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Abstract

By exploiting the correlation structure of individual outcomes in a network, we show that a

carefully constructed root estimator can identify peer e¤ects in linear social interaction models,

when identi�cation cannot be achieved via variation of group sizes or intransitivity of network

connections. We establish the consistency and asymptotic normality of the root estimator

under heteroskedasticity, and conduct Monte Carlo experiments to investigate its �nite sample

performance.
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1 Introduction

Tremendous progress has been made in understanding identi�cation of peer e¤ects since the seminal

work by Manski (1993) (see Blume et al., 2011, for a review). When individuals are randomly

assigned into groups and social networks are formed within each group, identi�cation of peer e¤ects

can be achieved via either variation of group sizes (see, e.g., Lee, 2007; Graham, 2008) or exclusion

restrictions based on network topology (Bramoullé et al., 2009). However, if all groups are of the

same size and every individual is equally in�uenced by all the other group members, then peer

e¤ects cannot be identi�ed by the above methods. In this paper, we propose a root estimator that

can be used to identify peer e¤ects in such situations.

The idea of the root estimator traces back to Ord (1975), where it is used to estimate models

of spatial interaction. In a recent paper, Jin and Lee (2012) generalize the original root estimator

in Ord (1975) to estimate a more general class of spatial models. In this paper, we show that a

carefully constructed root estimator, based on both linear and quadratic moment conditions of the

error term, can identify peer e¤ects in a linear-in-means model with equal-sized groups. We establish

the root-n consistency and asymptotic normality of the root estimator under heteroskedasticity, and

conduct Monte Carlo experiments to investigate its �nite sample performance.

Of course, the usefulness of the root estimator is not limited to the speci�c network structure

considered in this paper. Here, we focus on the linear-in-means model with equal-sized groups for

two reasons. First, identi�cation of peer e¤ects in this situation cannot be achieved by existing

methods. Second, data with equal-sized groups are not uncommon in the real world. For example,

the capacity of college classes are often �xed over time. For a popular class with full enrollment

every semester, its students in each semester form equal-sized groups.

The rest of the paper is organized as follows. Section 2 presents the linear-in-means model and

discusses its identi�cation issues. Section 3 introduces the root estimator and studies its asymptotic

properties. Section 4 provides simulation results on the �nite sample performance of the proposed

estimator. Section 5 concludes. The proofs are collected in the online appendix. Throughout the

paper, let In denote an n � n identity matrix, �n denote an n � 1 vector of ones, and diagni=1fdig
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denote an n� n diagonal matrix with the i-th diagonal element being di.

2 Linear-in-Means Social Interaction Model

Consider a sample of n equal-sized groups with m (m � 2) individuals in each group. Then, in a

linear-in-means social interaction model, the outcome, yi;g, of individual i in the g-th group is given

by

yi;g = �0yi;g + xi;g�0 + xi;g
0 + ui;g; (2.1)

where xi;g is a p-dimensional row vector of exogenous individual characteristics, and ui;g is a possibly

heteroskedastic error term. In this model, yi;g =
1

m�1
Pm

j=1;j 6=i yj;g is the average outcome of the

individuals (other than i) in the g-th group, with its coe¢ cient �0 representing the endogenous

e¤ect ; xi;g = 1
m�1

Pm
j=1;j 6=i xj;g is the vector of average characteristics of the individuals (other

than i) in the g-th group, with its coe¢ cient vector 
0 representing exogenous (contextual) e¤ects.

It has been one of the main interests in the social interaction literature to separately identi�ed

endogenous and exogenous peer e¤ects.

In matrix form, model (2.1) can be written as

yg = �0Amyg +Xg�0 +AmXg
0 + ug; for g = 1; � � � ; n; (2.2)

where yg = (y1;g; � � � ; ym;g)0, Xg = (x01;g; � � � ;x0m;g)0, ug = (u1;g; � � � ; um;g)0, and Am is an

adjacency matrix given by Am = 1
m�1 (�m�

0
m � Im). We allow for heteroskedasticity of un-

known form and assume ug are independently distribution across g with E(ugjXg) = 0 and

E(ugu
0
gjXg) = �g � diagmi=1f�2i;gg. We assume j�0j < 1. Then, the reduced form of (2.2) is

yg = (Im � �0Am)
�1(Xg�0 +AmXg
0 + ug) =

1X
k=1

�k�10 Ak�1
m (Xg�0 +AmXg
0 + ug): (2.3)

In the current literature, identi�cation of peer e¤ects is usually achieved through either variation

of group sizes (see, e.g., Lee, 2007; Graham, 2008) or exclusion restrictions based on network
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topology (Bramoullé et al., 2009).

Lee (2007) show that, for linear-in-means models, endogenous and exogenous e¤ects can be

identi�ed if group sizes have su¢ cient variation. However, this identi�cation strategy does not

work in our case as all groups in the sample have the same size.

