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A The Likelihood Function

This section derives the likelihood function for the generalized model (1). In addition to Ynt, let

Y �nt = (y
�
1t; � � � ; y�nt)0 be the n-dimensional vector of the latent dependent variables. Let X1

t ; Y
1
t and

Y �1t denote the sequences fXn;t�sg1s=0; fYn;t�sg1s=0 and fY �n;t�sg1s=0 respectively. Conditional on

initial conditions (Y �10 ; Y10 ), exogenous variables X1
T and individual components � = (�1; � � � ; �n)0,

the joint density function of YT = (Y 0n1; � � � ; Y 0nT )0 and Y �T = (Y �0n1; � � � ; Y �0nT )0 is given by

f(Y �T ; YT jY �10 ; Y10 ; X1
T ; �) =

QT
t=1 f(Y

�
nt; YntjY �1t�1 ; Y1t�1; X1

t ; �):

Let Iyit(y
�
it) be the dichotomous indicator with Iyit(y

�
it) = 1 if y�it determines the observed value

of yit and Iyit(y
�
it) = 0 otherwise. Because vit are mutually independent for i = 1; � � � ; n, the

conditional densities of (Y �nt; Ynt) can be further decomposed as f(Y
�
nt; YntjY �1t�1 ; Y1t�1; X1

t ; �) =Qn
i=1 f(y

�
it; yitjY �1t�1 ; Y1t�1; X1

t ; �i) =
Qn
i=1 Iyit(y

�
it)g(y

�
itjY �1t�1 ; Y1t�1; X1

t ; �i) for t = 1; � � �T , where

g(�j�) is the conditional density of y�it. Therefore, the conditional probability of YT is

P (YT jY �10 ; Y10 ; X1
T ; �) =

R
� � �
R
f(Y �T ; YT jY �10 ; Y10 ; X1

T ; �)dY
�
T

=
R
� � �
R hQT

t=1

Qn
i=1 Iyit(y

�
it)g(y

�
itjY �1t�1 ; Y1t�1; X1

t ; �i)dy
�
it

i
: (1)

For (1), g(y�itjY �1t�1 ; Y1t�1; X1
t ; �i) = g(y

�
itj(fy�i;t�sg1s=1; Y1t�1; X1

t ; �i), as interactions among cross-

sectional units are going through the observed Yn;s�1 and Xns but not Y �n;s�1 for s � t. Under the

normality assumption of vit, it follows that g(y�itj(fy�i;t�sg1s=1; Y1t�1; X1
t ; �i) = �(y�it � hit), where

hit = hit(fy�i;t�sg1s=1; Y1t�1; X1
t ; �i). De�ne the integral limits Lit and Uit, where Lit = �hit and

Uit = 1 if yit = 1, and Lit = �1 and Uit = �hit otherwise. By transformations of variables, it
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follows that

P (YT jY �10 ; Y10 ; X1
T ; �) =

nQ
i=1

R Ui1
Li1

� � �
R Ui;T�1
Li;T�1

R UiT
LiT

�(viT )dviT�(vi;T�1)dvi;T�1 � � ��(vi1)dvi1

=
nQ
i=1

R
� � �
R
(�(UiT )� �(LiT ))

T�1Q
s=1

(�(Ui;T�s)� �(Li;T�s))�[Li;T�s;Ui;T�s](vi;T�s)dvi;T�s

=
nQ
i=1

R
� � �
R
�(diThiT )

T�1Q
s=1

�(di;T�shi;T�s)�[Li;T�s;Ui;T�s](vi;T�s)dvi;T�s; (2)

where dit = 2yit�1 and �[Lt;Ut] is a truncated standard normal density function on support [Lt; Ut].

Thus, the probability of YT conditional on (Y �10 ; Y10 ; X1
T ) can be obtained by integrating out the

individual random component from (2).

