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1 Introduction

Social interaction models study how interaction among individuals can lead to collective behavior

and aggregate patterns (Anselin, 2006). Such models are subjects of interest in the new social

economics (Durlauf and Young, 2001). Empirical studies on social interactions can be found in Case

(1991; 1992) on consumption pattern and technology adoption; Bertrand et al. (2000) on welfare

cultures; and Sacerdote (2001), Hanushek et al. (2003) and Lin (2005; 2008) on student achievement,

to name a few. For these studies, an individual belongs to a social group. The individuals within a

group may interact with each other.

A general social interaction model incorporates endogenous e¤ects, contextual e¤ects, and unob-

served correlation e¤ects. Identi�cation of the endogenous interaction e¤ect from the other e¤ects is

the main interest in social interaction models (see, eg., Manski, 1993; Mo¢ tt, 2001). In his seminal

work, Manski (1993) has shown that linear regression models where the endogenous e¤ect is speci-

�ed in terms of the group mean would su¤er from the �re�ection problem�. The various interaction

e¤ects cannot be separately identi�ed.

Lee (2004; 2007) recognizes that many of the empirical studies of social interactions in a group

setting have their model speci�cations related to the spatial autoregressive (SAR) model in the

spatial econometrics literature (see, eg., Case, 1991; Bertrand et al., 2000; Mo¢ tt, 2001; Hanushek

et al., 2003). Lee (2007) considers the SAR model in a group setting which allows endogenous group

interactions, contextual factors, and group-speci�c �xed e¤ects. Lee�s (2007) group interaction model

assumes that an individual is equally in�uenced by all others in that group, so that the endogenous

e¤ect and contextual e¤ect are speci�ed, respectively, as the average outcomes and characteristics of

the peers. Lee (2007) shows that the identi�cation of the various social interaction e¤ects is possible

if there are su¢ cient variations in group sizes in the sample. The identi�cation, however, can be

weak if all of the group sizes are large.

When there is no information on how individuals interact within a group, Lee�s (2007) group

interaction model is practical by assuming an individual is equally in�uenced by the peers. In some

data sets which are designed for the study of social interactions, information on the network structure

within a group may be available. An example is the Add Health data (Udry, 2003), where there is

information on the �named�friends within a grade or a school of each student in the sample. Such

information on the connections of each individual (node) in a group (network) may be captured by
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the spatial weights matrix in a SAR model. Di¤erent from the equally weighted group interaction

matrix in Lee (2007), the network weights matrix can be asymmetric and its o¤-diagonal entries

may be zeros. Such a weights matrix introduces more nonlinearity for identi�cation of various social

interaction e¤ects beyond the variation of group sizes.

Lin (2005) recognizes the value of the network structure and has estimated a network model on

student academic achievement using the Add Health data. Lin�s (2005) model has the speci�cation

of a SAR model, which includes group-speci�c �xed e¤ects, in addition to endogenous and contextual

e¤ects. Lin (2005) has discussed the di¤erence of the network model with the linear-in-mean model

of Manski (1993) and argued that the information on network structure helps identi�cation. How-

ever, formal identi�cation conditions have not been explicitly derived in that paper. Subsequently,

Bramoullé et al. (2009) investigate the identi�cation of the network model in Lin (2005) by focusing

on the network operator of the reduced form equation.

This paper discusses the speci�cation, identi�cation and estimation issues of the network model.

The sample consists of many di¤erent groups and a network is formed among individuals within a

group. To capture the group unobservables, a group dummy is included. As there are many groups in

the sample, the joint estimation of the group �xed e¤ects with the structural parameters will create

the �incidental parameter�problem (Neyman and Scott, 1948). For this reason, Lee (2007) considers

the within estimation method for the group interaction model, and Lin (2005) takes the di¤erence

of an individual�s outcome from the average outcomes of his/her named friends (or connections)

to eliminate the group �xed e¤ects. For the within equation, Lee (2007) discusses the 2SLS and

(conditional) maximum likelihood (ML) methods for the model estimation. He shows that the ML

method is e¢ cient relative to the 2SLS. On the other hand, the empirical model in Lin (2005) is

estimated by the 2SLS after the elimination of group �xed e¤ects.

The model considered in this paper has a similar speci�cation as the network model in Lin (2005).

In addition, we allow the disturbances of connected individuals to be correlated, so that the selection

e¤ect in a network can be partially captured.1 We characterize the identi�cation conditions of the

extended SAR model based on features of the network structure, the role of exogenous variables, and

the presence of correlated disturbances. We propose an alternative method to eliminate the group

1 If the network formation is endogenous due to the similar preference of connected individuals as argued in Mo¢ tt
(2001), disturbances of connected individuals may be correlated. Therefore, correlated disturbances shall be allowed in
order to capture the endogenous network formation, which is regarded as an important selection issue in the empirical
literature. Although network formation is assumed exogenous in this paper, such a speci�cation of disturbances is in
the right direction for a better model.
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�xed e¤ects. We compare the performance of the proposed elimination method with that of Lin

(2005) in terms of estimation e¢ ciency. For the estimation, we propose a quasi-maximum likelihood

(QML) method which is computationally tractable and e¢ cient relative to the 2SLS method. This

likelihood is a partial likelihood in the terminology of Cox (1975).

The rest of the paper is organized as follows. Section 2 presents the SAR model with network

structures. We interpret the speci�cation of the model and discuss identi�cation and estimation

issues. Section 3 suggests a transformation of the model to eliminate group �xed e¤ects. The

implementation of the QML estimation of the transformed model is discussed in Section 4. Section

5 characterizes the identi�cation conditions of the model and establishes the consistency of the QML

estimator (QMLE). Section 6 derives the asymptotic distribution of the QMLE and compares the

e¢ ciency properties of the QMLE with the 2SLS estimator (2SLSE). Section 7 investigates the

�nite sample performance of the estimation methods, and consequences of model misspeci�cations

via Monte Carlo experiments. Section 8 brie�y concludes.2

2 The Network Model with Macro Groups

The model under consideration has the speci�cation

Ynr = �0WnrYnr +Xnr�10 +WnrXnr�20 + lmr
�r0 + unr; (1)

where unr = �0Mnrunr + �nr for r = 1; � � � ; �r. �r is the total number of groups in the sample, mr

is the number of individuals in the rth group, and n =
P�r

r=1mr is the total number of sample

observations. Ynr = (y1r; � � � ; ymr;r)
0 is an mr-dimensional vector of yir, where yir is the observed

outcome of the ith member in the macro group r. Wnr andMnr are nonstochastic mr�mr network

weights matrices, which may or may not be the same.3 Xnr is an mr � k matrix of exogenous

variables.4 lmr
is an mr-dimensional vector of ones. �nr = (�nr;1; � � � ; �nr;mr

)0 is an mr-dimensional

vector of disturbances, where �nr;i�s are i.i.d. with zero mean and variance �20.

The speci�cation of the weights matrices Wnr and Mnr in (1) captures the network structure

2An empirical application to illustrate the practical use of the speci�ed model and the proposed estimation method
can be found in the working paper version of this paper and Lin (2008).

3Some empirical studies assume Mr = Wr , (see, e.g., Cohen, 2002; Fingleton, 2008). On the other hand, some
discussions on the possibility that Mr 6=Wr can be found in LeSage (1999, pp. 87-88).

4Sometimes, model (1) can be speci�ed as Ynr = �0WnrYnr + X1nr�10 + WnrX2nr�20 + lmr�r0 + unr with
unr = �0Mnrunr + �nr . Here we assume X1nr = X2nr = Xnr wlog. If X1nr and X2nr are not the same, they may
be expanded to an Xnr which contains all the distinct columns of X1nr and X2nr . In that case, �10 and �20 will
have zero restrictions in some of their entries.
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of the macro group r.5 In a group interaction model, with no information on how individuals

interact within a group, it is typical to assume that each group member is equally a¤ected by all

the other members in that group, so that the weights matrix takes the special form W e
nr = M

e
nr =

1
mr�1 (lmr l

0
mr
� Imr ).

6 On the other hand, some data sets (e.g. the Add Health data as mentioned

above) have information on the network structure. With such information, the (i; j) entry of the

weights matrix is a non-zero constant if i is in�uenced by j, and zero otherwise. In principle, the

in�uence is not necessarily reciprocal, and hence the weights matrices can be asymmetric. In the

paper, we focus on the case that Wnr and Mnr are row-normalized such that the sum of each row

is unity, i.e., Wnrlmr
= Mnrlmr

= lmr
. Row normalization is popular in empirical studies of social

interactions as WnrYnr can be then interpreted as the (weighted) average outcome (or behavior) of

the peers.7

The network model (1) is an equilibrium model in the sense that the observed outcomes Ynr

are simultaneously determined through the network structure within a group under the assumption

that (Imr
� �0Wnr) is invertible.8 This model may have di¤erent economic contents under di¤erent

contexts. One may interpret the equations in (1) as reaction functions in the industrial organization

literature. Or, Ynr may be regarded as the outcomes of the Nash equilibrium in a peer e¤ect game

(see Case et al., 1993; Calvó-Armengol et al., 2006). In the spatial econometrics literature, the model

(1) is an extended SAR model with SAR disturbances.9 A typical SAR model, however, does not

have a macro group structure so group-speci�c e¤ects are absent. As a model in the framework of

social network, which is our main focus,WnrYnr captures the possible endogenous social interactions

e¤ect with the coe¢ cient �0, WnrXnr captures the contextual e¤ect with the coe¢ cient �20. The

endogenous e¤ect refers to the contemporaneous in�uences of peers. The contextual e¤ect includes

characteristics of peers una¤ected by the current behavior. The incorporation of the contextual

5 In an empirical study, one might have di¤erent speci�cations of the network weights matrix. The model with a
di¤erent network weights matrix would be a di¤erent model and we would have a model selection problem in practice.
Some Monte Carlo studies in Lee (2008) provide evidence that the model selection based on the maximized likelihood
values can be quite e¤ective. Such a model selection issue is interesting and important but is not the focus of this
paper.

6A list of frequently used notations is provided in the Appendix for the convenience of reference.
7 In some cases, however, row-normalization is not plausible. For example, if a row has all zero elements, then it is

impossible to normalize that row to one. Also, sometimes one may be interested in the aggregate in�uence rather than
the average in�uence of the peers. Liu and Lee (2009) have proposed a GMM approach to estimate a social interaction
model where the weights matrix is not row-normalized. The two models with or without row-normalization might
address di¤erent empirical motivations and they can be complementary to each other.

8A su¢ cient condition for (Imr � �0Wnr) to be invertible is that jj�0Wnrjj < 1 for some matrix norm jj � jj. For
the case where Wnr , with all entries being non-negative, is row-normalized, a su¢ cient condition is j�0j < 1.

9 In the terminology of spatial econometrics, WnrXnr is called a exogenous spatial lag (Florax and Folmer, 1992),
and a model with such a term is referred to as a spatial Durbin model (Anselin, 1988).
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variables, here WnrXnr, in addition to Xnr, has a long history in the social interaction literature in

sociology before simultaneity is allowed in the model. �r0 captures the unobserved group-speci�c

e¤ect, and Mnrunr captures the unobserved correlation e¤ect among connected individuals with the

coe¢ cient �0.
10

Manski�s (1993) re�ection problem refers to the di¢ culty to distinguish between behavioral and

contextual factors. Mo¢ tt (2001) argues that the basic identi�cation problem is how to distinguish

correlations of outcomes that arise from social interactions from correlations that arise from corre-

lated group unobservables. He believes in two generic sources of correlated unobservables �one from

preferences or other forces that lead certain types of individuals to be grouped together, and the

second from some unobservable common environmental factors. For our generalized network model

with macro groups, while the second source is captured by the group-speci�c e¤ect �r0, the �rst

source may be captured by the correlation e¤ect parameter �0.

Although we treat �r0 as the unobserved group e¤ect of a macro group, such as a school-grade,

this speci�cation can be generalized if there are several network components in a macro group. In the

terminology of networks, a component is formed by a maximal set of individuals directly or indirectly

related to each other. A macro group may be regarded as the platform for a social network. A social

network may have a single or several components. In some applications, one may prefer to introduce

a separate dummy for each component within a group instead of a single group dummy. Such a

generalization will be accommodated by model (1) as we might regard each component as a group

instead.
10 In the literature of spatial econometrics, several approaches have been suggested for the speci�cation of the form

of spatial error dependence. In model (1), the regression error term unr is assumed to follow a SAR process. Under
this speci�cation, all the observations in a group are related to each other, with a decreasing correlation with higher
orders of contiguity. Hence, such a structure is desirable as it induces global spatial autocorrelation within a group
(Anselin, 2006). As an alternative, one can model the structure of spatial correlation based on a moving average
process. However, such a speci�cation only represents a local pattern of autocorrelation. For example, with a �rst
order moving average speci�cation, there is no spatial covariance beyond the second neighbor (Anselin, 2006). We have
shown, in Appendix E, that the proposed QML method can be extended to the model where the disturbances follow
a more general spatial ARMA process. In some cases, one could model the spatial error dependence by assuming that
the spatial correlation is a function of the distance between two observations (Cressie, 1993). Such a speci�cation could
be useful for geostatistic models but might be less so for social network models. For example, if the social network can
be represented in a graph, the relationship between nodes could simply be represented by a binary indicator which is
one for connected nodes and zero for unconnected ones. This is the case for the Add Health data (Udry, 2003) that we
have applied the proposed method to the empirical studies in our previous version and that in Lin (2008). In addition
to these speci�cations of the disturbances, another possibility is to leave the covariance structure unspeci�ed such as
those in Conly (1999) and Kelejian and Prucha (2007). For that alternative strategy, the main interest is to provide
HAC covariance matrices for the 2SLS and/or GMM estimators. Our paper does not follow the latter strategy as our
interest is to consider e¢ cient estimation for the model as well as the variance structure of the disturbances.
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3 Elimination of the Macro Group Fixed E¤ects

In this paper, we allow the distribution of �r0 to depend on Xnr and Wnr. We consider the

estimation of the model conditioning on �r0�s by treating �r0�s as unknown parameters (as in the

panel econometrics literature). To avoid the incidental parameter problem, we shall have the �xed

e¤ect parameter eliminated.