Bramoullé et al. (2009) show that if the matrices Im;Am;A
2
m are linearly independent, then

the exogenous characteristics of indirect connections given by A2
mXg can be used as instrumental

variables for the outcomes of direct connections Amyg to identify the endogenous e¤ect from the

exogenous e¤ect. The linear independence of Im;Am;A
2
m is satis�ed, if intransitivity exists in

a network such that two individuals, who share a common connection/friend, are not directly

connected. In our case, the adjacency matrix Am = 1
m�1 (�m�

0
m � Im) corresponds to a complete

network where all individuals are directly connected. It is easy to see A2
m = 1

m�1Im +
m�2
m�1Am is

linearly dependent on Im and Am.

As the linear-in-means model (2.1) with equal-sized groups cannot be identi�ed by the above

methods, it is sometimes given as an example of the re�ection problem (Manski, 1993), referring to

the failure to separately identify endogenous and exogenous e¤ects. In the following, we show that

this model actually can be identi�ed via a root estimator.

3 Root Estimator

3.1 Asymptotic Identi�cation

We assume that we observe an independently distributed sample of (yg;Xg) of size n from a

population of equal-sized groups. Therefore, in the asymptotic analysis, we keep the group size

m �xed and let the number of groups n go to in�nity. Let ug(�) = yg � �Amyg � Xg� �

AmXg
, where � = (�;�
0;
0)0. The root estimator of � is based on the linear moment functions

f1;g(�) = [Xg;AmXg]
0ug(�), and the quadratic moment function f2;g(�) = ug(�)0Amug(�). The

quadratic moment function exploits the correlation structure of individual outcomes in a network.

Let f1;1(�) = limn!1 n
�1Pn

g=1 E[f1;g(�)] and f2;1(�) = limn!1 n
�1Pn

g=1 E[f2;g(�)]. For � to

be asymptotically identi�ed, the moment equations f1(�) � [f1;1(�)0; f2;1(�)]0 = 0 need to have
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a unique solution at the true parameter vector �0 = (�0;�
0
0;


0
0)
0 (De�nition 5.2 in Davidson and

MacKinnon, 1993). As we assume E(ugjXg) = 0 and E(ugu0gjXg) = �g � diagmi=1f�2i;gg, it follows

that E[f1;g(�0)] = 0 and E[f2;g(�0)] = tr(Am�g) = 0. Hence, �0 is a solution of f1(�) = 0. What

is left to show is that �0 is the only solution.

As A2
m =

1
m�1Im+

m�2
m�1Am, it follows from the reduced form (2.3) that E(AmygjXg) is linearly

dependent on Xg and AmXg, such that E(AmygjXg) = Xgc1 +AmXgc2, where c1; c2 are p � 1

vectors of constants. Then, f1;1(�) = 0 implies

lim
n!1

n�1
nX
g=1

E([Xg;AmXg]
0[Xg;AmXg])

264 (�0 � �)c1 + �0 � �

(�0 � �)c2 + 
0 � 


375 = 0:
If limn!1 n

�1Pn
g=1 E([Xg;AmXg]

0[Xg;AmXg]) has full column rank, then the solution of f1;1(�) =

0 is given by

� = �0 + (�0 � �)c1 and 
 = 
0 + (�0 � �)c2: (3.1)

Substitution of (3.1) into f2;1(�) = 0 gives

(�0 � �) lim
n!1

n�1
nX
g=1

2tr(AmGm�g) + (�0 � �)2 lim
n!1

n�1
nX
g=1

tr(GmAmGm�g) = 0; (3.2)

where Gm = Am(Im � �0Am)
�1. Equation (3.2) is quadratic in �, and has two roots given by

� = �0 +
limn!1 n

�1Pn
g=1 tr(AmGm�g)�

q
[limn!1 n�1

Pn
g=1 tr(AmGm�g)]2

limn!1 n�1
Pn

g=1 tr(GmAmGm�g)
:

To know which root is consistent, i.e., � = �0, we need to know the sign of limn!1 n
�1Pn

g=1 tr(AmGm�g).

As j�0j < 1 and m � 2, it follows that limn!1 n
�1Pn

g=1 tr(AmGm�g) = limn!1 n
�1Pn

g=1(1 �

�0)
�1(m+ �0 � 1)�1

Pm
i=1 �

2
i;g > 0. Hence, the consistent root is given by

� = �0 +
limn!1 n

�1Pn
g=1 tr(AmGm�g)�

q
[limn!1 n�1

Pn
g=1 tr(AmGm�g)]2

limn!1 n�1
Pn

g=1 tr(GmAmGm�g)
: (3.3)
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With � uniquely determined by (3.3), � and 
 can be identi�ed by (3.1).

