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Abstract

This paper derives the LIML estimator for a spatial autoregressive model with endogenous

regressors in the presence of many instruments. The LIML estimator is consistent when the

number of instruments increases at a slower rate relative to the sample size. Due to spatial

correlation, the LIML estimator in general is inconsistent when the number of instruments

increases at the same rate as the sample size.
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1 Introduction

Since Bekker�s (1994) seminal work, studies on estimation issues in the presence of many instruments

have attracted a lot of attention (see, e.g., Donald and Newey, 2001; Chao and Swanson, 2005;

Hansen et al., 2008; van Hasselt, 2010). However, much of the current literature has focused on

models with independent observations. In a recent paper, Liu and Lee (2010) have considered

the estimation of social-interaction e¤ects in a network setting where the population is partitioned

into many networks (groups) and observations are correlated within each group. The interaction
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among group members can be modelled by a generalized spatial autoregressive (SAR) model, and

the various social-interaction e¤ects, namely, endogenous e¤ects, contextual e¤ects and correlated

e¤ects (Manski, 1993), can be separately identi�ed by an instrument based on a centrality measure

of each network. Thus, the number of potential instruments for this model depends on the number

of groups. If the number of groups increases with the sample size in asymptotic analysis, so does

the number of instruments. Liu and Lee (2010) have suggested 2SLS and GMM estimators for

this network model, and proposed a bias-correction procedure based on the estimated leading-order

many-instrument bias.

For the estimation of models with many instruments, the limited-information maximum likeli-

hood (LIML) estimator is of particular importance due to its good properties (see, e.g., Anderson

et al., 2010). With independent observations, Bekker (1994) has shown that the LIML estimator is

consistent when the number of instruments increases at the same rate as the sample size. This note

derives the LIML estimator for an SAR model with endogenous regressors. The estimator can be

easily modi�ed to estimate the network model by Liu and Lee (2010). The LIML estimator is shown

to be consistent when the number of instruments increases at a slower rate relative to the sample

size. However, due to spatial correlation, the LIML estimator, in general, is inconsistent when the

number of instruments increases at the same rate as the sample size.

For the rest of the note, Section 2 derives the LIML estimator for an SAR model and studies its

consistency. Section 3 brie�y concludes. The proofs are given in Appendices.

2 The SAR Model and LIML Estimation

2.1 Derivation of the LIML estimator

Consider an SAR model with endogenous regressors,

yn = �Wnyn + Y1n + �n; and Y1n = Xn�+ Un: (1)

In this model, n is the total number of spatial units, yn is an n-dimensional vector of dependent

variables, Wn is an n � n spatial weights matrix of known constants with a zero diagonal, Y1n is

an n � g matrix of explanatory variables that are possibly correlated with �n, and the innovations

�n1; � � � ; �nn of the n-dimensional vector �n are i.i.d. (0; �2�). Let Xn be an n�K matrix of exogenous

variables. For a matrix An, let Ani denote its ith row and An;ijdenote its (i; j)th entry. We assume
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Uni�s are i.i.d. such that E(Uni) = 0 and E(U 0niUni) = �u. The correlation between Y1n and �n is

captured by E(U 0ni�ni) = �u�.

Let Sn(�) = In��Wn and Yn(�) = [Sn(�)yn; Y1n]. At the true parameter value �0, Sn = Sn(�0)

and Yn = Yn(�0). Furthermore, let

� =

264 1 0

� Ig

375 :
The model can be written more compactly as Yn(�)� = XnB + Vn, where B = [0;�] and Vn =

[�n; Un]. By assuming the joint normality of the error terms, the density of Vni is given by

(2�)�(g+1)=2j�j�1=2 exp(� 1
2Vni�

�1V 0ni), where

� = E(V 0niVni) =

264 �2� �

�u� �u

375 :
The Jacobian factor for the transformation of Vn into [yn; Y1n] is

�������
S0n(�) 0 
 In

0ng�n Ing

������� = jSn(�)j:
Let � = (�; 0)0 and c be a generic constant term that does not involve unknown parameters and

may be di¤erent for di¤erent uses. The log-likelihood function is

lnLn(�;�;�) = �n(g + 1)
2

ln(2�) + ln jSn(�)j �
n

2
ln j�j � 1

2

X
i

[Yni(�)��XniB]��1[Yni(�)��XniB]0

= c+ ln jSn(�)j �
n

2
ln j�j � 1

2
tr(��1[Yn(�)��XnB]0[Yn(�)��XnB]):

