Y, can be then interpreted as the (weighted) average outcome (or behavior) of
the peers.”

The network model (1) is an equilibrium model in the sense that the observed outcomes Y,
are simultaneously determined through the network structure within a group under the assumption
that (I,,, — AW, is invertible.® This model may have different economic contents under different
contexts. One may interpret the equations in (1) as reaction functions in the industrial organization
literature. Or, Y,,, may be regarded as the outcomes of the Nash equilibrium in a peer effect game
(see Case et al., 1993; Calvé-Armengol et al., 2006). In the spatial econometrics literature, the model
(1) is an extended SAR model with SAR disturbances.” A typical SAR model, however, does not
have a macro group structure so group-specific effects are absent. As a model in the framework of
social network, which is our main focus, W,,,.Y,,, captures the possible endogenous social interactions
effect with the coeflicient Ao, Wy, X, captures the contextual effect with the coefficient 55,. The
endogenous effect refers to the contemporaneous influences of peers. The contextual effect includes

characteristics of peers unaffected by the current behavior. The incorporation of the contextual

5In an empirical study, one might have different specifications of the network weights matrix. The model with a
different network weights matrix would be a different model and we would have a model selection problem in practice.
Some Monte Carlo studies in Lee (2008) provide evidence that the model selection based on the maximized likelihood
values can be quite effective. Such a model selection issue is interesting and important but is not the focus of this
paper.

6 A list of frequently used notations is provided in the Appendix for the convenience of reference.

"In some cases, however, row-normalization is not plausible. For example, if a row has all zero elements, then it is
impossible to normalize that row to one. Also, sometimes one may be interested in the aggregate influence rather than
the average influence of the peers. Liu and Lee (2009) have proposed a GMM approach to estimate a social interaction
model where the weights matrix is not row-normalized. The two models with or without row-normalization might
address different empirical motivations and they can be complementary to each other.

8 A sufficient condition for (I, — AoWnr) to be invertible is that |[AoWhpyr|| < 1 for some matrix norm || - ||. For
the case where Wy, with all entries being non-negative, is row-normalized, a sufficient condition is |[Ao| < 1.

9Tn the terminology of spatial econometrics, Wy Xpr is called a exogenous spatial lag (Florax and Folmer, 1992),
and a model with such a term is referred to as a spatial Durbin model (Anselin, 1988).



variables, here W,,,. X,,,, in addition to X,,,, has a long history in the social interaction literature in
sociology before simultaneity is allowed in the model. «,¢ captures the unobserved group-specific
effect, and M,,,u,, captures the unobserved correlation effect among connected individuals with the
coefficient p,.!°

Manski’s (1993) reflection problem refers to the difficulty to distinguish between behavioral and
contextual factors. Moffitt (2001) argues that the basic identification problem is how to distinguish
correlations of outcomes that arise from social interactions from correlations that arise from corre-
lated group unobservables. He believes in two generic sources of correlated unobservables — one from
preferences or other forces that lead certain types of individuals to be grouped together, and the
second from some unobservable common environmental factors. For our generalized network model
with macro groups, while the second source is captured by the group-specific effect a,.g, the first
source may be captured by the correlation effect parameter p,.

Although we treat «,¢ as the unobserved group effect of a macro group, such as a school-grade,
this specification can be generalized if there are several network components in a macro group. In the
terminology of networks, a component is formed by a maximal set of individuals directly or indirectly
related to each other. A macro group may be regarded as the platform for a social network. A social
network may have a single or several components. In some applications, one may prefer to introduce
a separate dummy for each component within a group instead of a single group dummy. Such a
generalization will be accommodated by model (1) as we might regard each component as a group

instead.

10Ty the literature of spatial econometrics, several approaches have been suggested for the specification of the form
of spatial error dependence. In model (1), the regression error term un, is assumed to follow a SAR process. Under
this specification, all the observations in a group are related to each other, with a decreasing correlation with higher
orders of contiguity. Hence, such a structure is desirable as it induces global spatial autocorrelation within a group
(Anselin, 2006). As an alternative, one can model the structure of spatial correlation based on a moving average
process. However, such a specification only represents a local pattern of autocorrelation. For example, with a first
order moving average specification, there is no spatial covariance beyond the second neighbor (Anselin, 2006). We have
shown, in Appendix E, that the proposed QML method can be extended to the model where the disturbances follow
a more general spatial ARMA process. In some cases, one could model the spatial error dependence by assuming that
the spatial correlation is a function of the distance between two observations (Cressie, 1993). Such a specification could
be useful for geostatistic models but might be less so for social network models. For example, if the social network can
be represented in a graph, the relationship between nodes could simply be represented by a binary indicator which is
one for connected nodes and zero for unconnected ones. This is the case for the Add Health data (Udry, 2003) that we
have applied the proposed method to the empirical studies in our previous version and that in Lin (2008). In addition
to these specifications of the disturbances, another possibility is to leave the covariance structure unspecified such as
those in Conly (1999) and Kelejian and Prucha (2007). For that alternative strategy, the main interest is to provide
HAC covariance matrices for the 2SLS and/or GMM estimators. Our paper does not follow the latter strategy as our
interest is to consider efficient estimation for the model as well as the variance structure of the disturbances.



3 Elimination of the Macro Group Fixed Effects

In this paper, we allow the distribution of a,g to depend on X,, and W,,. We consider the
estimation of the model conditioning on «,¢’s by treating «,¢’s as unknown parameters (as in the
panel econometrics literature). To avoid the incidental parameter problem, we shall have the fixed
effect parameter eliminated.

In a linear panel regression model or a logit panel regression model with fixed effects, the fixed
effect parameter can be eliminated by the method of conditional likelihood when effective sufficient
statistics can be found for each of the fixed effects. For those panel models, time average of the
dependent variable provides the sufficient statistic (see Chamberlain, 1980; Hsiao, 2003). However,
effective sufficient statistics might not be available for many other models. The well-known example
is the probit panel regression model, where time average of the dependent variable does not provide
the sufficient statistic, even though probit and logit models are close substitutes. For the group
the group average, i.e., ¥, =

interaction model in Lee (2007), due to the specific structure of W¢

nro

,,17‘ Z?Zl yir, does provide an effective sufficient statistic to eliminate the fixed effect parameter
arg. The observation deviated from the group mean (y;- — %) does not involve the fixed effect
a0 and hence can be used in the conditional likelihood function for the estimation of the structural
parameters. For a general network weights matrix W,,,., 7, might not be a sufficient statistic for a,.o.'!
Even so, this paper suggests a method which eliminates the fixed effects and allows the estimation
of the remaining parameters of interest via a QML framework by exploring the row-normalization
property of the weights matrices.

To simplify repeated notations, let S, (A) = I, — AWar, Spr = Snr(Xo)y Rur(p) = L, — pMpy,
and R, = R,-(py). The reduced form equation of (1) is Y., = S (ZnrBo+lm, o+ Ryt €nr ), where
Znr = (Xpry Wi Xorr) and B = (B9, Ba0)’- A Cochrane-Orcutt type transformation introduces i.i.d.

disturbances so that

RnTSnran = Rannrﬂo + (]- - po)lmTaTO + Enr, (2)

as Rurlm, = (1 — pg)lm,.. Let Jop = Ly, — m%l ! be the derivation from group mean projector.

LM Py

' The model (1) implies that g, = 117, Yor = 22U, WarYar + 5l XnrBio + 7 ln, War XnrBag + aro +
ni,, l;nrunr. yr does not provide a sufficient statistic for a,p when l;nTWnT is not proportional to lﬁnr because

l;nr WrYnr may not be a function of 4.




Premultiplication of (2) by J,, eliminates a,q’s, so we have

JnarrSnran = Jnaranrﬁ() + Jnrﬁnw (3)

The transformed disturbances J,,.€,, are linearly dependent because its variance matrix o3.J,,,
is singular. For an essentially equivalent but more effective transformation, we consider the or-
thonormal matrix of J,, given by [F,,,ln, //my]. The columns in F,, are eigenvectors of .J,,
corresponding to the eigenvalue one, such that Fj I, = 0, F} F,, = In: and Fp, F). = Ju,

where m? = m, — 1. Premultiplication of (2) by F,, leads to a transformed model without a,¢’s,

F! RuwSniYnr = F\ Ry Znr By + Fl€nr. By Lemma C.1,'2 this implies that

(Fr/ananr)(Fr/LrSannr)Fv/anr = (Fv/erannr>Frlernrﬂ0 + Frlwenr- (4)

Denote Y. = F! Yy, Z

nr

= Fr/LanT’ Wrtr = Fr/LrWnTFnTa M;:r = F;z'r‘MnTFnT’ S’:T(A) = F/ernT‘(A)Fnr =
Lys — AWy, and R, (p) = F . Rn,(p)Fur = Iyy» — pM;;,.. Furthermore, denote Sy, = Sy (A\o) and

Ry . = R}, (py) for simplicity. The transformed model (4) can be rewritten more compactly as

R:LT‘S:LTY:T = R;FWZ:rﬁO + 6:”"’ (5)

where €, = F/ €, is an m’-dimensional disturbance vector with zero mean and variance matrix
03 Im=. Equation (5) is used for the estimation of the structural parameters in the model.

Some features in (5) may not conform to a typical SAR model. A spatial weights matrix in a
conventional SAR model is specified to have zero diagonal elements. Such a specification facilitates
the interpretation of spatial effects of neighboring units on a spatial unit and excludes self-influence.
A zero diagonal spatial weights matrix is also utilized in Moran’s test of spatial independence so as
the test statistic has zero mean under the null hypothesis of spatial independence. Many articles
on spatial econometrics maintain this assumption. While W,,,. and M,,, have zero diagonals, the
transformed W}, and M}, do not.'® Also even though W,,,. and M,,,. are row-normalized, the trans-
formed W), and M}, do not preserve this feature. However, these do not turn out to be difficult

issues for understanding asymptotic properties of estimators. The difficulty from the analytic point

128ee Appendix C for some useful lemmas.
BAs tr(Wpr) = 0 and Wirlm, = lm,., W;5, has nonzero diagonal elements because tr(W;:,.) = tr(Wp,r FprFl,.) =
tr(WarJnr) = tr(War) — 2tr(Waplm, 1, ) = —1.

My



of view is on the uniform boundedness properties of the transformed spatial matrices. Furthermore,
when elements of €,, are i.i.d., the elements of €}, are only uncorrelated but, in general, not neces-
sarily independent. So asymptotic results which are developed for the estimation of a typical SAR
model, e.g., the QMLE in Lee (2004), may not directly apply. The following section discusses the

implementation of the QML method for the transformed model.

4 Quasi Maximum Likelihood Estimation
Let €*,.(0) = R:,.(p)[S:, (N)Y,:. — Z* 3], where § = (5, \,p)’. For a sample with ¥ macro groups,
the log likelihood function is

n* 7 y 7 . 1 7 * *
In L’ﬂ (9) = _? 11’1(27'('0’2) + Zr:l In |Snr()‘)| + Zr:l In |Rnr (p)| - T.,Q Zr:l enlr((s)enr((S% (6)

where 6 = (§,02)" and n* = 3_._, m¥ = n — 7 is the number of effective sample observations. The

likelihood function has a partial likelihood (Cox, 1975) interpretation as showed in Appendix D.

In order to implement the QML, the determinant and inverse of S},.()\) and R}

nr

(p) are needed.
As |SE,.(N)] = ﬁ|8m(/\)| and |RY,.(p)| = ﬁ|Rm(p)| by Lemma C.1, the tractability of evaluat-
ing |S%,.(\)| and |R%,.(p)| is exactly that of |S,,.()\)| and |R,.(p)|.!* Furthermore, as S} .(\)~! =

nr nr

F! .S\ F,,. and R’ (p)~! = F!, R (p) ' F,, by Lemma C.1, S¥, ()\) and R

nr * -(p) are invertible

as long as the original matrices Sy, (A) and R,,-(p) are invertible.