In a linear panel regression model or a logit panel regression model with �xed e¤ects, the �xed

e¤ect parameter can be eliminated by the method of conditional likelihood when e¤ective su¢ cient

statistics can be found for each of the �xed e¤ects. For those panel models, time average of the

dependent variable provides the su¢ cient statistic (see Chamberlain, 1980; Hsiao, 2003). However,

e¤ective su¢ cient statistics might not be available for many other models. The well-known example

is the probit panel regression model, where time average of the dependent variable does not provide

the su¢ cient statistic, even though probit and logit models are close substitutes. For the group

interaction model in Lee (2007), due to the speci�c structure of W e
nr, the group average, i.e., �yr =

1
mr

Pmr

i=1 yir, does provide an e¤ective su¢ cient statistic to eliminate the �xed e¤ect parameter

�r0. The observation deviated from the group mean (yir � �yr) does not involve the �xed e¤ect

�r0 and hence can be used in the conditional likelihood function for the estimation of the structural

parameters. For a general network weights matrixWnr, �yr might not be a su¢ cient statistic for �r0.11

Even so, this paper suggests a method which eliminates the �xed e¤ects and allows the estimation

of the remaining parameters of interest via a QML framework by exploring the row-normalization

property of the weights matrices.

To simplify repeated notations, let Snr(�) = Imr
��Wnr, Snr = Snr(�0), Rnr(�) = Imr

� �Mnr,

and Rnr = Rnr(�0). The reduced form equation of (1) is Ynr = S
�1
nr (Znr�0+lmr

�r0+R
�1
nr �nr), where

Znr = (Xnr;WnrXnr) and �0 = (�
0
10; �

0
20)

0. A Cochrane-Orcutt type transformation introduces i.i.d.

disturbances so that

RnrSnrYnr = RnrZnr�0 + (1� �0)lmr
�r0 + �nr; (2)

as Rnrlmr
= (1� �0)lmr

. Let Jnr = Imr
� 1

mr
lmr l

0
mr
be the derivation from group mean projector.

11The model (1) implies that �yr = 1
mr
l0mr

Ynr =
�0
mr
l0mr

WnrYnr +
1
mr
l0mr

Xnr�10 +
1
mr
l0mr

WnrXnr�20 + �r0 +
1
mr
l0mr

unr . �yr does not provide a su¢ cient statistic for �r0 when l0mr
Wnr is not proportional to l0mr

because
l0mr

WnrYnr may not be a function of �yr .
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Premultiplication of (2) by Jnr eliminates �r0�s, so we have

JnrRnrSnrYnr = JnrRnrZnr�0 + Jnr�nr: (3)

The transformed disturbances Jnr�nr are linearly dependent because its variance matrix �20Jnr

is singular. For an essentially equivalent but more e¤ective transformation, we consider the or-

thonormal matrix of Jnr given by [Fnr; lmr=
p
mr]. The columns in Fnr are eigenvectors of Jnr

corresponding to the eigenvalue one, such that F 0nrlmr
= 0, F 0nrFnr = Im�

r
and FnrF 0nr = Jnr,

where m�
r = mr � 1. Premultiplication of (2) by Fnr leads to a transformed model without �r0�s,

F 0nrRnrSnrYnr = F
0
nrRnrZnr�0 + F

0
nr�nr. By Lemma C.1,

12 this implies that

(F 0nrRnrFnr)(F
0
nrSnrFnr)F

0
nrYnr = (F

0
nrRnrFnr)F

0
nrZnr�0 + F

0
nr�nr: (4)

Denote Y �nr = F
0
nrYnr, Z

�
nr = F

0
nrZnr,W

�
nr = F

0
nrWnrFnr,M�

nr = F
0
nrMnrFnr, S�nr(�) = F

0
nrSnr(�)Fnr =

Im�
r
� �W �

nr, and R
�
nr(�) = F

0
nrRnr(�)Fnr = Im�

r
� �M�

nr. Furthermore, denote S
�
nr = S

�
nr(�0) and

R�nr = R
�
nr(�0) for simplicity. The transformed model (4) can be rewritten more compactly as

R�nrS
�
nrY

�
nr = R

�
nrZ

�
nr�0 + �

�
nr; (5)

where ��nr = F 0nr�nr is an m
�
r-dimensional disturbance vector with zero mean and variance matrix

�20Im�
r
. Equation (5) is used for the estimation of the structural parameters in the model.

Some features in (5) may not conform to a typical SAR model. A spatial weights matrix in a

conventional SAR model is speci�ed to have zero diagonal elements. Such a speci�cation facilitates

the interpretation of spatial e¤ects of neighboring units on a spatial unit and excludes self-in�uence.

A zero diagonal spatial weights matrix is also utilized in Moran�s test of spatial independence so as

the test statistic has zero mean under the null hypothesis of spatial independence. Many articles

on spatial econometrics maintain this assumption. While Wnr and Mnr have zero diagonals, the

transformed W �
nr andM

�
nr do not.

13 Also even though Wnr andMnr are row-normalized, the trans-

formed W �
nr and M

�
nr do not preserve this feature. However, these do not turn out to be di¢ cult

issues for understanding asymptotic properties of estimators. The di¢ culty from the analytic point

12See Appendix C for some useful lemmas.
13As tr(Wnr) = 0 and Wnrlmr = lmr , W

�
nr has nonzero diagonal elements because tr(W

�
nr) = tr(WnrFnrF 0nr) =

tr(WnrJnr) = tr(Wnr)� 1
mr
tr(Wnrlmr l

0
mr
) = �1.
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of view is on the uniform boundedness properties of the transformed spatial matrices. Furthermore,

when elements of �nr are i.i.d., the elements of ��nr are only uncorrelated but, in general, not neces-

sarily independent. So asymptotic results which are developed for the estimation of a typical SAR

model, e.g., the QMLE in Lee (2004), may not directly apply. The following section discusses the

implementation of the QML method for the transformed model.

4 Quasi Maximum Likelihood Estimation

Let ��nr(�) = R�nr(�)[S
�
nr(�)Y

�
nr � Z�nr�], where � = (�0; �; �)0. For a sample with �r macro groups,

the log likelihood function is

lnLn(�) = �
n�

2
ln(2��2) +

P�r
r=1 ln jS

�
nr(�)j+

P�r
r=1 ln jR

�
nr(�)j �

1

2�2
P�r

r=1 �
�0
nr(�)�

�
nr(�); (6)

where � = (�0; �2)0 and n� =
P�r

r=1m
�
r = n� �r is the number of e¤ective sample observations. The

likelihood function has a partial likelihood (Cox, 1975) interpretation as showed in Appendix D.

In order to implement the QML, the determinant and inverse of S�nr(�) and R
�
nr(�) are needed.

As jS�nr(�)j = 1
1�� jSnr(�)j and jR

�
nr(�)j = 1

1�� jRnr(�)j by Lemma C.1, the tractability of evaluat-

ing jS�nr(�)j and jR�nr(�)j is exactly that of jSnr(�)j and jRnr(�)j.14 Furthermore, as S�nr(�)
�1 =

F 0nrSnr(�)
�1Fnr and R�nr(�)

�1 = F 0nrRnr(�)
�1Fnr by Lemma C.1, S�nr(�) and R

�
nr(�) are invertible

as long as the original matrices Snr(�) and Rnr(�) are invertible.

Let �nr(�) = Rnr(�)[Snr(�)Ynr � Znr�]. As ��nr(�) = F 0nr�nr(�) by Lemma C.2, it follows

that ��0nr(�)�
�
nr(�) = �0nr(�)Jnr�nr(�) because Jnr = FnrF

0
nr. Denote Yn = (Y 0n1; � � � ; Y 0n�r)0, Xn =

(X 0
n1; � � � ; X 0

n�r)
0, Zn = (Z 0n1; � � � ; Z 0n�r)0, �n = (�0n1; � � � ; �0n�r)0, Wn = DiagfWn1; � � � ;Wn�rg, Mn =

DiagfMn1; � � � ;Mn�rg, and Jn = DiagfJn1; � � � ; Jn�rg. The log likelihood function can be evaluated

without Fnr�s as

lnLn(�)

= �n
�

2
ln(2��2) +

P�r
r=1 ln

jSnr(�)j
1� � +

P�r
r=1 ln

jRnr(�)j
1� � � 1

2�2
P�r

r=1 �
0
nr(�)Jnr�nr(�)

= �n
�

2
ln(2��2) + ln jSn(�)j+ ln jRn(�)j � �r ln[(1� �)(1� �)]�

1

2�2
�0n(�)Jn�n(�); (7)

14When Wnr and Mnr are constructed as row normalized weights matrices from original symmetric matrices, Ord
(1975) suggests a computational tractable method for the evaluation of jSnr(�)j and jRnr(�)j. This will also be useful
for evaluating jS�nr(�)j and jR�nr(�)j, even though the row sums of the transformed spatial weights matrices W �

nr and
M�
nr may not be unity.
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where �n(�) = Rn(�)[Sn(�)Yn�Zn�], Sn(�) = In��Wn and Rn(�) = In� �Mn. For simplicity, let

Sn = Sn(�0) and Rn = Rn(�0).

In Lee�s (2007) group interaction model, �0 = 0 and Wnr = W
e
nr =

1
m�
r
(lmr

l0mr
� Imr

). Hence,

the likelihood function (7) becomes

lnLn(�) = �
n�

2
ln(2��2) +

P�r
r=1m

�
r [ln(m

�
r + �)� lnm�

r ]�
1

2�2
P�r

r=1 �
0
nr(�)Jnr�nr(�);

where Jnr�nr(�) =
m�
r+�
m�
r
JnrYnr�(JnrXnr;� 1

m�
r
JnrXnr)�, because jImr

��Wnrj = (1��)(m
�
r+�
m�
r
)m

�
r ,

JnrWnr = � 1
m�
r
Jnr. This is exactly the one derived in Lee (2007). Thus, the proposed estimation

approach in this paper generalizes Lee (2007).

For computational and analytical simplicity, the concentrated log likelihood can be derived by

concentrating out � and �2. From (7), given 
 = (�; �)0, the QMLE of �0 is given by �̂n(
) =

[Z 0nR
0
n(�)JnRn(�)Zn]

�1Z 0nR
0
n(�)JnRn(�)Sn(�)Yn, and the QMLE of �

2
0 is given by

�̂2n(
) =
1

n�
[Sn(�)Yn � Zn�̂n(
)]0R0n(�)JnRn(�)[Sn(�)Yn � Zn�̂n(
)]

=
1

n�
Y 0nS

0
n(�)R

0
n(�)Pn(�)Rn(�)Sn(�)Yn;

where Pn(�) = Jn � JnRn(�)Zn[Z 0nR0n(�)JnRn(�)Zn]�1Z 0nR0n(�)Jn and Pn = Pn(�0) for simplicity.

The concentrated log likelihood function of 
 is

lnLn(
) = �
n�

2
(ln(2�) + 1)� n

�

2
ln �̂2n(
) + ln jSn(�)j+ ln jRn(�)j � �r ln[(1� �)(1� �)]: (8)

The QMLE 
̂n = (�̂n; �̂n)
0 is the maximizer of the concentrated log likelihood (8). The QMLEs of

�0 and �
2
0 are, respectively, �̂n(
̂n) and �̂

2
n(
̂n). For asymptotic analysis, we assume the following

regularity conditions.

Assumption 1 The f�nr;igi=1;��� ;mr;r=1;��� ;�r are i.i.d. with mean zero and variance �
2
0.
15 The mo-

ment E(j�nr;ij4+�) for some � > 0 exists.
15Homoskedasticity might be a restrictive assumption, but it is beyond the scope of this paper to incorporate

heteroskedasticity. Under unknown heteroskedasticity, one might need consider an alternative estimation strategy
like an IV-based method (see, eg., Lin and Lee, 2006; Kelejian and Prucha, 2007). However, the IV (or, in general,
moment-based) estimation method can be sensitive in non-obvious ways to various implementation issues such as
the interaction between the choice of instruments and the speci�cation of the model (LeSage and Pace, 2009, p.56).
Furthermore, the IV estimates can be imprecise when instruments are weak. For these reasons, we focused on
likelihood-based techniques in this paper.
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Assumption 2 The elements of Zn are uniformly bounded constants for all n.16 Zn has the full

rank 2k, and limn!1
1
nZ

0
nR

0
nJnRnZn exists and is nonsingular.

Assumption 3 The sequences of row-normalized spatial weights matrices fWng and fMng are

uniformly bounded in both row and column sums in absolute value.17

Assumption 4 fS�1n (�)g and fR�1n (�)g are uniformly bounded in both row and column sums in

absolute value uniformly in 
 in a compact parameter space �, with the true 
0 = (�0; �0)
0 in

the interior of �.

The higher than the fourth moment condition in Assumption 1 is needed in order to apply a

central limit theorem due to Kelejian and Prucha (2001). The nonstochastic Zn and its uniform

boundedness conditions in the �rst half of Assumption 2 are for analytical simplicity. The RnZn

are regressors transformed by the spatial �lter Rn, and the JnRnZn are those transformed by the

deviation form group means projector Jn. The second half of Assumption 2 assumes that the

exogenous regressors JnRnZn in the transformed model (3) are not multicollinear. Assumption 3

limits the spatial dependence among the units to a tractable degree and is originated by Kelejian

and Prucha (1999). It rules out the unit root case (in time series as a special case). Assumption

4 deals with the parameter space of 
 to make sure that ln jSn(�)j, ln jRn(�)j, ln[(1 � �)(1 � �)],

and their related derivatives are well behaved. As shown in Lee (2004), if kWnk � 1 and kMnk � 1

where k�k is a matrix norm, then fjjS�1n (�)jjg and fjjR�1n (�)jjg are uniformly bounded in any subset

of (�1; 1) bounded away from the boundary.

