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Abstract

This paper proposes a GMM estimation framework for the SAR model in a system of si-

multaneous equations with heteroskedastic disturbances. Besides linear moment conditions,

the proposed GMM estimator also utilizes quadratic moment conditions based on the covari-

ance structure of model disturbances within and across equations. Compared with the QML

approach, the GMM estimator is easier to implement and robust under heteroskedasticity of

unknown form. We derive the heteroskedasticity-robust standard error for the GMM estima-

tor. Monte Carlo experiments show that the proposed GMM estimator performs well in finite

samples.

JEL classification: C31, C36

Key words: simultaneous equations, spatial autoregressive models, quadratic moment con-
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1 Introduction

The spatial autoregressive (SAR) model introduced by Cliff and Ord (1973, 1981) has received

considerable attention in various fields of economics as it provides a convenient framework to

model the interaction between economic agents. However, with a few exceptions (e.g., Kelejian

∗We thank the editor, the associate editor, and two anonymous referees for valuable comments and suggestions.
The remaining errors are our own.
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and Prucha, 2004; Baltagi and Pirotte, 2011; Yang and Lee, 2017), most theoretical works in the

spatial econometrics literature focus on the single-equation SAR model, which assumes that an eco-

nomic agent’s choice (or outcome) in a certain activity is isolated from her and other agents’choices

(or outcomes) in related activities. This restrictive assumption potentially limits the usefulness of

the SAR model in many contexts.

To incorporate the interdependence of economic agents’choices and outcomes across different

activities, Kelejian and Prucha (2004) extends the single-equation SAR model to the simultaneous-

equation SAR model. They propose both limited information two stage least squares (2SLS) and

full information three stage least squares (3SLS) estimators for the estimation of model parame-

ters and establish the asymptotic properties of the estimators. In a recent paper, Yang and Lee

(2017) study the identification and estimation of the simultaneous-equation SAR model by the full

information quasi-maximum likelihood (QML) approach. They give identification conditions for

the simultaneous-equation SAR model that are analogous to the rank and order conditions for the

classical simultaneous-equation model and derive asymptotic properties of the QML estimator. The

QML estimator is asymptotically more effi cient than the 3SLS estimator under normality but can

be computationally diffi cult to implement.

In this paper, we propose a generalized method of moments (GMM) estimator for the identi-

fication and estimation of simultaneous-equation SAR models with heteroskedastic disturbances.

Similar to the GMM estimator proposed by Lee (2007) and Lin and Lee (2010) for single-equation

SAR models, the GMM estimator utilizes both linear moment conditions based on the orthogonality

condition between the instrumental variable (IV) and model disturbances, and quadratic moment

conditions based on the covariance structure of model disturbances. While the single-equation GMM

estimator can be considered as an equation-by-equation limited information estimator for a system of

simultaneous equations, the simultaneous-equation GMM estimator proposed in this paper exploits

the correlation structure of disturbances within and across equations and thus is a full informa-

tion estimator. We study the identification of model parameters under the GMM framework and

derive asymptotic properties of the GMM estimator under heteroskedasticity of unknown form. Fur-

thermore, we propose a heteroskedasticity-robust estimator for the asymptotic variance-covariance

matrix of the GMM estimator in the spirit of White (1980). The GMM estimator is asymptotically

more effi cient than the 3SLS estimator. Compared with the QML estimator considered in Yang and

Lee (2017), the GMM estimator is easier to implement and robust under heteroskedasticity. Monte

2



Carlo experiments show that the proposed GMM estimator performs well in finite samples.

The remaining of this paper is organized as follows. In Section 2, we describe the model and

give the moment conditions used to construct the GMM estimator. In Section 3, we establish the

identification for the model under the GMM framework. We derive the asymptotic properties of

the GMM estimator in Section 4. Results of Monte Carlo simulation experiments are reported in

Section 5. Section 6 briefly concludes. Proofs are collected in the Appendix.

Throughout the paper, we adopt the following notation. For an n × n matrix A = [aij ], let

diag(A) denote an n × n diagonal matrix with the i-th diagonal element being aii, i.e., diag(A) =

diag(a11, · · · , ann). Let ρ(A) denotes the spectral radius of the square matrix A. For an n × m

matrix B = [bij ], the vectorization of B is denoted by vec(B) = (b11, · · · , bn1, b12, · · · , bnm)′.1 Let

In denote the n× n identity matrix and in,k denote the k-th column of In.

2 Model and Moment Conditions

2.1 Model

The model considered in this paper is given by a system of m simultaneous equations for n cross

sectional units,

Y = YΓ0 + WYΛ0 + XB0 + U, (1)

where Y = [y1, · · · ,ym] is an n × m matrix of endogenous variables, X is an n × KX matrix of

exogenous variables, and U = [u1, · · · ,um] is an n ×m matrix of disturbances.2 W = [wij ] is an

n × n nonstochastic matrix of spatial weights, with wij representing the proximity between cross

sectional units i and j.3 The diagonal elements of W are normalized to be zeros. In the literature,

WY is usually referred to as the spatial lag. Γ0, Λ0 and B0 are, respectively, m ×m, m ×m and

KX ×m matrices of true parameters in the data generating process (DGP). The diagonal elements

of Γ0 are normalized to be zeros.

In general, the identification of simultaneous-equation models needs exclusion restrictions. Let

γk,0, λk,0 and βk,0 denote vectors of nonzero elements of the k-th columns of Γ0, Λ0 and B0 re-

spectively under some exclusion restrictions. Let Yk, Ȳk and Xk denote the corresponding matrices

containing columns of Y, Ȳ = WY and X that appear in the right hand side of the k-th equation.

1 If A, B, C are conformable matrices, then vec(ABC) = (C′⊗A)vec(B), where ⊗ denotes the Kronecker product.
2 In this paper, all variables are allowed to depend on the sample size, i.e., are allowed to formulate triangular

arrays as in Kelejian and Prucha (2010). Nevertheless, we suppress the subscript n to simplify the notation.
3For SAR models, the notion of proximity is not limited to the geographical sense. It can be economic proximity,

technology proximity, or social proximity. Hence the SAR model has a broad range of applications.
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Then, the k-th equation of model (1) is

yk = Ykγk,0 + Ȳkλk,0 + Xkβk,0 + uk. (2)

We maintain the following assumptions regarding the DGP.

Assumption 1 Let uik denote the (i, k)-th element of U and u denote the vectorization of U, i.e.,

u = vec(U). (i) (ui1, · · · , uim) are independently distributed across i with zero mean. (ii)

Σ ≡ E(uu′) =


Σ11 · · · Σ1m

...
. . .

...

Σm1 · · · Σmm


is nonsingular, with Σkl = Σlk = diag(σ1,kl, · · · , σn,kl). (iii) E|uikuiluisuit|1+η is bounded for any

i = 1, · · · , n and k, l, s, t = 1, · · · ,m, for some positive constant η.

Assumption 2 The elements of X are uniformly bounded constants. X has full column rank KX .

limn→∞ n−1X′X exists and is nonsingular.

Assumption 3 Γ0 is nonsingular with a zero diagonal. ρ(Λ0(Im − Γ0)−1) < 1/ρ(W).

Assumption 4 W has a zero diagonal. The row and column sums of W and (Imn − Γ′0 ⊗ In −

Λ′0 ⊗W)−1 are uniformly bounded in absolute value.

Assumption 5 θk,0 = (γ′k,0,λ
′
k,0,β

′
k,0)′ is in the interior of a compact and convex parameter space

for k = 1, · · · ,m.

The above assumptions are based on some standard assumptions in the literature of SAR models

(see, e.g., Kelejian and Prucha, 2004; Lee, 2007; Lin and Lee, 2010). In particular, Assumption 3 is

from Yang and Lee (2017). Under this assumption, S = Imn − Γ′0 ⊗ In − Λ′0 ⊗W is nonsingular,

and hence the simultaneous-equation SAR model (1) has a well defined reduced form

y = S−1(B′0 ⊗ In)x + S−1u, (3)

where y = vec(Y), x = vec(X), and u = vec(U). Note that, when m = 1, we have Γ0 = 0

and Λ0 = λ11,0. Then, ρ(Λ0(Im − Γ0)−1) < 1/ρ(W) becomes the familiar parameter constraint

|λ11,0| < 1/ρ(W) for the single-equation SAR model.
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2.2 Motivating examples

To illustrate the empirical relevance of the proposed model, we give two motivating examples in this

subsection. The first example models the spillover effect of fiscal policies between local jurisdictions.

The second example characterizes the conformity effect in social networks.

2.2.1 Fiscal policy interaction

Consider a set of n local jurisdictions. Each jurisdiction chooses expenditures in m publicly provided

services to maximize the social welfare. The social welfare function of jurisdiction i is given by

Vi =

m∑
k=1

(αik +

m∑
l=1

ρlk

n∑
j=1

wijyjl)yik −
1

2

m∑
k=1

m∑
l=1

φlkyikyil, (4)

where αik captures the existing condition of publicly provided service k in jurisdiction i (and other

exogenous characteristics of jurisdiction i), yik represents the spending by jurisdiction i on publicly

provided service k, and wij measures the geographical proximity between jurisdictions i and j (e.g.,

one could let wij = 1 if jurisdictions i and j share a common border and wij = 0 otherwise).

The first term of the social welfare function (4) captures the social welfare gain from pub-

licly provided services. The marginal social welfare gain of the expenditure yik is given by αik +∑m
l=1 ρlk

∑n
j=1 wijyjl, where

∑n
j=1 wijyjl represents the spending by neighboring jurisdictions on

publicly provided services and its coeffi cient ρlk captures the spillover effect of publicly provided

services (see, e.g., Allers and Elhorst, 2011). For example, people may use libraries, parks and other

recreation facilities in neighboring jurisdictions. In this case, the spending by a jurisdiction on such

facilities might be considered as a substitute for the spending by a neighboring jurisdiction on similar

or related facilities and thus generate a negative spillover effect (i.e. ρlk < 0). On the other hand,

if the services provided by neighboring jurisdictions are complements (e.g. road networks and busi-

ness parks, or hospitals and nursing homes), then the spillover effect is expected to be positive (i.e.

ρlk > 0). The second term of the social welfare function (4) captures the cost of publicly provided

services.4 The coeffi cient φlk (φlk = φkl) represents the substitution effect between expenditures by

a jurisdiction on publicly provided services k and l.

4See Hauptneier et al. (2012) for some discussion on including the cost of publicly provided services instead of
imposing a budget constraint in the social welfare function.
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Maximizing the social welfare function (4) yields the best response function

yik =

m∑
l=1,l 6=k

γlkyik +

m∑
l=1

λlk

n∑
j=1

wijyjl + α∗ik

where γlk = −φlk/φkk, λlk = ρlk/φkk, and α
∗
ik = αik/φkk. Suppose α

∗
ik = x′ikβk + uik, where

xik is a vector of the observable characteristics of jurisdiction i and uik captures the unobservable

heterogeneity of jurisdiction i. Then the best response function implies the simultaneous-equation

SAR model (2).

2.2.2 Social conformity

Patacchini and Zenou (2012) consider a social conformity model where the social norm is given by

the average behavior of peers in a certain activity. We generalize their model by defining the social

norm based on a portfolio of difference activities. Suppose a set of n individuals interact in a social

network. The network topology is captured by the matrix W = [wij ]. Let di denote the number of

friends of individual i. A possible specification of W is such that wij = 1/di if individuals i and j

are friends and wij = 0 otherwise. Individual i choose effort levels yi1, · · · , yim simultaneously in m

activities to maximize her utility function

Ui =

m∑
k=1

αikyik −
1

2

m∑
k=1

m∑
l=1

φlkyikyil −
m∑
k=1

1

2
ρk(yik −

m∑
l=1

%lk

n∑
j=1

wijyjl)
2. (5)

The first term of the utility function (5) captures the payoff from the efforts with the productivity

of individual i in activity k given by αik. The second term is the cost from the efforts with the

substitution effect between efforts in different activities captured by φlk (φlk = φkl). The last term

reflects the influence of an individual’s friends on her own behavior. It is such that each individual

wants to minimize the social distance between her own behavior yik to the social norm of that

activity. The social norm for activity k is given by the weighted average behavior of her friends in

m activities
∑m
l=1 %lk

∑n
j=1 wijyjl with the weights %lk such that

∑m
l=1 %lk = 1. The coeffi cient ρk

captures the taste for conformity.