B Some Monte Carlo Results on SMLEs

The �nite sample performance of the simulated estimator is investigated by Monte Carlo experi-

ments. We focus on the Markov and Polya models, which are used in the empirical studies. Special

attention has been given to the �nite sample bias due to simulation.

B.1 A Markov Model with Lagged Social Interactions

Suppose we have observations of G independent groups, with n subjects in each group. The Markov

dynamic choice model for the Monte Carlo study in this section is

y�it = �xi;t�1 + �1yi;t�1 + �2zi;t�1 + ��i + "it; (3)

where zi;t�1 =
Pn

j=1;j 6=i yj;t�1= (n� 1), "it = �"i;t�1 + vit, and �i and vit are i.i.d. N (0; 1). The

group subscript g is suppressed for simplicity. By replacing "it with �(y�i;t�1 � (�xi;t�2 + �1yi;t�2 +

�2zi;t�2 + ��i)) + vit, (3) conforms to the general model (1).

The xit are generated as xit = (1=
p
2)rit +

p
6si where rit are independent truncated standard

normal variables on [�2; 2] and si is a uniform variable on [�0:5; 0:5], so that the variance of xit is

about 1 and its correlation coe¢ cient over time is about 0:5. This process of generating exogenous

variables is to allow the exogenous variables to correlate over time. It is used for all the Monte Carlo

experiments in this article. The initial values of all variables for t � 0 are given as 0. Sample data

are generated with � = 1, �1 = 0:2, �2 = 0:4, �2 = 0:5, and � = 0:4. The serial correlation of the
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total disturbance ��i + �it of two adjacent periods has a correlation coe¢ cient about 0:6 and the

fraction of variance due to the individual e¤ect is about 0:3. The sample size is 200, with G = 50

and n = 4.1 We have experimented with small, moderate and large numbers of random draws,

namely m = 15; m = 50 and m = 100, for the construction of the GHK simulator. The number of

periods for the panel data varies from 8 to 30. For each case, the number of replications is 200. For

each replication, in addition to random disturbances in the model, the set of exogenous variables is

also redrawn. The maximization algorithm used is the conjugate gradient method. For all cases and

replications reported here, the algorithm converges without running into numerical problems. The

initial estimate of � is set to 1, and the initial estimates of the other parameters are set to 0. We

have also tried some other starting values, with which the algorithm converges to similar solutions.

Table 5 reports the empirical means (Means), standard deviations (SDs) and root mean square

errors (RMSEs) for both the bias-unadjusted SMLE and the bias-adjusted SMLE. For all panels with

periods from 8 to 30, the bias-unadjusted SMLEs of � are biased downward. There are upward biases

in the SMLEs of �1 and downward biases in those of �2, � and �, so the true state dependence can

be overstated but the peer group e¤ect tends to be underestimated. The magnitude of bias increases

with panel length, as the dimension of integration and the total number of choice alternatives are

proportional to the number of periods. On the other hand, SDs of all the SMLEs decrease as panels

become longer, since longer panel data provide more sample information about the stochastic process.

If periods are not too long, RMSEs decrease. Biases of estimates are all substantially reduced when

the number of simulated random variables m increases from 15 to 50. By increasing m to 100, biases

become rather small and RMSEs can further be reduced, but the time cost is double. The issue of

selecting m in practice has been addressed by Lee (1997). For small m, bias correction is valuable.

Although SDs of bias-adjusted estimates are slightly larger, RMSEs of bias-adjusted estimates are

smaller in general. The additional CPU cost for bias correction is negligible. However, as biases of

estimates, especially for longer panels, are relatively large to begin with in this model, larger m is

desirable for better improvement.2

Table 6 reports Means, SDs and RMSEs for alternative group sizes. For a given number of

subjects G � n = 200, biases, SDs and RMSEs of all the SMLEs increase when the group size n

1We pick n = 4 because in the experimental data used for the empirical studies, a reference group in each round
typically has 3 or 4 monopolists of the same type.