5 Identi�cation and Consistency

There is a fundamental identi�cation issue for the network model di¤erent from the re�ection problem

in Manski (1993) if �0�10 + �20 = 0 and Wn =Mn, as summarized in the following lemma.

Lemma 5.1 If �0�10 + �20 = 0 and Wn = Mn, then the endogenous e¤ect parameter �0, the

contextual e¤ect parameter �20 and the correlated e¤ect parameter �0 cannot be separately identi�ed.

16 If Znr is allowed to be stochastic, then appropriate moment conditions need to be imposed, and the results
presented in this paper can be considered as conditional on Znr instead. Furthermore, if Znr is allowed to be
correlated with �nr , then we have an endogenous regressor problem. In that case, estimation methods such as IV,
etc., which takes into account the endogeneity issue, would be needed.
17A sequence of square matrices fAng, where An = [an;ij ], is said to be uniformly bounded in row sums (column

sums) in absolute value if the sequence of row sum matrix norm kAnk1 = maxi=1;��� ;n
Pn
j=1 jan;ij j (column sum

matrix norm kAnk1 = maxj=1;��� ;n
Pn
i=1 jan;ij j) is bounded. (Horn and Johnson, 1985)
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This problem is revealing from the reduced form equation of (5), which is

Y �nr = S
��1
nr Z

�
nr�0 + S

��1
nr R

��1
nr �

�
nr: (9)

With the restriction �0�10 + �20 = 0, Z�nr�0 = X�
nr�10 +W

�
nrX

�
nr�20 = (Imr

� �0W �
nr)X

�
nr�10 =

S�nrX
�
nr�10, and, hence, the reduced form equation (9) becomes Y �nr = X

�
nr�10 + vnr, where vnr =

S��1nr R
��1
nr �

�
nr. While �10 can be identi�ed from the mean regression E(Y �nrjX�

nr) = X
�
nr�10, both �0

and �20 can not be identi�ed as they are not in the mean regression equation. On the other hand, the

disturbances vnr follows a high-order SAR process, vnr = �0M
�
nrvnr+�0W

�
nrvnr��0�0M�

nrW
�
nrvnr+

��nr, where the identi�cation conditions have been considered in Lee and Liu (2008). If Wnr 6=Mnr

so that W �
nr 6=M�

nr, �0 and �0 can be identi�ed from the correlation structure of vnr. �20 can then

be identi�ed via the restriction �20 = ��0�10 once �0 is identi�ed. However, when Mnr = Wnr,

vnr = (�0 + �0)W
�
nrvnr � �0�0W �2

nrvnr + �
�
nr, and hence �0 and �0 can only be locally identi�ed but

can not be separately identi�ed.

An interpretation of the situation �0�10 + �20 = 0 is that (1) does not represent a reaction

function with simultaneity but a model with spurious social correlation among peers. This is because,

under the restriction �0�10 + �20 = 0, (1) can be generated from the panel regression model Y �nr =

X�
nr�10 + vnr with SAR disturbances. Let �10;j and �20;j be the jth element of �10 and �20

respectively. The spurious social correlation model can be ruled out when �20;j 6= 0 and �10;j = 0

for some j, or, in another word, there is a relevant variable in Xn that a¤ects Yn only through

the contextual e¤ect WnXn. For the linear-in-mean model of Manski (1993), the identi�cation of

endogenous and exogenous interaction e¤ects depends crucially on the existence of relevant variables

in Xnr that directly a¤ect Yn. For the network model, it is the behavioral interpretation of the

parameters that can be problematic when �0�10 + �20 = 0.
18

The transformed equilibrium vector JnRn(�)Yn for any � in its parameter space can be repre-

sented as

JnRn(�)Yn = �0JnRn(�)GnZn�0 + JnRn(�)Zn�0 + JnRn(�)S
�1
n R�1n �n; (10)

18This restriction can be tested even �0 and �20 were not identi�able. One may test the signi�cance of the added
regressor vector in the expanded equation Y �nr = X

�
nr�10 +W

�
nrX

�
nr� + vnr by testing that � = 0.

11



because S�1n = �0Gn+In where Gn =WnS
�1
n . A su¢ cient condition for global identi�cation of �0 is

that the generated regressors JnRn(�)GnZn�0 and JnRn(�)Zn are not asymptotically multicollinear,

and the variance of matrix of JnR�1n �n is unique. Let �2a;n(�) =
�20
n� tr(R

0�1
n R0n(�)JnRn(�)R

�1
n ) and

�2n(
) =
�2o
n� tr([Rn(�)Sn(�)S

�1
n R�1n ]0Jn[Rn(�)Sn(�)S

�1
n R�1n ]).

Assumption 5 Either (a) limn!1
1
n� [GnZn�0; Zn]

0R0n(�)JnRn(�)[GnZn�0; Zn] exists and is non-

singular for each possible � in its parameter space and limn!1
1
n�

n
ln j�2a;n(�)R�1n (�)JnR

0�1
n (�)j�

ln j�20R�1n JnR
0�1
n j

o
6= 0, for any � 6= �0; or (b) for any 
 6= 
0,

lim
n!1

1

n�

n
ln j�2n(
)[S�1n (�)R�1n (�)]Jn[S

�1
n (�)R�1n (�)]0j � ln j�20(S�1n R�1n )Jn(S

�1
n R�1n )0j

o
6= 0:

The rank condition on JnRn(�)[GnZn�0; Zn] in Assumption 5(a) is for the identi�cation of �0

and �0 from the deterministic component of the reduced form equation (10). The following Lemmas

provide some su¢ cient conditions which imply this rank condition.

Lemma 5.2 If �20 + �0�10 6= 0 and [Xnr;WnrXnr;W
2
nrXnr; lmr

] has full column rank for some

group r, then JnRn(�)[GnZn�0; Zn] has full column rank.

Lemma 5.2 gives a su¢ cient condition for the rank condition in Assumption 5(a) based on the

network structure of a single group, which is feasible only if the size of that group is greater than

3k + 1, where k is the column rank of Xnr. If there are not enough members in any of the groups

in the sample, information across groups need to be explored to achieve identi�cation. A su¢ cient

condition for the rank condition in Assumption 5(a) based on the whole sample is given as follows.

Lemma 5.3 If �20+�0�10 6= 0 and Jn[Xn;WnXn;W
2
nXn] has full column rank, then JnRn(�)[GnZn�0; Zn]

has full column rank.

The group interaction model in Lee (2007) has the spatial weights matrix W e
nr =

1
mr�1 (lmr

l0mr
�

Imr
). As JnrW e

nr = � 1
(mr�1)Jnr, Jnr[Xnr;W

e
nrXnr; (W

e
nr)

2Xnr] = Jnr[Xnr;� 1
(mr�1)Xnr;

1
(mr�1)2Xnr]

does not have full column rank. Identi�cation is not possible only with a single group. On

the other hand, let c1, c2 and c3 be conformable vectors such that JnrXnrc1 + JnrW e
nrXnrc2 +

Jnr(W
e
nr)

2Xnrc3 = 0, or more explicitly, JnrXnr[c1 � 1
(mr�1)c2 +

1
(mr�1)2 c3] = 0 by JnrW e

nr =

� 1
(mr�1)Jnr. As JnrXnr 6= 0, if there are at least three distinct values for mr�s in the sample, the

equality holds only if c1 = c2 = c3 = 0. Hence, if there is su¢ cient group size variations, then

12



Jn[Xn;WnXn;W
2
nXn] has full column rank, which implies the rank condition in Assumption 5(a)

holds by Lemma 5.3.

The identi�cation of the endogenous e¤ect, and hence, the exogenous e¤ect, may be intuitively

illustrated via the reduced form. For a group r,

Y �nr = S��1nr (X
�
nr�10 +W

�
nrX

�
nr�20) + S

��1
nr R

��1
nr �

�
nr

= X�
nr�10 +

P1
j=0 �

j
0W

�j+1
nr X�

nr(�20 + �0�10) + S
��1
nr R

��1
nr �

�
nr;

because S��1nr =
P1

j=0 �
j
0W

�j
nr when sup jj�0W �

nrjj1 < 1. The e¤ects of X�
nr on Y

�
nr can be decom-

posed in layers. The direct e¤ect of X�
nr is captured by �10, the e¤ect due to immediate neighbors is

captured by (�20+�0�10), and that due to neighbors of neighbors in the second layer is captured by

(�20+�0�10)�0 with the discount factor �0. So if the immediate neighbors can be distinguished from

the second layer neighbors, the discount factor provides the identi�cation of the endogenous e¤ect �0.

For the case withW e
nr =

1
mr�1 (lmr

l0mr
�Imr

), as (F 0nrW
e
nrFnr)

2 = � 1
mr�1F

0
nrW

e
nrFnr, the net e¤ect

ofX�
nr on Y

�
nr throughW

e
nr in the group r is captured by the coe¢ cient (�20+�0�10)

P1
j=0(�

�0
mr�1 )

j .

Hence, the endogenous e¤ect �0 can be identi�ed only by comparing these net e¤ects across groups

with di¤erent sizes.

An example where the rank condition above fails is the complete bipartite network, where indi-

viduals in a group are divided into two blocks such that each individual in one block is connected

to all individuals in the other block but none in the same block, and vice versa. These include

the star network where one individual is connected to all other individuals in a group and all the

others in the group connect only to him. This example is due to Bramoullé et al. (2009) for a di¤er-

ent transformation.19 For the complete bipartite network, Wnr =

0B@ 0 1
mr2

lmr1
l0mr2

1
mr1

lmr2
l0mr1

0

1CA
with mr1 + mr2 = mr. It implies that W 2

nr =

0B@ 1
mr1

lmr1 l
0
mr1

0

0 1
mr2

lmr2
l0mr2

1CA. Consequently,
Wnr +W

2
nr = [ 1

mr1
lmr
l0mr1

; 1
mr2

lmr
l0mr2

] with all its columns proportional to lmr
. This implies, in

particular, the column space spanned by the columns of Jnr[WnrXnr;W
2
nrXnr] contains lmr . So if

all groups in a sample consist of bipartite networks, the rank condition in Assumption 5(a) may not

hold.
19Bramoullé et al. (2009) point out this underidenti�cation case for the model with the transformation Imr �Wnr ,

which has been utilized in Lin (2005), to eliminate the group e¤ect.
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We have discussed the rank condition in Assumption 5 (a) for the identi�cation of �0 and �0 in

the mean regression function of the reduced form equation. The second part of Assumption 5 (a) is

for the identi�cation of �0 in the SAR error process. It is clear that �0 can not be identi�ed from the

mean regression function, as Rn(�) only plays the role of weighting sample observations for e¢ cient

estimation. So, �0 needs to be identi�ed from the disturbances S�1n R�1n �n. On the other hand,

when JnRn(�)GnZn�0 and JnRn(�)Zn are linearly dependent or asymptotically multicollinear as n

goes to in�nity, a global identi�cation condition would be related to the uniqueness of the variance

matrix of JnYn, which is given by Assumption 5(b).20

Finally, we would like to point out that the division by the e¤ective sample size n� in the

limiting conditions in Assumption 5 (as well as in the following Assumption 6) has ruled out the

case of large group interactions, which have been considered in Lee (2004; 2007). In that case,

both the endogenous and exogenous interaction e¤ects would be weakly identi�ed and their rates

of convergence can be quite low (Lee, 2004; 2007). But for network models, one has emphasized on

�small world�, as the main interest in the network literature. This is also for the empirical application

in this paper.

Let Qn(
) = max�;�2E(lnLn(�)). The solutions of this maximization problem are ��n(
) =

[Z 0nR
0
n(�)JnRn(�)Zn]

�1Z 0nR
0
n(�)JnRn(�)Sn(�)S

�1
n Zn�0, and

��2n (
) =
1

n�
Ef[Sn(�)Yn � Zn��n(
)]0R0n(�)JnRn(�)[Sn(�)Yn � Zn��n(
)]g

=
1

n�
(�0 � �)2(GnZn�0)0R0n(�)Pn(�)Rn(�)GnZn�0

+
�20
n�
tr[(S�1n R�1n )0S0n(�)R

0
n(�)JnRn(�)Sn(�)S

�1
n R�1n ]:

Hence,

Qn(
) = �
n�

2
(ln(2�) + 1)� n

�

2
ln��2n (
) + ln jSn(�)j+ ln jRn(�)j � �r ln[(1� �)(1� �)]: (11)

Identi�cation of 
0 can be based on the maximum of 1
n�Qn(
). With identi�cation and uniform

convergence of 1
n� lnLn(
)�

1
n�Qn(
) to zero on �, consistency of �̂n follows.

Proposition 1 Under Assumptions 1-5, �0 is globally identi�able and �̂n is a consistent estimator
20The identi�cation of �0 and/or �0 via the variance structure is exactly those for SAR models in Lee (2004) and

Lee and Liu (2008).
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of �0.

6 Asymptotic Distributions

From the Taylor expansion of @ lnLn(�̂n)@� = 0, it follows that
p
n(�̂n��0) = ( 1n

@2 lnLn(~�n)
@�@�0 )�1 1p

n
@ lnLn(�0)

@� ,

for some ~�n between �̂n and �0. The �rst order derivatives of the log likelihood function at �0 given

in Appendix B are linear or quadratic functions of �n. The asymptotic distribution of the �rst order

derivatives may be derived from central limit theorems in Kelejian and Prucha (2001).