Maximizing the utility function (5) yields the best response function

yik =

m∑
l=1,l 6=k

γlkyik +

m∑
l=1

λlk

n∑
j=1

wijyjl + α∗ik
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where γlk = −φlk/(φkk + ρk), λlk = ρk%lk/(φkk + ρk), and α∗ik = αik/(φkk + ρk).5 Suppose

α∗ik = x′ikβk + uik. Then the best response function leads to the econometric model (2).

2.3 Moment conditions

Following Lee (2007) and Lin and Lee (2010), for the estimation of the simultaneous-equation SAR

model (1), we consider both linear moment conditions

E(Q′uk) = 0, (6)

where Q is an n×KQ matrix of IVs, and quadratic moment conditions

E(u′kΞrul) = tr(ΞrΣkl), for r = 1, · · · , p,

where Ξr’s are n× n constant matrices. Note that, if the diagonal elements of Ξr’s are zeros, then

the quadratic moment conditions become

E(u′kΞrul) = 0, for r = 1, · · · , p. (7)

As an example, we could useQ = [X,WX, · · · ,WpX] andΞ1 = W,Ξ2 = W2−diag(W2), · · · ,Ξp =

Wp−diag(Wp), where p is some predetermined positive integer, to construct the linear and quadratic

moment conditions. The quadratic moment conditions (7) exploit the covariance structure of model

disturbances both within and across equations, and hence are more general than the quadratic

moment conditions considered in Lee (2007) and Lin and Lee (2010).

Let the residual function for the k-th equation be

uk(θk) = yk −Ykγk − Ȳkλk −Xkβk,

where θk = (γ′k,λ
′
k,β

′
k)′. The empirical linear moment functions based on (6) can be written as

g1,k ≡ g1,k(θk) = Q′uk(θk) (8)

5Suppose the parameters in the best response function can be identified, then parameters in the utility function
(5) can be identified up to a scale factor. This issue is common for simultaneous-equation models (Schmidt, 1976).
In this example, if λlk can be identified, then ρk = φkk

∑m
l=1 λlk/(1 −

∑m
l=1 λlk), which is identifiable up to a scale

factor φkk.
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and the empirical quadratic moment functions based on (7) can be written as

g2,kl ≡ g2,kl(θk,θl) = [Ξ′1uk(θk), · · · ,Ξ′puk(θk)]′ul(θl) (9)

for k, l = 1, · · · ,m. Combining both linear and quadratic moment functions by defining

g(θ) =

 g1(θ)

g2(θ)

 , (10)

where θ = (θ′1, · · · ,θ′m)′, g1(θ) = (g′1,1, · · · ,g′1,m)′, and g2(θ) = (g′2,11, · · · ,g′2,1m,g′2,21, · · · ,g′2,mm)′.

The identification and estimation of the simultaneous-equation SAR model (1) is then based on the

moment conditions E[g(θ0)] = 0. We maintain the following assumption regarding the moment

conditions.

Assumption 6 (i) The elements of Q are uniformly bounded. (ii) The diagonal elements of Ξr

are zeros, and the row and column sums of Ξr are uniformly bounded, for r = 1, · · · , p. (iii)

limn→∞ n−1Ω exists and is nonsingular, where Ω = Var[g(θ0)].

3 Identification

Following Yang and Lee (2017), we establish the identification of the simultaneous-equation SAR

model in two steps. In the first step, we consider the identification of the “pseudo” reduced form

parameters in equation (11). In the second step, we recover the structural parameters from the

“pseudo”reduced form parameters.

3.1 Identification of the “pseudo” reduced form parameters

When Γ0 is nonsingular, the simultaneous-equation SAR model (1) has a “pseudo”reduced form

Y = WYΨ0 + XΠ0 + V, (11)

where Ψ0 = Λ0(Im −Γ0)−1, Π0 = B0(Im −Γ0)−1, and V = U(Im −Γ0)−1. Equation (11) has the

specification of a multivariate SAR model (see, Yang and Lee, 2017; Liu, 2015). First, we consider

the identification of the “pseudo”reduced form parameters Ψ0 = [ψlk,0] and Π0 = [π1,0, · · · ,πm,0]

under the GMM framework.
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The k-th equation in model (11) is given by

yk =

m∑
l=1

ψlk,0Wyl + Xπk,0 + vk,

where

Wyl = Hl(Π
′
0 ⊗ In)x + Hlv (12)

with Hl = (i′m,l ⊗W)[Imn − (Ψ′0 ⊗W)]−1, x = vec(X), and v = vec(V). Hence, the residual

function for the k-th equation can be written as

vk(δk) = yk −
m∑
l=1

ψlkWyl −Xπk = dk(δk) + vk +

m∑
l=1

(ψlk,0 − ψlk)Hlv, (13)

where δk = (ψ1k, · · · , ψmk,π′k)′ and dk(δk) = [E(Wy1), · · · ,E(Wym),X](δk,0 − δk).

The “pseudo”reduced form parameters in model (11) can be identified by the moment conditions

described in the previous section. Similar to (8) and (9), the linear moment functions can be written

as

f1,k ≡ f1,k(δk) = Q′vk(δk)

and the quadratic moment functions can be written as

f2,kl ≡ f2,kl(δk, δl) = [Ξ′1vk(δk), · · · ,Ξ′pvk(δk)]′vl(δl)

for k, l = 1, · · · ,m. Let f(δ) = [f1(δ)′, f2(δ)′]′, where δ = (δ′1, · · · , δ′m)′, f1(δ) = (f ′1,1, · · · , f ′1,m)′,

and f2(δ) = (f ′2,11, · · · , f ′2,1m, f ′2,21, · · · , f ′2,mm)′. For δ0 to be identified by the moment conditions

E[f(δ0)] = 0, the moment equations limn→∞ n−1E[f(δ)] = 0 need to have a unique solution at

δ = δ0 (Hansen, 1982).

It follows from (13) that

lim
n→∞

n−1E[f1,k(δk)] = lim
n→∞

n−1Q′dk(δk) = lim
n→∞

n−1Q′[E(Wy1), · · · ,E(Wym),X](δk,0 − δk)

for k = 1, · · · ,m. The linear moment equations, limn→∞ n−1E[f1,k(δk)] = 0, have a unique solution

at δk = δk,0, if Q′[E(Wy1), · · · ,E(Wym),X] has full column rank for n suffi ciently large. A

necessary condition for this rank condition is that [E(Wy1), · · · ,E(Wym),X] has full column rank
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of m+KX and rank(Q) ≥ m+KX for n suffi ciently large.

If, however, [E(Wy1), · · · ,E(Wym),X] does not have full column rank, then the model may

still be identifiable via the quadratic moment conditions. Suppose for some m̄ ∈ {0, 1, · · · ,m− 1},

E(Wyl) and the columns of [E(Wy1), · · · ,E(Wym̄),X] are linearly dependent,6 i.e., E(Wyl) =∑m̄
k=1 c1,klE(Wyk) + Xc2,l for some vector of constants (c1,1l, · · · , c1,m̄l, c′2,l) ∈ Rm̄+KX , for l =

m̄+ 1, · · · ,m. In this case,

dk(θk) =

m̄∑
j=1

E(Wyj)[ψjk,0−ψjk +

m∑
l=m̄+1

(ψlk,0−ψlk)c1,jl] + X[πk,0−πk +

m∑
l=m̄+1

(ψlk,0−ψlk)c2,l],

and hence limn→∞ n−1E[f1,k(δk)] = 0 implies that

ψjk = ψjk,0 +

m∑
l=m̄+1

(ψlk,0 − ψlk)c1,jl (14)

πk = πk,0 +

m∑
l=m̄+1

(ψlk,0 − ψlk)c2,l,

for j = 1, · · · , m̄ and k = 1, · · · ,m, provided that Q′[E(Wy1), · · · ,E(Wym̄),X] has full column

rank for n suffi ciently large. Therefore, (ψ1k,0, · · · , ψm̄k,0,π′k,0) can be identified if ψlk,0 (for l =

m̄+ 1, · · · ,m) can be identified from the quadratic moment conditions.

With δk given by (14), we have

E[vk(δk)′Ξrvl(δl)] =

m∑
i=1

(ψik,0 − ψik)tr[H′iΞrE(vlv
′)] +

m∑
j=1

(ψjl,0 − ψjl)tr[ΞrHjE(vv′k)]

+

m∑
i=1

m∑
j=1

(ψik,0 − ψik)(ψjl,0 − ψjl)tr[H′iΞrHjE(vv′)],

where E(vv′) = [(Im−Γ′0)−1⊗ In]Σ[(Im−Γ0)−1⊗ In] and E(vkv
′) = E(vv′k)′ = (i′m,k⊗ In)E(vv′).

Therefore, the quadratic moment equations, limn→∞ n−1E[f2,kl(δk, δl)] = 0 for k, l = 1, · · · ,m, have

a unique solution at Ψ0, if the equations

lim
n→∞

n−1{
m∑
i=1

(ψik,0 − ψik)tr[H′iΞrE(vlv
′)] +

m∑
j=1

(ψjl,0 − ψjl)tr[ΞrHjE(vv′k)] (15)

+

m∑
i=1

m∑
j=1

(ψik,0 − ψik)(ψjl,0 − ψjl)tr[H′iΞrHjE(vv′)]} = 0,

6We adopt the convention that [E(Wy1), · · · ,E(Wym̄),X] = X for m̄ = 0.
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for r = 1, · · · , p and k, l = 1, · · · ,m, have a unique solution atΨ0.7 To wrap up, suffi cient conditions

for the identification of the “pseudo” reduced form parameters are summarized in the following

assumption.

Assumption 7 At least one of the following conditions holds.

(i) limn→∞ n−1Q′[E(Wy1), · · · ,E(Wym),X] exists and has full column rank.

(ii) limn→∞ n−1Q′[E(Wy1), · · · ,E(Wym̄),X] exists and has full column rank for some 0 ≤ m̄ ≤

m− 1. The equations (15), for r = 1, · · · , p and k, l = 1, · · · ,m, have a unique solution at Ψ0.

Example 1 To better understand the identification conditions in Assumption 7, consider the “pseudo”

reduced form equations (11) with m = 2 and X = [x,Wx], where x is n × 1 vector of individual-

specific exogenous characteristics. In this case, equations (11) can be written as

y1 = ψ11,0Wy1 + ψ21,0Wy2 + π11,0x + π21,0Wx + u1 (16)

y2 = ψ12,0Wy1 + ψ22,0Wy2 + π12,0x + π22,0Wx + u2.

The “pseudo”reduced form equations (16) have the specification of a multivariate SAR model (Yang

and Lee, 2017). In (16), Wx is a spatial lag of the exogenous variable and its coeffi cient captures

the “contextual effect”(Manski, 1993). How to identify the endogenous peer effect captured by ψkk,0

from the contextual effect has been a major interest in the literature of social interaction models. In

the multivariate SAR model (16), the identification problem is even more challenging because of the

presence of the “cross-equation peer effect” captured by ψlk,0 (l 6= k).

Identification of model (16) can be achieved via linear moment conditions if Assumption 7 (i)

holds, or via linear and quadratic moment conditions if Assumption 7 (ii) holds. A necessary condi-

tion for Assumption 7 (i) is that [E(Wy1),E(Wy2),x,Wx] has full column rank for n suffi ciently

large. It follows by a similar argument as in Cohen-Cole et al. (2016) that [E(Wy1),E(Wy2),x,Wx]

has full column rank if and only if the matrices In,W,W2,W3 are linearly independent8 and the

7A weaker identification condition can be derived based on (14) and (15) if the constants c1,1l, · · · , c1,m̄l, c2,l are
known to the researcher.

8For example, the weights matrix W for a star network is given by

W =


0 (n− 1)−1 · · · (n− 1)−1

1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

 .
As W3 = W, the linear independence of In,W,W2,W3 does not hold.
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parameter matrix


π11,0 π12,0 1

ψ21,0π12,0 − ψ22,0π11,0 + π21,0 ψ12,0π11,0 − ψ11,0π12,0 + π22,0 −(ψ11,0 + ψ22,0)

ψ21,0π22,0 − ψ22,0π21,0 ψ12,0π21,0 − ψ11,0π22,0 ψ11,0ψ22,0 − ψ12,0ψ21,0

 (17)

has full column rank.