It is convenient to concentrate the log-likelihood function lnLn(�;B;�) with respect to ��1. As

@ lnLn=@�
�1 = n

2��
1
2 [Yn(�)��XnB]

0[Yn(�)��XnB], we have � = 1
n [Yn(�)��XnB]

0[Yn(�)��

XnB]. The concentrated log-likelihood function is

lnLcn(�;�) = c+ ln jSn(�)j �
n

2
ln j 1
n
[Yn(�)��XnB]0[Yn(�)��XnB]j: (2)

Let PX = Xn(X
0
nXn)

�1X 0
n and MX = In � PX . For any given �, the above log-likelihood
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function can be further simpli�ed by concentrating B out as

j 1
n
[Yn(�)��XnB]0[Yn(�)��XnB]j = [

�0n(�)MX�n(�)

�0n(�)�n(�)
]�1j 1

n
Y 0n(�)MXYn(�)j:

where �n(�) = Sn(�)yn� Y1n (see Davidson and MacKinnon, 1993, pp.644-647). Hence, the LIML

estimator can be obtained by maximizing the concentrated log-likelihood function

lnLcn(�) = c+ ln jSn(�)j �
n

2
ln j 1
n
Y 0n(�)MXYn(�)j+

n

2
ln
�0n(�)MX�n(�)

�0n(�)�n(�)
: (3)

2.2 Consistency

For consistency of the LIML estimator, we inspect the �rst-order condition of (3). Let Gn(�) =

WnS
�1
n (�) and Gn = Gn(�0). Let ej be the j column of an identity matrix In. At �0, the �rst-order

derivative of the log-likelihood function with respective to � is

1

n

@ lnLcn(�0)

@�
= � 1

n
tr(Gn) + e

0
1(Y

0
nMXYn)

�1Y 0nMXWnyn +
�0nWnyn
�0n�n

� �
0
nMXWnyn
�0nMX�n

:

AsWnyn = GnXn�00+Gn(Un0+�n), we have E(�
0
nWnyn) = (�

0
u�0+�

2
�)tr(Gn); E(�

0
nMXWnyn) =

(�0u�0 + �
2
�)[tr(Gn)� tr(GnPX)] and E(�0nMX�n) = �

2
�tr(MX) = �

2
�(n�K).1 Hence,

E(�0nWnyn)

E(�0n�n)
� E(�

0
nMXWnyn)

E(�0nMX�n)
= ��2� (�0u�0 + �

2
�)

1

1�K=n [
1

n
tr(GnPX)�

K

n2
tr(Gn)]: (4)

On the other hand, Yn = [Snyn; Y1n] = X�0[0; Ig]+[Un0+�n; Un] andWnyn = GnSnyn = GnYne1.

Let �n = [Un0 + �n; Un]. It follows that E(Y
0
nMXYn) = E(�

0
ni�ni)tr(MX) = E(�

0
ni�ni)(n �K)

and E(Y 0nMXWnyn) = E(�
0
ni�ni)e1[tr(Gn)� tr(GnPX)]. It follows that

1

n
tr(Gn)� e01[E(Y 0nMXYn)]

�1E(Y 0nMXWnyn) =
1

1�K=n [
1

n
tr(GnPX)�

K

n2
tr(Gn)]: (5)

Note that tr(Gn) = O(n) and tr(GnPX) = O(K) by Lemma B.1. Therefore, when K=n ! 0, the

right hand sides of both (4) and (5) converge to zero as n!1. Hence, the LIML estimator can be

consistent when the number of instruments K increases at a slower rate than the sample size n.

The consistency of the LIML estimator can be formally established by showing that the LIML

1For simplicity, Wn and Xn are assumed to be nonstochastic. Otherwise, the results should be considered as
conditional on Wn and Xn.
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objective function (3) converges to a function that is uniquely maximized at �0, as in the proof

of the following result. The regularity assumptions for the asymptotic analysis are summarized in

Appendix A.