The variance matrix of 1p
n�

@ lnLn(�0)
@� is E[ 1p

n�
@ lnLn(�0)

@� � 1p
n�

@ lnLn(�0)
@�0 ] = ��;n + 
�;n, where

��;n = �E[ 1n�
@2 lnLn(�0)

@�@�0 ] is the symmetric average Hessian matrix, and 
�;n is a symmetric matrix

such that 
�;n = 0 when �nr;i�s are normally distributed.21 Assumption 5(a) is su¢ cient to guarantee

that the limiting average Hessian matrix is nonsingular. If 
0 is a regular point (Rothenberg,

1971), as Assumption 5(b) is a global identi�cation condition which implies local identi�cation, the

limiting average Hessian matrix will also be nonsingular. The su¢ cient condition which complements

Assumption 5(b) for this purpose is given as follows. Let As = A + A0 for a square matrix A. Let

Cn = JnRnGnR
�1
n � 1

n tr(JnRnGnR
�1
n )In and Dn = JnHn � 1

n tr(JnHn)In.

Assumption 6 limn!1(
1
n� )

2[tr(Ds
nD

s
n)tr(C

s
nC

s
n)�tr2(CsnDs

n)] > 0.

Proposition 2 Under Assumptions 1-4 and 5(a); or 1-4, 5(b) and 6,
p
n�(�̂n � �0)

D! N(0;��1� +

��1� 
��
�1
� ), where 
� = limn!1
�;n and �� = limn!1��;n, which are assumed to exist. If �nr;i�s

are normally distributed, then
p
n�(�̂n � �0)

D! N(0;��1� ).

For the transformed model JnYn = �0JnWnYn + JnZn�0 + JnR
�1
n �n, a computational conve-

nient estimation method is the generalized 2SLS (G2SLS) by Kelejian and Prucha (1998). In the

�rst step of G2SLS, �0 = (�
0
0; �0)

0 will be estimated by the 2SLS with an IV matrix Q1n, �̂2sls;n =

[(Zn;WnYn)
0JnP1nJn(Zn;WnYn)]

�1(Zn;WnYn)
0JnP1nJ

0
nYn where P1n = Q1n(Q

0
1nQ1n)

�1Q01n. With

the initial 2SLSE �̂2sls;n, JnR
�1
n �n can be estimated as a residual and �0 will be estimated by a

method of moments (MOM) in Kelejian and Prucha (1999). Let �̂mom;n be the consistent MOM

estimate of �0 and R̂n = Rn(�̂mom;n). The feasible G2SLS estimator (G2SLSE) of �0 in the model

is

�̂g2sls;n = [(Zn;WnYn)
0R̂0nJnP2nJnR̂n(Zn;WnYn)]

�1
(Zn;WnYn)

0R̂0nJnP2nJnR̂nYn;

21The explicit expressions of ��;n and 
�;n are given in Appendix B.
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where P2n = Q2n(Q02nQ2n)
�1
Q02n for some IV matrix Q2n. The G2SLSE is consistent and asymp-

totically normal with

p
n�(�̂g2sls;n � �0)

D! N(0; �20[ lim
n!1

1

n�
(Zn; GnZn�0)

0R0nJnP2nJnRn(Zn; GnZn�0)]
�1):

It follows from the generalized Schwarz inequality that the best selection ofQ2n is JnR̂n[Zn; Gn(�̂n)Zn�̂n],

where Gn(�) =WnS
�1
n (�), and the variance matrix of the best G2SLS estimator �̂b2sls;n is

1
n��

�1
�;n,

where ��;n = 1
�20n

� (Zn; GnZn�0)
0R0nJnRn(Zn; GnZn�0). When �nr;i�s are normally distributed, the

variance matrix of �̂b2sls;n can be easily compared with that of the MLE.

Proposition 3 When �nr;i�s are normally distributed, the MLE is more e¢ cient than the best

G2SLS estimator.

7 Monte Carlo Results

To investigate the �nite sample performance of the MLE, we consider the following model

Ynr = �0WnrYnr +Xnr�10 +WnrXnr�20 + lmr
�r0 + unr;

where unr = �0Wnrunr + �nr and �nr � N(0; �20Imr
), for r = 1; � � � ; �r. The weights matrix Wnr is

based on the Add Health data (see Udry, 2003). For the Monte Carlo study, we consider 4 samples.

The �rst sample consists of groups with the group size less than or equal to 30. There are 102 such

groups in the data with 1344 observations and average group size being 13:1. We also consider a

sub-sample with the group size less than or equal to 15. In the data, there are 67 such small groups

with 557 observations and average group size being 8:3. To facilitate comparison, we also randomly

pick 67 groups with the group size less than or equal to 30 and 102 groups with the group size less

than or equal to 50 from the data. For the �rst sample of randomly picked groups, the sample size

is 877 with the average group size being 13:1. For the second one, the sample size is 2279 with the

average group size being 22.3. This allows us to inspect the e¤ect of increasing the number of groups

�r and increasing the average group size separately. The number of repetitions is 400 for each case

in this Monte Carlo experiment. For each repetition, Xnr and �r0 are generated from N(0; Im) and

N(0; 2) respectively, for r = 1; � � � ; �r. The data are generated with �0 = �0 = 0:5 and �20 = 1. �10
and �20 are varied in the experiments.
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The estimation methods considered are the 2SLS with the IV matrixQ1n = Jn(Zn;WnZn;W
2
nZn;W

3
nZn),

the G2SLS with the IV matrix Q1n in the �rst step and Q2n = JnR̂n(Zn;WnZn;W
2
nZn;W

3
nZn) in

the last step,22 and the ML approach proposed in this paper (labeled ML1 in the following tables).

Lin (2005) suggests an alternative elimination method of the �xed e¤ects by the transformation

using (Imr
�Wnr). (See Appendix F for more details.)23 However, as the rank of (Imr

�Wnr) may

be less than m�
r , more linear dependence is induced when eliminating the �xed e¤ects. Hence, this

alternative elimination method may be less e¢ cient. We also report the MLE (labeled ML2 in the

following tables) based on the alternative elimination method using (Imr
�Wnr) in the Monte Carlo

experiments. We report the mean �Mean�and standard deviation �SD�of the empirical distributions

of the estimates. To facilitate the comparison of various estimators, their root mean square errors

�RMSE�are also reported.

Table 1 reports the results in the case with �10 = �20 = 1, i.e., the regressors are �strong�. For

all sample sizes considered, the G2SLS estimates of �0 are downward biased. The bias reduces as

the average group size increases. The other estimates are essentially unbiased. In terms of the

SD, G2SLS improves 2SLS upon the estimates of �0, �10 and �20 and ML improves G2SLS upon

estimates of �0. For the same estimator, the SDs decrease as either �r or the average group size

increases.

In the case when the regressors are �weak�with �10 = �20 = 0:2, the estimation results are

summarized in Table 2. When �r = 67, the 2SLS and G2SLS estimates of �0 are upward biased. The

G2SLS estimates of �0 and the 2SLS and G2SLS estimates of �20 are downward biased. When �r

increases to 102, the 2SLS estimates of �0 become downward biased with a smaller magnitude, and

the other biases also reduce. The MLE of �0 is slightly downward biased with the sample of small

groups. The bias reduces as the sample size increases. The MLEs also have smaller SDs and RMSEs

than the other estimates for all sample sizes considered. For example, when n = 2279, the percentage

reduction in SD of the MLEs of �0, �0 and �20 relative to the G2SLS estimates is, respectively, 42.0%,

22 In the �nite sample, the best G2SLS with Q2n = JnR̂n(Zn; Gn(�̂n)Zn�̂n) is quite sensitive to the initial estimates.
As the initial 2SLSEs are obtained with no restrictions on the parameter space, the initial estimate of �̂n could have
an absolute value greater than one. This causes the estimated best IV used in the second step problematic. In the
case when �10 = �20 = 0:2, and n = 557, about 1/10 of the replications had an initial estimate with j�̂nj > 1. In the
Monte Carlo experiments, we use the above simpler Q2n instead to avoid the e¤ect of bad initial estimates.
23We have experimented with the iterated G2SLS. However, for many replications, the iterated estimator failed

to converge. For example, when �10 = �20 = 0:2, and n = 557, the iterated estimator failed to converge in about
1/4 of the replications. This issue tends to occur especially when some estimates of �0 are out of bound, i.e., with
an absolute value greater than one, during the iterations. Note that 2SLS approach does not impose restrictions on
j�j < 1. Even for the converged iterated G2SLS estimates, there is no evidence that iteration procedure improves
the performance of the G2SLS estimator in this speci�c simulation experiment. Hence, we choose not to report the
simulation results on the iterated G2SLS in this paper.
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47.1% and 15.9%. The percentage reduction is even larger with smaller samples. For both cases

with �strong�and �weak�regressors, MLEs based on the alternative elimination method of the �xed

e¤ects by the transformation using (Imr
�Wnr) have larger SDs than those of the MLEs proposed

in this paper.

Results in Table 3 inspect the e¤ects of model misspeci�cation on the MLEs using the sample

with 102 moderate size groups. When positive endogenous e¤ects captured by �0 is ignored in the

estimation, �̂n and �̂2n will be upward biased. When positive exogenous e¤ects captured by �20

is ignored in the estimation, �̂n will be upward biased, and �̂1n and �̂n will be downward biased.

When a positive spatial correlation with �0 in the disturbances fails to be modeled, �̂n will be

upward biased and �̂2n will be downward biased. The bias of �̂n can be large enough to change

its sign in the case when �0 < 0. The opposite occurs when the omitted �0 has a negative value.

The bottom panel of Table 3 studies the e¤ects of misspeci�ed weights matrices in a model with

i.i.d. disturbances (�0 = 0). The weights matrices Wnr in the data generating process is speci�ed

as above. However, suppose, when estimating this model, we don�t have the information on the

network structure and put equal weight on each member of a group as in the model with group

interaction so that W e
nr =

1
m�
r
(lmr

l0mr
� Imr

) is used. With the misspeci�ed Wnr, �̂n, �̂1n and �̂2n

are upward biased by 65.2%, 31.6% and 83.3%, respectively. SD of �̂n also dramatically increases

relative to the estimate with correctly speci�ed Wnr. We also compare the likelihood values of ML

estimation of the correctly speci�ed model with those of the misspeci�ed models. We �nd a larger

likelihood value indicates a better speci�ed model in most cases.

8 Conclusion

This paper considers model speci�cation, identi�cation and estimation of a social interaction model.

The social interaction model generalizes the group interaction model in Lee (2007), where an indi-

vidual in a group interacts with all other members with equal weights, to the situation that each

individual may have their own connected peers. This model extends the SAR model with SAR

errors to incorporate contextual variables and group unobservables. The social interactions are rich

in that endogenous interaction e¤ects, contextual e¤ects, group-speci�c e¤ects, and correlations

among connected individuals in a network can all be captured in the model. The incorporation of

possible correlations among connected individuals may partially capture the endogeneity of network

formation.
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The identi�cation of endogenous and contextual e¤ects in Manski�s (1993) linear-in-mean model

requires the inclusion of some individual exogenous characteristics but the exclusion of their cor-

responding contextual e¤ects. In the group interaction model in Lee (2007), identi�cation requires

variation in group sizes in the sample. For the network model, identi�cation is in general feasible

even when groups have the same size because of additional nonlinearity due to the network structure.

The identi�cation issue is similar to that of the SAR model but with a slight complication due to

the presence of contextual variables and group unobservables. Identi�cation can be based on the

mean regression function as well as correlation structure of the dependent variables. In general, all

the social interaction e¤ects of interest can be identi�ed in a network model.

We consider the estimation of the network model. As a model with endogeneity, it can in general

be estimated by the 2SLS method as instrumental variables can be generated from the network

structure with the presence of relevant exogenous variables. The 2SLS method is simple but not

e¢ cient. This paper considers a possible extension of the QML method for the group interaction

model in Lee (2007) to the general network model. It generalizes the QML method for a SAR model

with SAR errors in that there are incidental parameters due to group-speci�c dummy variables.

The QML method is designed after the elimination of group dummies. This strategy may have

applications in other models, e.g., the spatial panel data models with time dummies in Lee and Yu

(2007). We establish analytically the consistency and asymptotic normality of the estimators and

show that the QMLE is asymptotically e¢ cient relative to the G2SLS estimator.

Monte Carlo studies are designed to investigate the �nite sample performance of the estimators.

The QMLE has better �nite sample properties than the 2SLS and G2SLS estimators as con�rmed

by the Monte Carlo results. We also pay special attention to possible consequences of omitting some

social or correlation e¤ects on the estimates of the remaining e¤ects. Furthermore, we provide some

limited evidence on possible consequences with the misspeci�cation on network connections and the

usefulness of the maximized log likelihood as a model selection criterion.

Appendices

A Summary of Notations

� � = (�01; �02)0, 
 = (�; �)0, � = (�0; 
0)0, � = (�0; �2)0, � = (�0; �)0.

� n =
P�r

r=1mr, n� =
P�r

r=1m
�
r = n� �r, m�

r = mr � 1.

� lmr
is an mr-dimensional vector of ones.
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� W e
nr =M

e
nr =

1
mr�1 (lmr l

0
mr
� Imr ).

� Znr = (Xnr;WnrXnr); Snr(�) = Imr
� �Wnr, Snr = Snr(�0); Rnr(�) = Imr

� �Mnr, Rnr =

Rnr(�0); Gnr =WnrS
�1
nr .

� Jnr = Imr� 1
mr
lmr
l0mr
. [Fnr; lmr

=
p
mr] is the orthonormal matrix of Jnr where Fnr corresponds

to the eigenvalue one.

� Y �nr = F 0nrYnr, Z�nr = F 0nrZnr, ��nr = F 0nr�nr; W �
nr = F

0
nrWnrFnr, M�

nr = F
0
nrMnrFnr.

� S�nr(�) = F 0nrSnr(�)Fnr = Im�
r
��W �

nr, S
�
nr = S

�
nr(�0); R

�
nr(�) = F

0
nrRnr(�)Fnr = Im�

r
��M�

nr,

R�nr = R
�
nr(�0).