Suppose π11,0 = π21,0 = π12,0 = π22,0 = 0 in the DGP. Then the parameter matrix (17)

does not have full column rank. Therefore, [E(Wy1),E(Wy2),x,Wx] does not have full column

rank and Assumption 7 (i) fails to hold. In this case, model (16) can be identified if Assump-

tion 7 (ii) holds. From (12), E(Wyk) = Hk(Π′0 ⊗ In)x = 0 as Π0 = 0, which implies that

dk(δk) = [E(Wy1),E(Wym),x,Wx](δk,0 − δk) = (π1k,0 − π1k)x + (π2k,0 − π2k)Wx. Hence, from

the linear moment equations limn→∞ n−1Q′dk(θk) = 0, only π1k,0 and π2k,0 can be identified if

limn→∞ n−1Q′[x,Wx] exists and has full column rank. Identification of ψlk,0 has to be achieved via

the quadratic moment equations (15).

It follows from (15) that, for k = l = 1,

(ψ11,0 − ψ11) lim
n→∞

n−1tr[H′1(Ξr + Ξ′r)E(v1v
′)] + (ψ21,0 − ψ21) lim

n→∞
n−1tr[H′2(Ξr + Ξ′r)E(v1v

′)]

+(ψ11,0 − ψ11)2 lim
n→∞

n−1tr[H′1ΞrH1E(vv′)] + (ψ21,0 − ψ21)2 lim
n→∞

n−1tr[H′2ΞrH2E(vv′)]

+(ψ11,0 − ψ11)(ψ21,0 − ψ21) lim
n→∞

n−1tr[H′1(Ξr + Ξ′r)H2E(vv′)] = 0, (18)

for r = 1, · · · , p. If the matrix

lim
n→∞

n−1



tr[H′1(Ξ1 + Ξ′1)E(v1v
′)] · · · tr[H′1(Ξp + Ξ′p)E(v1v

′)]

tr[H′2(Ξ1 + Ξ′1)E(v1v
′)] · · · tr[H′2(Ξp + Ξ′p)E(v1v

′)]

tr[H′1Ξ1H1E(vv′)] · · · tr[H′1ΞpH1E(vv′)]

tr[H′2Ξ1H2E(vv′)] · · · tr[H′2ΞpH2E(vv′)]

tr[H′1(Ξ1 + Ξ′1)H2E(vv′)] · · · tr[H′1(Ξp + Ξ′p)H2E(vv′)]


has full row rank, (18) has a unique solution at (ψ11,0, ψ21,0) and hence (ψ11,0, ψ21,0) can be identified.

Similarly, (ψ12,0, ψ22,0) can be identified from (15) with k = l = 2.

12



3.2 Identification of the structural parameters

Provided that the “pseudo”reduced form parametersΨ0 andΠ0 can be identified from the linear and

quadratic moment conditions as discussed above. Then, the identification problem of the structural

parameters in Θ0 = [(Im − Γ0)′,−Λ′0,−B′0]′ through the linear restrictions Ψ0 = Λ0(Im − Γ0)−1

and Π0 = B0(Im−Γ0)−1 is essentially the same one as in the classical linear simultaneous-equation

model (see, e.g., Schmidt, 1976). Let ϑk,0 denote the k-th column of Θ0. Suppose there are Rk

restrictions on ϑk,0 of the formRkϑk,0 = 0 whereRk is a Rk×(2m+KX)matrix of known constants.

Following a similar argument as in Yang and Lee (2017), the suffi cient and necessary rank condition

for identification is rank(RkΘ0) = m − 1, and the necessary order condition is Rk ≥ m − 1, for

k = 1, · · · ,m.

Assumption 8 For k = 1, · · · ,m, Rkϑk,0 = 0 for some Rk × (2m+KX) constant matrix Rk with

rank(RkΘ0) = m− 1.

Example 2 To better understand the rank condition in Assumption 8, consider the model

y1 = γ21,0y2 + λ11,0Wy1 + Xβ1,0 + u1 (19)

y2 = γ12,0y1 + λ22,0Wy2 + Xβ2,0 + u2

with “pseudo” reduced-form equations

y1 = ψ11,0Wy1 + ψ21,0Wy2 + Xπ1,0 + v1 (20)

y2 = ψ12,0Wy1 + ψ22,0Wy2 + Xπ2,0 + v2,

where  ψ11,0 ψ12,0

ψ21,0 ψ22,0

 = (1− γ12,0γ21,0)−1

 λ11,0 γ12,0λ11,0

γ21,0λ22,0 λ22,0

 (21)

and

[π1,0,π2,0] = (1− γ12,0γ21,0)−1[β1,0 + γ21,0β2,0,β2,0 + γ12,0β1,0]. (22)

Suppose Assumption 7 holds for (20) and thus the “pseudo”reduced-form parameters can be identi-

13



fied. Then, the structural parameters

Θ0 = [(Im − Γ0)′,−Λ′0,−B′0]′ =

 1 −γ21,0 −λ11,0 0 −β′1,0
−γ12,0 1 0 −λ22,0 −β′2,0


′

can be identified from (21) and (22) if the rank condition holds. The exclusion restriction for the

first equation of model (19) can be represented by R1 = [0, 0, 0,−1,01×KX
]. Then R1Θ0 = [0, λ22,0],

which has rank 1 if λ22,0 6= 0. Similarly, the exclusion restriction for the second equation can be

represented by R2 = [0, 0,−1, 0,01×KX
]. Then R2Θ0 = [λ11,0, 0] which has rank 1 if λ11,0 6= 0.

Indeed, if λ11,0 = λ22,0 = 0 in the DGP, then (19) becomes a classical linear simultaneous equations

model, which cannot be identified without imposing exclusion restrictions on βk,0.

4 GMM Estimation

4.1 Consistency and asymptotic normality

Based on the moment conditions E[g(θ0)] = 0, the GMM estimator for the simultaneous-equation

SAR model (1) is given by

θ̃gmm = arg min g(θ)′F′Fg(θ) (23)

where F is some conformable matrix such that limn→∞F exists with full row rank greater than or

equal to dim (θ). Usually, F′F is referred to as the GMM weighting matrix.

To characterize the asymptotic distribution of the GMM estimator, first we need to derive Ω =

Var[g(θ0)] and D = −E[ ∂
∂θ′g(θ0)]. As Ξr’s have zero diagonals for r = 1, · · · , p, it follows by

Lemmas A.1 and A.2 in the Appendix that

Ω = Var[g(θ0)] =

 Ω11 0

0 Ω22

 , (24)

where

Ω11 = Var[g1(θ0)] = (Im ⊗Q)′Σ(Im ⊗Q) =


Q′Σ11Q · · · Q′Σ1mQ

...
. . .

...

Q′Σ1mQ · · · Q′ΣmmQ


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and Ω22 = Var[g2(θ0)] with a typical block matrix in Ω22 given by

E(g2,ijg
′
2,kl)|θ=θ0 =


tr(ΣilΞ1ΣjkΞ1) + tr(ΣikΞ1ΣjlΞ

′
1) · · · tr(ΣilΞ1ΣjkΞp) + tr(ΣikΞ1ΣjlΞ

′
p)

...
. . .

...

tr(ΣilΞpΣjkΞ1) + tr(ΣikΞpΣjlΞ
′
1) · · · tr(ΣilΞpΣjkΞp) + tr(ΣikΞpΣjlΞ

′
p)

 .

The explicit expression for D depends on the specific restrictions imposed on the model parame-

ters. Let Zk = [Yk, Ȳk,Xk]. Then,

D = −E[
∂

∂θ′
g(θ0)] = [D′1,D

′
2]′, (25)

where

D1 = −E[
∂

∂θ′
g1(θ0)] =


Q′E(Z1)

. . .

Q′E(Zm)


and

D2 = −E[
∂

∂θ′
g2 (θ0)] =



Υ1,11

...

Υ1,1m

. . .

Υ1,m1

...

Υ1,mm



+



Υ2,11

. . .

Υ2,1m

...

Υ2,m1

. . .

Υ2,mm



,

with Υ1,kl = [E(Z′kΞ1ul), · · · ,E(Z′kΞpul)]
′ and Υ2,kl = [E(Z′lΞ

′
1uk), · · · ,E(Z′lΞ

′
puk)]′. In the fol-

lowing proposition we establish consistency and asymptotic normality of the GMM estimator θ̃gmm

defined in (23).

Proposition 1 Suppose Assumptions 1-8 hold, Then,

√
n(θ̃gmm − θ0)

d→ N(0,AsyVar(θ̃gmm))
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where

AsyVar(θ̃gmm) = lim
n→∞

[(n−1D)′F′F(n−1D)]−1(n−1D)′F′F(n−1Ω)F′F(n−1D)[(n−1D)′F′F(n−1D)]−1

with Ω and D defined in (24) and (25) respectively.

With F′F in (23) replaced by (n−1Ω)−1, AsyVar(θ̃gmm) reduces to (limn→∞ n−1D′Ω−1D)−1.

Therefore, by the generalized Schwarz inequality, (n−1Ω)−1 is the optimal GMM weighting matrix.

However, sinceΩ depends on the unknown matrixΣ, the GMM estimator with the optimal weighting

matrix (n−1Ω)−1 is infeasible. The following proposition extends the result in Lin and Lee (2010)

to the simultaneous-equation SAR model by suggesting consistent estimators for n−1Ω and n−1D

under heteroskedasticity of unknown form. With consistently estimated n−1Ω and n−1D, the feasible

optimal GMM estimator and its heteroskedasticity-robust standard error can be obtained.

Proposition 2 Suppose Assumptions 1-8 hold. Let θ̃ be a consistent estimator of θ0 and Σ̃kl =

diag(ũ1kũ1l, · · · , ũnkũnl) where ũik is the i-th element of ũk = uk(θ̃k). Let n−1D̃ and n−1Ω̃ be

estimators of n−1Ω and n−1D, with θ0 and Σkl in Ω and D replaced by θ̃ and Σ̃kl respectively.

Then, n−1D̃− n−1D = op(1) and n−1Ω̃− n−1Ω = op(1).

Finally Proposition 3 establishes asymptotic normality of the feasible optimal GMM estimator.

Proposition 3 Suppose Assumptions 1-8 hold. The optimal GMM estimator is given by

θ̂gmm = arg min g(θ)′Ω̃g(θ), (26)

where n−1Ω̃ is a consistent estimator of n−1Ω. Then,
√
n(θ̂gmm−θ0)

d→ N(0, (limn→∞ n−1D′ΩD)−1).

Note that, the 3SLS estimator can be treated as a special case of the optimal GMM estimator

using only linear moment conditions, i.e.,

θ̂3SLS = arg min g1(θ)′Ω̃−1
11 g1(θ) = (Z′P̃Z)−1Z′P̃y,

where

Z =


Z1

. . .

Zm


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and P̃ = (Im ⊗Q)[(Im ⊗Q′)Σ̃(Im ⊗Q)]−1(Im ⊗Q′). Similar to Proposition 3, we can show that

√
n(θ̂3SLS − θ0)

d→ N(0, ( lim
n→∞

n−1D′1Ω
−1
11 D−1

1 )).

Since D′Ω−1D−D′1Ω
−1
11 D1 = D′2Ω

−1
22 D2, which is positive semi-definite, the proposed GMM esti-

mator is asymptotically more effi cient than the 3SLS estimator.