Let €,r(0) = Rur(0)[Snr(N)Ynr — Znr5]. As €5,(0) = F), €nr(6) by Lemma C.2; it follows

nr

that € (0)er,.(0) = €,,.(0)Inrenr(d) because Jp, = Fp, F.. . Denote Y, = (Y/q,---,Y.), X, =

(X;ﬂa"' 7X7sz)/7 Zn = (Zylllv"' 7Z7/zf)/’ €n = (6;17"' 76217?)/7 Wn = Diag{Wnla"' 7an}7 Mn =
Diag{Mp1,- -+, Mps}, and J,, = Diag{Jp1,- -, Jur}. The log likelihood function can be evaluated

without Fj,,’s as

In L, (0)
n* 2 7 |Snr(N)] 7 |Rnr(p)] 1 7
= —7 111(271'0' ) + ZTZI In ﬁ + ZTZI In ﬁ — ﬁ Zr:l E;W(CS)JHTEHT((S)

*

= n(2r0%) + I [Su(N)] + I Ra(p)] — Pl = N1~ p)] — g€ (D) Tneald), ()

14When Wi, and My, are constructed as row normalized weights matrices from original symmetric matrices, Ord
(1975) suggests a computational tractable method for the evaluation of |Snr(X)| and |Rnr(p)|. This will also be useful
for evaluating |S¥,.(\)| and |R},.(p)|, even though the row sums of the transformed spatial weights matrices W}, and
M, may not be unity.



where €,(0) = R, (p)[Sn( MY, — Z,.8], Sn(A) = I, — AW, and R, (p) = I, — pM,,. For simplicity, let
Sn = Sn(Xo) and R, = R, (pg)-

In Lee’s (2007) group interaction model, py = 0 and Wy, = W<, = (1,1, — I,,). Hence,

My m,

the likelihood function (7) becomes

*

In Ln(0) = = In(270%) + )y my In(m; + A) — Inm;] - % ST e (8) Turenrn (8),

where J, €, (0) = mii,fk JorYor — (Tnr X —mi:,],,”.Xn,,.)ﬂ, because |1, —AW,,| = (I—A)(%)m:‘,
IneWhr = —mijlm.. This is exactly the one derived in Lee (2007). Thus, the proposed estimation
approach in this paper generalizes Lee (2007).

For computational and analytical simplicity, the concentrated log likelihood can be derived by
concentrating out 8 and o2. From (7), given v = (\,p)’, the QMLE of f, is given by ,(v) =
[Z! R (p) Ry (p) Z) "1 Z! R, (0) 0 Ry (p) S (A) Y, and the QMLE of o3 is given by

[Sn(N) Yy — Zan('y)]/R;(p)Jan(p) [Sn(N)Yn — Zn B, (V)]

3[=3|m

Y, S5, (A Ry (0) Pr(p) R (0) Sn(A) Yo,

where P, (p) = Jp — JuRu(p)Zn[Z] R. (p) JnRi(p) Zn) 1 Z! R (p)J, and P, = P, (p,) for simplicity.

The concentrated log likelihood function of ~ is

n*

nLn(y) = -5 (n(2m) +1) - %* In &7, (7) +1n[ S, ()] + 1| Ry (p)| = 7In[(1 = X)(1 = p)].  (8)

The QMLE 4,, = (An, p,,)’ is the maximizer of the concentrated log likelihood (8). The QMLESs of
B, and o2 are, respectively, /3, (5,) and 62(%,,). For asymptotic analysis, we assume the following

regularity conditions.

Assumption 1 The {€,,;}i=1,... m, r=1,.. 7 are i.i.d. with mean zero and variance 03.15 The mo-

ment E(|e,,;[**") for some n > 0 exists.

15Homoskedasticity might be a restrictive assumption, but it is beyond the scope of this paper to incorporate
heteroskedasticity. Under unknown heteroskedasticity, one might need consider an alternative estimation strategy
like an IV-based method (see, eg., Lin and Lee, 2006; Kelejian and Prucha, 2007). However, the IV (or, in general,
moment-based) estimation method can be sensitive in non-obvious ways to various implementation issues such as
the interaction between the choice of instruments and the specification of the model (LeSage and Pace, 2009, p.56).
Furthermore, the IV estimates can be imprecise when instruments are weak. For these reasons, we focused on
likelihood-based techniques in this paper.



Assumption 2 The elements of Z,, are uniformly bounded constants for all n.! Z, has the full

rank 2k, and lim,,_, o %Z;R;JanZn exists and is nonsingular.

Assumption 3 The sequences of row-normalized spatial weights matrices {W,} and {M,} are

uniformly bounded in both row and column sums in absolute value.!”

Assumption 4 {S;}(\)} and {R;!(p)} are uniformly bounded in both row and column sums in
absolute value uniformly in 7 in a compact parameter space I', with the true v, = (Ao, py)’ in

the interior of T'.

The higher than the fourth moment condition in Assumption 1 is needed in order to apply a
central limit theorem due to Kelejian and Prucha (2001). The nonstochastic Z,, and its uniform
boundedness conditions in the first half of Assumption 2 are for analytical simplicity. The R, Z,
are regressors transformed by the spatial filter R,,, and the J, R, Z,, are those transformed by the
deviation form group means projector J,. The second half of Assumption 2 assumes that the
exogenous regressors J, R, Z, in the transformed model (3) are not multicollinear. Assumption 3
limits the spatial dependence among the units to a tractable degree and is originated by Kelejian
and Prucha (1999). It rules out the unit root case (in time series as a special case). Assumption
4 deals with the parameter space of 4 to make sure that In|S,(\)|, In|R,(p)|, In[(1 — X\)(1 — p)],
and their related derivatives are well behaved. As shown in Lee (2004), if |[W,|| <1 and |M,| <1
where ||-|| is a matrix norm, then {||S,;1(\)||} and {||R;,;*(p)||} are uniformly bounded in any subset

of (—1,1) bounded away from the boundary.

5 Identification and Consistency
There is a fundamental identification issue for the network model different from the reflection problem

in Manski (1993) if AoB1 + Boo = 0 and W,, = M,,, as summarized in the following lemma.

Lemma 5.1 If AoBg + B9 = 0 and W,, = M, then the endogenous effect parameter Ao, the

contextual effect parameter By and the correlated effect parameter p, cannot be separately identified.

L6Tf Z,, is allowed to be stochastic, then appropriate moment conditions need to be imposed, and the results
presented in this paper can be considered as conditional on Zp, instead. Furthermore, if Z,, is allowed to be
correlated with €n,, then we have an endogenous regressor problem. In that case, estimation methods such as IV,
etc., which takes into account the endogeneity issue, would be needed.

ITA sequence of square matrices {Ay}, where A, = [@n,ij], is said to be uniformly bounded in row sums (column
sums) in absolute value if the sequence of row sum matrix norm [|Anll,, = max;=1,... .n 3.7 |@n,;| (column sum
matrix norm ||An|l; = maxj—1,... n » iy |an,ij|) is bounded. (Horn and Johnson, 1985)

10



This problem is revealing from the reduced form equation of (5), which is

Yo = Snr' Zn,Bo + Sp  Ril e, 9)

With the restriction AoByo + Bag = 0, Z5B0 = X2 Bro + Wi X7 Bay = (Im, — Wi ) X2 Bro =

Sy X B1o, and, hence, the reduced form equation (9) becomes Y,

e = XrB1g + Unr, Where vy, =

S*flR*fle*

nr nr nr-

While 8, can be identified from the mean regression E(Y,".|X}.) = X, B10, both Ao
and (5, can not be identified as they are not in the mean regression equation. On the other hand, the
disturbances v,,, follows a high-order SAR process, v, = po M., Vnr + oW, Unr — po Ao M5 W U +
er ., where the identification conditions have been considered in Lee and Liu (2008). If W,,,, # M,
so that Wy # M., po and Ao can be identified from the correlation structure of v,,. 85y can then
be identified via the restriction Sy = —AofB1o once Ao is identified. However, when M, = W,,,
Vnr = (po + X)W, Vnr — poroW, 20, + €5,., and hence p, and g can only be locally identified but
can not be separately identified.

An interpretation of the situation \gB15 + B39 = 0 is that (1) does not represent a reaction
function with simultaneity but a model with spurious social correlation among peers. This is because,
under the restriction A\gB15 + 829 = 0, (1) can be generated from the panel regression model Y;¥. =
XnrB1g + vnr with SAR disturbances. Let 8y, ; and B, ; be the jth element of B, and By
respectively. The spurious social correlation model can be ruled out when 3y, ; # 0 and 5, = 0
for some j, or, in another word, there is a relevant variable in X,, that affects Y,, only through
the contextual effect W, X,,. For the linear-in-mean model of Manski (1993), the identification of
endogenous and exogenous interaction effects depends crucially on the existence of relevant variables
in X, that directly affect Y,,. For the network model, it is the behavioral interpretation of the
parameters that can be problematic when Aoy + B4 = 0.!%

The transformed equilibrium vector J, R, (p)Y,, for any p in its parameter space can be repre-

sented as

Jan(p))/n = AOJan(p)GanBO + Jan(p)Znﬁo + Jan(P)SglRﬁlffm (10)

18 This restriction can be tested even Ag and Bao were not identifiable. One may test the significance of the added

regressor vector in the expanded equation Y, = X% B9 + W} . X% .+ vnr by testing that ¢ = 0.

11



because S, ! = NG, +1,, where G,, = W,,S,; 1. A sufficient condition for global identification of 6y is
that the generated regressors J,, R, ()G, Z, 3, and J, Ry, (p) Z,, are not asymptotically multicollinear,
o5

and the variance of matrix of .J, R, '€, is unique. Let o2, (p) = 22tr(R] 'R, (p)JnRn(p)R; ") and
o2() = F([Ru(0) SN S5 By 1 Ju[Ra(p) S (NS R, ).

T n

Assumption 5 Either (a) lim, oo =[G Zn B0, Zn) Rl (p) JnRn(0)[Gn Zn By, Zn) exists and is non-

singular for each possible p in its parameter space and limy, .o, == { o2, (p) R,  (p)Jn Ry (p)|—

Infod Ry TRy} 0, for any p # pos or (b) for any 7 # 7,

o1 - - _ _ 1 1
Tim {02 (0[S VR (0))ulS; VB ()| = In o3 (S Ry Jn(S7 R} # 0.

The rank condition on J, Ry, (p)[GnZnfBo, Zn] in Assumption 5(a) is for the identification of Ag
and 3, from the deterministic component of the reduced form equation (10). The following Lemmas

provide some sufficient conditions which imply this rank condition.

Lemma 5.2 If 355 + MoB19 # 0 and [ X, Wi Xor, W2, Xr, Ui, | has full column rank for some

r

group r, then Jn, Ry (p)|GnZnfos Zn) has full column rank.

Lemma 5.2 gives a sufficient condition for the rank condition in Assumption 5(a) based on the
network structure of a single group, which is feasible only if the size of that group is greater than
3k + 1, where k is the column rank of X,,,.. If there are not enough members in any of the groups
in the sample, information across groups need to be explored to achieve identification. A sufficient

condition for the rank condition in Assumption 5(a) based on the whole sample is given as follows.

Lemma 5.3 If B50+XoB10 # 0 and J, [ X, Wn X, W2 X,] has full column rank, then Jp, Ry, (p)[GnZnBos Zn)]

has full column rank.