� �nr(�) = Rnr(�)[Snr(�)Ynr � Znr�], ��nr(�) = R�nr(�)[S�nr(�)Y �nr � Z�nr�]

� Yn = (Y 0n1; � � � ; Y 0n�r)0, Xn = (X 0
n1; � � � ; X 0

n�r)
0, Zn = (Z 0n1; � � � ; Z 0n�r)0, �n = (�0n1; � � � ; �0n�r)0,

Wn = DiagfWn1; � � � ;Wn�rg, Mn = DiagfMn1; � � � ;Mn�rg, and Jn = DiagfJn1; � � � ; Jn�rg.

� Hn =MnR
�1
n ; ~Zn = RnZn, ~Gn = RnGnR�1n .

� Cn = Jn ~Gn � 1
n tr(Jn

~Gn)In, Dn = JnHn � 1
n tr(JnHn)In.

� Pn(�) = Jn � JnRn(�)Zn[Z 0nR0n(�)JnRn(�)Zn]�1Z 0nR0n(�)Jn and Pn = Pn(�0).

� Let As = A + A0 for a square matrix A. Let vecD(A) denote the column vector formed with

the diagonal elements of a square matrix A.

B The Score Vector and Information Matrix

� The �rst order derivatives of the log likelihood function at �0 are

1p
n�
@ lnLn(�0)

@�
=

1

�20
p
n�
�0nJn

~Gn ~Zn�0 +
1

�20
p
n�
[�0nJn

~Gn�n � �20tr(Jn ~Gn)];

1p
n�
@ lnLn(�0)

@�
=

1

�20
p
n�
[�0nJnHn�n � �20tr(JnHn)];

1p
n�
@ lnLn(�0)

@�
=

1

�20
p
n�
~Z 0nJn�n;

1p
n�
@ lnLn(�0)

@�2
=

1

2�40
p
n�
(�0nJn�n � n��20);
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� The second order derivatives of the log likelihood function are

@2 lnLn(�)

@�2
= �tr[JnG2n(�)]�

1

�2
Y 0nW

0
nR

0
n(�)JnRn(�)WnYn;

@2 lnLn(�)

@�@�
= � 1

�2
Z 0nR

0
n(�)JnRn(�)WnYn;

@2 lnLn(�)

@�@�2
= � 1

�4
Y 0nW

0
nR

0
n(�)Jn�n(�);

@2 lnLn(�)

@�@�
=� 1

�2
Y 0nW

0
nM

0
nJn�n(�)�

1

�2
Y 0nW

0
nR

0
n(�)JnMn[Sn(�)Yn � Zn�];

@2 lnLn(�)

@�@�0
= � 1

�2
Z 0nR

0
n(�)JnRn(�)Zn;

@2 lnLn(�)

@�@�2
= � 1

�4
Z 0nR

0
n(�)Jn�n(�);

@2 lnLn(�)

@�@�
= � 1

�2
Z 0nM

0
nJn�n(�)�

1

�2
Z 0nR

0
n(�)JnMn[Sn(�)Yn � Zn�];

@2 lnLn(�)

@�2
= �tr(Jn[MnR

�1
n (�)]2)� 1

�2
[Sn(�)Yn � Zn�]0M 0

nJnMn[Sn(�)Yn � Zn�];

@2 lnLn(�)

@�@�2
=� 1

�4
�0n(�)JnMn[Sn(�)Yn � Zn�];

@2 lnLn(�)

@(�2)2
=
n�

2�4
� 1

�6
�0n(�)Jn�n(�):

� The variance matrix of 1p
n�

@ lnLn(�0)
@� is E[ 1p

n�
@ lnLn(�0)

@� � 1p
n�

@ lnLn(�0)
@�0 ] = ��;n +
�;n.

��;n = �E[
1

n�
@2 lnLn(�0)

@�@�0
]

=

0BBBBBBB@

1
�20n

�
~Z 0nJn ~Zn � � �

1
�20n

� ( ~Gn ~Zn�0)
0Jn ~Zn

1
�20n

� ( ~Gn ~Zn�0)
0Jn( ~Gn ~Zn�0) +

1
n� tr(

~GsnJn
~Gn) � �

01�k
1
n� tr(H

s
nJn ~Gn)

1
n� tr(H

s
nJnHn) �

01�k
1

�20n
� tr(Jn ~Gn)

1
�20n

� tr(JnHn)
1
2�40

1CCCCCCCA
;

and


�;n =

0BBBBBBB@

0k�k � � �
�3
�40n

� vec
0
D(Jn

~Gn)Jn ~Zn 
�;n;22 � �
�3
�40n

� vec
0
D(JnHn)Jn

~Zn 
�;n;32
�4�3�40
�40n

� vec0D(JnHn)vecD(JnHn) �

01�k
�4�3�40
2�60n

tr(Jn ~Gn)
�4�3�40
2�60n

tr(JnHn)
(�4�3�40)n

�

4�80n

1CCCCCCCA
;
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where


�;n;22 =
2�3
�40n

� vec
0
D(Jn ~Gn)Jn ~Gn ~Zn�0 +

�4 � 3�40
�40n

� vec0D(Jn ~Gn)vecD(Jn ~Gn);


�;n;32 =
�3
�40n

� vec
0
D(JnHn)Jn

~Gn ~Zn�0 +
�4 � 3�40
�40n

� vec0D(JnHn)vecD(Jn
~Gn);

and �3 and �4 being the third and fourth moments of �nr;i respectively.

C Some Basic Properties

In this appendix, we list some properties which are useful for the proofs of the results in the text.

The results in Lemmas 3 to 9 are either straightforward or can been found in Kelejian and Prucha

(2001) and Lee (2004). They are listed here for easy reference. Throughout this appendix, the

elements vi�s in Vn = (v1; � � � ; vn)0 are assumed to be i.i.d. with zero mean, �nite variance �2 and

�nite fourth moment �4.

Lemma C.1 Suppose Wnr is a row-normalized mr � mr matrix, Jnr = Imr
� 1

mr
lmr
l0mr
, and

[Fnr; lmr=
p
mr] is the orthonormal matrix of Jnr where Fnr corresponds to the eigenvalue one. Let

W �
nr = F 0nrWnrFnr and m�

r = mr � 1. Then (1) F 0nr(Imr
� �Wnr) = F 0nr(Imr

� �Wnr)FnrF
0
nr,

(2) jIm�
r
� �W �

nrj = 1
1�� jImr

� �Wnrj, (3) (Im�
r
� �W �

nr)
�1 = F 0nr(Imr

� �Wnr)
�1Fnr, and (4)

W �
nr(Im�

r
� �W �

nr)
�1 = (Im�

r
� �W �

nr)
�1W �

nr = F
0
nrWnr(Imr � �Wnr)

�1Fnr.

Proof. As FnrF 0nr = Jnr = Imr
�lmr

l0mr
=mr, we have F 0nr(Imr

��Wnr) = F
0
nr(Imr

��Wnr)(FnrF
0
nr+

lmr l
0
mr
=mr) = F

0
nr(Imr ��Wnr)FnrF

0
nr+F

0
nr(Imr ��Wnr)lmr l

0
mr
=mr. As Wnr is a row-normalized,

F 0nrWnrlmr
= F 0nrlmr

= 0. Hence, (1) holds.

To show (2), we note that (Im�
r
� �W �

nr) = F
0
nr(Imr

� �Wnr)Fnr. As

[Fnr; lmr=
p
mr]

0(Imr � �Wnr)[Fnr; lmr=
p
mr]

=

0B@ F 0nr(Imr � �Wnr)Fnr F 0nr(Imr � �Wnr)lmr=
p
mr

l0mr
(Imr

� �Wnr)Fnr=
p
mr l0mr

(Imr
� �Wnr)lmr

=mr

1CA =

0B@ F 0nr(Imr � �Wnr)Fnr 0

0 1� �

1CA ;
because F 0nrWnrlmr

= F 0nrlmr
= 0 and l0mr

Wnrlmr
= mr. Hence jIm�

r
� �W �

nrj = jF 0nr(Imr
�

�Wnr)Fnrj = 1
1�� jImr

� �Wnrj:

Since F 0nrWnrlmr = F 0nrlmr = 0, (3) and (4) can be veri�ed as (Im�
r
� �W �

nr) � F 0nr(Imr �

�Wnr)
�1Fnr = F

0
nr(Imr

��Wnr)Fnr�F 0nr(Imr
��Wnr)

�1Fnr = F
0
nr(Imr

��Wnr)(Imr
�lmr

l0mr
=mr)(Imr

�
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�Wnr)
�1Fnr = F 0nrFnr � F 0nr(Imr � �Wnr)lmr l

0
mr
(Imr � �Wnr)

�1Fnr=mr = Im�
r
, and W �

nr(Im�
r
�

�W �
nr)

�1 = F 0nrWnrFnr �F 0nr(Imr
��Wnr)

�1Fnr = F
0
nrWnr(Imr

� lmr
l0mr
=mr)(Imr

��Wnr)
�1Fnr =

F 0nrWnr(Imr
��Wnr)

�1Fnr, and (Im�
r
��W �

nr)
�1W �

nr = F
0
nr(Imr

��Wnr)
�1WnrFnr = F

0
nrWnr(Imr

�

�Wnr)
�1Fnr.

Lemma C.2 ��nr(�) = R
�
nr(�)[S

�
nr(�)Y

�
nr � Z�nr�] = F 0nrRnr(�)[Snr(�)Ynr � Znr�].

Proof. ��nr(�) = R�nr(�)[S
�
nr(�)Y

�
nr � Z�nr�] = F 0nrRnr(�)Fnr � F 0nr[Snr(�)Fnr � F 0nrYnr � Znr�] =

F 0nrRnr(�)(Imr
� 1

mr
lmr
l0mr
)[Snr(�)(Imr

� 1
mr
lmr
l0mr
)Ynr � Znr�] = F 0nrRnr(�)[Snr(�)Ynr � Znr�]

because F 0nrlmr
= F 0nrWnrlmr

= F 0nrMnrlmr
= 0.

Lemma C.3 Suppose that fkWnkg, fkMnkg, f


S�1n 

g, and f

R�1n 

g, where k�k is a matrix norm,

are bounded. Then f


S�1n (�)



g and f

R�1n (�)


g are uniformly bounded in a neighborhood of �0 and

�0 respectively.

Lemma C.4 Suppose that elements of the n� k matrices Zn are uniformly bounded for all n; and

the limn!1
1
nZ

0
nR

0
nJnRnZn exists and is nonsingular, then the projectors Pn and (Jn � Pn), where

Pn = Jn � JnRnZn[Z 0nR0nJnRnZn]�1Z 0nR0nJn, are uniformly bounded in both row and column sums

in absolute value.

Lemma C.5 Suppose that the elements of the sequences of vectors Pn = (pn1; � � � ; pnn)0 and Qn =

(qn1; � � � ; qnn)0 are uniformly bounded for all n. (1) If fAng are uniformly bounded in either row or

column sums in absolute value, then jQ0nAnPnj = O(n). (2) If the row sums of fAng and fZng are

uniformly bounded, jzi;nAnPnj = O(1) uniformly in i, where zi;n is the ith row of Zn.

Lemma C.6 Suppose that the elements of the n�n matrices fAng are uniformly bounded, and the

n � n matrices fBng are uniformly bounded in column sums (respectively, row sums) in absolute

value. Then, the elements of AnBn (respectively, BnAn) are uniformly bounded. For both cases,

tr(AnBn) =tr(BnAn) = O(n).

Lemma C.7 Suppose that An is an n� n matrix with its column sums being uniformly bounded in

absolute value and elements of the n � k matrix Zn are uniformly bounded. Elements vi�s of Vn =

(v1; � � � ; vn)0 are i.i.d.(0; �2). Then, 1p
n
Z 0nAnVn = Op(1), Furthermore, if the limit of

1
nZ

0
nAnA

0
nZn

exists and is positive de�nite, then 1p
n
Z 0nAnVn

D! N(0; �20 limn!1
1
nZ

0
nAnA

0
nZn).
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Lemma C.8 Let An be an n � n matrix. Then E(V 0nAnVn) = �2tr(An) and Var(V 0nAnVn) =

(�4 � 3�4)vec0D(An)vecD(An) + �4[tr(AnA0n)+tr(A2n)].

Lemma C.9 Suppose that fAng is a sequence of n�n matrices uniformly bounded in either row or

column sums in absolute value. Then, E(V 0nAnVn) = O(n), Var(V
0
nAnVn) = O(n), V

0
nAnVn = Op(n),

and 1
n [V

0
nAnVn�E(V 0nAnVn)] = op(1).

Lemma C.10 Suppose that fAng is a sequence of symmetric n� n matrices with row and column

sums uniformly bounded in absolute value and fbng is a sequence of n-dimensional constant vectors

such that supn
1
n

Pn
i=1 jbnij

2+�1 <1 for some �1 > 0. The moment E(jvj4+2�) of v for some � > 0

exists. Let �2Qn
be the variance of Qn where Qn = b0nVn + V

0
nAnVn � �2tr(An). Assume that the

variance �2Qn
is bounded away from zero at the rate n. Then Qn

�Qn

D! N(0; 1).

