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Abstract

We investigate peer group e¤ects in laboratory experiments based on Milgrom and Roberts�

(1982) entry limit pricing game. We generalize Heckman�s (1981) dynamic discrete choice panel

data models by introducing time-lagged social interactions, using the unbiased GHK simulator

to implement the computationally cumbersome maximum likelihood estimation. We �nd that

subjects�decisions are signi�cantly in�uenced by past decisions of peers on several dimensions

including potential entrants�choices and strategic play of like-type monopolists. The proposed

model and estimation method may be applicable to other experiments where peer group e¤ects

are likely to play an important role.
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1 Introduction

Many experiments observe that subjects initially tend to ignore the strategic implications of their

actions and only gradually learn to make decisions that are consistent with equilibrium predictions.

Further, the typical experimental design has a group of subjects interacting with each other over a

number of replications of the same, or closely related, games. In cases where these interactions involve

random rematching of players, there is some concern for �session level e¤ects�as subjects might be

in�uenced by peers�choices. These potential session level e¤ects are akin to what econometricians

call �peer group�or �neighborhood�e¤ects.

The present paper studies peer group e¤ects in a signaling game experiment. Signaling game

experiments are particularly susceptible to peer group e¤ects, as ever since the pioneering work of

Miller and Plott (1985), feedback to players typically includes population data � the signals all

strong and weak types send and responses to same � as otherwise development of strategic play

can be painfully slow. As such peer group e¤ects are likely to be particularly pronounced.

To investigate the role of peer group e¤ects on the development of strategic play, we general-

ize Heckman�s (1981) dynamic discrete choice panel data model by introducing time-lagged social

interactions, so that the model can accommodate the interrelationships between decisions of cross-

sectional units (peers). Likelihood functions of dynamic discrete choice models involve multiple

integrals in cases where explanatory variables include lagged latent dependent variables or distur-

bances allow for serial correlation. For panel data models, the dimension of integration increases with

the number of periods, which makes numerical implementation of maximum likelihood estimation

impractical. To overcome this computational di¢ culty, simulation-based estimation methods devel-

oped by Geweke (1991), Borsch-Supan and Hajivassiliou (1993) and Keane (1994) have been shown

to be practical and accurate for estimation purposes when time periods are not too long. We show

that the implementation of the Geweke-Hajivassiliou-Keane (GHK) simulator remains tractable for

the generalized model with social interactions. These procedures for estimating peer group e¤ects

are potentially applicable to a variety of experimental designs where subjects receive feedback on

peers�performance.

We apply the generalized model to study the evolution of a monopolist�s strategic play in ex-

periments based on Milgrom and Roberts�(1982) entry limit pricing game. Entrants�responses to

monopolists�past choices are an obvious peer group e¤ect in games of this sort. In what follows
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we distinguish between the weight monopolists place on entrants responses to their own choices as

opposed to responses to peers�choices. In addition we explicitly incorporate the in�uence of peer

monopolists�choices on a monopolist�s own choice.1 We �nd that both types of peer group e¤ects are

relatively unimportant in games that have a pure strategy pooling equilibrium (which play reliably

converges to when it exists). Further, what peer group e¤ects there are, are primarily associated

with a monopolist�s responses to like-type monopolists� choices as opposed to potential entrants�

responses. However, in games where no pure strategy pooling equilibrium exists, peer group e¤ects

are quite prominent as low cost monopolists learn to distinguish themselves from high cost types.

In this case, peer group e¤ects are associated both with like-type monopolists�choices as well as

entrants�responses to these choices. Further, for experienced subjects at least, considerably more

weight is placed on the behavior of the entrant a monopolist is paired with than the more informative

subject population data.

From the statistical inference point of view, costs are likely to limit the number of experimental

subjects, rounds, and sessions for any given experimental investigation, which might prevent one

from determining whether peer group e¤ects are negligible or are overwhelmed by estimation errors

caused by insu¢ cient sample size. As such, the current work sheds some light on sample size

requirements and data structures favorable to successful identi�cation of potential peer group e¤ects

in discrete choice games.

The paper proceeds as follows. Section 2 presents the equilibrium predictions of the entry limit

pricing game, outlines the experimental procedures and provides a general description of the exper-

imental data. It also provides the motivation for the empirical studies. In Section 3, we introduce a

general dynamic discrete choice panel data model with lagged social interactions, derive the likeli-

hood function and illustrate the formulation of simulators and simulated likelihood function for this

model. Section 4 develops empirical econometric models to investigate the adjustment process of

subjects�s behavior in the entry limit pricing game and interprets the estimation results. Section 5

brie�y concludes.