The group interaction model in Lee (2007) has the spatial weights matrix W¢, = ——(1,, 1/, —

m,—1 \"Mr " m,

Imr)~ As Jnrwﬁr - *#Jnra J7Lr[an7 Wﬁanr) (Wﬁr)zan] = Jnr[ana - (mrl_l)an) (mrl_l)Q an}

(m,.—1)

does not have full column rank. Identification is not possible only with a single group. On

the other hand, let c¢;, co and c3 be conformable vectors such that J,, X,,c1 + Jo, WS, Xprco +

Inr(WE

nr

)2 X,rc3 = 0, or more explicitly, J,.X,.[c1 — (m:_l)CQ + (m,rl—l)ZCB] =0 by J, WS, =
%1)‘]”’"' As Jp Xy # 0, if there are at least three distinct values for m,.’s in the sample, the

- (my

equality holds only if ¢; = ¢3 = ¢3 = 0. Hence, if there is sufficient group size variations, then

12



Jn[ Xy Wn X, W2X,] has full column rank, which implies the rank condition in Assumption 5(a)
holds by Lemma 5.3.
The identification of the endogenous effect, and hence, the exogenous effect, may be intuitively
illustrated via the reduced form. For a group r,
Yioo= SpN X Bo + W X Ba) + Sy Ry en,

= X:ZTBIO + Z;)io )\%W;z+1X7tr(/620 + )\0610) + S:;':lR:jL:lejn'?

because Si 1 = o N Wi when sup |[AoWi, || < 1. The effects of X, on Y* can be decom-
posed in layers. The direct effect of X, is captured by 3, the effect due to immediate neighbors is
captured by (85 + A1), and that due to neighbors of neighbors in the second layer is captured by
(Bag+A0B10) o with the discount factor Ag. So if the immediate neighbors can be distinguished from

the second layer neighbors, the discount factor provides the identification of the endogenous effect Ag.

For the case with W¢, = ﬁ(l I, —1In),as (F, WE F,,.)? = fmrl_lFr/”,VVe F,,, the net effect

mebm, nr
of X on Y through W<, in the group r is captured by the coefficient (859+X0810) Z;io(*%)j-
Hence, the endogenous effect )y can be identified only by comparing these net effects across groups
with different sizes.

An example where the rank condition above fails is the complete bipartite network, where indi-
viduals in a group are divided into two blocks such that each individual in one block is connected
to all individuals in the other block but none in the same block, and vice versa. These include
the star network where one individual is connected to all other individuals in a group and all the
others in the group connect only to him. This example is due to Bramoullé et al. (2009) for a differ-

0 i

ent transformation.!? For the complete bipartite network, W,,, = Mrg L T2

1
M1 lmr2 l;nrl O
. . . ml lm'r'l l’/m 1 0
with m,q + m,e = m,. It implies that W2, = ot ! . Consequently,
1
0 ez bmea i,
Wor + W2, = [mlllmrl/mru ﬁ? mo . ,] with all its columns proportional to I, . This implies, in

particular, the column space spanned by the columns of J,,,.[Wy Xy, W2, X, contains I,,,,. So if
all groups in a sample consist of bipartite networks, the rank condition in Assumption 5(a) may not

hold.

19Bramoullé et al. (2009) point out this underidentification case for the model with the transformation I, — Whar,
which has been utilized in Lin (2005), to eliminate the group effect.
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We have discussed the rank condition in Assumption 5 (a) for the identification of Ay and 3, in
the mean regression function of the reduced form equation. The second part of Assumption 5 (a) is
for the identification of p, in the SAR error process. It is clear that p, can not be identified from the
mean regression function, as R,,(p) only plays the role of weighting sample observations for efficient
estimation. So, p, needs to be identified from the disturbances S, 'R, 'e,. On the other hand,
when J, R, (p)GnZ,0, and J, R, (p)Z, are linearly dependent or asymptotically multicollinear as n
goes to infinity, a global identification condition would be related to the uniqueness of the variance
matrix of .J,,Y;,, which is given by Assumption 5(b).2°

Finally, we would like to point out that the division by the effective sample size n* in the
limiting conditions in Assumption 5 (as well as in the following Assumption 6) has ruled out the
case of large group interactions, which have been considered in Lee (2004; 2007). In that case,
both the endogenous and exogenous interaction effects would be weakly identified and their rates
of convergence can be quite low (Lee, 2004; 2007). But for network models, one has emphasized on
‘small world’, as the main interest in the network literature. This is also for the empirical application
in this paper.

Let Qn(y) = maxg ,2E(InL,(#)). The solutions of this maximization problem are S (y) =
(23 Ry () R (p) Z0) ' Z3, R, (0) T R (p) S (N) Sy, Z1n B, and

n

02() = %E{[Sn()\)Yn = ZnB (NN Ry, (0) T B (p) [Sn (M) Yo = Zn B, ()]}

= L 0= N2CaZuB) B (0)Pa 0) Ba9) G2y
([, ) SUN R, () Ba()S1 () S .

n

Hence,

Qu(1) = =" ((2m) + 1) = % no72(9) +In[S,(0)] + In | Ru(o)] ~ Flnl(1 = N1~ )], (11)

Identification of , can be based on the maximum of -L-@Q,(v). With identification and uniform

convergence of -1 In L, () — -5 Qy(7) to zero on I, consistency of 0,, follows.

Proposition 1 Under Assumptions 1-5, 0y is globally identifiable and 0,, is a consistent estimator

20The identification of A\g and/or p, via the variance structure is exactly those for SAR models in Lee (2004) and
Lee and Liu (2008).
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Of 90,

6 Asymptotic Distributions

laQ1nL,L(é,L)),1L61nL,L(90)
n~ 9000’ NG 00 )

for some én between 9n and 6. The first order derivatives of the log likelihood function at 6y given

From the Taylor expansion of %2(9") = 0, it follows that v/n(6,—00) = (

in Appendix B are linear or quadratic functions of €,. The asymptotic distribution of the first order

derivatives may be derived from central limit theorems in Kelejian and Prucha (2001).

The variance matrix of — 20Lx() i 1 dnlLa(6o) 1 9lnLn(6o)

} = Zgﬁn + Qg,n, where

Vn* o0 vn* 00 n* 00’
2In L, (60)7 : . . . . . .
Son= —E[ni 850789,(“)] is the symmetric average Hessian matrix, and g ,, is a symmetric matrix

such that Qp, = 0 when €, ;’s are normally distributed.?! Assumption 5(a) is sufficient to guarantee
that the limiting average Hessian matrix is nonsingular. If v, is a regular point (Rothenberg,
1971), as Assumption 5(b) is a global identification condition which implies local identification, the
limiting average Hessian matrix will also be nonsingular. The sufficient condition which complements
Assumption 5(b) for this purpose is given as follows. Let A° = A 4+ A’ for a square matrix A. Let
Cn = JnRyGo Ry — tr(J, R, Gy Ry, and Dy, = J, Hy, — 2tr(J, Hy,) I,

Assumption 6 lim, . ( L V2[tr(D2 D3 )tr(CC8)—tr2(CED3)] > 0.

n*

Proposition 2 Under Assumptions 1-4 and 5(a); or 1-4, 5(b) and 6, \/n* (9n —0o) 2N N(0, Z;l +
25199251), where Qg = limy,_,oc Qg,r, and Xg = limy, o0 Lo, which are assumed to exist. If €,,;’s

are normally distributed, then v/n*(6, — 6y) 5 N(,2,1).

For the transformed model J,,Y,, = Ao J,W,.Y,, + JnZn B¢ + Jn R, en, a computational conve-
nient estimation method is the generalized 2SLS (G2SLS) by Kelejian and Prucha (1998). In the
first step of G2SLS, ¢, = (85, A\o)" will be estimated by the 2SLS with an IV matrix Qy,, égsl&n =
(Zn, Wi Y2) Ty Pin Jn (Zy, W, Yo )| "N (2, W Y0 ) T Pry )Y, where Pryy = Q10 (Q), Q1) 1 QY,,. With
the initial 2SLSE 6231&”: JnR; Y€, can be estimated as a residual and p, will be estimated by a
method of moments (MOM) in Kelejian and Prucha (1999). Let p,,,,, , be the consistent MOM

estimate of p, and R, = R,( The feasible G2SLS estimator (G2SLSE) of ¢, in the model

pmom,n) N
is

&gQSls,n = [(Zn7 WnYn)/R;JnPZ’anRn(Zn; WnYn)]_l(ZTu WnYn)/R%JnPQanRnYny

2IThe explicit expressions of Yo,n and Qg ,, are given in Appendix B.
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where Py, = an(Qéann)leén for some IV matrix @)o2,. The G2SLSE is consistent and asymp-
totically normal with

Vi (Cgastsn — Co) 2 N(0, 03] lim i*(Zm GnZnBo) Ry, JnPonJn R (Zn, G ZnBy)) ).

n—oo N

It follows from the generalized Schwarz inequality that the best selection of Qsg,, is IR, (Zn, Gn(;\n)Zan],
where G, (\) = W,,S;71()\), and the variance matrix of the best G2SLS estimator &bQSl&n is H%ZC_;L,

where X¢ , = oTln*(Z"’ GnZnBo) Ry, IR (Zy, Gy Z,By). When €, ;’s are normally distributed, the
0

variance matrix of ¢ b2sis,n Can be easily compared with that of the MLE.

Proposition 3 When €,,;’s are normally distributed, the MLE is more efficient than the best
G2SLS estimator.

7 Monte Carlo Results

To investigate the finite sample performance of the MLE, we consider the following model
Yn'r = )\OWnran + anﬂlo + Wn'anTBQO + leréro + Unr,

where U, = poWhrtinr + € and €,, ~ N(0, a%]mr), for r =1,--- ,7. The weights matrix W, is
based on the Add Health data (see Udry, 2003). For the Monte Carlo study, we consider 4 samples.
The first sample consists of groups with the group size less than or equal to 30. There are 102 such
groups in the data with 1344 observations and average group size being 13.1. We also consider a
sub-sample with the group size less than or equal to 15. In the data, there are 67 such small groups
with 557 observations and average group size being 8.3. To facilitate comparison, we also randomly
pick 67 groups with the group size less than or equal to 30 and 102 groups with the group size less
than or equal to 50 from the data. For the first sample of randomly picked groups, the sample size
is 877 with the average group size being 13.1. For the second one, the sample size is 2279 with the
average group size being 22.3. This allows us to inspect the effect of increasing the number of groups
7 and increasing the average group size separately. The number of repetitions is 400 for each case
in this Monte Carlo experiment. For each repetition, X, and «,q are generated from N(0, I,,,) and
N(0,2) respectively, for r = 1,--- 7. The data are generated with \g = p, = 0.5 and 03 = 1. By,

and B, are varied in the experiments.
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The estimation methods considered are the 2SLS with the IV matrix Q1, = Jp(Zn, Wi Zn, W2Z,, W3 Z,),
the G2SLS with the IV matrix @1, in the first step and @2, = Jan(Zn7 WnZn, W2Z,,W3Z,) in
the last step,?? and the ML approach proposed in this paper (labeled ML1 in the following tables).
Lin (2005) suggests an alternative elimination method of the fixed effects by the transformation
using (I, — Wa,). (See Appendix F for more details.)?* However, as the rank of (I, — W) may
be less than m}, more linear dependence is induced when eliminating the fixed effects. Hence, this
alternative elimination method may be less efficient. We also report the MLE (labeled ML2 in the
following tables) based on the alternative elimination method using (I, — W) in the Monte Carlo
experiments. We report the mean ‘Mean’ and standard deviation ‘SD’ of the empirical distributions
of the estimates. To facilitate the comparison of various estimators, their root mean square errors
‘RMSE’ are also reported.

Table 1 reports the results in the case with 5,y = 59 = 1, i.e., the regressors are ‘strong’. For
all sample sizes considered, the G2SLS estimates of p, are downward biased. The bias reduces as
the average group size increases. The other estimates are essentially unbiased. In terms of the
SD, G2SLS improves 2SLS upon the estimates of Ao, 8,9 and 85, and ML improves G2SLS upon
estimates of p,. For the same estimator, the SDs decrease as either 7 or the average group size
increases.