4.2 Best moment conditions under homoskedasticity

The above optimal GMM estimator is only “optimal” given the chosen moment conditions. The

asymptotic effi ciency of the optimal GMM estimator can be improved by choosing the “best”moment

conditions. As discussed in Lin and Lee (2010), under heteroskedasticity of unknown form, the best

moment conditions may not be available. However, under homoskedasticity, it is possible to find

the best linear and quadratic moment conditions with Q and Ξr’s satisfying Assumption 6. In

general, the best moment conditions depend on the model specification. For expositional purpose,

we consider a two-equation SAR model given by

y1 = γ21,0y2 + λ11,0Wy1 + λ21,0Wy2 + X1β1,0 + u1 (27)

y2 = γ12,0y1 + λ12,0Wy1 + λ22,0Wy2 + X2β2,0 + u2

where X1 and X2 are respectively n ×K1 and n ×K2 sub-matrices of X. Suppose u1 and u2 are

n× 1 vectors of i.i.d. random variables with zero mean and E(u1u
′
1) = σ11In, E(u2u

′
2) = σ22In and

E(u1u
′
2) = σ12In. The reduced form of (27) is

 y1

y2

 = S−1

 X1β1,0

X2β2,0

+ S−1

 u1

u2

 , (28)

where

S = I2n − Γ′0 ⊗ In −Λ′0 ⊗W =

 1 −γ12,0

−γ21,0 1


′

⊗ In −

 λ11,0 λ12,0

λ21,0 λ22,0


′

⊗W.
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Let (S−1)kl denote the (k, l)-th block matrix of S−1, i.e., (S−1)kl = (i′2,k ⊗ In)S−1(i2,l ⊗ In), for

k, l = 1, 2. Then, from (28),

y1 = (S−1)11X1β1,0 + (S−1)12X2β2,0 + (S−1)11u1 + (S−1)12u2 (29)

y2 = (S−1)21X1β1,0 + (S−1)22X2β2,0 + (S−1)21u1 + (S−1)22u2.

With the residual functions

u1(θ1) = y1 − γ21y2 − λ11Wy1 − λ21Wy2 −X1β1

u2(θ2) = y2 − γ12y1 − λ12Wy1 − λ22Wy2 −X2β2,

the moment functions are given by g(θ) = [g1(θ)′,g2(θ)′]′, where

g1(θ) =

 Q′u1(θ1)

Q′u2(θ2)


and

g2(θ) =



g2,11(θ1,θ1)

g2,12(θ1,θ2)

g2,21(θ2,θ1)

g2,22(θ2,θ2)


,

with g2,kl(θk,θl) = [Ξ′1uk(θk), · · · ,Ξ′puk(θk)]′ul(θl). Then, the asymptotic variance-covariance

matrix for the optimal GMM estimator defined in (26) is AsyVar(θ̂gmm) = (limn→∞ n−1D′ΩD)−1.

Under homoskedasticity, Ω defined in (24) can be simplified so that

Ω11 = Var[g1(θ0)] =

 σ11Q
′Q σ12Q

′Q

σ12Q
′Q σ22Q

′Q


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and

Ω22 = Var[g2(θ0)]

=



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22


⊗∆1 +



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22


⊗∆2,

with

∆1 =


tr(Ξ1Ξ1) · · · tr(Ξ1Ξp)

...
. . .

...

tr(ΞpΞ1) · · · tr(ΞpΞp)

 and ∆2 =


tr(Ξ1Ξ

′
1) · · · tr(Ξ1Ξ

′
p)

...
. . .

...

tr(ΞpΞ
′
1) · · · tr(ΞpΞ

′
p)

 .

Furthermore, D defined in (25) can be simplified so that

D1 = −E[
∂

∂θ′
g1(θ0)] =

 Q′E(Z1)

Q′E(Z2)

 (30)

and

D2 = −E[
∂

∂θ′
g2 (θ0)] =



Υ1,11

Υ1,12

Υ1,21

Υ1,22


+



Υ2,11

Υ2,12

Υ2,21

Υ2,22


, (31)

with Υ1,kl = [E(Z′kΞ1ul), · · · ,E(Z′kΞpul)]
′ and Υ2,kl = [E(Z′lΞ

′
1uk), · · · ,E(Z′lΞ

′
puk)]′. Let Gkl =

W(S−1)kl for k, l = 1, 2. From the reduced form (29),

E(Zk) = [(S−1)3−k,1X1β1,0+(S−1)3−k,2X2β2,0,G11X1β1,0+G12X2β2,0,G21X1β1,0+G22X2β2,0,Xk]

19



and

E(Z′kAul) =



σ1ltr[A
′(S−1)3−k,1] + σl2tr[A′(S−1)3−k,2]

σ1ltr(A
′G11) + σl2tr(A′G12)

σ1ltr(A
′G21) + σl2tr(A′G22)

0


for k, l = 1, 2, where A can be replaced by either Ξr or Ξ′r for r = 1, · · · , p.

As we can see now, both Ω and D depend on Q and Ξr’s. The best Q and Ξr’s are those

that minimize the asymptotic variance-covariance matrix of θ̂gmm given by (limn→∞ n−1D′ΩD)−1.

Under homoskedasticity, we can use the criterion for the redundancy of moment conditions (Breusch

et al., 1999) to show that the best Q and Ξr’s satisfying Assumption 6 are

Q∗ = [X, (S−1)11X1, (S
−1)12X2, (S

−1)21X1, (S
−1)22X2,G11X1,G12X2,G21X1,G22X2]

Ξ∗1 = (S−1)11 − diag[(S−1)11] Ξ∗5 = G11 − diag(G11)

Ξ∗2 = (S−1)12 − diag[(S−1)12] Ξ∗6 = G12 − diag(G12)

Ξ∗3 = (S−1)21 − diag[(S−1)21] Ξ∗7 = G21 − diag(G21)

Ξ∗4 = (S−1)22 − diag[(S−1)22] Ξ∗8 = G22 − diag(G22). (32)

Proposition 4 For model (27) with homoskedastic disturbances, the best Q and Ξr’s that satisfy

Assumption 6 are given in (32).

The best moment conditions with Q∗ and Ξ∗r’s given in (32) are not feasible as Q∗ and Ξ∗r’s

involve unknown parameters Γ0 andΛ0. With some consistent preliminary estimators for Γ0 andΛ0,

the feasible best moment conditions can be obtained in a similar manner as in Lee (2007). Note that,

(S−1)kl =
∑∞
j=0 cjW

j for some constants c0, c1, · · · , for k, l = 1, 2. Thus, we can use the leading

order terms of the series expansion, i.e., In,W, · · · ,Wp to approximate the unknown (S−1)kl and

Gkl = W(S−1)kl in Q∗ and Ξ∗r’s. Since the approximation error goes to zero very fast as p increases,

in practice, we could use Q = [X,WX, · · · ,WpX] and Ξ1 = W,Ξ2 = W2 − diag(W2), · · · ,Ξp =

Wp − diag(Wp) for some small p to construct the moment conditions.
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5 Monte Carlo

To study the finite sample performance of the proposed GMM estimator, we conduct a small Monte

Carlo simulation experiment. The model considered in the experiment is given by

y1 = γ21,0y2 + λ11,0Wy1 + λ21,0Wy2 + β1,0x1 + u1

y2 = γ12,0y1 + λ12,0Wy1 + λ22,0Wy2 + β2,0x2 + u2.

In the DGP, we set γ21,0 = γ12,0 = 0.2, λ11,0 = λ22,0 = 0.4, and λ21,0 = λ12,0 = 0.2. For the

spatial weights matrix W = [wij ], we take guidance from the specification in Kelejian and Prucha

(2010). More specifically, we divide the sample into two halves, with each half formulating a circle.

In the first circle (containing n/2 cross sectional units), every unit is connected with the unit ahead

of it and the unit behind. In the second circle, every unit is connected with the 9 units ahead of it

and the 9 units behind. There are no connections across those two circles. Let di be the number

of connections of the i-th unit. We set wij = 1/di if units i and j are connected and wij = 0

otherwise. We generate x1 and x2 from independent standard normal distributions. We generate

u1 = (u11, · · · , un1)′ and u2 = (u12, · · · , un2)′ such that ui1 =
√
ςiεi1 and ui2 =

√
ςiεi2, where εi1

and εi2 are respectively the i-th elements of ε1 and ε2 with ε1

ε2

 ∼ N

0,

 In σ12In

σ12In In


 .

For the heteroskedastic case, we set ςi =
√
di/2. The average variances of u1 and u2 are 2. For the

homoskedastic case, we set ςi = 2.

We conduct 1000 replications in the simulation experiment for different specifications with n ∈

{250, 500}, σ12 ∈ {0.3, 0.5, 0.7}, and (β1,0, β2,0) ∈ {(1, 1), (0.5, 0.5)}. Let

u1(θ1) = y1 − γ21y2 − λ11Wy1 − λ21Wy2 − β1x1

u2(θ2) = y2 − γ12y1 − λ12Wy1 − λ22Wy2 − β2x2,

where θ1 = (γ21, λ11, λ21, β1) and θ2 = (γ12, λ12, λ22, β2). LetQ = [x1,x2,Wx1,Wx2,W
2x1,W

2x2]

and Ξ = W. We consider the following estimators:
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(a) The 2SLS estimator of θ1 based on the linear moment function Q′u1(θ1).

(b) The 3SLS estimator of θ = (θ′1,θ
′
2)′ based on the linear moment function (I2⊗Q)′u(θ), where

u(θ) = [u1(θ1)′,u2(θ2)′]′.

(c) The single-equation GMM (GMM-1) estimator of θ1 based on the linear moment function

Q′u1(θ1) and quadratic moment function u1(θ1)′Ξu1(θ1).

(d) The system GMM (GMM-2) estimator of θ based on the linear moment function (I2⊗Q)′u(θ)

and the quadratic moment functions u1(θ1)′Ξu1(θ1), u1(θ1)′Ξu2(θ2), and u2(θ2)′Ξu2(θ2).

(e) The QML estimator of θ described in Yang and Lee (2017).

Among the above estimators, the 2SLS and GMM-1 are equation-by-equation “limited informa-

tion” estimators, while 3SLS, GMM-2 and QML are “full information” estimators. To obtain the

heteroskedasticity-robust optimal weighting matrix for the 3SLS and GMM estimators, we consider

preliminary estimators of θ1 and θ2 given by

θ̃1 = arg min u1(θ1)′Q(Q′Q)−1Q′u1(θ1) + [u1(θ1)′Ξu1(θ1)]2

θ̃2 = arg min u2(θ2)′Q(Q′Q)−1Q′u2(θ2) + [u2(θ2)′Ξu2(θ2)]2.

The estimation results are reported in Tables 1-4. We report the mean and standard deviation (SD)

of the empirical distributions of the estimates. To facilitate the comparison of different estimators,

we also report their root mean square errors (RMSE). The main observations from the experiment

are summarized as follows.

[Insert Tables 1-4 here]

• With homoskedastic disturbances, all the estimators are essentially unbiased when n = 500.

The QML estimator for (λ11,0, λ21,0) has the smallest SD with the GMM-2 estimator being a

close runner up. As reported in Table 1, when n = 500 and σ12 = 0.5, the QML estimator

of λ11,0 reduces the SDs of the 2SLS, 3SLS, GMM-1 and GMM-2 estimators by, respectively,

33.9%, 34.5%, 15.9% and 5.1%; and the QML estimator of λ21,0 reduces the SDs of the 2SLS,

3SLS, GMM-1 and GMM-2 estimators by, respectively, 24.1%, 24.7%, 22.1% and 7.4%. On

the other hand, the SDs of all the estimators for γ21,0 and β1,0 are largely the same.
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• With heteroskedastic disturbances, the QML estimator for (λ11,0, λ21,0) is downwards biased.

The bias remains as sample size increases. The GMM-2 estimator for (λ11,0, λ21,0) has the

smallest SD. As reported in Table 2, when n = 500 and σ12 = 0.5, the GMM-2 estimator

of λ11,0 reduces the SDs of the 2SLS, 3SLS, GMM-1 and QML estimators by, respectively,

22.5%, 21.6%, 5.5% and 13.8%; and the GMM-2 estimator of λ21,0 reduces the SDs of the

2SLS, 3SLS, GMM-1 and QML estimators by, respectively, 15.6%, 13.8%, 11.0% and 19.0%.

When β1,0 = β2,0 = 0.5, the IV matrix Q is less informative and the effi ciency improvement of

the GMM-2 estimator relative to the other estimators is more prominent. As reported in Table

4, when n = 500 and σ12 = 0.5, the GMM-2 estimator of λ11,0 reduces the SDs of the 2SLS,

3SLS, GMM-1 and QML estimators by, respectively, 35.4%, 35.0%, 12.0% and 67.4%; and the

GMM-2 estimator of λ21,0 reduces the SDs of the 2SLS, 3SLS, GMM-1 and QML estimators

by, respectively, 24.9%, 24.9%, 17.3% and 69.0%. In this case, the GMM-2 estimators for γ21,0

and β1,0 also reduce the SDs of the QML estimators by, respectively, 9.6% and 7.8%.

• The computational cost of the GMM estimator is much lower than that of the QML estimator.