1Past work with these data sets has explicitly incorporated entrants�responses to monopolists�choices. However,
past work has not distinguished between entrants� responses to own choices relative to peers� choices, or explicitly
incorporated the e¤ects of like-type monopolists� choices on own choices. The latter has been dealt with through
introducing clustering at the session level or through session level random e¤ects.
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2 The Signaling Game Experiments

2.1 Theoretical Predictions

The experiment is based on a simpli�ed version of Milgrom and Roberts�(1982) entry limit pricing

game. In the model there are two �rms, an established monopolist M and a potential entrant E,

in a two-stage game producing a homogeneous good. Nature decides M�s cost of production along

with the distribution of these costs. M�s cost is private information throughout the game, with the

prior distribution of costs being common knowledge. In the �rst stage, M observes his own cost

and chooses an output level. In the second stage, E chooses to enter or stay out in response to the

observed output level. The predetermined opportunity cost to E for entering the market is common

knowledge. If entry occurs, Cournot duopoly pro�ts are realized for both M and E. If there is

no entry, M receives the single period monopoly pro�t. Entry is pro�table against high cost Ms

(MHs) but not against low cost Ms (MLs). There are two types of pure strategy equilibria: pooling

equilibria in which MHs produce at higher output levels than the single period pro�t maximizing

level in order to make entry appear unattractive and separating equilibria in which MLs produce at

higher output levels for the same reason.

In this game, the information sets are de�ned by the realized costs of M and E (cM and cE) and

Ms output level, Q. A (pure) strategy for M is a mapping s from possible cost levels into possible

choices of Q and a (pure) strategy for E is a mapping t from R2 into f0; 1g for each possible pair

(cE ; Q), where 1 is interpreted as �enter� and 0 as �stay out�. An equilibrium consists of a pair

of strategies (s�; t�) and a pair of conjectures (�s; �t) such that (i) M�s pricing policy s� is a best

response to its conjecture �t about E�s entry rule, (ii) the strategy t� is a best response for E to its

conjecture �s, and (iii) the actual and conjectured strategies coincide. With two cost levels (types)

for M , namely, cM < cM , s�(cM ) = s�(cM ) is a pooling equilibrium; and s�(cM ) 6= s�(cM ) is a

separating equilibrium. Partial pooling is a mixed-strategy equilibrium with s�(cM ) = s
�(cM ) with

a positive probability (less than 1). In a pooling equilibrium, E infers nothing about M�s type after

observing Q and enters if the expected pro�t is positive. In a pure-strategy separating equilibrium,

observing Q allows E to infer cM exactly. Depending on M�s and E�s costs, the distribution of

types, and the market demand function, pooling and/or separating equilibria can occur (Milgrom

and Roberts, 1982, pp. 446-448).
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[Tables 1-3 approximately here]

The entry limit pricing game is investigated experimentally in Cooper et al. (1997a; 1997b) and

Cooper and Kagel (2003a; 2003b; 2004). In the experiments, the game is further simpli�ed by adding

the payo¤s of the two stages together and providing subjects with payo¤ tables 1-3. In each round of

the experiment, M is either a high-cost type (MH) or a low-cost type (ML) with equal probability,

and chooses over output levels 1-7 in payo¤ table 1.2 E�s cost is common knowledge. In any given

experiment, Es are either all high cost types (EHs; payo¤ table 2) or all low cost types (ELs; payo¤

table 3) for all rounds. With EHs, there exist pure-strategy pooling equilibria at output levels 1-5.

There also exist two pure-strategy separating equilibria, in whichMHs always choose 2 and are always

entered on, MLs always choose 6 or 7 and are never entered on. Among them, only pooling at 4 or

5, and separating with MLs choosing 6 survive Cho-Kreps�(1987) intuitive criteria.3 With ELs, no

pure-strategy pooling equilibrium exists, while the two pure-strategy separating equilibria still exist.

There also exist a number of mixed-strategy equilibria. One that is of particular relevance is the

partial pooling equilibrium in whichMLs always choose 5 whileMHs mix between 2 (with probability

0.8) and 5 (with probability 0.2), and Es always enter on choices other than 5, entering on 5 with

probability 0.11. In simulations using a stochastic �ctitious play learning model, this partial pooling

equilibrium emerges with high frequency in the presence of ELs (Cooper et al., 1997b). Further, in

practiceMLs choose 5 with relatively high frequency as a separating equilibrium emerges (especially

early on) and there is relatively little entry in response to it (Cooper et al., 1997b).

2.2 Experimental Procedures and Data

Detailed description of the experimental procedures can be found in Cooper et al. (1997b). The

following lists some elements that are especially noteworthy in the statistical analysis that follows.

1. Each experimental session employed between 12 and 16 subjects who were randomly assigned

to computer terminals. Sessions typically lasted 36 periods, with the number of periods an-

nounced in advance. Subjects switched roles after every six periods, with Ms becoming Es
2Some of the experimental sessions reported employ a linear transformation of payo¤ tables 1 and 3, designed to

represent a �pricing� version of the game (Cooper and Kagel, 2004). The two versions of the game are theoretically
identical with the data pooled in the analysis after appropriate transformation of nominal choice values.