In the case when the regressors are ‘weak’ with 5,y = (59 = 0.2, the estimation results are
summarized in Table 2. When 7 = 67, the 2SLS and G2SLS estimates of Ay are upward biased. The
G2SLS estimates of p, and the 2SLS and G2SLS estimates of (5, are downward biased. When 7
increases to 102, the 2SLS estimates of Ay become downward biased with a smaller magnitude, and
the other biases also reduce. The MLE of p, is slightly downward biased with the sample of small
groups. The bias reduces as the sample size increases. The MLEs also have smaller SDs and RMSEs
than the other estimates for all sample sizes considered. For example, when n = 2279, the percentage

reduction in SD of the MLEs of Ay, p, and 4, relative to the G2SLS estimates is, respectively, 42.0%,

221n the finite sample, the best G2SLS with Q2, = Jﬂ,Rn(Zn, Gn(j\n)Zan) is quite sensitive to the initial estimates.
As the initial 2SLSEs are obtained with no restrictions on the parameter space, the initial estimate of An could have
an absolute value greater than one. This causes the estimated best IV used in the second step problematic. In the
case when 1y = 59 = 0.2, and n = 557, about 1/10 of the replications had an initial estimate with |;\n\ > 1. In the
Monte Carlo experiments, we use the above simpler Q2,, instead to avoid the effect of bad initial estimates.

23We have experimented with the iterated G2SLS. However, for many replications, the iterated estimator failed
to converge. For example, when 8,9 = 859 = 0.2, and n = 557, the iterated estimator failed to converge in about
1/4 of the replications. This issue tends to occur especially when some estimates of A\g are out of bound, i.e., with
an absolute value greater than one, during the iterations. Note that 2SLS approach does not impose restrictions on
A < 1. Even for the converged iterated G2SLS estimates, there is no evidence that iteration procedure improves
the performance of the G2SLS estimator in this specific simulation experiment. Hence, we choose not to report the
simulation results on the iterated G2SLS in this paper.

17



47.1% and 15.9%. The percentage reduction is even larger with smaller samples. For both cases
with ‘strong’ and ‘weak’ regressors, MLEs based on the alternative elimination method of the fixed
effects by the transformation using (I, — Wy, ) have larger SDs than those of the MLEs proposed
in this paper.

Results in Table 3 inspect the effects of model misspecification on the MLEs using the sample
with 102 moderate size groups. When positive endogenous effects captured by Ay is ignored in the
estimation, p,, and Bgn will be upward biased. When positive exogenous effects captured by 3y
is ignored in the estimation, A will be upward biased, and Bln and p,, will be downward biased.
When a positive spatial correlation with p, in the disturbances fails to be modeled, A will be
upward biased and B% will be downward biased. The bias of A, can be large enough to change
its sign in the case when A9 < 0. The opposite occurs when the omitted p, has a negative value.
The bottom panel of Table 3 studies the effects of misspecified weights matrices in a model with
ii.d. disturbances (p, = 0). The weights matrices W, in the data generating process is specified
as above. However, suppose, when estimating this model, we don’t have the information on the
network structure and put equal weight on each member of a group as in the model with group

interaction so that We, = - (I, I}, — I, is used. With the misspecified W, An, B, and Sy,

are upward biased by 65.2%, 31.6% and 83.3%, respectively. SD of A\, also dramatically increases
relative to the estimate with correctly specified W,,,.. We also compare the likelihood values of ML
estimation of the correctly specified model with those of the misspecified models. We find a larger

likelihood value indicates a better specified model in most cases.

8 Conclusion

This paper considers model specification, identification and estimation of a social interaction model.
The social interaction model generalizes the group interaction model in Lee (2007), where an indi-
vidual in a group interacts with all other members with equal weights, to the situation that each
individual may have their own connected peers. This model extends the SAR model with SAR
errors to incorporate contextual variables and group unobservables. The social interactions are rich
in that endogenous interaction effects, contextual effects, group-specific effects, and correlations
among connected individuals in a network can all be captured in the model. The incorporation of
possible correlations among connected individuals may partially capture the endogeneity of network

formation.
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The identification of endogenous and contextual effects in Manski’s (1993) linear-in-mean model
requires the inclusion of some individual exogenous characteristics but the exclusion of their cor-
responding contextual effects. In the group interaction model in Lee (2007), identification requires
variation in group sizes in the sample. For the network model, identification is in general feasible
even when groups have the same size because of additional nonlinearity due to the network structure.
The identification issue is similar to that of the SAR model but with a slight complication due to
the presence of contextual variables and group unobservables. Identification can be based on the
mean regression function as well as correlation structure of the dependent variables. In general, all
the social interaction effects of interest can be identified in a network model.

We consider the estimation of the network model. As a model with endogeneity, it can in general
be estimated by the 2SLS method as instrumental variables can be generated from the network
structure with the presence of relevant exogenous variables. The 2SLS method is simple but not
efficient. This paper considers a possible extension of the QML method for the group interaction
model in Lee (2007) to the general network model. It generalizes the QML method for a SAR model
with SAR errors in that there are incidental parameters due to group-specific dummy variables.
The QML method is designed after the elimination of group dummies. This strategy may have
applications in other models, e.g., the spatial panel data models with time dummies in Lee and Yu
(2007). We establish analytically the consistency and asymptotic normality of the estimators and
show that the QMLE is asymptotically efficient relative to the G2SLS estimator.

Monte Carlo studies are designed to investigate the finite sample performance of the estimators.
The QMLE has better finite sample properties than the 2SLS and G2SLS estimators as confirmed
by the Monte Carlo results. We also pay special attention to possible consequences of omitting some
social or correlation effects on the estimates of the remaining effects. Furthermore, we provide some
limited evidence on possible consequences with the misspecification on network connections and the
usefulness of the maximized log likelihood as a model selection criterion.

Appendices

A Summary of Notations

o B=(B1.B2),v=\p), d=(87), 0=, C= (8N

_ T * T * *
en=>) _ m,n = _ mi=n—7,m;=m, — 1

= T

e [, is an m,-dimensional vector of ones.
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Wrir = M'rezr = #(l U, — ImT)

m,—1 \"Mr " m,

an - (XTLT7W’ILT‘XHT‘); Snr(>\) = Imr - )\Wnra Snr = Snr(>\0); Rnr(p) = Imr - pMnra Rnr -
Rnr(po); Gnr = Wan;r1~

Inr = I, —%Lrlmrl;nr. [For, lm,. //Tr] is the orthonormal matrix of J,,, where F,,. corresponds

to the eigenvalue one.
* __ 1/ * 1 x  _ 1 . * __ 1! * __ 1
Yy =F Yo, 2. =F Zn, e, =F e WE. =F Wy Fpp, M} =F! M, Fy,.

Srr(A) = F’r/LT’SnT()\)FnT = m,f_)‘W:ra Sy =85.(Mo); R;kn‘(p) = FrlLarr(p)Fnr = mi_pM:{rv

R;r = R;T(pO)
€nr(6) = Rur(p)[Snr (M) Ynr — Zni B, €,,.(0) = R}, (p) (S5, (MY, — Z1,. 8]

Y/

nr

KL = (YI

nls """

),7 Xn = ( ; o 7XI )/7 Zn = ( 1111"" 7Z':L’F)/’ €n = (6{”1,"' € ’)/7

nls’ nr s Cni

Wn = Diag{th e 7W7LF}7 Mn = Diag{Mnh e 7MrL'F}7 and Jn = Diag{‘]’nla R J’rﬁ'}~
H, = M,R;"; Z, = Ry Zy, G, = R,G R\

Cpn = J,Gy — 241(JnG)In, Dy = JnHy — Lt0(J, Hy ).
Po(p) = Jn = JnRa(p) Zu| 2}, R, (p) Jn R (p) Z0) ' Z3, R, (p) T and P, = Py(py)-
Let A* = A+ A’ for a square matrix A. Let vecp(A) denote the column vector formed with

the diagonal elements of a square matrix A.

The Score Vector and Information Matrix

The first order derivatives of the log likelihood function at 6, are

~ o~ 1 ~ ~
JnGn nﬁ() + W[éanGnen - Jgtr(JnGn)],

[}, JnHpen — obtr(J,Hy),

1 9ln Ln(g()) 1

!

NG
1 0lnL,(6h) 1

Vn* o Op odv/n*

1 0lnL,(6o) 1 71

\/’IF ap Jg n*

1 0lnL,(6 1
Jnena = ( O) = (GilJnGn - TL*O'(%),

Vn* do? B 203\/71*
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e The second order derivatives of the log likelihood function are

0*InL, (0 1

0*InL, (0 1 0?InL, (0 1

oM ONDo?
2L, (0) 1 1
Ty = g2 WM duen(d) = YW R (p)Tn Ml Sn (A Y — Z0 ),
8%1n Ly, (0) 1 9%1n L,,(0) 1
“opos —EZQRZ(P)Jan(P)Zm oI —EZ;LR%(P)JnGn(CS),
9?In L, (9) 1., 1., .,
W = _EZnManfn(J) - ﬁZan(P)JnMn[Sn()‘)Yn — Znf,
0?lnL,, (0 _ 1
.z ©) _ —tr( [ Moy (p)]*) = —5[Sn (W)Yo = Z0B) My Jn Ma[Su(\)Yn = 2],
0?1n L, (0) 1, ?InL,0) n* 1
) () I My [Sn(\) Y — Z 8], TmmnP) T (8) Jen(6).
8p60'2 ] 6n( )J [S ( ) 6] 8(0’2)2 204 0_6671( )J € ( )
e The variance matrix of \/%%g(go) i E[\/%%Z(@o) . \/%%(3‘,(60)] =%gn+ Qon-
1 02InL, (0
S = —E[ L1 La(B0);
n 0000
0'21n* Z;lJnZn * *
0
727 (CuZuBo) uZn 2o (G ZuBo) Tn(GuZnBy) + = tr(Gi 1 Gla) «
01k Ltr(H: J,Gn) Ltr(HyJ,H,)
01k s tr(J,Gn) 2 tr (T H)
and
Ok xk * * *
Q9 _ %UGC/D(JTLG”)J”ZTL QG,n;22 * *
T - _ 0_4
%vec’[)(Jan)JnZn Qg n:32 F%T?’vecb(Jan)vecD(Jan) *
O1xk %%?fzétr((]nén) %ﬁtr(Jan) %
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where

2 L — 304 . :
Qo2 = 4#3* vecy (JnGn)InGnZnBy + MT?%C’D(JnGn)vecD(JnGn),
oan oan
. -~ — 304 .
Qonze = 'Z‘s*vec'D(Jan)JnGnZnﬁo + MT*JOWC'D(Jan)vecD(JnGn),
oan oan

and p3 and py being the third and fourth moments of €, ; respectively.

C Some Basic Properties

In this appendix, we list some properties which are useful for the proofs of the results in the text.
The results in Lemmas 3 to 9 are either straightforward or can been found in Kelejian and Prucha
(2001) and Lee (2004). They are listed here for easy reference. Throughout this appendix, the
elements v;’s in V,, = (vq,--+ ,v,)" are assumed to be i.i.d. with zero mean, finite variance 02 and

finite fourth moment p,.