For example, when n = 250, β1,0 = β2,0 = 1, σ12 = 0.5 and disturbances are homoskedastic,

the average computation time for GMM-1, GMM-2 and QML estimators are, respectively,

0.06, 0.10 and 9.38 seconds.9

6 Summary

In this paper, we propose a general GMM framework for the estimation of SAR models in a system

of simultaneous equations with unknown heteroskedasticity. We introduce a new set of quadratic

moment conditions to construct the GMM estimator based on the correlation structure of model

disturbances within and across equations. We establish the consistency and asymptotic normality

of the proposed the GMM estimator and discuss the optimal choice of moment conditions. We

also provide heteroskedasticity-robust estimators for the optimal GMM weighting matrix and the

asymptotic variance-covariance matrix of the GMM estimator.

The Monte Carlo experiments show that the proposed GMM estimator perform well in finite

samples. In particular, the optimal GMM estimator with some simple moment functions is robust

under heteroskedasticity with no apparent loss in effi ciency under homoskedasticity, whereas the

9The Monte Carlo experiments are performed on a computer with Intel (R) Xeon (R) CPU X5450 @ 3.00 GHz
and 32.0 GB RAM.
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QML estimator for the spatial lag coeffi cient is biased with a large standard deviation in the presence

of heteroskedasticity. Furthermore, the computational cost of the GMM approach is drastically

smaller than that of the QML.
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A Lemmas

In the following, we list some lemmas useful for proving the main results in this paper.

Lemma A.1 Let A = [aij ] and B = [bij ] be n× n nonstochastic matrices with zero diagonals. Let

ε1, ε2, ε3, ε4 be n × 1 vectors of independent random variables with zero mean. Let Σkl = E(εkε
′
l)

for k, l = 1, 2, 3, 4. Then,

E(ε′1Aε2ε
′
3Bε4) = tr(Σ13AΣ24B

′) + tr(Σ14AΣ23B).

Proof: As aii = bii = 0 for all i,

E(ε′1Aε2ε
′
3Bε4)

= E(

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklε1,iε2,jε3,kε4,l)

=

n∑
i=1

aiibiiE(ε1,iε2,iε3,iε4,i) +

n∑
i=1

n∑
j 6=i

aiibjjE(ε1,iε2,i)E(ε3,jε4,j)

+

n∑
i=1

n∑
j 6=i

aijbijE(ε1,iε3,i)E(ε2,jε4,j) +

n∑
i=1

n∑
j 6=i

aijbjiE(ε1,iε4,i)E(ε2,jε3,j)

= tr(Σ13AΣ24B
′) + tr(Σ14AΣ23B).

Lemma A.2 Let A = [aij ] be an n × n nonstochastic matrix with a zero diagonal and c =

(c1, · · · , cn) be an n × 1 nonstochastic vector. Let ε1, ε2, ε3 be n × 1 vectors of independent ran-

dom variables with zero mean. Then,

E(ε′1Aε2ε
′
3c) = 0.

Proof: As aii = 0 for all i,

E(ε′1Aε2ε
′
3c) = E(

n∑
i=1

n∑
j=1

n∑
k=1

aijckε1,iε2,jε3,k) =

n∑
i=1

aiiciE(ε1,iε2,iε3,i) = 0.
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Lemma A.3 Let A be an mn × mn nonstochastic matrix with row and column sums uniformly

bounded in absolute value. Suppose u satisfies Assumption 1. Then (i) n−1u′Au = Op(1) and (ii)

n−1[u′Au− E(u′Au)] = op(1).

Proof: A trivial extension of Lemma A.3 in Lin and Lee (2010).

Lemma A.4 Let A be an mn × mn nonstochastic matrix with row and column sums uniformly

bounded in absolute value. Let c be an mn×1 nonstochastic vector with uniformly bounded elements.

Suppose u satisfies Assumption 1. Then n−1/2c′Au = Op(1) and n−1c′Au = op(1). Furthermore, if

limn→∞ n−1c′AΣA′c exists and is positive definite, then n−1/2c′Au
d→ N(0, limn→∞ n−1c′AΣA′c).

Proof: A trivial extension of Lemma A.4 in Lin and Lee (2010).

Lemma A.5 Let Akl be an n × n nonstochastic matrix with row and column sums uniformly

bounded in absolute value and ck an n × 1 nonstochastic vector with uniformly bounded elements

for k, l = 1, · · · ,m. Suppose u satisfies Assumption 1. Let σ2
ε = Var(ε), where ε =

∑m
k=1 c′kuk +∑m

k=1

∑m
l=1[u′kAklul − tr(AklΣkl)]. If n−1σ2

ε is bounded away from zero, then σ−1
ε ε

d→ N(0, 1).

Proof: A trivial extension of Lemma 3 in Yang and Lee (2017).

Lemma A.6 Let c1 and c2 be mn× 1 nonstochastic vectors with uniformly bounded elements. Let

S = Imn− (Γ′0⊗ In)− (Λ′0⊗W) and S̃ = Imn− (Γ̃′⊗ In)− (Λ̃′⊗W), where Γ̃ and Λ̃ are consistent

estimators of Γ0 and Λ0 respectively. Then, n−1c′1(S̃−1 − S−1)c2 = op(1).

Proof: A trivial extension of Lemma A.9 in Lee (2007).

Lemma A.7 Let f(θ) = [f1(θ)′, f2(θ)′]′ with E[f(θ0)] = 0. Define Di = −E[ ∂
∂θ′ fi(θ)] and Ωij =

E[fi(θ)fj(θ)′] for i, j = 1, 2. The following statements are equivalent (i) f2 is redundant given f1; (ii)

D2 = Ω21Ω
−1
11 D1 and (iii) there exists a matrix A such that D2 = Ω21A and D1 = Ω11A.

Proof: See Breusch et al. (1999).

B Proofs

Proof of Proposition 1: For consistency, we first need to show that n−1Fg(θ)− n−1E[Fg(θ)] =

op(1) uniformly in θ. Suppose the i-th row of F can be written as

Fi = [fi,1, · · · , fi,m, fi,11,1, · · · , fi,11,p, · · · , fi,mm,1, · · · , fi,mm,p].
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Then,

Fig(θ) =

m∑
k=1

fi,kQ
′uk(θk) +

m∑
k=1

m∑
l=1

p∑
r=1

fi,kl,ruk(θk)′Ξrul(θl).

Let γ̄k,0 = (γ̄1k,0, · · · , γ̄mk,0)′ and λ̄k,0 = (λ̄1k,0, · · · , λ̄mk,0)′ denote, respectively, the k-th column

of Γ0 and Λ0, including the restricted parameters. From the reduced form (3),

uk(θk) = yk −Ykγk − Ȳkλk −Xkβk (33)

= Yk(γk,0 − γk) + Ȳk(λk,0 − λk) + Xk(βk,0 − βk) + uk

= Y(γ̄k,0 − γ̄k) + WY(λ̄k,0 − λ̄k) + Xk(βk,0 − βk) + uk

= dk(θk) + uk +

m∑
l=1

[(γ̄lk,0 − γ̄lk)(i′m,l ⊗ In) + (λ̄lk,0 − λ̄lk)(i′m,l ⊗W)]S−1u

where

dk(θk) =

m∑
l=1

[(γ̄lk,0 − γ̄lk)(i′m,l ⊗ In) + (λ̄lk,0 − λ̄lk)(i′m,l ⊗W)]S−1(B′0 ⊗ In)x + Xk(βk,0 − βk)

and S = Imn − Γ′0 ⊗ In −Λ′0 ⊗W. This implies that

E[Q′uk(θk)] = Q′dk(θk)
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and

E[uk(θk)′Ξrul(θl)] = dk(θk)′Ξrdl(θl)

+

m∑
j=1

(γ̄jl,0 − γ̄jl)tr[Ξr(i
′
m,j ⊗ In)S−1E(uu′k)] +

m∑
j=1

(λ̄jl,0 − λ̄jl)tr[Ξr(i
′
m,j ⊗W)S−1E(uu′k)]

+

m∑
i=1

(γ̄ik,0 − γ̄ik)tr[Ξ′r(i
′
m,i ⊗ In)S−1E(uu′l)] +

m∑
i=1

(λ̄ik,0 − λ̄ik)tr[Ξ′r(i
′
m,i ⊗W)S−1E(uu′l)]

+

m∑
i=1

m∑
j=1

(γ̄ik,0 − γ̄ik)(γ̄jl,0 − γ̄jl)tr[S′−1(i′m,i ⊗ In)′Ξr(i
′
m,j ⊗ In)S−1Σ]

+

m∑
i=1

m∑
j=1

(λ̄ik,0 − λ̄ik)(γ̄jl,0 − γ̄jl)tr[S′−1(i′m,i ⊗W)′Ξr(i
′
m,j ⊗ In)S−1Σ]

+

m∑
i=1

m∑
j=1

(γ̄ik,0 − γ̄ik)(λ̄jl,0 − λ̄jl)tr[S′−1(i′m,i ⊗ In)′Ξr(i
′
m,j ⊗W)S−1Σ]

+

m∑
i=1

m∑
j=1

(λ̄ik,0 − λ̄ik)(λ̄jl,0 − λ̄jl)tr[S′−1(i′m,i ⊗W)′Ξr(i
′
m,j ⊗W)S−1Σ].

As Fig(θ) is a quadratic function of θ and the parameter space of θ is bounded, it follows by Lemmas

A.3 and A.4 that n−1Fig(θ) − n−1E[Fig(θ)] = op(1) uniformly in θ. Furthermore, n−1E[Fg(θ)]

is uniformly equicontinuous in θ. The identification condition and the uniform equicontinuity of

n−1E[Fg(θ)] imply that the identification uniqueness condition for n−2E[g(θ)′]F′FE[g(θ)] holds.

Therefore, θ̃gmm is a consistent estimator of θ0 (White, 1994).

For the asymptotic normality, we use the mean value theorem to write

√
n(θ̃gmm − θ0) = −

[
1

n

∂

∂θ
g(θ̃gmm)′F′

1

n
F
∂

∂θ′
g(θ)

]−1
1

n

∂

∂θ
g(θ̃gmm)′F′

1√
n

Fg(θ0)

where θ is as convex combination of θ̃gmm and θ0. By Lemma A.5 together with the Cramer Wald

device, 1√
n
Fg(θ0) converges in distribution to N(0, limn→∞ n−1FΩF′). Furthermore, consistency

of θ̃gmm implies that θ also converges in probability to θ0. Therefore it suffi ces to show that

n−1 ∂
∂θ′g(θ)− limn→∞ n−1E[ ∂

∂θ′g(θ)] = op(1) uniformly in θ. We divide the remainder of the proof

into two parts focusing respectively on the partial derivatives of g1(θ) and g2(θ).

First, note that

∂

∂θ′
g1(θ) =


Q′Z1

. . .

Q′Zm

 .
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From the reduced form (3), we have

yl = (i′m,l ⊗ In)S−1[(B′0 ⊗ In)x + u].

By Lemma A.4, we have n−1Q′yl − n−1E(Q′yl) = op(1) and n−1Q′Wyl = n−1E(Q′Wyl) + op(1),

which implies that that n−1 ∂
∂θ′g1(θ)− n−1E[ ∂

∂θ′g1(θ)] = op(1).

Next, note that

∂

∂θ′
g2 (θ) = −



Ῡ1,11(θ1)

...

Ῡ1,1m(θm)

. . .

Ῡ1,m1(θ1)

...

Ῡ1,mm(θm)



−



Ῡ2,11(θ1)

. . .

Ῡ2,1m(θ1)

...

Ῡ2,m1(θm)

. . .

Ῡ2,mm(θm)



,

where Ῡ1,kl(θl) = [Z′kΞ1ul(θl), · · · ,Z′kΞpul(θl)]
′ and Ῡ2,kl(θk) = [Z′lΞ

′
1uk(θk), · · · ,Z′lΞ′puk(θk)]′.

As uk(θk) can be expanded as (33), it follows by Lemmas A.3 and A.4 that n−1Z′kΞrul(θl) −

n−1E[Z′kΞrul(θl)] = op(1) and n−1Z′lΞ
′
ruk(θk)−n−1E[Z′lΞ

′
ruk(θk)] = op(1) uniformly in θ. There-

fore, n−1 ∂
∂θ′g2(θ)− n−1E[ ∂

∂θ′g2(θ)] = op(1) and the desired result follows.