2Results for the bias-adjusted estimates are omitted in subsequent tables to save space. The bias correction
procedure for all the models in this article reduces bias and RMSE. The improvement is comparable with that from
the bias correction procedure reported in Table 5.
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increases from 4 to 8 (by comparing results in Tables 5 and 6). As the group size becomes even

larger, biases, SDs and RMSEs of the SMLEs of �1, �2 and � further increase, while the estimates

of � and � are not much a¤ected. As such, other things equal, more sessions with fewer subjects in

each session are preferred to fewer sessions with more subjects to estimate the model.

To illustrate e¤ects of omitted lagged social interactions on other SMLEs, we estimate (3) under

the restriction �2 = 0 and report the results in the top panel of Table 8. With positive peer group

interactions omitted, the SMLEs of �, � and � are biased downward, and those of �1 are biased

upward. The estimates of �1 are more than double in magnitude and the estimated � are reduced

almost by half. Hence, the true state dependence can be overstated.

Misspeci�ed disturbances, in general, would cause estimates to be inconsistent. First, we estimate

the random component model with � = 0 using the data generated by the model (3). For the

random component model, the multivariate probability function only involves a single integral,

which can be e¤ectively implemented by the Gaussian Quadrature method as suggested by Butler

and Mo¢ tt (1982). However, for the sake of easy comparison, here we report the SMLEs of the

random component model.3 The simulated log likelihood function for the random component model

is

L =
PG�n

i=1 ln

�
1

m

Pm
j=1

QT
t=1 �

h
(2yit � 1)(�xi;t�1 + �1yi;t�1 + �2zi;t�1 + ��(j)i )

i�
:

The results are reported in the second block of Table 8. There are substantial downward biases in

the SMLEs of � and �2 and upward biases in those of �1. Biases are more severe for longer panels.

Even with m = 100, the estimates of �1 are three times larger than the true value; and the estimates

of �2 are reduced by 2/3. Hence, the true state dependence tends to be overestimated and the

peer group e¤ect tends to be underestimated when serial correlation in �it is ignored. Biases of the

estimated � are not uniform. The third block of Table 8 reports the restricted SMLEs under � = 0,

i.e., with random component � ignored. With this error speci�cation, serially correlated disturbances

"it = �"i;t�1+vit capture all the spurious state dependence. Ignoring random individual components

biases the SMLEs of � and �1 downward, but �2 and � upward. Biases of estimated �1 and �2 are

more severe for longer panels. The upward bias of �2 are not really large. The biases of � are upward

by 50%. But the biases of �1 towards zero are much more severe.

3See Table 5 for a comparison of the performance between the numerical Gaussian quadrature procedure and the
GHK simulator for the estimation of the random component model.

4



B.2 A Polya Model with Lagged Social Interactions

In the Polya model, the entire history of the dynamic process is relevant to current decision making.

The Polya model with a depreciation factor � is given as follows4 :

y�it = �xi;t�1 + �1
Pt

s=1 �
s�1yi;t�s + �2

Pt
s=1 �

s�1zi;t�s=(
Pt

s=1 �
s�1) + ��i + "it; (4)

where zi;t�s =
Pn

j=1;j 6=i yj;t�s= (n� 1) and "it = �"i;t�1 + vit with �i and vit i.i.d. N (0; 1). The

group subscript g has been suppressed for simplicity. The initial values of all variables for t � 0 are

given as 0. Trivial transformation of (4) shows it conforms to the general model (1). For comparison

purpose, the discount factor � is assumed to be a known constant and is set at 0:7. Sample data are

generated with � = 1, �1 = 0:2, �2 = 0:4, �2 = 0:5, and � = 0:4:

The SMLEs are reported in Table 7. There are some downward biases in the SMLEs of �, �2, �

and � and upward bias in �1. Compared to estimates of the Markov model in Table 5, �1 and � in

the Polya model can be estimated more accurately. They not only have small biases but also have

much smaller SDs, due to an apparently stronger state dependence property of the Polya model.