Lemma C.1 Suppose Wy, is a row-normalized m, X m, matriz, Jo, = Ly, — milmrl;m, and
-

[Frry lm,. //Tr] is the orthonormal matriz of Jy, where F,, corresponds to the eigenvalue one. Let
Wi, = FyWarFop and m} = m, — 1. Then (1) Fyy(In, — \Way) = Fop(Ln, — AWar) Far Fhy.
(2) 1 = MWyl = 5l = AWarl, (3) (s = AW3)™0 = Ei(L, — AWo) ™ For, and (4)
Wi Loz = AW ™Y = (s = AW Wiy = Fy W (I, = AWar) ™

Proof. As F,.F),. = Jnr = I, —lm, 1y, /My, we have F) (L, —AW,,.) = F}, (I, =AWy, ) (Fpr Fy -

by U, /7)) = B (L — AWoi) B YA F (D, — AW )l 0y, /. As Wiy, is a row-normalized,

nr nr

F! Wiyplm, = F} 1, = 0. Hence, (1) holds.

nr nr

— AW

To show (2), we note that (I,- ) =F (Im, — \Wy)Fpp. As

[Fnr7 lm,/\/ﬁy(lm, - )\W’I’LT)[FTLT7 lm,/\/m

F! (I, — AWy ) Epye FE! (Im, — \War)lm, / /T Fl (I, — AWy ) Eyye 0
L (I = MWoi) Er [/ Ly (L — AW ), /0 0 1-X
because I, Wirly, = F) lyn, = 0 and l;, Wyely, = m,. Hence |L,- — A\W).| = |F}, (I;m, —

)\Wnr)Fm”| = ﬁ|lmr - >\Wnr|-
Since F,, Wyylm, = Fjlpn, = 0, (3) and (4) can be verified as (L,x — AW;,) - F).(Ln,

nr'mr

)\Wnr)ianr = F/ (Imr_/\Wnr)Fnr'F/ (Lnr_)\wnr)ianr = Fy/u»(ImT_)\Wm“)(ImT_lmrl;nT/mr)(Imr_

nr nr
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AW, )Yy = Fl Frp — Fl (L, — AWl Lo (I = AWap) " Frp/my = Lnpe, and Wy, (Lns —
AW = FL Wy Fr - Fl (I, = AWon) ™ Fpp = F W (I, =L, Uy J1102) (L, = AW) "Ly =
FL Wy (L, =AW ) ™ Fpy and (Ls =AW, ) 7S We = Fl (L, = AWor) " Wiy By = ) W (L

d

AW, )" F,,. m
Lemma C.2 €,.(0) = R},,.(p)[S}, (MY, — Z5,.8] = F, Ryr (0)[Snr () Yoy — Znr 8]

Proof. «;,.(0) = R}, (0)[S5(NYyr — Z5,.8] = FpRur(p) o - Fpy [Snr (N Fr - 3, Yoy — Znie ] =
Ry (p) (I, — erlmrl;nr)[Snr()‘)(Imr - lerl;n,ﬂ)ynr — Zny Bl = Ry (p) [Snr (\)Yiur — Zinr 3]

my

because F) ly,, = F} Wylym, = F) Myl =0. B

nr’myr

Lemma C.3 Suppose that {|Wy ||}, {| M}, {||S:?

}, and {HR;1|

}, where ||| is a matriz norm,
are bounded. Then {||S; (N)||} and {||R;*(p)||} are uniformly bounded in a neighborhood of Ao and

po Tespectively.

Lemma C.4 Suppose that elements of the n x k matrices Z,, are uniformly bounded for all n; and
the lim,,_, oo %Z{LR;LJanZn exists and is nonsingular, then the projectors P, and (J, — P,,), where
P,=Jy— JoR\Zn|Z R, J Ry Z, )  Z! R!, T, are uniformly bounded in both row and column sums

in absolute value.

Lemma C.5 Suppose that the elements of the sequences of vectors Py, = (pp1,- -+ ,Pnn) and Q, =
(Gn1, -+ »qnn) are uniformly bounded for allm. (1) If {A,} are uniformly bounded in either row or
column sums in absolute value, then |Q) A, P,| = O(n). (2) If the row sums of {A,} and {Z,} are

uniformly bounded, |z; ., AnPy| = O(1) uniformly in i, where z; ,, is the ith row of Z,.

Lemma C.6 Suppose that the elements of the n x n matrices {An} are uniformly bounded, and the
n x n matrices {Bp} are uniformly bounded in column sums (respectively, row sums) in absolute

value. Then, the elements of A, By, (respectively, B, A, ) are uniformly bounded. For both cases,

tr(A,B,) =tr(B,A,) = O(n).

Lemma C.7 Suppose that A, is an n X n matriz with its column sums being uniformly bounded in
absolute value and elements of the n x k matrix Z, are uniformly bounded. Elements v;’s of V,, =
(v1,-++ ,v,) arei.i.d.(0,02%). Then, ﬁZQAnVn = 0,(1), Furthermore, if the limit of L Z A, A}, Z,,
exists and is positive definite, then ==Z! A, V,, L N(0,02lim,, %Z;LA”A;LZ,,L).

nn
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Lemma C.8 Let A, be an n x n matriv. Then B(V!A,V,) = o?tr(A,) and Var(V!A,V,) =
(py — 3ot vec (Ay)veep(Ay) + ot [tr(A, AL)+tr(A2)].

Lemma C.9 Suppose that {A,} is a sequence of n x n matrices uniformly bounded in either row or
column sums in absolute value. Then, E(V,A,V,) = O(n), Var(V,A,V,) = O(n), V] A, V,, = Op(n),
and %[VriAnVn—E(V,;AnVn)] = 0,(1).

Lemma C.10 Suppose that {A,} is a sequence of symmetric n X n matrices with row and column
sums uniformly bounded in absolute value and {b,} is a sequence of n-dimensional constant vectors
such that sup, 37" |byi) >t < 00 for some n, > 0. The moment E(|v|**27) of v for some n > 0

erists. Let J?Qn be the variance of Q, where Q, = bV, +V'A,V,, — o?tr(A,). Assume that the
Q

variance o2, is bounded away from zero at the rate n. Then -2 5 N(0,1).
Qn TQn

D A Partial Likelihood Justification

The likelihood function (6) is for Fy, R, Yy, given in equation (5). It remains to consider the

remaining component mil;mRmYm, which is
-

1 1
l:n ,Rn'ran = 7l;n Rnr()\OWnran + anﬁo) + (1 - Po)aro + Era (12)
my " my "
where €, = miljnrenr. As F,. F! = Jy. and mil;nTRm,lmT = (1 —pyp), it follows that
1 ! 1 i ! 1 / 1 / * —
Elm7~ Rm’Ym’ = m, ler"T(F"TFnr + mirlmv‘lmr)ynr = ElﬂernTFn'7’YnT + (1 - po)yrv(13)
1 1 1 1 " _
7l;n,‘Rm'Zm“ = 7l;nrRm‘(Fanr/w- + 7lmrl;n,‘)zm' = 7l;n,Ran7'Zm- + (1 - Po)zr(14)
My My s My
where 3, = -1/ Y, and z, = -1/, Z,,. Similarly,
1 / 1 / / 1 /
7lm Rannran = 7lm Rnr(Fannr + 7lmrlm )Wnran
my " my " my T
1 1
= 7linarTFnTW;rY;r + (1 - po)il;n,ﬂWnrana (15)
my my

where =0, W Yor = ool Wor(For By 4 ol Uy VYor = 5=l Wor Fup Yy + G Substitu-

My Mo mr'm, my Mr

tion of (13)-(15) in (12) gives =1’ Ry FonY: + (1 — po)fr = o[-0, RurFop W2 YE + (1 —

My Moy My My

po)il;rananTYﬁr + (1 - Po)gr] + %Lrl;nTRTLTF"TZ:LWBO + (1 - pO)ET/BO + (1 - pO)aTO + ET? , O
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equivalently

Ao 1 1 1

R A Y 01/ TP BESNE B/ AR
(1= Xo)(L = pg) my ™" (1= o)1= pg) my ™
(1 — )\0) my my "7 NTENT S nr (1 — )\0)(1 — ,00) m, mydtnr'nrLiprPo
Zr Oy €p.
A=) 0T @=2) " (1= 20)(1 = py)

As €, is independent of Y,*., conditional on X}

+r (16) can be regarded as a nonlinear regression

equation.
The joint likelihood function of Y}, and g, can thus be decomposed into a product of the condi-
tional likelihood of g, given Y;*. from (16) and the likelihood function of Y%, from (5). Therefore,

nr

the likelihood function of Y;¥. from the transformation method for (5) is a partial likelihood function.

(Cox, 1975; Lancaster, 2000).

E The Likelihood Function of a Network Model with a Spatial ARMA
Disturbances

In this Appendix, we show that the proposed QML approach can be generalized to the case where
the disturbances follow a more general spatial ARMA process. The generalized model has the
specification that Y, = AWy Yor + ZnrBo + lm,. Qro +Unr, Where tn, = p1oMineUny + poo Monr€nr +
€nr for r =1,--- 7. In this model, W,,,., M1,, and My, are row-normalized such that the sum of
each row is unity, i.e., Wyl = Minplm, = Mopply,, = U, As before, let R,,-(p) = I, — pMins
and R, = Rp-(p19). A Cochrane-Orcutt type transformation gives R, SnrYnr = RurZnrBo + (1 —
010)m, cro + (I, + pooMans)enr. Note that (L, + pogMany) tm, = (1 + peg) tlm, under the

assumption that (I, + pogMap,) is invertible and Mo, is row normalized. It follows that

1—
(ImT + pQ()MQnr)ianrSnran == (Imr + p20M2n7’)71Rm"anB0 + (1 + ZlO )lmTOZTO + Enr-
20

As Fylm-(ImT + pQOMQn'r)_l = Fy/”-([mr + p20M2n'r)_1FnT'Fy/”- = (Im,’i + p20F7/17-M2n7'Fn7')_1F/ pre-

nri

multiplication by F),, leads to a transformed model without a..¢’s, i.e.,

([m,*_ + pzoFr/LrM%anr)_lR* R (]m;i + p20Fr/er2annr)_1R* ZneBo 7+ €

nr-nr-nr nr—nr
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Let €:,.(8) = (Imz + poo o Many For) T Ry, (p)[S5, (MY, — Z5, 8], where 6 = (8", , py, pp)". For

a sample with 7 macro groups, the log likelihood function is

*

n 7 * 7 * 7
InL,(0) = 9 1n(271’02) + 27:1 In|S;,.(A)] + Zr=1 In|Ry,.(py)| — Zr=1 In |Im:i + p2Fr/er2annr‘

1 T * *
- T.,Q Zr:l enlr (5)6717’ (5)7

where 6 = (§/a02)/' As [S),. (V)] = ﬁwm"()‘”a IRy, (p1) = ! |Ror(p1)], |Im:i + po By Man, Frp| =

1-py
ﬁ|l7nr + pyMayy|, and €;,,.(0) = Fy €07 (6), where €,,(8) = (Im, + paoManr) ™" Rur(p)[Snr (A) Yoy —

Z 3], the log likelihood function can be evaluated without F,,,.’s as

n 80N [Rurpy)]

T nr InL M nr
InL,(0) = —Eln(Qﬂo'Q) +> ;:1 hlﬁ +5 F_;In T, M
- - M1

-5 _In
E'rfl 1 +p2

1 7
_ﬁ Zr:l G;W((S)Jnrenr ((5)

F An Alternative Elimination Method of the Macro Group Fixed Effects

Lin (2005) suggests an alternative method to eliminate the fixed effects by the transformation using
(I, — W), the deviation from the weighted average of an individual’s connections. Although this
transformation is not very convenient when py # 0 with an arbitrary M, such that M, # W,,, it
can be used as an alternative approach in the special case when M,,,, = W,

When M, = W, as (I, — W)Wy = W (I, — Wir) and (I, — Wiy )Ry = Ry (I, —

W), premultiplication of (2) by (I, — Wy,) gives

Rnr(-[mr - Wnr)an = AORTLTW’H/I”(I’H’LT - Wnr)an + Rnr(InLT - Wnr)ZnTﬁ() + (Imr - Wnr)gnr' (17)

The fixed effect ayq is eliminated because (I, — Wiy )lpr = 0 as Wyl = ly. The variance of
the transformed disturbances (I,,, — Wiy )eny is 028, where ¥, = (In, — Wi ) (I, — Wi,)'. The
elements of (I, — Wy, )€, may be correlated and heteroskedastic. There are also linear dependence
among its elements because (I, — W) does not have full row rank. Suppose that the rank of
(I, — Wh,) is my, which, in principle, can be empirically evaluated as W, is a given matrix. As
(Im, — War)lm, = 0, m¥ < m, — 1, the transformation using (I,,, — Wy,) to eliminate the fixed
effects may leave the number of independent sample observations less than 25:1 (m, —1).