Proof of Proposition 2: We divide the proof into two parts. First we prove the consistency of

n−1Ω̃. Then we prove the consistency of n−1D̃.

(1) To show n−1Ω̃−n−1Ω = op(1), we need to show that (1a) n−1Q′Σ̃klQ−n−1Q′ΣklQ = op(1)

and (1b) n−1tr(Σ̃klA1Σ̃stA2)−n−1tr(ΣklA1ΣstA2) = op(1), for k, l, s, t = 1, · · · ,m, for n×n zero-

diagonal matrices A1 = [a1,ij ] and A2 = [a2,ij ] that are uniformly bounded in row and column sums.

The consistency of n−1Q′Σ̃klQ in (1a) can be shown by a similar argument as in White (1980).

Thus, we focus on the consistency of n−1tr(Σ̃klA1Σ̃stA2) = n−1
∑n
i,j=1 a1,ija2,jiũikũilũjsũjt. It

follows by a similar argument as in Lin and Lee (2010) that n−1
∑n
i,j=1 a1,ija2,jiuikuilujsujt −

n−1
∑n
i,j=1 a1,ija2,jiσi,klσj,st = op(1). Therefore, to show (1b) holds, we only need to show that

n−1
∑n
i,j=1 a1,ija2,jiũikũilũjsũjt − n−1

∑n
i,j=1 a1,ija2,jiuikuilujsujt = op(1).
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Note that

n−1
n∑

i,j=1

a1,ija2,jiũikũilũjsũjt − n−1
n∑

i,j=1

a1,ija2,jiuikuilujsujt

= n−1
n∑

i,j=1

a1,ija2,ji(ũikũil − uikuil)ujsujt + n−1
n∑

i,j=1

a1,ija2,jiuikuil(ũjsũjt − ujsujt)

+n−1
n∑

i,j=1

a1,ija2,ji(ũikũil − uikuil)(ũjsũjt − ujsujt).

From (33), we have

ũk = uk(θ̃k) = yk −Ykγ̃k − Ȳkλ̃k −Xkβ̃k = dk(θ̃k) + uk + ek(θ̃k)

where

dk(θ̃k) =

m∑
l=1

[(γ̄lk,0 − ˜̄γlk)(i′m,l ⊗ In) + (λ̄lk,0 − ˜̄λlk)(i′m,l ⊗W)]S−1(B′0 ⊗ In)x + Xk(βk,0 − β̃k)

ek(θ̃k) =

m∑
l=1

[(γ̄lk,0 − ˜̄γlk)(i′m,l ⊗ In) + (λ̄lk,0 − ˜̄λlk)(i′m,l ⊗W)]S−1u

and S = Imn− (Γ′0⊗ In)− (Λ′0⊗W). Let dik and eik denote the i-th element of dk(θ̃k) and ek(θ̃k)

respectively. Then,

ũikũil = uikuil + dikdil + eikeil + (uikdil + dikuil) + (uikeil + eikuil) + (dikeil + eikdil).

To show n−1
∑n
i,j=1 a1,ija2,ji(ũikũil − uikuil)ujsujt = op(1), we focus on terms that are of higher

orders in uil. One of such terms is

n−1
n∑

i,j=1

a1,ija2,jieikuilujsujt =

m∑
r=1

(γ̄rk,0 − ˜̄γrk)n−1
n∑

i,j=1

a1,ija2,jiuilujsujt(i
′
m,r ⊗ i′n,i)S

−1u

+

m∑
r=1

(λ̄rk,0 − ˜̄λrk)n−1
n∑

i,j=1

a1,ija2,jiuilujsujt(i
′
m,r ⊗wi)S

−1u,

where wi denotes the i-th row of W. By Assumption 1, we can show E|uhkuilujsujt| ≤ c for some

constant c using Cauchy’s inequality, which implies E|n−1
∑n
i,j=1

∑m
r=1 a1,ija2,jiuilujsujt(i

′
m,r ⊗

i′n,i)S
−1u| = O(1) and E|n−1

∑n
i,j=1

∑m
r=1 a1,ija2,jiuilujsujt(i

′
m,r ⊗ wi)S

−1u| = O(1) because A1,
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A2,W and S−1 are uniformly bounded in row and column sums. Hence, n−1
∑n
i,j=1 a1,ija2,jieikuilujsujt =

op(1). Similarly, we can show other terms in n−1
∑n
i,j=1 a1,ija2,ji(ũikũil − uikuil)ujsujt are of order

op(1). With a similar argument as above or as in Lin and Lee (2010), n−1
∑n
i,j=1 a1,ija2,jiuikuil(ũjsũjt−

ujsujt) = op(1) and n−1
∑n
i,j=1 a1,ija2,ji(ũikũil − uikuil)(ũjsũjt − ujsujt) = op(1). Therefore, the

consistency of n−1tr(Σ̃klA1Σ̃stA2) in (1b) follows.

(2) Some typical entries in D that involve unknown parameters are Q′E(yk) = Q′(i′m,k ⊗

In)S−1(B′0 ⊗ In)x, Q′E(Wyk) = Q′(i′m,k ⊗Wn)S−1(B′0 ⊗ In)x, E(u′lAyk) = tr[(im,l ⊗A)(i′m,k ⊗

In)S−1Σ] and E(u′lAWyk) = tr[(im,l⊗A)(i′m,k⊗W)S−1Σ], whereA = [aij ] is an n×n zero-diagonal

matrix uniformly bounded in row and column sums. To show n−1D̃ − n−1D = op(1), we need to

show that (2a) n−1Q′(i′m,k ⊗ In)S̃−1(B̃′0 ⊗ In)x − n−1Q′(i′m,k ⊗ In)S−1(B′0 ⊗ In)x = op(1) and

n−1Q′(i′m,k ⊗W)S̃−1(B̃′0 ⊗ In)x − n−1Q′(i′m,k ⊗W)S−1(B′0 ⊗ In)x = op(1); (2b) n−1tr[(im,l ⊗

A)(i′m,k ⊗ In)S̃−1Σ̃] − n−1tr[(im,l ⊗ A)(i′m,k ⊗ In)S−1Σ] = op(1) and n−1tr[(im,l ⊗ A)(i′m,k ⊗

W)S̃−1Σ̃]−n−1tr[(im,l⊗A)(i′m,k ⊗W)S−1Σ] = op(1). where S̃ = Imn− (Γ̃′⊗ In)− (Λ̃′⊗W) and

Σ̃ =


Σ̃11 · · · Σ̃1m

...
. . .

...

Σ̃m1 · · · Σ̃mm

 .

As (2a) follows by Lemma A.6 and (2b) follows by a similar argument as in Lin and Lee (2010), we

conclude n−1D̃− n−1D = op(1).

Proof of Proposition 3: For consistency, note that

g(θ)′Ω̃−1g(θ) = g(θ)′Ω−1g(θ) + g(θ)′(Ω̃−1 −Ω−1)g(θ).

From the proof of Proposition 1, n−1g(θ)′Ω−1g(θ)− n−1E[g(θ)′Ω−1g(θ)] = op(1) uniformly in θ.

Hence, it suffi ces to show that n−1g(θ)′(Ω̃−1 −Ω−1)g(θ) = op(1) uniformly in θ. Let ‖ · ‖ denote

the Euclidian norm for vectors and matrices. Then,

∥∥∥∥ 1

n
g(θ)′(Ω̃−1 −Ω−1)g(θ)

∥∥∥∥2

≤
(

1

n
‖g(θ)‖

)2
∥∥∥∥∥
(

1

n
Ω̃

)−1

−
(

1

n
Ω

)−1
∥∥∥∥∥ .

From the proof of Proposition 1, n−1g(θ)−n−1E[g(θ)] = op(1) uniformly in θ. As n−1E[Q′uk(θk)] =
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n−1Q′dk(θk) = O(1) and n−1E[uk(θk)′Ξrul(θl)] = n−1dk(θk)′Ξrdl(θl)+n
−1tr[Gk(θk)′ΞrGl(θl)Σ] =

O(1) uniformly in θ, where

dk(θk) =

m∑
l=1

[(γ̄lk,0 − γ̄lk)(i′m,l ⊗ In) + (λ̄lk,0 − λ̄lk)(i′m,l ⊗W)]S−1(B′0 ⊗ In)x + Xk(βk,0 − βk)

andGk(θk) =
∑m
l=1[(γ̄lk,0− ˜̄γlk)(i′m,l⊗In)+(λ̄lk,0− ˜̄λlk)(i′m,l⊗W)]S−1, it follows that n−1‖g(θ)‖ =

Op(1) uniformly in θ. Therefore, n−1g(θ)′(Ω̃−1 −Ω−1)g(θ) = op(1) uniformly in θ.

For the asymptotic distribution, by the mean value theorem, for some convex combination of

θ̂gmm and θ0 denoted by θ,

√
n(θ̂gmm − θ0) = −

[
1

n

∂

∂θ
g(θ̂gmm)′

(
1

n
Ω̃

)−1
1

n

∂

∂θ′
g(θ)

]−1
1

n

∂

∂θ
g(θ̂gmm)′

(
1

n
Ω̃

)−1
1√
n

g(θ0)

=

[
1

n
D

(
1

n
Ω

)−1
1

n
D

]−1
1

n
D

(
1

n
Ω

)−1
1√
n

g(θ0) + op(1)

d→ N

(
0,
[

lim
n→∞

n−1D′ΩD
]−1
)

where the asymptotic distribution statement is implied by Lemma A.5.

Proof of Proposition 4: To show that the moment functions g∗(θ) with Q∗ and Ξ∗r’s given in

(32) are the most effi cient, it suffi ces to show that any additional moment conditions g(θ) in the

form of (10) are redundant. By Lemma A.7, it suffi ces to find a matrix A such that −E[ ∂
∂θ′g(θ0)] =

E [g(θ0)g∗(θ0)′] A and −E[ ∂
∂θ′g

∗(θ0)] = E [g∗(θ0)g∗(θ0)′] A. Let J1 and J2 be selection matrices

such that X1 = XJ1 and X2 = XJ2. For any linear moment function

g1(θ) =

 Q′u1(θ1)

Q′u2(θ2)

 ,
it follows from (29) and (30) that

−E[
∂

∂θ′
g1(θ0)] =

 Q′[E(y2),E(Wy1),E(Wy2),XJ1]

Q′[E(y1),E(Wy1),E(Wy2),XJ2]


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where

E(y1) = (S−1)11X1β1,0 + (S−1)12X2β2,0

E(y2) = (S−1)21X1β1,0 + (S−1)22X2β2,0

E(Wy1) = G11X1β1,0 + G12X2β2,0

E(Wy2) = G21X1β1,0 + G22X2β2,0.

On the other hand,

E [g1(θ0)g∗1(θ0)′] =

 σ11Q
′Q∗ σ12Q

′Q∗

σ12Q
′Q∗ σ22Q

′Q∗


Hence, −E[ ∂

∂θ′g1(θ0)] = E [g1(θ0)g∗1(θ0)′] A1, where

A1 =
1

σ11σ22 − σ2
12

 σ22Φ1 −σ12Φ2

−σ12Φ1 σ11Φ2


with

Φ1 =



0 0 0 J1

0 0 0 0

0 0 0 0

β1,0 0 0 0

β2,0 0 0 0

0 β1,0 0 0

0 β2,0 0 0

0 0 β1,0 0

0 0 β2,0 0



and Φ2 =



0 0 0 J2

β1,0 0 0 0

β2,0 0 0 0

0 0 0 0

0 0 0 0

0 β1,0 0 0

0 β2,0 0 0

0 0 β1,0 0

0 0 β2,0 0



.