On the other hand, since we speci�ed lagged social interactions as a weighted average of the past

history instead of a weighted sum, variation in this term is reduced. So with such speci�cation, �2

in the Polya model is much more di¢ cult to estimate than in the Markov model. For small m and

long panels, biases in the SMLEs of �2 is quite severe. By increasing m, biases in the estimates of

�2 can be substantially reduced. For T = 8 or 15, the biases reduce by 90% as m increases from

15 to 50. By comparison with the Markov model, SDs and RMSEs of the estimates of �2 here are

much larger.

We also investigate e¤ects of misspeci�cation in dynamic structures on SMLEs. The bottom

block of Table 8 reports the SMLEs of the Markov model (3) when the data generating process

follows the Polya model (4). The SMLEs of �1 and � are biased upward. And the SMLEs of �2 and

� are biased downward. Hence, with this kind of misspeci�cation in the dynamic structure, the true

state dependence tends to be overestimated but the peer group e¤ect tends to be underestimated.

The SMLEs of � are not a¤ected very much by this model misspeci�cation and their biases are not

large.

4Here we specify the lagged social interactions term as the (weighted) average of peers� lagged choices over the
entire history, so that it is not a¤ected by the number of total observations.
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Table 1: The Markov model (sample size: G=50, n=4)

T m � = 1 �1 = 0:2 �2 = 0:4 � =
p
0:5 � = 0:4

Bias unadjusted SMLE

8 15 :969 (:067) [:073] :246 (:132) [:139] :349 (:141) [:150] :628 (:136) [:157] :379 (:123) [:125]
15 15 :965 (:052) [:063] :296 (:105) [:142] :318 (:103) [:132] :672 (:077) [:084] :323 (:079) [:111]
30 15 :957 (:035) [:056] :345 (:071) [:161] :292 (:068) [:127] :686 (:058) [:061] :286 (:045) [:123]

8 50 :991 (:066) [:067] :207 (:124) [:123] :387 (:137) [:137] :675 (:111) [:115] :398 (:108) [:108]
15 50 :988 (:052) [:053] :236 (:091) [:097] :371 (:102) [:106] :692 (:071) [:073] :369 (:061) [:069]
30 50 :982 (:034) [:039] :264 (:068) [:093] :354 (:066) [:080] :698 (:053) [:053] :349 (:042) [:066]

8 100 :996 (:065) [:065] :203 (:124) [:124] :393 (:135) [:135] :684 (:110) [:112] :397 (:104) [:104]
15 100 :994 (:052) [:052] :219 (:088) [:090] :384 (:098) [:099] :697 (:070) [:070] :382 (:059) [:061]
30 100 :990 (:035) [:037] :235 (:065) [:074] :370 (:065) [:072] :702 (:052) [:052] :372 (:040) [:049]

Bias adjusted SMLE

8 15 :991 (:069) [:069] :217 (:131) [:132] :380 (:143) [:144] :681 (:135) [:138] :385 (:127) [:127]
15 15 :982 (:053) [:056] :259 (:107) [:122] :352 (:106) [:116] :699 (:078) [:078] :347 (:082) [:098]
30 15 :970 (:035) [:046] :307 (:072) [:129] :326 (:069) [:101] :704 (:060) [:060] :314 (:046) [:097]

8 50 1:000 (:067) [:067] :194 (:123) [:123] :400 (:138) [:137] :692 (:107) [:108] :403 (:109) [:109]
15 50 :996 (:052) [:052] :214 (:092) [:092] :390 (:103) [:104] :701 (:072) [:072] :386 (:062) [:063]
30 50 :991 (:035) [:036] :232 (:068) [:075] :377 (:067) [:071] :708 (:054) [:054] :374 (:043) [:050]

8 100 1:001 (:066) [:066] :195 (:124) [:124] :400 (:135) [:135] :692 (:109) [:109] :401 (:104) [:104]
15 100 :999 (:052) [:052] :205 (:088) [:088] :395 (:098) [:098] :701 (:070) [:070] :394 (:059) [:060]
30 100 :996 (:036) [:036] :212 (:066) [:067] :386 (:066) [:067] :708 (:053) [:053] :391 (:040) [:041]