3The multiplicity of equilibria in games of this sort rests on the fact that appropriate out-of-equilibrium beliefs
can serve to justify almost any outcome. For example, pooling at output level 1 can be justi�ed by the belief that
any deviation from 1 is more likely to result from an MH than an ML. This belief seems strange to say the least.
Equilibrium re�nements, one of the most accepted of which is Cho-Kreps intuitive criteria, are designed to rule out
these strange beliefs on the basis of careful forethought.
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and vice versa. We refer to a block of 12 periods with subjects playing the role of both M and

E six times as an experimental cycle. In each period, Ms�type is generated randomly.

2. Following each play of the game the outcomes from all pairings (Ms�choice, Es�choice, and

Ms�type) were revealed to all subjects. This provides the basis for the potential peer group

e¤ects studied here.

3. Subjects were randomly paired with each other for each play of the game, with subject identi�-

cation numbers suppressed. Hence there was no opportunity for reputation e¤ects to develop.

Learning, to the extent that it occurred, had to be based on own experience and observations

of peers�choices and outcomes.

[Table 4 approximately here]

Experimental treatments are summarized in Table 4. Experienced subject treatments recruited

subjects who had participated in earlier experimental sessions with exactly the same payo¤ tables.

The treatment �Meaningful Context�uses natural language for the instructions, and was introduced

to explore the e¤ects of context on subjects� reasoning processes in signaling games (Cooper and

Kagel, 2003a).

Subjects were recruited through announcements in undergraduate classes, posters placed through-

out campus, advertisements in the campus newspapers, and direct e-mail contact. This resulted in

recruiting a broad cross section of mostly undergraduate students and some graduate students.

Experienced-subject sessions generally took place about a week after the inexperienced-subject ses-

sions. Subjects from di¤erent inexperienced-subject sessions were mixed in the experienced-subject

sessions. Inexperienced-subject sessions lasted approximately one and a half hours, with experienced-

subject sessions substantially shorter than this as short, summary instructions were used and subjects

were familiar with the game. Subjects were paid between $5-$6 for showing up on time with total

earnings averaging between $26-$27 per subject.4

2.3 Learning and Peer Group E¤ects

According to payo¤ table 1, with full information, choices of 2 and 4 are optimal for MHs and MLs

respectively. Pooling equilibria at output levels 3-5 and separating equilibria with MLs selecting 5-7
4The data set we used amalgamates samples from experiments conducted at the University of Pittsburgh from

1993 to 1998 and at the Ohio State University from 2001 to 2005. We have tried to add a dummy regressor to account
for the possible di¤erent in the student population. But its coe¢ cient is not signi�cant at the conventional level.
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involve strategic behavior (limit pricing), as Ms produce above full-information levels.

[Figures 1 and 2 approximately here]

Figure 1 reports the results of games with both pure-strategy pooling and separating equilibria

under the meaningful context treatment. Figure 2 reports the results of games with no pure-strategy

pooling equilibria under the meaningful context treatment.5 Results are reported for each cycle (12

plays) of the game. The histograms show Ms� choices, with entry rates given right below each

output level. The experimental data show a gradual adjustment process starting with Ms at their

myopia maxima (2 for MHs, 4 for MLs) followed by an attempt to pool at 4 and then, if no pooling

equilibrium exists, a separating equilibrium starting to develop. That is, both pooling and separating

equilibria only develop in response to a gradual, history dependent adjustment/learning process.

Given that outcomes for all pairings (Ms�choice, Es�response, and Ms�type) are reported after

each play of the game, as well as the nature of the game, there is clear scope for peer group e¤ects in

the data, the explicit study of which provides the primary motivation for the present paper. Given

the gradual development of strategic play observed, it seems reasonable that Ms learn to limit price

in one of three ways (i) a trial and error learning process in response to Es� responses to their

own choices, (ii) through observing Es�responses to other Ms�choices, and (iii) through observing

like-type Ms�choices and responses to same. All three are avenues through which Ms are likely to

develop beliefs about responses to their choices, which beliefs lie at the heart of the theory.

To relate the present paper to the econometric literature on peer group e¤ects, we follow Manski

(1993) in specifying three main sources for peer group e¤ects: similar behavior of individuals be-

longing to a given reference group may be due to endogenous e¤ects, wherein �the propensity of an

individual to behave in some way varies with the behavior of the group�; exogenous e¤ects, wherein

�the propensity of an individual to behave in some way varies with the exogenous characteristics of

the group�; and correlated e¤ects, wherein �individuals in the same group tend to behave similarly

because they have similar individual characteristics or face similar institutional environments�. In

experimental settings, exogenous e¤ects and correlated e¤ects can be largely controlled for through

recruiting procedures and the experimental design. However, endogenous e¤ects are relatively hard

to control for as subjects typically interact with each other, with these e¤ects likely to be most pro-

nounced in experiments where players receive feedback about all other players�choices and responses

5The results under the generic context treatment show a similar pattern.
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to same. This motivates the general dynamic model with social interactions introduced in the next

section.