Proposition 1 Under Assumptions 1-4, if K=n! 0, the LIML estimator �̂liml = argmax lnLcn(�)

is consistent.

However, due to spatial correlation, the LIML is, in general, inconsistent when the number of

instruments increases at the same rate as the sample size. This result can be seen by subtracting

(5) from (4), which gives

� 1
n
tr(Gn) + e

0
1[E(Y

0
nMXYn)]

�1E(Y 0nMXWnyn) +
E(�0nWnyn)

E(�0n�n)
� E(�

0
nMXWnyn)

E(�0nMX�n)

= ��2� �0u�0
1

1�K=n [
1

n
tr(GnPX)�

K

n2
tr(Gn)]: (6)

In general2 , the right hand side of (6) does not vanish asymptotically when K=n! c for 0 < c < 1.

Thus, the LIML estimator may be inconsistent in this case.

3 Concluding Remarks

This note considers the LIML estimation of an SAR model with endogenous regressors in the presence

of many instruments. The LIML estimator is consistent when the number of instruments increases

at a slower rate relative to the sample size, but is inconsistent when the number of instruments

increases at the same rate as the sample size due to spatial correlation.

For models with independent observations, it is well known that the LIML estimator can also be

derived based on the least variance ratio principle (see, e.g., Christ, 1966; Davidson and MacKinnon,

1993). For the SAR model, the least variance ratio (LVR) estimator can be derived as follows.

From the reduced form equation, the ideal instruments for the SAR model (1) are given by Fn =

E([Wnyn; Y1n]) = [GnXn�00; Xn�0], which are not feasible as they involve unknown parameters.

Note Fn can be presented as a linear combination of [GnXn; Xn]. When Wn is row-normalized and

j�0j < 1, Gn =WnS
�1
n =

P1
j=0 �

j
0W

j+1
n =

Pp
j=0 �

j
0W

j+1
n +�p+10 W p+1

n Gn. It follows by Assumption

3 in Appendix A that jjGn �
Pp

j=0 �
j
0W

j+1
n jj1 � �p+10 jjW p+1

n Gnjj1 = o(1) as p!1, where jj � jj1

is the row-sum matrix norm. Therefore, for G(p)X = (WnXn; � � � ;W p+1
n Xn), the ideal instruments

Fn can be approximated by a linear combination of feasible instruments Zn = [G
(p)
X ; Xn], with an

2An exception would be the case where the regressors Y1n are exogenous so that �u� = 0.
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approximation error vanishing in a geometric rate as p ! 1. Suppose Zn has Kp columns. Let

PZ = Zn(Z
0
nZn)

�1Z 0n and MZ = In � PZ . The LVR estimator can be obtained by maximizing

�0n(�)MZ�n(�)
�0n(�)�n(�)

. By comparing the objective functions, it is easy to see that the LVR estimator is not

equivalent to the LIML estimator for the SAR model. This is analogous to the di¤erence between

the 2SLS and ML estimators for the SAR model (Lee, 2004, 2007). While the LVR and 2SLS

estimators only use linear moment conditions of the disturbances, the LIML and ML estimators

also exploit quadratic moment conditions based on the correlation structure of the reduced form

disturbances. Furthermore, by a similar argument as in the previous section, it is easy to see that

the LVR estimator is consistent if Kp=n! 0 but inconsistent if Kp=n! c for 0 < c < 1.

APPENDICES

To simplify notations, let f1n = E(Wnyn) = GnXn�00 and Fn = E([Wnyn; Y1n]) = [f1n; Xn�0].

Let �Un = Un0 + �n and �n = [ �Un; Un]. Let �
2
�u = E(

�U2ni), ��u� = E( �Uni�ni), �u�u = E(U
0
ni
�Uni), and

�� = E(�0ni�ni). Uniformly bounded in row (column) sums in absolute value of a sequence of

square matrices fAng will be abbreviated as UBR (UBC), and uniformly bounded in both row and

column sums in absolute value as UB.

A Regularity Assumptions

Assumption 1 �ni � (0; �2�) and Uni � (0;�u) are i.i.d. across i, and E(U 0ni�ni) = �u�. E(j�nij4),

E(jjUnijj4) and E(jjUni�nijj2) are bounded, uniformly in n.