As ¥, is positive semidefinite, there exists some orthonormal matrix [Fm,Hm] where F),,
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is an m, x m} matrix of normalized eigenvectors corresponding to the positive eigenvalues and
ﬁm, is an m, X (m, — m}) matrix of normalized eigenvectors with zero eigenvalues. Let A, be
the m} x m} diagonal matrix consisting of all the positive eigenvalues. Thus, inrﬁm = FmAnr,
SonrHor = 0, F/WFM = I, F,’WHm, =0, Fanfw + HWH,’W = I, and Sr = FWAWF,’W. Denote

Y = A B (I — W) Yors 25 = A B (I — Wiy Zoors and €%, = A2 B (I — Wy )

nr

To eliminate heteroskedasticity and linear dependence in (I, — Wy, )én,, premultiplication of (17)
by An? E7  yields
Ry Yo = MR, Wa, Yo + R 20, By + €, (18)
where W = Ar_zr%Fr,/WWannrAér and RY, = A,_W%F;’WRWFMAET = Imx — poW}y,. The variance
matrix of the transformed disturbances €}, is 021,
Under the normality assumption, the log likelihood function of the sample with 7 macro groups
is

*

nr 7 T *
In Ln(g) = _? 11’1(27T0'2) + Zr:l In |Im: - )‘W:{T| + Zr:l In |Imf_ - anr|
1 _
_ﬁ ::1[(‘[7774;1 - )\W’I:T)YJT - Z;TB}/R:LQ”R:W[(Imﬁ - )‘Wr):r)yrjr - Z:L’I“/B]’

where n) = Zi:l my. To implement the ML estimation, one needs to evaluate the determinants
[y — AW and [I,» — pWpy,| for each macro group r. The evaluation of this determinant is
equivalent to the evaluation of the determinants |I,,. — AWy,| and |I,,, — pWy,|, which can be

shown as follows. As

[an Hnr]/(ImT - AWTLT)[FRT7 Hnr] = ImT - )\[an Hnr],Wnr[Fnra Hnr]

Im; - )\FyllrWannr 7/\F7IlrWnanr Im; - AF;LrWannr 7)\Fy/L7~Wnrj_'Inr
—NH, WorFrr Tiny—mry — NH L, Woy Hyy 0 (1= N, —m)

- o
because H,, W, = H

nr?

)}, Fy = 0 and H), Huy = Iy, —ps). 1t follows that [T, — AW, | =
L, = A[Fors How) Wg [ By Hurl| = [Ins = AE Wow Frar| - [(1 = NI, —mx)|. Therefore,

s =AW | = [T — M Bl Wiy Eop Ad| = | Ions —AE

nr

War | = (1= X)) L, — AW,
SimilarIY7 |Im,f - pWrtr = (1 - p)_(mT_m:)‘I’mT - pW’fL7'|' As R:LT[(I’"L: - AWgr)Y’r;r - Z:LT/B] =
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A;T% F,’”,(ImT — W) R [(Iin, — A\Wor )Y — Z 8], the log likelihood can also be expressed in terms
of Yy, Zp and W, as

*

In L, (0) = —% n(270%) — (ny — ) I[(1 = X)(1 = p)] + 3272y I [Snr (W] + 2272, In | R (0)|

1 .
_ﬁ ZT:I[S”T()\)Y"T - anﬁ]/R{rLT (I"Lr - Wnr)/zj;r (Iﬁlr - WHT‘)RHT [STLT(A)YHT - nrﬂL (19)

where Zj;r = F’mA;f FT'W is the generalized inverse of (I,;,, — Wi ) (I, — Wy,)'. The MLE is derived

from the maximization of (19).

G Proofs

Proof of Lemma 5.1. With the restriction \of1g + 899 = 0, Z;.89 = Sy, X819, and, hence,
(9) becomes Y,:. = X* B0 + Unr, where v, = SE1R ek . As \g and p, are not in the mean

nr nr-

regression equation, they could only be identified via the disturbances, vy, = po M., Vnr+Ao W, Unr —

poro My W vy +€r., when M, # Wy,.. With \g and 5, identified, 85, can be identified from the

nr nr?
restriction A\of31y+Bsy = 0. However, when M,,,. = Wi, v = (pg+ X)W, 0 — poXo W, 200 + €5,
In this case, py and A\ may only be identified locally but not globally, and hence (5, can not be
separately identified. m

Proof of Lemma 5.2. For the group 7, let ¢1, co and c3 be conformable scalar and column vectors

such that
Jn'arr(p)Gnr(anﬁlo + W’I’LTXTLT‘/BQO)CI + Jnarr(p)anCQ + Jn'arr(p)WannTCS = 0; (20)

where G, = W,,,.S}. We are interested in sufficient conditions so that ¢; = c; = ¢3 = 0. Denote

My = erl;nTRnr(p)Gnr(XnT510+Wannrﬁ20)a Har = il%TRnr(p)an and p3, = %”Z%TRM(P)WWXHT'
As W, Sot = S Wy,

[Jn'r'R'm"(p)Gnr(Xn'r'Blo + WTL?"XTL’!‘/BQO)a Jnr Ry (P)Xm«, JnV'Rnr(p)Wannr}
Rm(p)S,;} (War (XnrB1o + War XnrBag)s Snr Xnry Snr War Xnr] — SnrR;rl (P, (H1ys By h3) }

= R?L’f‘ (p) S;rl{[WnT‘(XHT'/BlO + WTLT‘XTL’I"BQO)? S'VLTX"T" S'ILT'WTL’I"XTLT‘] - l'IYLT (,LLTr? H;T? l’t’g’r)}?

where pf = (11:>‘p° iy, for I = 1,2,3, because S, R, (p)lm, = (11:’\p°)lmr. As R, (p) and Sy, are
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nonsingular, (20) is equivalent to

Wnr(anﬁl(J + WannrﬁQ())Cl + SananZ + Sananan3 - lmr (ﬂ;rcl + :U’;rCQ + ,LLETCS)

- anc2 + Wannr(Clﬁlo - A0(32 + 03) + Wernr(clﬂQO - )‘003) - lmr (MTTCI + ,U/;TCQ + /.L§TC3) =0.

As [Xor, War Xovrs W2, Xy L, ] has the full column rank, it follows that co = 0, ¢3 + ¢1 39 = 0 and
Bagc1 — Aocs = 0. These imply, in turn, that ¢; = 0 and c¢3 = —c18;5 = 0 under the assumption
Ba0 + AoB1p # 0. The desired result follows. m

Proof of Lemma 5.3. By Lemma C.1, F Ry (0)[Grnr(XnrB10 + WarXnrBag)s Xnrs War Xor| =
R (0) S Wit (X Br0 4+ Wiy X Bao)s Siy X S, Wity X ). As Ri(p) and S, are nonsingular,
a sufficient identification condition derived from a similar argument in the proof of Lemma 5.2 (but
without /,,,, term) is that the stacked matrix with its rth row block being [X,., W/, X%, W2 X ] has
full column rank as long as So5+ X059 # 0. By a pre-multiplication with F,,,., a sufficient condition is
that the stacked matrix with its rth row block being [y Xprs (Jnr War ) (Tnr X )s (Jre Wi )2 (Jrr X )] =
o [ Xors Wor Xy W2, X,] has full column rank. m

Proof of Proposition 1.  We shall prove that —-[InL,(y) — Qn(y)] converges in probabil-
ity to zero uniformly on I', and the identification uniqueness condition holds, i.e., for any € > 0,
lim sup,, _, o MaX ey (+,) L[Qn(v) = Qn(70)] < 0 where Ne(v,) is the complement of an open neigh-
borhood of 7, in I with radius . The following arguments extend those in Lee (2004) for the SAR
model with i.i.d. disturbances to our transformed equation model.

For the proof of these properties, it is useful to establish some properties for In |.S,,(A)[, In | R, (p)],
and 02 () = Ztr([ R (0)Su(N) S Ry /I [ B (0)Su(N) S Ry 1)), where (R (9)Sa(N)S; Ry ) =
Inlln + (po — p)Hn + (Ao = N RnGn R + (g — p) (Ao — N Ho Ry G R

There is also an auxiliary model which has useful implications. Denote @Qpn(y) = —%*(ln(Qﬂ') +

1) — ”7 Ino2(y)+1n|S,(A)| +1n|R,(p)| — FIn[(1 — X)(1 — p)]. The log likelihood function of a trans-
formed SAR process R} .Y, = AR WY +¢€;

nr-nr nr-nr nr’

where €, ~ N(O,a%[m;) forr=1,---,7,1is
In Ly (7,0%) = =25 In(2m) = % T 02+ S, (V)] +1n | R ()] 7 In[(1=X) (1= p)] — 55 V2 SL ()R, ()
X Jn Ry (p)Sn(N)Y,,. Tt is apparent that @, (7) = max,2Ep[In L, ,, (v, 02)], where E, is the expecta-
tion under this SAR process. By the Jensen inequality, Qp . (v) <Ep[ln Ly (79, 03)] = Qp.n(7g) for
all 7. This implies that --[Q,n(7) — Qpn(70)] < 0 for all 4.

Let (A1, p;) and (A2, py) be in I'. By the mean value theorem, -L-(In|S,(X2)| — In|S,(\1)|) =

Y’ m*
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#tr(Gn(j\n))()\g — A1) where A, lies between \; and ;. By the uniform boundedness of Assumption

4, Lemma C.6 implies that -Ltr(G,(),)) = O(1). Thus, = In[S, ()] is uniformly equicontinuous
in Ain I'. As T is a bounded set, - (In |5, (A2)| — In|S,(A1)]) = O(1) uniformly in A; and Ay in T,
Similarly, - In|R,(p)| is uniformly equicontinuous in p in T, and X (In| R, (p,)|—In | R, (py)]) = O(1)
uniformly in p; and py in I

The o2 () is uniformly bounded away from zero on I'. This can be established by a counter
argument. Suppose that o2 () were not uniformly bounded away from zero on I'. Then, there
would exist a sequence {v,,} in T such that lim, ., 02 (7, ) = 0. We have shown that --[Q,..(7) —
Qp.n(70)] < 0 for all 4, which implies that —+Ino2(y) < —ilnod + L (In[S,| — In|S,(N)|) +
L (1n Rl — In [Ra(p)]) — 2 (n[(1 = Ao)(1  po)] — In[(1 = A)(1 = p)]) = O(1), because = (In|Sy| -
In|S,(A\)]) = O(1) and L (In|R,| — In|R,(p)|) = O(1) uniformly on I'. That is, —Ino?(y,) is
bounded from above, a contradiction. Therefore, o2 (y) must be bounded always from zero uniformly
on I'.