Next, for any quadratic moment function

g2(θ) =



u1(θ1)′Ξu1(θ1)

u1(θ1)′Ξu2(θ2)

u2(θ2)′Ξu1(θ1)

u2(θ2)′Ξu2(θ2)


,
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it follows from (29) and (31) that −E[ ∂
∂θ′g2(θ0)] = [D2,1,D2,2], where

D2,1 =



σ11tr(Ξ′Ξ∗3) + σ12tr(Ξ′Ξ∗4) σ11tr(Ξ′Ξ∗5) + σ12tr(Ξ′Ξ∗6) σ11tr(Ξ′Ξ∗7) + σ12tr(Ξ′Ξ∗8) 0

σ12tr(Ξ′Ξ∗3) + σ22tr(Ξ′Ξ∗4) σ12tr(Ξ′Ξ∗5) + σ22tr(Ξ′Ξ∗6) σ12tr(Ξ′Ξ∗7) + σ22tr(Ξ′Ξ∗8) 0

0 0 0 0

0 0 0 0



+



σ11tr(ΞΞ∗3) + σ12tr(ΞΞ∗4) σ11tr(ΞΞ∗5) + σ12tr(ΞΞ∗6) σ11tr(ΞΞ∗7) + σ12tr(ΞΞ∗8) 0

0 0 0 0

σ12tr(ΞΞ∗3) + σ22tr(ΞΞ∗4) σ12tr(ΞΞ∗5) + σ22tr(ΞΞ∗6) σ12tr(ΞΞ∗7) + σ22tr(ΞΞ∗8) 0

0 0 0 0


and

D2,2 =



0 0 0 0

0 0 0 0

σ11tr(Ξ′Ξ∗1) + σ12tr(Ξ′Ξ∗2) σ11tr(Ξ′Ξ∗5) + σ12tr(Ξ′Ξ∗6) σ11tr(Ξ′Ξ∗7) + σ12tr(Ξ′Ξ∗8) 0

σ12tr(Ξ′Ξ∗1) + σ22tr(Ξ′Ξ∗2) σ12tr(Ξ′Ξ∗5) + σ22tr(Ξ′Ξ∗6) σ12tr(Ξ′Ξ∗7) + σ22tr(Ξ′Ξ∗8) 0



+



0 0 0 0

σ11tr(ΞΞ∗1) + σ12tr(ΞΞ∗2) σ11tr(ΞΞ∗5) + σ12tr(ΞΞ∗6) σ11tr(ΞΞ∗7) + σ12tr(ΞΞ∗8) 0

0 0 0 0

σ12tr(ΞΞ∗1) + σ22tr(ΞΞ∗2) σ12tr(ΞΞ∗5) + σ22tr(ΞΞ∗6) σ12tr(ΞΞ∗7) + σ22tr(ΞΞ∗8) 0


Furthermore,

E[g2(θ0)g∗2(θ0)′] = Σ1 ⊗ [tr(ΞΞ∗1), · · · , tr(ΞΞ∗8)] + Σ2 ⊗ [tr(Ξ′Ξ∗1), · · · , tr(Ξ′Ξ∗8)],

where

Σ1 =



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22


and Σ2 =



σ2
11 σ11σ12 σ11σ12 σ2

12

σ11σ12 σ11σ22 σ2
12 σ22σ12

σ11σ12 σ2
12 σ11σ22 σ22σ12

σ2
12 σ22σ12 σ22σ12 σ2

22


.
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Hence, −E[ ∂
∂θ′g2(θ0)] = E [g2(θ0)g∗2(θ0)′] A2, where

A2 = [ℵ1 ⊗ i8,3,ℵ1 ⊗ i8,5,ℵ1 ⊗ i8,7,0,ℵ3 ⊗ i8,1,ℵ3 ⊗ i8,5,ℵ3 ⊗ i8,7,0]

+[ℵ2 ⊗ i8,4,ℵ2 ⊗ i8,6,ℵ2 ⊗ i8,8,0,ℵ4 ⊗ i8,2,ℵ4 ⊗ i8,6,ℵ4 ⊗ i8,8,0],

with

ℵ1 = Σ−1
1



σ11

0

σ12

0


= Σ−1

2



σ11

σ12

0

0



ℵ2 = Σ−1
1



σ12

0

σ22

0


= Σ−1

2



σ12

σ22

0

0



ℵ3 = Σ−1
1



0

σ11

0

σ12


= Σ−1

2



0

0

σ11

σ12


and

ℵ4 = Σ−1
1



0

σ12

0

σ22


= Σ−1

2



0

0

σ12

σ22


.

In summary, the desired result follows since−E[ ∂
∂θ′g(θ0)] = E [g(θ0)g∗(θ0)′] A and−E[ ∂

∂θ′g
∗(θ0)] =

E [g∗(θ0)g∗(θ0)′] A for A = [A′1,A
′
2]′.
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Table 1: Estimation under Homoskedasticity (𝛽1,0 = 𝛽2,0 = 1) 
 𝜙21,0 = 0.2 𝜆11,0 = 0.4 𝜆21,0 = 0.2 𝛽1,0 = 1 
𝑛 = 250     
𝜎12 = 0.3     
2SLS 0.203(0.093)[0.093]  0.391(0.153)[0.154]  0.193(0.166)[0.166]  0.995(0.094)[0.094]  
3SLS 0.199(0.097)[0.097]  0.392(0.153)[0.153]  0.197(0.168)[0.168]  0.996(0.096)[0.096]  
GMM-1 0.205(0.092)[0.092]  0.405(0.113)[0.114]  0.194(0.161)[0.161]  0.994(0.093)[0.093]  
GMM-2 0.199(0.095)[0.095]  0.408(0.097)[0.098]  0.195(0.128)[0.128]  0.997(0.093)[0.094]  
QML 0.194(0.092)[0.092]  0.404(0.096)[0.096]  0.198(0.124)[0.124]  1.003(0.093)[0.093]  
𝜎12 = 0.5     
2SLS 0.204(0.093)[0.093]  0.393(0.154)[0.154]  0.187(0.167)[0.167]  0.995(0.094)[0.094]  
3SLS 0.197(0.097)[0.097]  0.395(0.154)[0.154]  0.194(0.170)[0.170]  0.998(0.095)[0.095]  
GMM-1 0.208(0.091)[0.092]  0.405(0.125)[0.125]  0.191(0.161)[0.161]  0.994(0.093)[0.093]  
GMM-2 0.196(0.095)[0.095]  0.409(0.109)[0.110]  0.195(0.135)[0.135]  0.998(0.093)[0.093]  
QML 0.193(0.093)[0.093]  0.405(0.107)[0.107]  0.198(0.129)[0.129]  1.003(0.093)[0.093]  
𝜎12 = 0.7     
2SLS 0.205(0.093)[0.093]  0.395(0.154)[0.154]  0.183(0.168)[0.169]  0.995(0.094)[0.094]  
3SLS 0.194(0.098)[0.098]  0.397(0.155)[0.155]  0.191(0.173)[0.173]  1.000(0.096)[0.096]  
GMM-1 0.212(0.090)[0.091]  0.405(0.133)[0.133]  0.187(0.157)[0.157]  0.994(0.093)[0.093]  
GMM-2 0.194(0.095)[0.096]  0.411(0.123)[0.123]  0.196(0.143)[0.143]  0.999(0.094)[0.094]  
QML 0.191(0.093)[0.094]  0.406(0.118)[0.118]  0.197(0.135)[0.135]  1.002(0.094)[0.094]  
𝑛 = 500     
𝜎12 = 0.3     
2SLS 0.204(0.063)[0.063]  0.390(0.111)[0.112]  0.199(0.115)[0.115]  0.998(0.065)[0.065]  
3SLS 0.201(0.064)[0.064]  0.391(0.112)[0.112]  0.201(0.116)[0.116]  0.999(0.065)[0.065]  
GMM-1 0.205(0.063)[0.063]  0.398(0.079)[0.079]  0.198(0.111)[0.111]  0.997(0.064)[0.064]  
GMM-2 0.202(0.064)[0.064]  0.399(0.070)[0.070]  0.199(0.090)[0.090]  0.999(0.064)[0.064]  
QML 0.200(0.062)[0.062]  0.397(0.067)[0.067]  0.199(0.084)[0.084]  1.002(0.063)[0.063]  
𝜎12 = 0.5     
2SLS 0.204(0.063)[0.063]  0.392(0.112)[0.112]  0.196(0.116)[0.116]  0.998(0.065)[0.065]  
3SLS 0.200(0.065)[0.065]  0.392(0.113)[0.113]  0.199(0.117)[0.117]  1.000(0.065)[0.065]  
GMM-1 0.206(0.062)[0.063]  0.398(0.088)[0.088]  0.197(0.113)[0.113]  0.997(0.064)[0.064]  
GMM-2 0.200(0.064)[0.064]  0.400(0.078)[0.078]  0.199(0.095)[0.095]  1.000(0.063)[0.063]  
QML 0.200(0.062)[0.062]  0.398(0.074)[0.074]  0.199(0.088)[0.088]  1.002(0.063)[0.063]  
𝜎12 = 0.7     
2SLS 0.205(0.063)[0.063]  0.392(0.112)[0.113]  0.194(0.116)[0.116]  0.998(0.064)[0.064]  
3SLS 0.199(0.065)[0.065]  0.393(0.113)[0.114]  0.198(0.118)[0.118]  1.000(0.065)[0.065]  
GMM-1 0.208(0.062)[0.062]  0.397(0.095)[0.095]  0.196(0.111)[0.111]  0.998(0.063)[0.064]  
GMM-2 0.199(0.064)[0.064]  0.400(0.087)[0.087]  0.200(0.100)[0.100]  1.000(0.063)[0.063]  
QML 0.199(0.062)[0.062]  0.398(0.082)[0.082]  0.199(0.093)[0.093]  1.002(0.063)[0.063]  
Mean(SD)[RMSE] 

 



Table 2: Estimation under Heteroskedasticity (𝛽1,0 = 𝛽2,0 = 1) 
 𝜙21,0 = 0.2 𝜆11,0 = 0.4 𝜆21,0 = 0.2 𝛽1,0 = 1 
𝑛 = 250     
𝜎12 = 0.3     
2SLS 0.200(0.096)[0.096]  0.398(0.123)[0.123]  0.194(0.135)[0.135]  0.996(0.097)[0.097]  
3SLS 0.199(0.093)[0.093]  0.398(0.122)[0.122]  0.195(0.132)[0.132]  0.998(0.093)[0.093]  
GMM-1 0.206(0.087)[0.088]  0.405(0.096)[0.096]  0.191(0.129)[0.130]  0.995(0.090)[0.090]  
GMM-2 0.199(0.090)[0.090]  0.406(0.088)[0.088]  0.196(0.110)[0.110]  0.996(0.090)[0.090]  
QML 0.203(0.094)[0.094]  0.366(0.110)[0.116]  0.185(0.154)[0.154]  1.013(0.095)[0.096]  
𝜎12 = 0.5     
2SLS 0.200(0.096)[0.096]  0.399(0.124)[0.124]  0.191(0.136)[0.136]  0.997(0.096)[0.097]  
3SLS 0.197(0.093)[0.094]  0.399(0.123)[0.123]  0.194(0.133)[0.133]  0.999(0.093)[0.093]  
GMM-1 0.208(0.086)[0.086]  0.405(0.103)[0.103]  0.189(0.127)[0.128]  0.995(0.089)[0.089]  
GMM-2 0.196(0.090)[0.090]  0.408(0.095)[0.095]  0.196(0.113)[0.113]  0.998(0.090)[0.090]  
QML 0.202(0.094)[0.094]  0.368(0.118)[0.122]  0.182(0.148)[0.149]  1.013(0.095)[0.096]  
𝜎12 = 0.7     
2SLS 0.200(0.096)[0.096]  0.400(0.124)[0.124]  0.188(0.137)[0.138]  0.997(0.097)[0.097]  
3SLS 0.194(0.094)[0.095]  0.401(0.124)[0.124]  0.193(0.135)[0.135]  1.001(0.093)[0.093]  
GMM-1 0.210(0.085)[0.086]  0.404(0.108)[0.108]  0.188(0.124)[0.124]  0.995(0.089)[0.089]  
GMM-2 0.193(0.091)[0.091]  0.409(0.103)[0.103]  0.197(0.117)[0.117]  1.000(0.090)[0.090]  
QML 0.201(0.094)[0.094]  0.370(0.122)[0.125]  0.179(0.140)[0.141]  1.013(0.096)[0.097]  
𝑛 = 500     
𝜎12 = 0.3     
2SLS 0.202(0.064)[0.064]  0.396(0.089)[0.089]  0.197(0.096)[0.096]  1.000(0.066)[0.066]  
3SLS 0.200(0.061)[0.061]  0.398(0.088)[0.088]  0.198(0.093)[0.094]  0.999(0.063)[0.063]  
GMM-1 0.204(0.059)[0.059]  0.399(0.068)[0.068]  0.197(0.091)[0.092]  0.998(0.061)[0.061]  
GMM-2 0.201(0.060)[0.060]  0.400(0.063)[0.063]  0.199(0.078)[0.078]  0.999(0.061)[0.061]  
QML 0.210(0.062)[0.063]  0.358(0.075)[0.086]  0.187(0.104)[0.104]  1.013(0.064)[0.065]  
𝜎12 = 0.5     
2SLS 0.202(0.064)[0.064]  0.397(0.089)[0.089]  0.196(0.096)[0.096]  1.000(0.066)[0.066]  
3SLS 0.199(0.061)[0.061]  0.399(0.088)[0.089]  0.198(0.094)[0.094]  1.000(0.063)[0.063]  
GMM-1 0.205(0.059)[0.059]  0.399(0.073)[0.073]  0.196(0.091)[0.091]  0.998(0.061)[0.061]  
GMM-2 0.200(0.060)[0.060]  0.401(0.069)[0.069]  0.199(0.081)[0.081]  0.999(0.061)[0.061]  
QML 0.209(0.062)[0.063]  0.359(0.080)[0.090]  0.185(0.100)[0.102]  1.013(0.064)[0.065]  
𝜎12 = 0.7     
2SLS 0.202(0.064)[0.064]  0.397(0.089)[0.089]  0.195(0.096)[0.096]  1.000(0.066)[0.066]  
3SLS 0.198(0.061)[0.061]  0.399(0.089)[0.089]  0.197(0.094)[0.094]  1.000(0.063)[0.063]  
GMM-1 0.206(0.058)[0.058]  0.399(0.077)[0.077]  0.195(0.089)[0.090]  0.998(0.061)[0.061]  
GMM-2 0.198(0.060)[0.060]  0.402(0.074)[0.074]  0.199(0.084)[0.084]  1.000(0.061)[0.061]  
QML 0.209(0.062)[0.062]  0.362(0.083)[0.091]  0.181(0.095)[0.097]  1.013(0.064)[0.065]  
Mean(SD)[RMSE] 