The values are given as Means (SDs) [RMSEs]

6



Table 2: The Markov model with alternative group sizes

T m � = 1 �1 = 0:2 �2 = 0:4 � =
p
0:5 � = 0:4

G = 25; n = 8

8 15 :961 (:067) [:078] :261 (:157) [:168] :321 (:180) [:197] :604 (:174) [:202] :372 (:140) [:142]
8 50 :986 (:066) [:067] :215 (:141) [:142] :374 (:168) [:169] :665 (:126) [:133] :392 (:119) [:119]
8 100 :993 (:063) [:063] :195 (:125) [:124] :388 (:166) [:165] :675 (:100) [:105] :398 (:106) [:106]

G = 10; n = 20

8 15 :958 (:069) [:080] :285 (:182) [:200] :288 (:218) [:245] :605 (:155) [:185] :356 (:154) [:160]
8 50 :983 (:068) [:070] :227 (:160) [:162] :357 (:203) [:207] :663 (:119) [:126] :384 (:131) [:131]
8 100 :989 (:067) [:068] :218 (:160) [:161] :370 (:199) [:200] :676 (:107) [:111] :386 (:126) [:127]

G = 4; n = 50

8 15 :957 (:069) [:081] :300 (:193) [:217] :271 (:238) [:270] :606 (:150) [:181] :345 (:158) [:167]
8 50 :985 (:068) [:070] :231 (:161) [:164] :354 (:209) [:213] :666 (:113) [:120] :381 (:130) [:131]
8 100 :990 (:068) [:068] :221 (:164) [:165] :368 (:208) [:210] :675 (:107) [:112] :386 (:127) [:127]

G = 1; n = 200

8 15 :958 (:071) [:082] :302 (:200) [:224] :268 (:252) [:284] :606 (:152) [:182] :345 (:163) [:172]
8 50 :985 (:070) [:071] :234 (:171) [:174] :352 (:221) [:226] :665 (:116) [:123] :380 (:136) [:137]
8 100 :991 (:069) [:070] :220 (:170) [:171] :370 (:217) [:219] :674 (:110) [:114] :388 (:130) [:131]

The values are given as Means (SDs) [RMSEs]

Table 3: The Polya model (sample size: G=50, n=4)

T m � = 1 �1 = 0:2 �2 = 0:4 � =
p
0:5 � = 0:4

8 15 :981 (:071) [:073] :218 (:085) [:087] :337 (:249) [:256] :647 (:177) [:187] :399 (:102) [:101]
15 15 :977 (:056) [:060] :228 (:050) [:057] :301 (:179) [:204] :679 (:088) [:092] :366 (:057) [:066]
30 15 :964 (:036) [:051] :255 (:038) [:067] :201 (:134) [:240] :676 (:067) [:074] :339 (:033) [:069]

8 50 :995 (:070) [:070] :200 (:083) [:082] :394 (:245) [:245] :690 (:134) [:135] :399 (:083) [:083]
15 50 :995 (:055) [:055] :204 (:051) [:051] :389 (:181) [:181] :697 (:079) [:080] :390 (:054) [:055]
30 50 :988 (:037) [:038] :219 (:040) [:044] :329 (:132) [:149] :699 (:062) [:062] :381 (:037) [:041]

8 100 :997 (:068) [:068] :198 (:082) [:082] :400 (:246) [:245] :691 (:118) [:119] :402 (:083) [:083]
15 100 :997 (:056) [:056] :201 (:052) [:052] :398 (:185) [:185] :696 (:081) [:081] :393 (:053) [:054]
30 100 :994 (:037) [:037] :211 (:042) [:043] :358 (:133) [:139] :703 (:064) [:064] :391 (:036) [:037]

The values are given as Means (SDs) [RMSEs]
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Table 4: Model misspeci�cation (sample size: G=50, n=4)