D A Partial Likelihood Justi�cation

The likelihood function (6) is for FnrRnrYnr given in equation (5). It remains to consider the

remaining component 1
mr
l0mr
RnrYnr, which is

1

mr
l0mr
RnrYnr =

1

mr
l0mr
Rnr(�0WnrYnr + Znr�0) + (1� �0)�r0 +��r; (12)

where ��r = 1
mr
l0mr
�nr. As FnrF 0nr = Jnr and

1
mr
l0mr
Rnrlmr

= (1� �0), it follows that

1

mr
l0mr
RnrYnr =

1

mr
l0mr
Rnr(FnrF

0
nr +

1

mr
lmr
l0mr
)Ynr =

1

mr
l0mr
RnrFnrY

�
nr + (1� �0)�yr;(13)

1

mr
l0mr
RnrZnr =

1

mr
l0mr
Rnr(FnrF

0
nr +

1

mr
lmr l

0
mr
)Znr =

1

mr
l0mr
RnrFnrZ

�
nr + (1� �0)�zr;(14)

where �yr = 1
mr
l0mr
Ynr and �zr = 1

mr
l0mr
Znr. Similarly,

1

mr
l0mr
RnrWnrYnr =

1

mr
l0mr
Rnr(FnrF

0
nr +

1

mr
lmr
l0mr
)WnrYnr

=
1

mr
l0mr
RnrFnrW

�
nrY

�
nr + (1� �0)

1

mr
l0mr
WnrYnr; (15)

where 1
mr
l0mr
WnrYnr =

1
mr
l0mr
Wnr(FnrF

0
nr +

1
mr
lmr l

0
mr
)Ynr =

1
mr
l0mr
WnrFnrY

�
nr + �yr. Substitu-

tion of (13)-(15) in (12) gives 1
mr
l0mr
RnrFnrY

�
nr + (1 � �0)�yr = �0[

1
mr
l0mr
RnrFnrW

�
nrY

�
nr + (1 �

�0)
1
mr
l0mr
WnrFnrY

�
nr + (1� �0)�yr] + 1

mr
l0mr
RnrFnrZ

�
nr�0 + (1 � �0)�zr�0 + (1 � �0)�r0 + ��r, , or
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equivalently

�yr =
�0

(1� �0)(1� �0)
1

mr
l0mr
RnrFnrW

�
nrY

�
nr �

1

(1� �0)(1� �0)
1

mr
l0mr
RnrFnrY

�
nr

+
�0

(1� �0)
1

mr
l0mr
WnrFnrY

�
nr+

1

(1� �0)(1� �0)
1

mr
l0mr
RnrFnrZ

�
nr�0

+
1

(1� �0)
�zr�0 +

1

(1� �0)
�r0 +

1

(1� �0)(1� �0)
��r: (16)

As ��r is independent of Y �nr, conditional on X
�
nr, (16) can be regarded as a nonlinear regression

equation.

The joint likelihood function of Y �nr and �yr can thus be decomposed into a product of the condi-

tional likelihood of �yr given Y �nr from (16) and the likelihood function of Y �nr from (5). Therefore,

the likelihood function of Y �nr from the transformation method for (5) is a partial likelihood function.

(Cox, 1975; Lancaster, 2000).

E The Likelihood Function of a Network Model with a Spatial ARMA

Disturbances

In this Appendix, we show that the proposed QML approach can be generalized to the case where

the disturbances follow a more general spatial ARMA process. The generalized model has the

speci�cation that Ynr = �0WnrYnr+Znr�0+ lmr
�r0+unr, where unr = �10M1nrunr+�20M2nr�nr+

�nr for r = 1; � � � ; �r. In this model, Wnr, M1nr and M2nr are row-normalized such that the sum of

each row is unity, i.e., Wnrlmr
= M1nrlmr

= M2nrlmr
= lmr

. As before, let Rnr(�) = Imr
� �M1nr

and Rnr = Rnr(�10). A Cochrane-Orcutt type transformation gives RnrSnrYnr = RnrZnr�0 + (1�

�10)lmr�r0 + (Imr + �20M2nr)�nr. Note that (Imr + �20M2nr)
�1lmr = (1 + �20)

�1lmr under the

assumption that (Imr
+ �20M2nr) is invertible and M2nr is row normalized. It follows that

(Imr
+ �20M2nr)

�1RnrSnrYnr = (Imr
+ �20M2nr)

�1RnrZnr�0 + (
1� �10
1 + �20

)lmr
�r0 + �nr:

As F 0nr(Imr
+ �20M2nr)

�1 = F 0nr(Imr
+ �20M2nr)

�1FnrF
0
nr = (Im�

r
+ �20F

0
nrM2nrFnr)

�1F 0nr, pre-

multiplication by Fnr leads to a transformed model without �r0�s, i.e.,

(Im�
r
+ �20F

0
nrM2nrFnr)

�1R�nrS
�
nrY

�
nr = (Im�

r
+ �20F

0
nrM2nrFnr)

�1R�nrZ
�
nr�0 + �

�
nr:
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Let ��nr(�) = (Im�
r
+ �20F

0
nrM2nrFnr)

�1R�nr(�)[S
�
nr(�)Y

�
nr �Z�nr�], where � = (�0; �; �1; �2)0. For

a sample with �r macro groups, the log likelihood function is

lnLn(�) = �n
�

2
ln(2��2) +

P�r
r=1 ln jS

�
nr(�)j+

P�r
r=1 ln jR

�
nr(�1)j �

P�r
r=1 ln jIm�

r
+ �2F

0
nrM2nrFnrj

� 1

2�2
P�r

r=1 �
�0
nr(�)�

�
nr(�);

where � = (�0; �2)0. As jS�nr(�)j = 1
1�� jSnr(�)j, jR

�
nr(�1)j = 1

1��1
jRnr(�1)j, jIm�

r
+�2F

0
nrM2nrFnrj =

1
1+�2

jImr +�2M2nrj, and ��nr(�) = F 0nr�nr(�), where �nr(�) = (Imr +�20M2nr)
�1Rnr(�)[Snr(�)Ynr�

Znr�], the log likelihood function can be evaluated without Fnr�s as

lnLn(�) = �n
�

2
ln(2��2) +

P�r
r=1 ln

jSnr(�)j
1� � +

P�r
r=1 ln

jRnr(�1)j
1� �1

�
P�r

r=1 ln
jImr

+ �2M2nrj
1 + �2

� 1

2�2
P�r

r=1 �
0
nr(�)Jnr�nr(�):

F An Alternative Elimination Method of the Macro Group Fixed E¤ects

Lin (2005) suggests an alternative method to eliminate the �xed e¤ects by the transformation using

(Imr �Wnr), the deviation from the weighted average of an individual�s connections. Although this

transformation is not very convenient when �0 6= 0 with an arbitrary Mnr such that Mnr 6=Wnr, it

can be used as an alternative approach in the special case when Mnr =Wnr.

When Mnr = Wnr, as (Imr �Wnr)Wnr = Wnr(Imr �Wnr) and (Imr �Wnr)Rnr = Rnr(Imr �

Wnr), premultiplication of (2) by (Imr
�Wnr) gives

Rnr(Imr
�Wnr)Ynr = �0RnrWnr(Imr

�Wnr)Ynr +Rnr(Imr
�Wnr)Znr�0+ (Imr

�Wnr)�nr: (17)

The �xed e¤ect �r0 is eliminated because (Imr
�Wnr)lnr = 0 as Wnrlnr = lnr. The variance of

the transformed disturbances (Imr �Wnr)�nr is �2 ��nr where ��nr = (Imr �Wnr)(Imr �Wnr)
0. The

elements of (Imr
�Wnr)�nr may be correlated and heteroskedastic. There are also linear dependence

among its elements because (Imr
�Wnr) does not have full row rank. Suppose that the rank of

(Imr �Wnr) is m?
r , which, in principle, can be empirically evaluated as Wnr is a given matrix. As

(Imr
�Wnr)lmr

= 0, m?
r � mr � 1, the transformation using (Imr

�Wnr) to eliminate the �xed

e¤ects may leave the number of independent sample observations less than
P�r

r=1(mr � 1).

As ��nr is positive semide�nite, there exists some orthonormal matrix [ �Fnr; �Hnr] where �Fnr
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is an mr � m?
r matrix of normalized eigenvectors corresponding to the positive eigenvalues and

�Hnr is an mr � (mr � m?
r) matrix of normalized eigenvectors with zero eigenvalues. Let �nr be

the m?
r � m?

r diagonal matrix consisting of all the positive eigenvalues. Thus, ��nr �Fnr = �Fnr�nr,

��nr �Hnr = 0, �F 0nr �Fnr = Im?
r
, �F 0nr �Hnr = 0, �Fnr �F

0
nr +

�Hnr �H
0
nr = Imr , and ��nr = �Fnr�nr �F

0
nr. Denote

Y ?nr = �
� 1
2

nr
�F 0nr(Imr

�Wnr)Ynr, Z?nr = �
� 1
2

nr
�F 0nr(Imr

�Wnr)Znr, and �?nr = �
� 1
2

nr
�F 0nr(Imr

�Wnr)�nr.

To eliminate heteroskedasticity and linear dependence in (Imr
�Wnr)�nr, premultiplication of (17)

by �
� 1
2

nr
�F 0nr yields

R?nrY
?
nr = �0R

?
nrW

?
nrY

?
nr +R

?
nrZ

?
nr�0 + �

?
nr: (18)

where W ?
nr = �

� 1
2

nr
�F 0nrWnr

�Fnr�
1
2
nr and R?nr = �

� 1
2

nr
�F 0nrRnr �Fnr�

1
2
nr = Im?

r
� �0W ?

nr. The variance

matrix of the transformed disturbances �?nr is �
2Im?

r
.

Under the normality assumption, the log likelihood function of the sample with �r macro groups

is

lnLn(�) = �n
?
r

2
ln(2��2) +

P�r
r=1 ln jIm?

r
� �W ?

nrj+
P�r

r=1 ln jIm?
r
� �W ?

nrj

� 1

2�2
P�r

r=1[(Im?
r
� �W ?

nr)Y
?
nr � Z?nr�]0R?0nrR?nr[(Im?

r
� �W ?

nr)Y
?
nr � Z?nr�];

where n?r =
P�r

r=1m
?
r . To implement the ML estimation, one needs to evaluate the determinants

jIm?
r
� �W ?

nrj and jIm?
r
� �W ?

nrj for each macro group r. The evaluation of this determinant is

equivalent to the evaluation of the determinants jImr
� �Wnrj and jImr

� �Wnrj, which can be

shown as follows. As

[ �Fnr; �Hnr]
0(Imr

� �Wnr)[ �Fnr; �Hnr] = Imr
� �[ �Fnr; �Hnr]0Wnr[ �Fnr; �Hnr]

=

0B@ Im?
r
� � �F 0nrWnr

�Fnr �� �F 0nrWnr
�Hnr

�� �H 0
nrWnr

�Fnr I(mr�m?
r)
� � �H 0

nrWnr
�Hnr

1CA =

0B@ Im?
r
� � �F 0nrWnr

�Fnr �� �F 0nrWnr
�Hnr

0 (1� �)I(mr�m?
r)

1CA ;
because �H 0

nrWnr = �H 0
nr, �H

0
nr
�Fnr = 0 and �H 0

nr
�Hnr = I(mr�m?

r)
. It follows that jImr

� �Wnrj =

jImr � �[ �Fnr; �Hnr]0Wnr[ �Fnr; �Hnr]j = jIm?
r
� � �F 0nrWnr

�Fnrj � j(1� �)I(mr�m?
r)
j. Therefore,

jIm?
r
��W ?

nrj = jIm?
r
����

1
2

nr
�F 0nrWnr

�Fnr�
1
2
nrj = jIm?

r
�� �F 0nrWnr

�Fnrj = (1��)�(mr�m?
r)jImr��Wnrj:

Similarly, jIm?
r
� �W ?

nrj = (1 � �)�(mr�m?
r)jImr

� �Wnrj. As R?nr[(Im?
r
� �W ?

nr)Y
?
nr � Z?nr�] =
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�
� 1
2

nr
�F 0nr(Imr �Wnr)Rnr[(Imr ��Wnr)Ynr�Znr�], the log likelihood can also be expressed in terms

of Ynr, Znr and Wnr as

lnLn(�) = �
n?r
2
ln(2��2)� (nr � n?r) ln[(1� �)(1� �)] +

P�r
r=1 ln jSnr(�)j+

P�r
r=1 ln jRnr(�)j

� 1

2�2
P�r

r=1[Snr(�)Ynr � Znr�]
0R0nr(Imr

�Wnr)
0 ��+nr(Imr

�Wnr)Rnr[Snr(�)Ynr � Znr�]; (19)

where ��+nr = �Fnr�
�1
nr
�F 0nr is the generalized inverse of (Imr

�Wnr)(Imr
�Wnr)

0. The MLE is derived

from the maximization of (19).

G Proofs

Proof of Lemma 5.1. With the restriction �0�10 + �20 = 0, Z�nr�0 = S�nrX
�
nr�10, and, hence,

(9) becomes Y �nr = X�
nr�10 + vnr, where vnr = S��1nr R

��1
nr �

�
nr. As �0 and �0 are not in the mean

regression equation, they could only be identi�ed via the disturbances, vnr = �0M
�
nrvnr+�0W

�
nrvnr�

�0�0M
�
nrW

�
nrvnr+�

�
nr, whenMnr 6=Wnr. With �0 and �10 identi�ed, �20 can be identi�ed from the

restriction �0�10+�20 = 0. However, whenMnr =Wnr, vnr = (�0+�0)W
�
nrvnr��0�0W �2

nrvnr+�
�
nr.

In this case, �0 and �0 may only be identi�ed locally but not globally, and hence �20 can not be

separately identi�ed.

Proof of Lemma 5.2. For the group r, let c1; c2 and c3 be conformable scalar and column vectors

such that

JnrRnr(�)Gnr(Xnr�10 +WnrXnr�20)c1 + JnrRnr(�)Xnrc2 + JnrRnr(�)WnrXnrc3 = 0; (20)

where Gnr = WnrS
�1
nr . We are interested in su¢ cient conditions so that c1 = c2 = c3 = 0. Denote

�1r =
1
mr
l0mr
Rnr(�)Gnr(Xnr�10+WnrXnr�20), �2r =

1
mr
l0mr
Rnr(�)Xnr and �3r =

1
mr
l0mr
Rnr(�)WnrXnr.