 



Table 3: Estimation under Homoskedasticity (𝛽1,0 = 𝛽2,0 = 0.5) 
 𝜙21,0 = 0.2 𝜆11,0 = 0.4 𝜆21,0 = 0.2 𝛽1,0 = 0.5 
𝑛 = 250     
𝜎12 = 0.3     
2SLS 0.221(0.185)[0.186]  0.366(0.315)[0.317]  0.197(0.346)[0.346]  0.489(0.095)[0.095]  
3SLS 0.207(0.207)[0.208]  0.370(0.322)[0.323]  0.204(0.357)[0.357]  0.488(0.099)[0.099]  
GMM-1 0.227(0.177)[0.179]  0.405(0.186)[0.186]  0.192(0.299)[0.299]  0.492(0.092)[0.093]  
GMM-2 0.216(0.203)[0.203]  0.413(0.150)[0.151]  0.180(0.217)[0.218]  0.495(0.095)[0.095]  
QML 0.182(0.190)[0.191]  0.411(0.153)[0.153]  0.203(0.216)[0.216]  0.504(0.093)[0.093]  
𝜎12 = 0.5     
2SLS 0.225(0.186)[0.188]  0.368(0.334)[0.336]  0.184(0.352)[0.352]  0.489(0.096)[0.097]  
3SLS 0.199(0.211)[0.211]  0.376(0.328)[0.329]  0.200(0.374)[0.374]  0.492(0.099)[0.099]  
GMM-1 0.242(0.173)[0.178]  0.399(0.219)[0.219]  0.182(0.306)[0.307]  0.491(0.091)[0.091]  
GMM-2 0.208(0.204)[0.204]  0.412(0.181)[0.181]  0.185(0.242)[0.243]  0.499(0.093)[0.093]  
QML 0.173(0.197)[0.199]  0.412(0.180)[0.180]  0.207(0.232)[0.232]  0.505(0.094)[0.094]  
𝜎12 = 0.7     
2SLS 0.232(0.187)[0.190]  0.381(0.323)[0.324]  0.180(0.365)[0.365]  0.490(0.091)[0.092]  
3SLS 0.194(0.215)[0.215]  0.394(0.331)[0.331]  0.199(0.391)[0.391]  0.499(0.094)[0.094]  
GMM-1 0.258(0.166)[0.176]  0.393(0.238)[0.238]  0.172(0.296)[0.298]  0.490(0.087)[0.087]  
GMM-2 0.206(0.202)[0.203]  0.415(0.213)[0.213]  0.185(0.258)[0.259]  0.503(0.089)[0.089]  
QML 0.167(0.204)[0.207]  0.416(0.217)[0.217]  0.208(0.252)[0.252]  0.505(0.094)[0.095]  
𝑛 = 500     
𝜎12 = 0.3     
2SLS 0.215(0.127)[0.128]  0.367(0.215)[0.218]  0.199(0.230)[0.230]  0.496(0.063)[0.063]  
3SLS 0.207(0.134)[0.134]  0.370(0.217)[0.219]  0.204(0.235)[0.235]  0.497(0.064)[0.064]  
GMM-1 0.221(0.123)[0.125]  0.391(0.129)[0.129]  0.201(0.204)[0.204]  0.497(0.061)[0.061]  
GMM-2 0.213(0.132)[0.133]  0.399(0.106)[0.106]  0.194(0.154)[0.154]  0.501(0.062)[0.062]  
QML 0.199(0.127)[0.127]  0.398(0.097)[0.097]  0.201(0.138)[0.138]  0.504(0.061)[0.061]  
𝜎12 = 0.5     
2SLS 0.217(0.125)[0.126]  0.378(0.212)[0.213]  0.190(0.234)[0.234]  0.496(0.065)[0.065]  
3SLS 0.201(0.134)[0.134]  0.383(0.215)[0.216]  0.198(0.243)[0.243]  0.498(0.065)[0.065]  
GMM-1 0.228(0.120)[0.123]  0.392(0.151)[0.151]  0.191(0.210)[0.210]  0.497(0.063)[0.063]  
GMM-2 0.209(0.132)[0.132]  0.404(0.128)[0.128]  0.191(0.168)[0.168]  0.502(0.063)[0.063]  
QML 0.196(0.128)[0.128]  0.402(0.116)[0.116]  0.199(0.151)[0.151]  0.503(0.063)[0.063]  
𝜎12 = 0.7     
2SLS 0.217(0.125)[0.126]  0.375(0.215)[0.217]  0.193(0.236)[0.236]  0.495(0.064)[0.064]  
3SLS 0.197(0.133)[0.133]  0.381(0.220)[0.220]  0.205(0.249)[0.249]  0.500(0.064)[0.064]  
GMM-1 0.233(0.116)[0.121]  0.385(0.167)[0.168]  0.192(0.206)[0.206]  0.496(0.061)[0.061]  
GMM-2 0.203(0.129)[0.129]  0.398(0.152)[0.152]  0.202(0.184)[0.184]  0.502(0.061)[0.061]  
QML 0.191(0.128)[0.129]  0.399(0.136)[0.136]  0.205(0.163)[0.163]  0.502(0.063)[0.063]  
Mean(SD)[RMSE] 

  



Table 4: Estimation under Heteroskedasticity (𝛽1,0 = 𝛽2,0 = 0.5) 
 𝜙21,0 = 0.2 𝜆11,0 = 0.4 𝜆21,0 = 0.2 𝛽1,0 = 0.5 
𝑛 = 250     
𝜎12 = 0.3     
2SLS 0.209(0.194)[0.194]  0.379(0.253)[0.254]  0.196(0.280)[0.280]  0.494(0.098)[0.098]  
3SLS 0.203(0.206)[0.206]  0.379(0.253)[0.254]  0.197(0.281)[0.281]  0.492(0.095)[0.095]  
GMM-1 0.228(0.172)[0.174]  0.400(0.162)[0.162]  0.190(0.252)[0.253]  0.494(0.089)[0.089]  
GMM-2 0.211(0.199)[0.199]  0.407(0.140)[0.140]  0.187(0.200)[0.201]  0.499(0.090)[0.090]  
QML 0.183(0.210)[0.211]  0.410(0.400)[0.400]  0.180(0.580)[0.580]  0.513(0.099)[0.100]  
𝜎12 = 0.5     
2SLS 0.213(0.192)[0.193]  0.382(0.256)[0.256]  0.187(0.282)[0.282]  0.493(0.097)[0.097]  
3SLS 0.197(0.210)[0.210]  0.386(0.254)[0.254]  0.193(0.290)[0.290]  0.496(0.094)[0.094]  
GMM-1 0.240(0.169)[0.174]  0.395(0.184)[0.184]  0.183(0.254)[0.254]  0.493(0.087)[0.087]  
GMM-2 0.204(0.201)[0.201]  0.409(0.161)[0.161]  0.189(0.210)[0.210]  0.501(0.086)[0.086]  
QML 0.178(0.210)[0.212]  0.405(0.470)[0.470]  0.178(0.602)[0.603]  0.513(0.099)[0.100]  
𝜎12 = 0.7     
2SLS 0.211(0.195)[0.195]  0.386(0.251)[0.252]  0.186(0.282)[0.282]  0.492(0.097)[0.097]  
3SLS 0.186(0.213)[0.214]  0.394(0.250)[0.250]  0.198(0.296)[0.296]  0.500(0.093)[0.093]  
GMM-1 0.249(0.165)[0.172]  0.393(0.196)[0.197]  0.175(0.240)[0.241]  0.492(0.086)[0.086]  
GMM-2 0.195(0.200)[0.200]  0.411(0.184)[0.184]  0.195(0.221)[0.221]  0.504(0.086)[0.086]  
QML 0.169(0.214)[0.216]  0.391(0.469)[0.469]  0.186(0.543)[0.543]  0.512(0.101)[0.102]  
𝑛 = 500     
𝜎12 = 0.3     
2SLS 0.209(0.127)[0.128]  0.386(0.176)[0.177]  0.189(0.194)[0.194]  0.500(0.065)[0.065]  
3SLS 0.202(0.126)[0.126]  0.391(0.175)[0.175]  0.192(0.193)[0.193]  0.499(0.062)[0.062]  
GMM-1 0.218(0.115)[0.116]  0.398(0.118)[0.118]  0.190(0.180)[0.181]  0.499(0.060)[0.060]  
GMM-2 0.208(0.122)[0.123]  0.403(0.100)[0.100]  0.190(0.138)[0.139]  0.502(0.059)[0.059]  
QML 0.206(0.138)[0.138]  0.397(0.320)[0.320]  0.160(0.488)[0.490]  0.513(0.065)[0.066]  
𝜎12 = 0.5     
2SLS 0.210(0.128)[0.128]  0.384(0.181)[0.181]  0.189(0.197)[0.197]  0.499(0.065)[0.065]  
3SLS 0.199(0.128)[0.128]  0.389(0.180)[0.180]  0.195(0.197)[0.197]  0.500(0.063)[0.063]  
GMM-1 0.224(0.113)[0.116]  0.393(0.133)[0.134]  0.189(0.179)[0.180]  0.498(0.059)[0.059]  
GMM-2 0.205(0.123)[0.123]  0.401(0.117)[0.117]  0.194(0.148)[0.148]  0.503(0.059)[0.059]  
QML 0.203(0.136)[0.136]  0.377(0.359)[0.360]  0.178(0.477)[0.478]  0.512(0.064)[0.065]  
𝜎12 = 0.7     
2SLS 0.209(0.128)[0.128]  0.383(0.179)[0.180]  0.192(0.196)[0.196]  0.498(0.066)[0.066]  
3SLS 0.194(0.130)[0.130]  0.390(0.178)[0.178]  0.199(0.198)[0.198]  0.500(0.063)[0.063]  
GMM-1 0.229(0.111)[0.114]  0.390(0.141)[0.141]  0.187(0.171)[0.171]  0.497(0.059)[0.059]  
GMM-2 0.200(0.123)[0.123]  0.400(0.132)[0.132]  0.199(0.157)[0.157]  0.502(0.060)[0.060]  
QML 0.201(0.132)[0.132]  0.355(0.318)[0.321]  0.193(0.381)[0.381]  0.511(0.065)[0.066]  
Mean(SD)[RMSE] 

 