T m � = 1 �1 = 0:2 �2 = 0:4 � =
p
0:5 � = 0:4

True model: Markov; estimated model: misspeci�ed Markov

(a) 8 15 :939 (:065) :478 (:116) - :617 (:118) :236 (:121)
15 15 :941 (:054) :493 (:097) - :643 (:074) :214 (:080)

8 50 :961 (:066) :469 (:111) - :662 (:090) :228 (:109)
15 50 :962 (:054) :459 (:097) - :657 (:068) :241 (:075)

8 100 :966 (:064) :466 (:114) - :665 (:096) :229 (:110)
15 100 :967 (:054) :444 (:100) - :661 (:068) :254 (:079)

(b) 8 15 :935 (:066) :592 (:090) :091 (:122) :685 (:085) -
15 15 :919 (:051) :639 (:058) :075 (:090) :652 (:069) -

8 50 :961 (:067) :567 (:091) :123 (:120) :713 (:081) -
15 50 :939 (:051) :626 (:057) :101 (:084) :655 (:063) -

8 100 :965 (:068) :561 (:090) :132 (:118) :717 (:079) -
15 100 :943 (:052) :623 (:057) :105 (:085) :654 (:058) -

(c) 8 15 :932 (:061) :103 (:103) :434 (:124) - :624 (:055)
15 15 :940 (:051) :102 (:081) :436 (:095) - :612 (:043)

8 50 :945 (:060) :072 (:100) :462 (:122) - :649 (:050)
15 50 :962 (:052) :056 (:078) :474 (:096) - :649 (:039)

8 100 :948 (:061) :065 (:100) :468 (:122) - :655 (:049)
15 100 :968 (:051) :044 (:076) :484 (:096) - :658 (:038)

True model: Polya; estimated model: Markov

(d) 8 15 :978 (:069) :429 (:198) :289 (:176) :710 (:142) :250 (:179)
15 15 :968 (:057) :515 (:149) :304 (:128) :733 (:080) :196 (:116)

8 50 1:004 (:069) :408 (:188) :321 (:170) :767 (:099) :242 (:161)
15 50 :993 (:057) :436 (:157) :369 (:133) :751 (:077) :252 (:120)

8 100 1:009 (:068) :392 (:192) :334 (:168) :770 (:096) :253 (:166)
15 100 :998 (:058) :416 (:169) :382 (:137) :754 (:079) :267 (:131)

The values are given as Means (SDs)
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Table 5: The random component model (sample size: G=50, n=4)

m � = 1 �1 = 0:2 �2 = 0:4 � =
p
0:5

T = 8
Gaussian Quadrature 0:998(0:068)[0:068] 0:201(0:091)[0:091] 0:398(0:103)[0:103] 0:699(0:071)[0:071]

GHK 15 0:968(0:065)[0:072] 0:241(0:089)[0:098] 0:356(0:104)[0:113] 0:669(0:074)[0:083]
50 0:992(0:066)[0:066] 0:209(0:088)[0:088] 0:389(0:103)[0:103] 0:698(0:070)[0:070]
100 0:995(0:066)[0:066] 0:203(0:088)[0:088] 0:396(0:101)[0:100] 0:701(0:067)[0:067]

T = 15
Gaussian Quadrature 1:002(0:054)[0:054] 0:202(0:060)[0:060] 0:397(0:083)[0:083] 0:701(0:061)[0:062]

GHK 15 0:977(0:052)[0:057] 0:228(0:062)[0:067] 0:370(0:083)[0:088] 0:710(0:070)[0:070]
50 0:997(0:053)[0:053] 0:207(0:060)[0:060] 0:390(0:081)[0:081] 0:708(0:061)[0:061]
100 1:000(0:053)[0:053] 0:204(0:060)[0:060] 0:394(0:083)[0:083] 0:707(0:059)[0:059]

The values are given as Means (SDs) [RMSEs]
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