Assumption 2 The elements of Xn are uniformly bounded constants, Xn has a full column rank,

and limn!1
1
nX

0
nXn exists and is nonsingular for all K.

Assumption 3 The sequences of matrices fWng and fS�1n g are UB. fS�1n (�)g is either UBR or

UBC uniformly in � in a compact parameter space �. The true �0 is in the interior of �.

Assumption 4 For all K, limn!1
1
nf

0
nPXfn is �nite, and limn!1

1
nF

0
nFn is a �nite nonsingular

matrix.

B Proofs

The following two lemmas are listed for easy reference. Their proofs can be found in Lee (2007) and

Liu and Lee (2010).
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Lemma B.1 Suppose fAng is a UB sequences of nonstochastic matrix. For Bn = PXAn, tr(An) =

O(n), tr(Bn) = O(K), tr(B2n) = O(K), and
P

i(Bn;ii)
2 = O(K).

Lemma B.2 Suppose "1n and "2n are vectors of i.i.d. innovations such that "1n;i � (0; �21), "2n;i �

(0; �22) and E("1n;i"2n;i) = �12, fAng and fBng are UB sequences of nonstochastic matrices, and

the elements of matrices Cn and Dn are uniformly bounded constants. Then (i) 1p
n
C 0nAn"1n =

Op(1) and 1
n ["1nAn"2n � �12tr(An)] = op(1); (ii)

1
nC

0
nPXDn = O(1),

1
nC

0
nPXAn"1n = Op(

p
K=n),

1
n"

0
1nB

0
nPXAn"2n = Op(K=n), and

1p
n
["01nB

0
nPXAn"2n � �12tr(B0nPXAn)] = Op(

p
K=n).

Proof of Proposition 1. Let

	n(�) = c+ln jSn(�)j�
n

2
ln j(�0��)2

1

n
f 01nMXf1ne1e

0
1+��(�)j+

n

2
ln

(�0 � �)2 1nf
0
1nMXf1n + �

2
�(�)

(�0 � �)0 1nF 0nFn(�0 � �) + �2�(�)
;

where

�2�(�) = (�0 � �)0

264 �2�u
1
n tr(G

0
nGn) �

�u�u
1
n tr(Gn) �u

375 (�0 � �) + 2[��u� 1
n
tr(Gn); �

0
u�](�0 � �) + �2� ;

and

��(�) =

264 (�0 � �)2 1n�
2
�utr(G

0
nGn) + 2(�0 � �) 1n�

2
�utr(Gn) + �

2
�u �

(�0 � �) 1n tr(Gn)�u�u + �u�u �u

375 :
The consistency of the LIML estimator will follow from the uniform convergence of 1

n [lnL
c
n(�) �

	n(�)] to zero and the identi�cation condition that, for any " > 0, lim supn!1max�2 �N(�0;")
1
n [	n(�)�

	n(�0)] < 0, where �N(�0; ") is the complement of an open neighborhood of �0 of diameter " (White

1994, Theorem 3.4). The proof is divided into the following two steps.

Step 1 (Uniform Convergence): Let dn(�) = Fn(�0 � �) and en(�) = [Gn �Un; Un](�0 � �). We

have �n(�) = dn(�) + en(�) + �n. Hence, �0n(�)�n(�) = d
0
n(�)dn(�) + 2l1n(�) + q1n(�), where l1n(�) =

d0n(�)en(�)+d
0
n(�)�n and q1n(�) = e

0
n(�)en(�)+2e

0
n(�)�n+ �

0
n�n. By Lemma B.2 (i),

1
n l1n(�) = op(1)

uniformly in � and 1
nq1n(�) = �

2
�(�)+op(1) uniformly in �. Hence,

1
n�
0
n(�)�n(�) = (�0��)0 1nF

0
nFn(�0�

�)+�2�(�)+op(1) uniformly in �. Similarly, �
0
n(�)PX�n(�) = d

0
n(�)PXdn(�)+2l2n(�)+ q2n(�), where

l2n(�) = d0n(�)PXen(�) + d
0
n(�)PX�n and q2n(�) = e0n(�)PXen(�) + 2e

0
n(�)PX�n + �

0
nPX�n. When

K=n ! 0, by Lemma B.2 (ii), 1
n l2n(�) = op(1) and 1

nq2n(�) = op(1). Hence, 1
n�
0
n(�)PX�n(�) =

1
nd

0
n(�)PXdn(�)+ op(1). As Fn = [f1n; Xn�0], we have

1
nd

0
n(�)MXdn(�) =

1
n (�0� �)