(uniform convergence) We will show that sup. | LInL,(v) - £Qn()| = Sup,,cr iIn 62 (y) —
10 072(1)] = 0p(1)- AS Pa(p)Ra(9)Sn (Yo = (Ao~ A)Po(0) Ro(9) G Zo Bt Pa(p) R ()Su (V)i Ry e,
2() = EYISLRL (P Palp) Ru(0)Sa (WY = CEAL (R (p) G 2Byl Pa(p) [ B(p) G ZaB] +
20 = N E1n(7) + Kon(y), where Kin(v) = 75 [Rn(p)GnZnBol Pu(p)[Ru(p)Sn(N) Sy Ry en] and
K2 (7) = 75 [Ra(p)Sn(N) S5 By enl Pa(p) [Rn(0)Sn (V) Sy Ryt enl. 67, (1) =032 (7) = 2(A0—A) K1 (7)+

n*

Kon(v) — 02(), since 032 (y) = (Aon%A)[Rn(p)GnZnﬁO]/Pn(p) [Rn(p)GrnZnfo] + 07 (7). Lemma C.7

implies K1, (y) = 0,(1). The convergence is uniform on I as A and p appears simply as polynomial

factors. On the other hand, Ko, (7)—02(7) = = [Rn(p)Sn(N) S, 1 R, Yen) TR (p)Sn (NS, R, e ] —

T tr([Ru(0)Sa (NS By ) Ju[Ra(0) Su (NS5 R Y]) — Ta(7), where
To(y) = i[Rn (p)Sn(A)S;lelen]'Jan(p)Zn 12}, R, (p) Jn R (p)Zn}_lZ;R; (p)Jn[Ry (p)Sn()\)S;lelen].

n*

As \/%Z;LR;L(/))J”R” (p)Sn(N\)S, 1R Ye,, = Oy(1) uniformly on T' by Lemma C.7, it follows that

1.1 o 1 _
To(v) = o [\/7 nR{n( )Jan(p)Sn(/\)Sn1Rn16%]/[;Z;LR;L(p)Jan(p)Zn] !

[\/TZ’:LR;%< )Jan(P)Sn()\)SEIR#Gn] = op(1).

By Lemma C.9, we have 7% { [Ry(p)Sn(N)S AR Y en) TR (p)Sn (NS AR, Y en ]| —odtr([Ry(p)Sn (V) S, L R
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xJn, [Rn(p)Sn()\)SglR,jl])} = 0p(1). These convergences are uniform on I' because X and p ap-
pears simply as polynomial factors in those terms. That is, Ka,(7) — 02(y) = 0,(1) uniformly
on T. Therefore, 62(vy) — 0%2(7y) = 0,(1) uniformly on T'. By the Taylor expansion, |In&2(y) —
In072(7)] = 152 () — 022(7)| /32 (7), where 5 (1) lies between 62 () and 072(7). As o72(7) > 02 (7)
and 02 (v) is uniformly bounded away from zero on I', ¢}2(y) will be so too. It follows that,
because 62(7y) — 0:2(7) = o0p(1) uniformly on T', 62 (y) will be bounded away from zero uni-
formly on T in probability. Hence, |Iné2(y) — Ina?(y)| = 0,(1) uniformly on T'. Consequently,
LI L (y) — 2Qu(m)] = 0y(1).

(unlform equicontinuity) We will show that -1 In Q,,(y) = —(In(27m)+1)—1 In 032 (y)+:% (In [S,, (A) |+

In|Ry,(p)|) — & In[(1 — A\)(1 — p)] is uniformly equicontinuous on I'. The ¢};?(y) is uniformly con-

tinuous on I'. This is so, because ¢}2(v) is a polynomial of A and p, with bounded coefficients by

Lemmas C.5 and C.6. The uniform continuity of In () on I' follows because Uy*gl(v) is uniformly

bounded on I'. Hence 77* In @,,(7) is uniformly equicontinuous on T.

(identification uniqueness) At v, 032(7o) = 0. Therefore, % Qp (7)— 5 Qn(7o) = —3[InoZ(7)—
I 03] + L (1n[Sa (W) = 1018, ]) + L (1n | B (p)] — | Ral) — 2 (In(1 = A)(1 — )] — In[(1 — Ao)(1 —
po)l) = 3ot (7) = moh (7)) = 75 (Qpn(Y) = Qpin(70)) — 3[In 032 (7) — Ino}(7)]. Suppose that the
identification uniqueness condition would not hold. Then, there would exist an € > 0 and a sequence
{vn} In Nc(7v) such that limy,—oo[-5Qn(7,) — =Qn(7)] = 0. Because N.(Ag) is a compact set,
there would exist a convergent subsequence {v,, } of {7, }. Let v, be the limit point of {7, } in
I'. As LQ, () is uniformly equicontinuous in 7, limy,,, oo n—[Qn (v4) = @n,., (70)] = 0. Because
(Qp.n (V)= Qpn(70)) < 0and —[Ino?(y)—Inoz(y)] < 0, this is possible only if limy,,, —.o0 (072 (7,)—
02 (74)) = Oandlim, o - [Qpon, (72)=Qpnn (70)] = 0. The lim,, (022 (7, )% (1)) =
0 is a contradiction when limy, oo == [R ()G ZnBo)' Pr(p)[Rn ()G ZnBo) # 0, Vp. In the event that
limy, o = [Rn (p)Gn Zn By Pu(p) (R (p)GnZnBy] = 0 for some p, the contradiction follows from the
relation lim,, o —— a=[Qpon (Y4) — prnm (70)] = 0 under Assumption 5(b). This is so, because, in
this event, Assumption 5(b) is equivalent to that lim,, o [-% (In[S, (A)| — In |S,]) + 2= (In | R, (p)| —
I |Ra) = £ (n[(1 = A)(1 = p)] — In[(1 = Ao)(1 — po)]) — 3(1002(7) — I 02)] = linyae L[Qpn(7) —
Qp.n(79)] # 0 for v # 4. Therefore, the identification uniqueness condition must hold.

The consistency of 4, and, hence, 0,, follow from this identification uniqueness and uniform
convergence (White, 1994, Theorem 3.4). m

2 D 2
Proof of Proposition 2. (Show that nia lgaLaTé(,e") - %9 lgeggﬁ"f’)&o.) The second-order
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derivatives are given in Appendix B. By the mean value theorem, tr(J,G2(\,)) =tr(J,G?) +
2tr(J G2 (M) (A — Ao). Note that G,,(\,) is uniformly bounded in row and column sums uni-

formly in a neighborhood of Ao by Lemma C.3 under Assumption 4. As R, (p,) = R, + (pg —
D) M, it follows that % [25 10 L, (0,) — 2oy In Ly (60)] = —2:5t0[J,G3 (M) (A — Ao) — (G —

Tn

LYWL Rl Sy Ry W Yo+ 222 YW1 R T, My, W, Y, — L2017 MY T, M, W, Yy, = 0,,(1), be-
0 n n
Ly

cause Ltr(J,G3(\,)) = O(1), LY W} R, J,R,W,)Y,, = Oy(1), LY, W/} R J,M,W,)Y,, = O,(1),

and LYW/} M} J,M,W,Y, = O,(1). The convergence in probability of the other second order
derivatives follows similar or more straightforward arguments.

(Show #% — E(J—*%)AO.) As #(G’nznﬁo)’(]nénen = 0,(1) by Lemma C.7, it
follows that #YTQWT’LR;LJanWnYn = #(énznﬂo)’JnénZnﬂo + #e;é'anénen + 0,(1). Lemmas
C.8 and C.6 imply E(¢,,G", J,Gnen) = o3tr(G, J,Gy) and

n 4

1, ~ ~ — 308 ~ ~ ~ ~ 2 ~ =
Var(ﬁeilG;LJnGnen) = %72300) > UeCID(G;LJHGTL)UeCD(G;z‘]’nGn) + %tr[‘]n(G;LGnV] = O(
=1

).

1
n

1 8%InL,(8o) 1 8*In L, (6o)
Hence = =555 - B )

2,0 follows from the law of large numbers. The convergence
of the other terms can be derived by similar arguments.

(Show that Xy is nonsingular.) Let o = (o, a2, as, aq)’ be a column vector of constants such that
Yga = 0. It is sufficient to show that o = 0. From the first row block of the linear equation system
Yga =0, one has a; = — limnﬂoo(Z;ann)_lzég]nénznﬁo -ap. From the last equation of the linear
system, one has ay = — lim,, o %gtr(JnGH) cap — limy, oo i%ﬁtr(Jan) - aug. Substitution in the
the third equation of the linear system gives lim, oo = [tr(H5JnGr) — Ztr(J, H, ) tr(J,Gn)]as +
lim,,— 00 n%[tr(Hf;Jan) — %trQ(Jan)}ag = 0. By eliminating a7, as and a4, the remaining
equation becomes lim,, ﬁ{fg[tr(HfLJan) - n%tr2(Jan)](GnZnﬂO)’Pn(énZnﬁo) + ¢n} .
as = 0, where ¢, = [tr(HSJnHy) — 2t0?(Jo Hp)[tr(G3, T Gr) — Zt12(J,Gy)] — [tr(HE JnGh) —
Ztr(JnHy )tr(JnGn))?. Let Cp = JoGp — 2t2(JnGn)In and Dy, = JoH, — 2tr(J,H,)I,. Then,
limy, oo 5 [tr(HSJp Hy) — 202 (J, Hy )] = limy, o 5o tr(Dg D3) > 0 and

n*

6, = {lx(DLDL(CEC) — 02(CDY)] > 0.

As Assumption 5(a) implies that lim,_ . n%(R,,LG,,LZ”ﬂO)’ P, (R,GnZ,[,) is positive definite and

lim,, o0 n%[tr(H;";Jan) - %trQ(Jan)] > 0, it follows that as = 0 and, so, @« = 0. On the other

32



hand, if lim,,_ o #(RnGnZnBO)’Pn(RnGnZnﬂO) =0, limnﬂoo(n—l*)z(bn > 0 by Assumption 6. it
follows that ay = 0 and, so, & = 0. Hence ¥y is nonsingular.

(the limiting distribution of #%’9’(90)) The matrices J,R,, J,H, and Jnén are uniformly
bounded in both row and column sums in absolute value. As the elements of Z,, are bounded, the
elements of J,, Z,, and J,,Gy, Zn, B, for all n are uniformly bounded by Lemma C.5. With the existence
of high order moments of € in Assumption 1, the central limit theorem for quadratic forms of double

arrays of Kelejian and Prucha (2001) can be applied and the limiting distribution of the score vector

follows.
. S -1

Finally, from the expansion v/n*(0,, — 0g) = — (# %) \/%%’9‘(90), the asymptotic

distribution of én follows. m
.. Bn11 Bpa2 LA _
Proof of Proposition 3. Let B, = , where By, 11 = =< tr(G} JnGr), Bno1 =
B, 21 By

Bl 1y = (Atr(HEJ,Gy), 2= tr(J,Gy))', and

El O'OTL

Ltr(HsJ,Hy) =
Aj;ftr(Jﬁ]1n)

1
2 % I
ogn 204

Under normality assumption, the variance matrix of the MLE of 6 is

-1
1., 1 Yem Ognyxe N Okxr  Ogxs

O2x(k4+1)  Oa2x2 O3xx  Bn

The variance matrix of the MLE of ( is

-1

1 Ok xk O
1 Z(m-f— X x1 ’

n* 1
O1xk  Bni1 — Bnji2B,, 59Bn 21

by the inversion of the partitioned matrix. As B,, is nonnegative definite, the variance matrix of the

MLE is relatively smaller than that of &stls,n' ]

33



References

Anselin, L. (1988). Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Dor-

drecht.

Anselin, L. (2006). Spatial econometrics, in T. C. Mills and K. Patterson (eds), Palgrave Handbook

of Econometrics, Vol. 1, Palgrave MacMillan, New York.

Bertrand, M., Luttmer, E. and Mullainathan, S. (2000). Network effects and welfare cultures,

Quarterly Journal of Economics 115: 1019-1055.

Bramoullé, Y., Djebbari, H. and Fortin, B. (2009). Identification of peer effects though social

networks, Journal of Econometrics 150: 41-55.

Calvé-Armengol, A., Patacchini, E. and Zenou, Y. (2006). Peer effects and social networks in

education. Manuscript, Universitat Autonoma de Barcelona.
Case, A. (1991). Spatial patterns in household demand, Econometrica 59: 953-965.

Case, A. (1992). Neighborhood influence and technological change, Regional Science and Urban
FEconomics 22: 491-508.