As WnrS
�1
nr = S

�1
nrWnr,

[JnrRnr(�)Gnr(Xnr�10 +WnrXnr�20); JnrRnr(�)Xnr; JnrRnr(�)WnrXnr]

= Rnr(�)S
�1
nr f[Wnr(Xnr�10 +WnrXnr�20); SnrXnr; SnrWnrXnr]� SnrR�1nr (�)lmr

(�1r; �2r; �3r)g

= Rnr(�)S
�1
nr f[Wnr(Xnr�10 +WnrXnr�20); SnrXnr; SnrWnrXnr]� lmr

(��1r; �
�
2r; �

�
3r)g;

where ��l = ( 1��01�� )�l, for l = 1; 2; 3, because SnrR�1nr (�)lmr
= ( 1��01�� )lmr

. As Rnr(�) and Snr are
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nonsingular, (20) is equivalent to

Wnr(Xnr�10 +WnrXnr�20)c1 + SnrXnrc2 + SnrWnrXnrc3 � lmr (�
�
1rc1 + �

�
2rc2 + �

�
3rc3)

= Xnrc2 +WnrXnr(c1�10 � �0c2 + c3) +W 2
nrXnr(c1�20 � �0c3)� lmr

(��1rc1 + �
�
2rc2 + �

�
3rc3) = 0:

As [Xnr;WnrXnr;W
2
nrXnr; lmr

] has the full column rank, it follows that c2 = 0, c3 + c1�10 = 0 and

�20c1 � �0c3 = 0. These imply, in turn, that c1 = 0 and c3 = �c1�10 = 0 under the assumption

�20 + �0�10 6= 0. The desired result follows.

Proof of Lemma 5.3. By Lemma C.1, F 0nrRnr(�)[Gnr(Xnr�10 +WnrXnr�20); Xnr;WnrXnr] =

R�nr(�)S
��1
nr [W

�
nr(X

�
nr�10+W

�
nrX

�
nr�20); S

�
nrX

�
nr; S

�
nrW

�
nrX

�
nr]. As R

�
nr(�) and S

�
nr are nonsingular,

a su¢ cient identi�cation condition derived from a similar argument in the proof of Lemma 5.2 (but

without lmr
term) is that the stacked matrix with its rth row block being [X�

nr;W
�
nrX

�
nr;W

�2
nrX

�
nr] has

full column rank as long as �20+�0�10 6= 0. By a pre-multiplication with Fnr, a su¢ cient condition is

that the stacked matrix with its rth row block being [JnrXnr; (JnrWnr)(JnrXnr); (JnrWnr)
2(JnrXnr)] =

Jnr[Xnr;WnrXnr;W
2
nrXnr] has full column rank.

Proof of Proposition 1. We shall prove that 1
n� [lnLn(
) � Qn(
)] converges in probabil-

ity to zero uniformly on �, and the identi�cation uniqueness condition holds, i.e., for any " > 0,

lim supn!1max
2 �N"(
0)
1
n� [Qn(
)�Qn(
0)] < 0 where �N"(
0) is the complement of an open neigh-

borhood of 
0 in � with radius ". The following arguments extend those in Lee (2004) for the SAR

model with i.i.d. disturbances to our transformed equation model.

For the proof of these properties, it is useful to establish some properties for ln jSn(�)j, ln jRn(�)j,

and �2n(
) =
�20
n� tr([Rn(�)Sn(�)S

�1
n R�1n ]0Jn[Rn(�)Sn(�)S

�1
n R�1n ]), where Jn[Rn(�)Sn(�)S�1n R�1n ] =

Jn[In + (�0 � �)Hn + (�0 � �)RnGnR�1n + (�0 � �)(�0 � �)HnRnGnR�1n ]:

There is also an auxiliary model which has useful implications. Denote Qp;n(
) = �n�

2 (ln(2�) +

1)� n�

2 ln�
2
n(
)+ ln jSn(�)j+ln jRn(�)j� �r ln[(1��)(1� �)]. The log likelihood function of a trans-

formed SAR process R�nrY
�
nr = �0R

�
nrW

�
nrY

�
nr + �

�
nr, where �

�
nr � N(0; �20Im�

r
) for r = 1; � � � ; �r, is

lnLp;n(
; �
2) = �n�

2 ln(2�)�
n�

2 ln�
2+ln jSn(�)j+ln jRn(�)j��r ln[(1��)(1��)]� 1

2�2Y
0
nS

0
n(�)R

0
n(�)

�JnRn(�)Sn(�)Yn. It is apparent that Qp;n(
) = max�2Ep[lnLp;n(
; �2)], where Ep is the expecta-

tion under this SAR process. By the Jensen inequality, Qp;n(
) �Ep[lnLp;n(
0; �20)] = Qp;n(
0) for

all 
. This implies that 1
n� [Qp;n(
)�Qp;n(
0)] � 0 for all 
.

Let (�1; �1) and (�2; �2) be in �. By the mean value theorem,
1
n� (ln jSn(�2)j � ln jSn(�1)j) =
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1
n� tr(Gn(

��n))(�2��1) where ��n lies between �1 and �2. By the uniform boundedness of Assumption

4, Lemma C.6 implies that 1
n� tr(Gn(

��n)) = O(1). Thus, 1
n� ln jSn(�)j is uniformly equicontinuous

in � in �. As � is a bounded set, 1
n� (ln jSn(�2)j � ln jSn(�1)j) = O(1) uniformly in �1 and �2 in �.

Similarly, 1
n� ln jRn(�)j is uniformly equicontinuous in � in �, and

1
n� (ln jRn(�2)j�ln jRn(�1)j) = O(1)

uniformly in �1 and �2 in �.

The �2n(
) is uniformly bounded away from zero on �. This can be established by a counter

argument. Suppose that �2n(
) were not uniformly bounded away from zero on �. Then, there

would exist a sequence f
ng in � such that limn!1 �
2
n(
n) = 0. We have shown that

1
n� [Qp;n(
)�

Qp;n(
0)] � 0 for all 
, which implies that � 1
2 ln�

2
n(
) � � 1

2 ln�
2
0 +

1
n� (ln jSnj � ln jSn(�)j) +

1
n� (ln jRnj � ln jRn(�)j)�

�r
n� (ln[(1� �0)(1� �0)]� ln[(1� �)(1� �)]) = O(1), because

1
n� (ln jSnj �

ln jSn(�)j) = O(1) and 1
n� (ln jRnj � ln jRn(�)j) = O(1) uniformly on �. That is, � ln�2n(
n) is

bounded from above, a contradiction. Therefore, �2n(
) must be bounded always from zero uniformly

on �.

(uniform convergence) We will show that sup
2� j 1n� lnLn(
)�
1
n�Qn(
)j = sup
2�

1
2 j ln �̂

2
n(
)�

ln��2n (
)j = op(1). As Pn(�)Rn(�)Sn(�)Yn = (�0��)Pn(�)Rn(�)GnZn�0+Pn(�)Rn(�)Sn(�)S�1n R�1n �n,

�̂2n(
) =
1
n�Y

0
nS

0
n(�)R

0
n(�)Pn(�)Rn(�)Sn(�)Yn = (�0��)2

n� [Rn(�)GnZn�0]
0Pn(�)[Rn(�)GnZn�0] +

2(�0 � �)K1n(
) + K2n(
), where K1n(
) =
1
n� [Rn(�)GnZn�0]

0Pn(�)[Rn(�)Sn(�)S
�1
n R�1n �n] and

K2n(
) =
1
n� [Rn(�)Sn(�)S

�1
n R�1n �n]

0Pn(�)[Rn(�)Sn(�)S
�1
n R�1n �n]. �̂

2
n(
)���2n (
) = 2(�0��)K1n(
)+

K2n(
) � �2n(
), since ��2n (
) =
(�0��)2
n� [Rn(�)GnZn�0]

0Pn(�)[Rn(�)GnZn�0] + �
2
n(
). Lemma C.7

implies K1n(
) = op(1). The convergence is uniform on � as � and � appears simply as polynomial

factors. On the other hand,K2n(
)��2n(
) = 1
n� [Rn(�)Sn(�)S

�1
n R�1n �n]

0Jn[Rn(�)Sn(�)S
�1
n R�1n �n]�

�20
n� tr([Rn(�)Sn(�)S

�1
n R�1n ]0Jn[Rn(�)Sn(�)S

�1
n R�1n ])� Tn(
), where

Tn(
) =
1

n�
[Rn(�)Sn(�)S

�1
n R�1n �n]

0JnRn(�)Zn[Z
0
nR

0
n(�)JnRn(�)Zn]

�1Z 0nR
0
n(�)Jn[Rn(�)Sn(�)S

�1
n R�1n �n]:

As 1p
n�
Z 0nR

0
n(�)JnRn(�)Sn(�)S

�1
n R�1n �n = Op(1) uniformly on � by Lemma C.7, it follows that

Tn(
) =
1

n�
[
1p
n�
Z 0nR

0
n(�)JnRn(�)Sn(�)S

�1
n R�1n �n]

0[
1

n�
Z 0nR

0
n(�)JnRn(�)Zn]

�1

� [ 1p
n�
Z 0nR

0
n(�)JnRn(�)Sn(�)S

�1
n R�1n �n] = op(1):

By Lemma C.9, we have 1
n�

n
[Rn(�)Sn(�)S

�1
n R�1n �n]

0Jn[Rn(�)Sn(�)S
�1
n R�1n �n]��20tr([Rn(�)Sn(�)S�1n R�1n ]0
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�Jn[Rn(�)Sn(�)S�1n R�1n ])
o
= op(1). These convergences are uniform on � because � and � ap-

pears simply as polynomial factors in those terms. That is, K2n(
) � �2n(
) = op(1) uniformly

on �. Therefore, �̂2n(
) � ��2n (
) = op(1) uniformly on �. By the Taylor expansion, j ln �̂2n(
) �

ln��2n (
)j = j�̂2n(
)���2n (
)j=~�2n(
), where ~�2n(
) lies between �̂2n(
) and ��2n (
). As ��2n (
) � �2n(
)

and �2n(
) is uniformly bounded away from zero on �, ��2n (
) will be so too. It follows that,

because �̂2n(
) � ��2n (
) = op(1) uniformly on �, �̂
2
n(
) will be bounded away from zero uni-

formly on � in probability. Hence, j ln �̂2n(
) � ln��2n (
)j = op(1) uniformly on �. Consequently,

sup
2� j 1n� lnLn(
)�
1
n�Qn(
)j = op(1).

(uniform equicontinuity) We will show that 1
n� lnQn(
) = �

1
2 (ln(2�)+1)�

1
2 ln�

�2
n (
)+

1
n� (ln jSn(�)j+

ln jRn(�)j) � �r
n� ln[(1 � �)(1 � �)] is uniformly equicontinuous on �. The �

�2
n (
) is uniformly con-

tinuous on �. This is so, because ��2n (
) is a polynomial of � and �, with bounded coe¢ cients by

Lemmas C.5 and C.6. The uniform continuity of ln��2n (
) on � follows because
1

��2n (
) is uniformly

bounded on �. Hence 1
n� lnQn(
) is uniformly equicontinuous on �.

(identi�cation uniqueness) At 
0, �
�2
n (
0) = �

2
0. Therefore,

1
n�Qn(
)�

1
n�Qn(
0) = �

1
2 [ln�

2
n(
)�

ln�20] +
1
n� (ln jSn(�)j � ln jSnj) +

1
n� (ln jRn(�)j � ln jRnj) �

�r
n� (ln[(1 � �)(1 � �)] � ln[(1 � �0)(1 �

�0)])� 1
2 [ln�

�2
n (
)� ln�2n(
)] = 1

n� (Qp;n(
)�Qp;n(
0))�
1
2 [ln�

�2
n (
)� ln�2n(
)]. Suppose that the

identi�cation uniqueness condition would not hold. Then, there would exist an " > 0 and a sequence

f
ng in �N"(
0) such that limn!1[
1
n�Qn(
n) �

1
n�Qn(
0)] = 0. Because �N"(�0) is a compact set,

there would exist a convergent subsequence f
nmg of f
ng. Let 
+ be the limit point of f
nmg in

�. As 1
n�Qn(
) is uniformly equicontinuous in 
, limnm!1

1
nm
[Qnm(
+)�Qnm(
0)] = 0. Because

(Qp;n(
)�Qp;n(
0)) � 0 and �[ln��2n (
)�ln�2n(
)] � 0, this is possible only if limnm!1(�
�2
nm(
+)�

�2nm(
+)) = 0 and limnm!1
1
nm
[Qp;nm(
+)�Qp;nm(
0)] = 0. The limnm!1(�

�2
nm(
+)��

2
nm(
+)) =

0 is a contradiction when limn!1
1
n� [Rn(�)GnZn�0]

0Pn(�)[Rn(�)GnZn�0] 6= 0, 8�. In the event that

limn!1
1
n� [Rn(�)GnZn�0]

0Pn(�)[Rn(�)GnZn�0] = 0 for some �, the contradiction follows from the

relation limn!1
1
nm
[Qp;nm(
+)� 1

nm
Qp;nm(
0)] = 0 under Assumption 5(b). This is so, because, in

this event, Assumption 5(b) is equivalent to that limn!1[
1
n� (ln jSn(�)j � ln jSnj) +

1
n� (ln jRn(�)j �

ln jRnj)� �r
n� (ln[(1� �)(1� �)]� ln[(1� �0)(1� �0)])�

1
2 (ln�

2
n(
)� ln�20)] = limn!1

1
n� [Qp;n(
)�

Qp;n(
0)] 6= 0 for 
 6= 
0. Therefore, the identi�cation uniqueness condition must hold.

The consistency of 
̂n and, hence, �̂n follow from this identi�cation uniqueness and uniform

convergence (White, 1994, Theorem 3.4).