3.2 Explicit Formula and Asymptotic Properties

Following the above discussion, the root estimator b� = (b�; b�0; b
0)0 satis�es
n�1

nX
g=1

f1;g(b�) = 0 (3.4)

n�1
nX
g=1

f2;g(b�) = 0 (3.5)

Let y = (y01; � � � ;y0n)0, X = (X0
1; � � � ;X0

n)
0, and A = In 
 Am, where 
 denotes the Kronecker

product. From (3.4),

(b�0; b
0)0 = (Z0Z)�1Z0(y � b�Ay); (3.6)

where Z = [X;AX]. Substitution of (3.6) into (3.5) gives

y0MAMy � 2b�y0AMAMy + b�2y0AMAMAy = 0 (3.7)

where M = Imn � Z(Z0Z)�1Z0. Equation (3.7) is quadratic in b�. As discussed in the previous
subsection, the consistent root of (3.7) is

b� = y0AMAMy�
p
(y0AMAMy)2 � (y0MAMy)(y0AMAMAy)

y0AMAMAy
: (3.8)

To study the asymptotic properties of the root estimator b� de�ned in (3.6) and (3.8), we maintain
the following assumptions.

A1. j�0j < 1. m is a �xed constant such that m � 2 and m 6= 2(1� �0).

A2. The error term ui;g is independently distributed with E(ui;g) = 0, E(u2i;g) = �2i;g, and

sup1�i�m;1�g�n;n�1 Eju
4+�
i;g j <1 for some � > 0.

A3. The elements of X are uniformly bounded. limn!1 n
�1Z0Z is �nite and nonsingular.
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All these assumptions are standard in the spatial econometrics literature (see, e.g., Kelejian

and Prucha, 2010), except the second part of Assumption A1. We assume m 6= 2(1 � �0) so that

plimn!1n
�1y0AMAMAy 6= 0. As j�0j < 1, a su¢ cient condition for m 6= 2(1 � �0) is m � 4.

Under the above regularity conditions, the following proposition establishes the consistency and

asymptotic normality of the root estimator. Let � = diagng=1f�gg and G = A(Imn � �0A)�1.

Proposition 3.1. Under Assumptions A1-A3, the root estimator b� is consistent and pn(b���0) d!

N(0; limn!1D
�1
D0�1) where


 = Var(n�1=2
nX
g=1

fg(�0)) = n
�1

264 Z0�Z 0

0 2tr(�A�A)

375
and

D = �E(n�1
nX
g=1

@fg(�0)

@�0
) = n�1

264 Z0G(X�0 +AX
0) Z0Z

2tr(�AG) 0

375 :
4 Monte Carlo Experiments

To investigate the �nite sample performance of the proposed root estimator, we conduct some

Monte Carlo simulations. The data generating process is

yi;g = �0yi;g + �0xi;g + 
0xi;g + ui;g; (4.1)

for i = 1; � � � ;m and g = 1; � � � ; n, where �0 = 0:3, �0 = 
0 = 1:0, and xi;g and ui;g are generated

as xi;g � iid:N(0; 1) and ui;g � inid:N(0; �2i;g). We set �2i;g = 3 if xi;g > 0 and �2i;g = 1 otherwise.

We experiment with di¤erent m and n.

The mean and standard deviation (SD) of the empirical distributions of the estimates from 1000

simulation repetitions are reported in Table 4.1. When the sample size n is small, b� is downwards
biased and b
 is upwards biased. The bias reduces as the sample size increases. The standard
deviation also reduces as the sample size increases. It is worth noting that, the biases and standard

deviations of b� and b
 increase with the group size m, especially when n is small. This observation
7



Table 4.1: Monte Carlo Simulation Results
�0 = 0:3 �0 = 1:0 
0 = 1:0

m = 5
n = 25 0:277(0:103) 1:012(0:142) 1:067(0:368)
n = 50 0:289(0:067) 1:005(0:094) 1:020(0:248)
n = 100 0:294(0:048) 1:000(0:068) 1:011(0:175)
n = 200 0:296(0:035) 1:002(0:047) 1:012(0:124)

m = 20
n = 25 0:261(0:111) 1:001(0:065) 1:090(0:432)
n = 50 0:282(0:072) 1:001(0:045) 1:051(0:288)
n = 100 0:293(0:049) 1:000(0:032) 1:016(0:196)
n = 200 0:294(0:036) 1:001(0:022) 1:016(0:139)

Mean(SD)

is consistent with the theoretical result in Lee (2004) that the quasi-maximum likelihood estimator

of model (4.1), without the contextual e¤ect regressor xi;g, is likely to be inconsistent when m is

large relative to the sample size.

5 Conclusion

This paper o¤ers a new perspective for identi�cation of peer e¤ects, by exploiting the correlation

structure of individual outcomes in a network. The proposed root estimator achieves asymptotic

identi�cation without relying on variation of group sizes or intransitivity of network connections.

The root estimator is consistent and asymptotic normal under heteroskedasticity. Monte Carlo

experiments show that the estimator performs well in �nite samples.

To illustrate our main point, we make some simplifying assumptions. For example, we assume

assignment of individuals to groups is random. This assumption can be relaxed, if the endogenous

selection into groups can be controlled for using a Heckman-type correction (see Horrace et al.,

2016). We leave the asymptotic properties of the root estimator with a Heckman-type selection-

bias correction for future research.
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