Case, A., J. R. Hines, J. and Rosen, H. S. (1993). Interstate tax competition after tra 86, Journal

of Policy Analysis and Management 12: 136—148.

Chamberlain, G. (1980). Analysis of covariance with qualitative data, Review of Economic Studies

47: 225-238.

Cohen, J. (2002). Reciprocal state and local airport spending spillovers and symmetric responses to

cuts and increases in federal airport grants, Public Finance Review 30: 41-55.

Conly, T. G. (1999). Gmm estimation with cross sectional dependence, Journal of Econometrics

92: 1-45.
Cox, D. R. (1975). Partial likelihood, Biometrika 62: 269-276.
Cressie, N. (1993). Statistics for Spatial Data, John Wiley and Sons, New York.

Durlauf, S. N. and Young, H. P. (2001). The new social economics, in S. N. Durlauf and H. P. Young

(eds), Social Dynamics, MIT press, Cambridge.

34



Fingleton, B. (2008). A generalized method of moments estimator for a spatial panel model with an

endogenous spatial lag and spatial moving average errors, Spatial Economic Analysis 3: 27-44.

Florax, R. and Folmer, H. (1992). Specification and estimation of spatial linear regression models:
Monte carlo evaluation of pre-test estimators, Regional science and urban economics 22: 405—

432.

Hanushek, E. A., Kain, J. F., Markman, J. M. and Rivkin, S. G. (2003). Does peer ability affect

student achievement?, Journal of Applied Econometrics 18: 527-544.
Horn, R. and Johnson, C. (1985). Matriz Analysis, Cambridge Univsersity Press, Cambridge.
Hsiao, C. (2003). Analysis of Panel Data, Cambridge University Press, Cambridge.

Kelejian, H. H. and Prucha, I. R. (1998). A generalized spatial two-stage least squares procedure
for estimating a spatial autoregressive model with autoregressive disturbance, Journal of Real

Fstate Finance and Economics 17: 99-121.

Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator for the autoregressive

parameter in a spatial model, International Economic Review 40: 509-533.

Kelejian, H. H. and Prucha, I. R. (2001). On the asymptotic distribution of the moran i test statistic

with applications, Journal of Econometrics 104: 219-257.

Kelejian, H. H. and Prucha, I. R. (2007). Hac estimation in a spatial framework, Journal of Econo-

metrics 140: 131-154.

Lancaster, T. (2000). The incidental parameter problem since 1948, Journal of Econometrics

95: 391-413.

Lee, L. F. (2004). Asymptotic distributions of quasi-maximum likelihood estimators for spatial

econometric models, Fconometrica 72: 1899-1926.

Lee, L. F. (2007). Identification and estimation of econometric models with group interactions,

contextual factors and fixed effects, Journal of Econometrics 140: 333-374.

Lee, L. F. and Liu, X. (2008). Efficient gmm estimation of high order spatial autoregressive models

with autoregressive disturbances. Forthcoming in Econometric Theory.

35



Lee, L. F. and Yu, J. (2007). A spatial dynamic panel data model with both time and individual

fixed effects. working paper, Department of Economics, Ohio State University.

Lee, S. Y. (2008). Three essays on spatial autoregressive models and empirical organization. PhD

thesis, Department of Economics, Ohio State University.

LeSage, J. (1999). The theory and practice of spatial econometrics. Manuscript, Department of

Economics, University of Toledo.
LeSage, J. and Pace, R. (2009). Introduction to Spatial Econometrics, CRC Press, Boca Raton, FL.

Lin, X. (2005). Peer effects and student academic achievement: an application of spatial autoregres-

sive model with group unobservables. Manuscript, Ohio State University.

Lin, X. (2008). Identifying peer effects in student academic achievement by a spatial autoregressive

model with group unobservables. Manuscript, Tsinghua Unversity, Beijing.

Lin, X. and Lee, L. F. (2006). Gmm estimation of spatial autoregressive models with unknown

heteroskedasticity. Working paper, Department of Economics, Ohio State University.

Liu, X. and Lee, L. F. (2009). Gmm estimation of social interaction models with centrality. Manu-

script, Department of Economics, University of Colorado at Boulder.

Manski, C. F. (1993). Identification of endogenous social effects: the reflection problem, The Review
of Economic Studies 60: 531-542.

Moffitt, R. A. (2001). Policy interventions, low-level equilibria, and social interactions, in S. N.

Durlauf and H. P. Young (eds), Social Dynamics, MIT press, Cambridge.

Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations,

FEconometrica 16: 1-32.

Ord, J. (1975). Estimation methods for models of spatial interaction, Journal of the American

Statistical Association 70: 120-126.
Rothenberg, T. J. (1971). Indentification in parametric models, Econometrica 39: 577-591.

Sacerdote, B. (2001). Peer effects with random assignment: results for dartmouth roommates,

Quarterly Journal of Economics 116: 681-704.

36



Udry, J. R. (2003). The national longitudinal study of adolescent health (add health), waves 1.

White, H. (1994).

Estimation, Inference and Specification Analysis, Cambridge Univsersity Press,

New York.
Table 1: 2SLS, G2SLS and ML Estimation with Strong X’s

Ao =0.5 po = 0.5 Bio=1 Bao =1

small size groups: 7 = 67, n =557, > _, rank(I,,, — W,,) = 466
2SLS  0.489(.085)[.086] - 1.004(.056)[.056]  1.003(.092)[.092]
G2SLS  0.498(.069)[.069]  0.346(.107)[.187]  1.003(.053)[.054]  1.001(.083)[.083]
ML1  0.495(.069)[.069] 0.495(.081)[.081] 1.004(.053)[.053] 1.004(.082)[.082]
ML2  0.495(.089)[.089] 0.490(.110)[111] 1.005(.053)[.053] 1.005(.083)[.083]

moderate size groups: 7 = 67, n =877, Y. _, rank(l,,. — W) = 761
9SLS  0.494(.059)[.059] - 1.004(.041)[.041]  1.008(.078)[.078]
G2SLS  0.499(.048)[.048]  0.424(.072)[.105] 1.003(.037)[.037] ~ 1.004(.064)[.064]
ML1  0.496(.048)[.048] 0.497(.058)[.058] 1.003(.037)[.037] 1.006(.063)[.063]
ML2  0.497(.060)[.060] 0.498(.073)[.073] 1.003(.037)[.037] 1.006(.065)[.065]

moderate size groups: 7 = 102, n = 1344, Y/ _, rank(I,,, — W) = 1166
9SLS  0.495(.047)[.047] - 1.003(.034)[.035]  1.003(.059)[.059]
G2SLS  0.498(.038)[.039]  0.428(.058)[.092] 1.002(.032)[.032]  1.001(.049)[.049]
MLI  0.496(.038)[.039] 0.501(.046)[.046] 1.002(.032)[.032] 1.003(.048)[.049]
ML2  0.496(.050)[.050] 0.504(.063)[.063] 1.002(.032)[.032] 1.003(.050)[.050]

large size groups: 7 = 102, n = 2279, Y. _, rank(l,,, — W) = 2076
9SLS  0.497(.038)[.038] - 1.002(.028)[.028]  1.006(.050)[.050]
G2SLS  0.500(.031)[.031]  0.460(.046)[.061] 1.001(.025)[.025] 1.002(.041)[.041]
ML1  0.499(.031)[.031] 0.499(.038)[.038] 1.001(.025)[.025] 1.003(.040)[.040]
ML2  0.502(.036)[.036] 0.497(.044)[.044] 1.001(.025)[.025] 1.002(.041)[.041]

Mean(SD)[RMSE]
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Table 2: 2SLS, G2SLS and ML Estimation with Weak X’s

N =05 po =05 Brg =02 By = 0.2

small size groups: 7 = 67, n =557, Y. _, rank(l,,, — W) = 466
9SLS  0.591(.499)[.507] - 0.194(.057)[.058]  0.177(.101)[.103]
G2SLS  0.633(.508)[.525]  0.226(.348)[.443] 0.198(.057)[.057] 0.178(.108)[.110]
ML1  0.517(.149)[.150]  0.453(.159)[.166] 0.204(.052)[.052] 0.201(.074)[.074]
ML2  0.506(.168)[.168] 0.469(.177)[.179] 0.205(.052)[.053] 0.204(.075)[.075]

0
moderate size groups: 7 = 67, n = 877, Y. _, rank(l,,, — Wp,) = 761
0

9SLS  0.527(.409)[.410] - 0.197(.045)[.046]  0.189(.090)[.090]
G2SLS  0.548(.324)[.328]  0.356(.277)[-312]  0.199(.040)[.040] ~ 0.190(.079)[.079]
ML1  0.507(.117)[.117] 0.473(.123)[126] 0.203(.037)[.037] 0.203(.058)[.058]
ML2  0.513(.143)[.144] 0.471(.148)[.150] 0.203(.037)[.037] 0.203(.060)[.060]
moderate size groups: 7 = 102, n = 1344, Y/ _, rank(I,,, — W) = 1166
9SLS  0.481(.398)[.398] - 0.199(.045)[.045]  0.195(.088)[.088]
G2SLS  0.508(.220)[.220]  0.396(.225)[.248]  0.199(.033)[.033]  0.194(.056)[.056]
ML1  0.503(.106)[.106] 0.483(.110)[.111] 0.201(.031)[.031] 0.200(.046)[.046]
ML2  0.512(.133)[133] 0.479(.138)[.140] 0.202(.032)[.032]  0.200(.047)[.047]
large size groups: 7 = 102, n = 2279, Y’ _, rank (I, — W) = 2076
9SLS  0.470(.212)[.214] - 0.201(.030)[-030]  0.204(.054)[.054]
G2SLS  0.515(.169)[.170]  0.455(.191)[.197]  0.200(.026)[.026]  0.198(.044)[.044]
ML1  0.502(.098)[.098] 0.487(.101)[.102] 0.201(.025)[.025] 0.202(.037)[.037]
ML2  0.514(.107)[.108] 0.478(.112)[.114] 0.201(.025)[.025] 0.201(.037)[.037]

Mean(SD)[RMSE]
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Table 3: ML Estimation of Misspecified Models (R=102, n=1344)

correct model
imposing An =0
imposing an =0

imposing p,, =0

Xo =05
1496(.038)[.039]

.799(.011)[.300]
718(.016)[.218]

po = 0.5
.501(.046)[.046]
.805(.012)[.305]

—.018(.048)[.521]

Bro=1
1.002(.032)
1.000(.033)
0.821(.037)

(.032)

32)
33)[.033]
37)[.183]
0.897(.032)[.108]

L0
L0
(1
108

520 =1
1.003(.048)[.049]
1.144(.046)[.151]

0.677(.050)[.327]

likelihood value
—1749.0(—)
—1804.5(6.0%)
—1907.1(0.0%)
—1803.9(7.0%)

correct model

imposing p,, =0

Xo=—03
—.295(.044)[.045]
.166(.033)[.467]

po = 0.5
1496(.042)[.042]

1.001(.031)[.031]
0.920(.032)[.086]

0.997(.047)[.047]
0.603(.056)[.401]

—1797.2(—)
—1824.5(0.0%)

correct model

imposing p,, =0

Xo = 0.5
497(.024)[.024]
:369(.023)[.133]

po = _03
—.205(.038)[.038]

1.003(.031)[.031]
1.064(.031)[.071]

1.003(.060)[.061]
1.192(.056)[.200]

—1797.1(—)
—1820.8(0.0%)

correct model

misspecified W,

Xo =05
1499(.019)[.019]
.826(.328)[.462]

po =0

1.002(.030)[.030]
1.316(.050)].320]

1.000(.048)[.048]
1.833(.084)[.838)

—1755.0(—)
—1978.1(0.0%)

parameter estimates: Mean(SD)[RMSE]; likelihood value: Mean(frequency of exceeding likelihood value of the correct model)
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