Proof of Proposition 2. (Show that 1
n�

@2 lnLn(~�n)
@�@�0 � 1

n�
@2 lnLn(�0)

@�@�0
p!0.) The second-order
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derivatives are given in Appendix B. By the mean value theorem, tr(JnG2n(~�n)) =tr(JnG
2
n) +

2tr(JnG3n(��n))(~�n � �0). Note that Gn(��n) is uniformly bounded in row and column sums uni-

formly in a neighborhood of �0 by Lemma C.3 under Assumption 4. As Rn(~�n) = Rn + (�0 �

~�n)Mn, it follows that 1
n� [

@2

@�2
lnLn(~�n) � @2

@�2
lnLn(�0)] = �2 1

n� tr[JnG
3
n(
��n)](~�n � �0) � 1

n� (
1
~�2n
�

1
�20
)Y 0nW

0
nR

0
nJnRnWnYn+

2(~�n��0)
n�~�2n

Y 0nW
0
nR

0
nJnMnWnYn� (~�n��0)2

n�~�2n
Y 0nW

0
nM

0
nJnMnWnYn = op(1), be-

cause 1
n� tr(JnG

3
n(
��n)) = O(1), 1

n�Y
0
nW

0
nR

0
nJnRnWnYn = Op(1), 1

n�Y
0
nW

0
nR

0
nJnMnWnYn = Op(1),

and 1
n�Y

0
nW

0
nM

0
nJnMnWnYn = Op(1). The convergence in probability of the other second order

derivatives follows similar or more straightforward arguments.

(Show 1
n�

@2 lnLn(�0)
@�@�0 �E( 1n�

@2 lnLn(�0)
@�@�0 )

p!0.) As 1
n� (

~Gn ~Zn�0)
0Jn ~Gn�n = op(1) by Lemma C.7, it

follows that 1
n�Y

0
nW

0
nR

0
nJnRnWnYn =

1
n� (

~Gn ~Zn�0)
0Jn ~Gn ~Zn�0 +

1
n� �

0
n
~G0nJn ~Gn�n + op(1). Lemmas

C.8 and C.6 imply E(�0n ~G
0
nJn ~Gn�n) = �

2
0tr( ~G

0
nJn ~Gn) and

Var(
1

n
�0n ~G

0
nJn ~Gn�n) =

(�4 � 3�40)
n2

nP
i=1

vec0D( ~G
0
nJn ~Gn)vecD( ~G

0
nJn ~Gn) +

2�40
n2
tr[Jn( ~G

0
n
~Gn)

2] = O(
1

n
):

Hence 1
n�

@2 lnLn(�0)
@�2

� E( 1n�
@2 lnLn(�0)

@�2
)
p!0 follows from the law of large numbers. The convergence

of the other terms can be derived by similar arguments.

(Show that �� is nonsingular.) Let � = (�01; �2; �3; �4)
0 be a column vector of constants such that

��� = 0. It is su¢ cient to show that � = 0. From the �rst row block of the linear equation system

��� = 0, one has �1 = � limn!1( ~Z
0
nJn ~Zn)

�1 ~Z 0nJn ~Gn ~Zn�0 ��2. From the last equation of the linear

system, one has �4 = � limn!1
2�20
n� tr(Jn

~Gn) � �2 � limn!1
2�20
n� tr(JnHn) � �3. Substitution in the

the third equation of the linear system gives limn!1
1
n� [tr(H

s
nJn ~Gn) � 2

n� tr(JnHn)tr(Jn
~Gn)]�2 +

limn!1
1
n� [tr(H

s
nJnHn) � 2

n� tr
2(JnHn)]�3 = 0. By eliminating �1, �3 and �4, the remaining

equation becomes limn!1
1

(n�)2

n
1
�20
[tr(Hs

nJnHn) � 2
n� tr

2(JnHn)]( ~Gn ~Zn�0)
0Pn( ~Gn ~Zn�0) + �n

o
�

�2 = 0, where �n = [tr(Hs
nJnHn) � 2

n� tr
2(JnHn)][tr( ~GsnJn ~Gn) � 2

n� tr
2(Jn ~Gn)] � [tr(Hs

nJn ~Gn) �
2
n� tr(JnHn)tr(Jn

~Gn)]
2. Let Cn = Jn ~Gn � 1

n tr(Jn
~Gn)In and Dn = JnHn � 1

n tr(JnHn)In. Then,

limn!1
1
n� [tr(H

s
nJnHn)� 2

n� tr
2(JnHn)] = limn!1

1
2n� tr(D

s
nD

s
n) � 0 and

�n =
1

4
[tr(Ds

nD
s
n)tr(C

s
nC

s
n)� tr2(CsnDs

n)] � 0:

As Assumption 5(a) implies that limn!1
1
n� (RnGnZn�0)

0Pn(RnGnZn�0) is positive de�nite and

limn!1
1
n� [tr(H

s
nJnHn) � 2

n� tr
2(JnHn)] > 0, it follows that �2 = 0 and, so, � = 0. On the other
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hand, if limn!1
1
n� (RnGnZn�0)

0Pn(RnGnZn�0) = 0, limn!1(
1
n� )

2�n > 0 by Assumption 6. it

follows that �2 = 0 and, so, � = 0. Hence �� is nonsingular.

(the limiting distribution of 1p
n�

@ lnLn(�0)
@� ) The matrices JnRn, JnHn and Jn ~Gn are uniformly

bounded in both row and column sums in absolute value. As the elements of Zn are bounded, the

elements of Jn ~Zn and Jn ~Gn ~Zn�0 for all n are uniformly bounded by Lemma C.5. With the existence

of high order moments of � in Assumption 1, the central limit theorem for quadratic forms of double

arrays of Kelejian and Prucha (2001) can be applied and the limiting distribution of the score vector

follows.

Finally, from the expansion
p
n�(�̂n � �0) = �

�
1
n�

@2 lnLn(~�n)
@�@�0

��1
1p
n�

@ lnLn(�0)
@� , the asymptotic

distribution of �̂n follows.

Proof of Proposition 3. Let Bn =

0B@ Bn;11 Bn;12

Bn;21 Bn;22

1CA, where Bn;11 = 1
n� tr(

~GsnJn ~Gn), Bn;21 =

B0n;12 = (
1
n� tr(H

s
nJn ~Gn);

1
�20n

� tr(Jn ~Gn))0, and

Bn;22 =

0B@ 1
n� tr(H

s
nJnHn) �

1
�20n

� tr(JnHn)
1
2�40

1CA :
Under normality assumption, the variance matrix of the MLE of �0 is

1

n�
��1�;n =

1

n�

0B@
0B@ ��;n 0(k+1)�2

02�(k+1) 02�2

1CA+
0B@ 0k�k 0k�3

03�k Bn

1CA
1CA
�1

:

The variance matrix of the MLE of �0 is

1

n�

0B@��;n +
0B@ 0k�k 0k�1

01�k Bn;11 �Bn;12B�1n;22Bn;21

1CA
1CA
�1

;

by the inversion of the partitioned matrix. As Bn is nonnegative de�nite, the variance matrix of the

MLE is relatively smaller than that of �̂b2sls;n.
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Table 1: 2SLS, G2SLS and ML Estimation with Strong X�s
�0 = 0:5 �0 = 0:5 �10 = 1 �20 = 1

small size groups: �r = 67, n = 557,
P�r

r=1 rank(Imr �Wnr) = 466

2SLS 0:489(:085)[:086] � 1:004(:056)[:056] 1:003(:092)[:092]

G2SLS 0:498(:069)[:069] 0:346(:107)[:187] 1:003(:053)[:054] 1:001(:083)[:083]

ML1 0:495(:069)[:069] 0:495(:081)[:081] 1:004(:053)[:053] 1:004(:082)[:082]

ML2 0:495(:089)[:089] 0:490(:110)[:111] 1:005(:053)[:053] 1:005(:083)[:083]

moderate size groups: �r = 67, n = 877,
P�r

r=1 rank(Imr
�Wnr) = 761

2SLS 0:494(:059)[:059] � 1:004(:041)[:041] 1:008(:078)[:078]

G2SLS 0:499(:048)[:048] 0:424(:072)[:105] 1:003(:037)[:037] 1:004(:064)[:064]

ML1 0:496(:048)[:048] 0:497(:058)[:058] 1:003(:037)[:037] 1:006(:063)[:063]

ML2 0:497(:060)[:060] 0:498(:073)[:073] 1:003(:037)[:037] 1:006(:065)[:065]

moderate size groups: �r = 102, n = 1344,
P�r

r=1 rank(Imr
�Wnr) = 1166

2SLS 0:495(:047)[:047] � 1:003(:034)[:035] 1:003(:059)[:059]

G2SLS 0:498(:038)[:039] 0:428(:058)[:092] 1:002(:032)[:032] 1:001(:049)[:049]

ML1 0:496(:038)[:039] 0:501(:046)[:046] 1:002(:032)[:032] 1:003(:048)[:049]

ML2 0:496(:050)[:050] 0:504(:063)[:063] 1:002(:032)[:032] 1:003(:050)[:050]

large size groups: �r = 102, n = 2279,
P�r

r=1 rank(Imr
�Wnr) = 2076

2SLS 0:497(:038)[:038] � 1:002(:028)[:028] 1:006(:050)[:050]

G2SLS 0:500(:031)[:031] 0:460(:046)[:061] 1:001(:025)[:025] 1:002(:041)[:041]

ML1 0:499(:031)[:031] 0:499(:038)[:038] 1:001(:025)[:025] 1:003(:040)[:040]

ML2 0:502(:036)[:036] 0:497(:044)[:044] 1:001(:025)[:025] 1:002(:041)[:041]

Mean(SD)[RMSE]
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Table 2: 2SLS, G2SLS and ML Estimation with Weak X�s
�0 = 0:5 �0 = 0:5 �10 = 0:2 �20 = 0:2

small size groups: �r = 67, n = 557,
P�r

r=1 rank(Imr
�Wnr) = 466

2SLS 0:591(:499)[:507] � 0:194(:057)[:058] 0:177(:101)[:103]

G2SLS 0:633(:508)[:525] 0:226(:348)[:443] 0:198(:057)[:057] 0:178(:108)[:110]

ML1 0:517(:149)[:150] 0:453(:159)[:166] 0:204(:052)[:052] 0:201(:074)[:074]

ML2 0:506(:168)[:168] 0:469(:177)[:179] 0:205(:052)[:053] 0:204(:075)[:075]

moderate size groups: �r = 67, n = 877,
P�r

r=1 rank(Imr
�Wnr) = 761

2SLS 0:527(:409)[:410] � 0:197(:045)[:046] 0:189(:090)[:090]

G2SLS 0:548(:324)[:328] 0:356(:277)[:312] 0:199(:040)[:040] 0:190(:079)[:079]

ML1 0:507(:117)[:117] 0:473(:123)[:126] 0:203(:037)[:037] 0:203(:058)[:058]

ML2 0:513(:143)[:144] 0:471(:148)[:150] 0:203(:037)[:037] 0:203(:060)[:060]

moderate size groups: �r = 102, n = 1344,
P�r

r=1 rank(Imr �Wnr) = 1166

2SLS 0:481(:398)[:398] � 0:199(:045)[:045] 0:195(:088)[:088]

G2SLS 0:508(:220)[:220] 0:396(:225)[:248] 0:199(:033)[:033] 0:194(:056)[:056]

ML1 0:503(:106)[:106] 0:483(:110)[:111] 0:201(:031)[:031] 0:200(:046)[:046]

ML2 0:512(:133)[:133] 0:479(:138)[:140] 0:202(:032)[:032] 0:200(:047)[:047]

large size groups: �r = 102, n = 2279,
P�r

r=1 rank(Imr �Wnr) = 2076

2SLS 0:470(:212)[:214] � 0:201(:030)[:030] 0:204(:054)[:054]

G2SLS 0:515(:169)[:170] 0:455(:191)[:197] 0:200(:026)[:026] 0:198(:044)[:044]

ML1 0:502(:098)[:098] 0:487(:101)[:102] 0:201(:025)[:025] 0:202(:037)[:037]

ML2 0:514(:107)[:108] 0:478(:112)[:114] 0:201(:025)[:025] 0:201(:037)[:037]

Mean(SD)[RMSE]
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Table 3: ML Estimation of Misspeci�ed Models (R=102, n=1344)
�0 = 0:5 �0 = 0:5 �10 = 1 �20 = 1 likelihood value

correct model :496(:038)[:039] :501(:046)[:046] 1:002(:032)[:032] 1:003(:048)[:049] �1749:0(�)
imposing �̂n = 0 � :805(:012)[:305] 1:000(:033)[:033] 1:144(:046)[:151] �1804:5(6:0%)
imposing �̂2n = 0 :799(:011)[:300] �:018(:048)[:521] 0:821(:037)[:183] � �1907:1(0:0%)
imposing �̂n = 0 :718(:016)[:218] � 0:897(:032)[:108] 0:677(:050)[:327] �1803:9(7:0%)

�0 = �0:3 �0 = 0:5

correct model �:295(:044)[:045] :496(:042)[:042] 1:001(:031)[:031] 0:997(:047)[:047] �1797:2(�)
imposing �̂n = 0 :166(:033)[:467] � 0:920(:032)[:086] 0:603(:056)[:401] �1824:5(0:0%)

�0 = 0:5 �0 = �0:3
correct model :497(:024)[:024] �:295(:038)[:038] 1:003(:031)[:031] 1:003(:060)[:061] �1797:1(�)
imposing �̂n = 0 :369(:023)[:133] � 1:064(:031)[:071] 1:192(:056)[:200] �1820:8(0:0%)

�0 = 0:5 �0 = 0

correct model :499(:019)[:019] � 1:002(:030)[:030] 1:000(:048)[:048] �1755:0(�)
misspeci�ed Wr :826(:328)[:462] � 1:316(:050)[:320] 1:833(:084)[:838] �1978:1(0:0%)
parameter estimates: Mean(SD)[RMSE]; likelihood value: Mean(frequency of exceeding likelihood value of the correct model)
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