0F 0nMXFn(�0�
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�) = (�0 � �)2 1nf
0
1nMXf1n. It follows that 1

n�
0
n(�)MX�n(�) = (�0 � �)2 1nf

0
1nMXf1n + �

2
�(�) + op(1)

uniformly in �. It is straightforward to show that �2�(�) is nonzero for all � by non-singularity of

the covariance matrix of [Gn �Un; Un; �n]. Hence, ln
�0n(�)MX�n(�)
�0n(�)�n(�)

� ln (�0��)2 1n f
0
1nMXf1n+�

2
�(�)

(�0��)0 1nF 0
nFn(�0��)+�2�(�)

= op(1)

uniformly in �.

On the other hand, as Sn(�)yn = (�0��)f1n+Xn�00+(�0��)Gn �Un+ �Un, it follows by Lemma

B.2 that, 1ny
0
nS

0
n(�)MXSn(�)yn = (�0��)2 1nf

0
1nMXf1n+2(�0��) 1nf

0
1nMX [(�0��)Gn �Un+ �Un] +

1
n [(�0��)Gn �Un+ �Un]

0MX [(�0��)Gn �Un+ �Un] = (�0��)2 1nf
0
1nMXf1n+(�0��)2 1n�

2
�utr(G

0
nGn)+

2(�0 � �) 1n�
2
�utr(Gn) + �

2
�u + op(1): Similarly,

1
ny

0
nS

0
n(�)MXY1n = (�0 � �) 1nf

0
1nMXUn +

1
n [(�0 �

�)Gn �Un + �Un]
0MXUn = (�0 � �) 1n tr(Gn)�

0
u�u + �

0
u�u + op(1), and

1
nY

0
1nMXY1n =

1
nU

0
nMXUn =

�u + op(1). Hence,

1

n
Y 0n(�)MXYn(�) =

1

n

264 y0nS
0
n(�)MXSn(�)yn �

Y 01nMXSn(�)yn Y 01nMXY1n

375 = (�0��)2 1
n
f 01nMXf1ne1e

0
1+��(�)+op(1);

uniformly in �. It is straightforward to show that j��(�)j nonzero for all �. It follows that

ln j 1nY
0
n(�)MXYn(�)j � ln j(�0 � �)2 1nf

0
1nMXf1ne1e

0
1 + ��(�)j = op(1) uniformly in �. Hence,

sup�
1
n j lnL

c
n(�)�	n(�)j = op(1).

Step 2 (Identi�cation Uniqueness): To prove the identi�cation uniqueness, we consider the fol-

lowing log-likelihood function lnLpn(�) = c + ln jSn(�)j � n
2 ln j

1
n [Sn(�)ypn; Un]

0[Sn(�)ypn; Un]j for

the joint distribution of [ypn; Un], where ypn = �Wnypn + �Un. Denote 	pn(�) = E[lnLpn(�)]. It is

apparent that 	pn(�) = c+ln jSn(�)j� n
2 ln j��(�)j. At �0, 	pn(�0) = c+ln jSnj�

n
2 ln j��j. We have

	n(�)�	n(�0) = �1+�2+�3, where �1 = 	pn(�)�	pn(�0), �2 = n
2 ln

(�0��)2 1n f
0
1nMXf1n+�

2
�(�)

(�0��)0 1nF 0
nFn(�0��)+�2�(�)

and�3 = �n
2

�
ln j(�0 � �)2 1nf

0
1nMXf1ne1e

0
1 +��(�)j � ln j��(�)j

�
. By Jensen�s inequality, 	pn(�) �

	pn(�0), and hence �1 � 0. As (�0 � �)2 1nf
0
1nMXf1n = (�0 � �)0 1nF

0
nMXFn(�0 � �) � (�0 �

�)0 1nF
0
nFn(�0 � �), we have �2 � 0. Therefore, by Assumption 4, the identi�cation uniqueness

condition holds. The desired result thus follows.
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