3 General Dynamic Discrete Choice Models with Social In-

teractions and Simulation Estimation

In what follows we propose a general dynamic discrete choice panel data model with lagged social

interactions

y�it = h(y
�
i;t�1; � � � ; y�i;�1; Yn;t�1; � � � ; Yn;�1; Xnt; � � � ; Xn;�1; �i) + vit; (1)

for i = 1; � � � ; n, where Ynt is the n-dimensional vector of dichotomous indicators y1t; � � � ; ynt such

that yit = 1 if y�it > 0 and yit = 0 otherwise, and Xnt is the n � k-dimensional matrix of strictly

exogenous variables. The terms Yn;t�1; � � � ; Yn;�1 in h(�) capture the (lagged) endogenous social

interactions e¤ect, so that the current decision of a subject could depend on the past choices of

peers. On the other hand, Xnt; � � � ; Xn;�1 are introduced to capture exogenous (or contextual)

e¤ects, so that the current decision of a subject may also depend on the exogenous characteristics

of peers. The random individual components �i are i.i.d. N(0; 1) for all i
6 and the disturbances vit

are i.i.d. N(0; 1) for all i and t. This process starts at t = 1, and the initial conditions on y�it, Ynt

and Xnt for t � 0 are �xed outside the model and are assumed to be zero.7 The speci�cation of the

dynamic model in Heckman (1981) does not incorporate (lagged) social interactions in that yi;s�1

and xis appear but not Yn;s�1 and Xns (s � t). Depending on the speci�cation of the function

hit (�) in terms of lagged observed or latent dependent variables, the Heckman discrete dynamic

model is known to be su¢ ciently �exible to accommodate a wide variety of dynamic structures such

as Markov models, Polya models, renewal processes, latent Markov models, with rich speci�cations

on disturbances. It allows for unobserved heterogeneity across the cross-sectional units and serial

correlation for the remaining disturbances. The model with social interactions in (1) is generalized

to incorporate additional dynamic e¤ects due to peers�actions.8

6As �i is an unobservable, the coe¢ cient of �i will absorb its standard deviation. So we may just assume the unit
variance of �i here.

7This assumption is reasonable for the experimental data in our empirical analysis, as we can observe the data
generating process from the very beginning.

8Hajivassiliou (2009) has generalized the model speci�cation in Mundlak (1978) and Chamberlain (1984) to a
dynamic model where the random individual component �i might be correlated with some time-varying and/or time-
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Let hit = h(y�i;t�1; � � � ; y�i;�1; Yn;t�1; � � � ; Yn;�1; Xnt; � � � ; Xn;�1; �i) for simplicity and � be the

standard normal distribution function with density �. De�ne the integral limits Lit and Uit, where

Lit = �hit and Uit =1 if yit = 1, and Lit = �1 and Uit = �hit otherwise. The joint probability

of YnT ; � � � ; Yn1 conditional on exogenous variables is

P (YnT ; � � � ; Yn1jXnT ; � � � ; Xn1)

=
Qn
i=1

R
� � �
R
�(diThiT )[

QT�1
s=1 �(di;T�shi;T�s)�[Li;T�s;Ui;T�s](vi;T�s)dvi;T�s]�(�i)d�i;

where dit = 2yit � 1 and �[Lt;Ut] is a truncated standard normal density function with support

[Lt; Ut].9 This likelihood suggests that the GHK simulator can be recursively applied to construct

a simulated likelihood. First, generate n independent standard normal random variables �i. With

initial conditions given, the random variables vit can be generated in the following steps. For

each i, from t = 1 to T � 1, (i) generate uit from the uniform [0; 1] distribution, (ii) compute

vit = �dit��1 [uit� (dithit)], and then (iii) generate the latent dependent variable y�it = hit + vit.

With m independent simulation runs, the corresponding simulated log likelihood function is given

by

L =
Pn

i=1 ln

�
1

m

Pm
j=1

QT
t=1 �(dith

(j)
it )

�
; (2)

where h(j)it = hit(y
�(j)
i;t�1; � � � ; y

�(j)
i1 ; Yn;t�1; � � � ; Yn1; Xnt; � � � ; Xn1; �(j)i ), and the superscript (j) de-

notes an independent simulation run. Thus, the simulation of the likelihood for the model (1), is

similar to one of the conventional dynamic panel models in Lee (1997).

Asymptotic properties of the simulated maximum likelihood estimator (SMLE) for cross-sectional

or short time series panel data have been studied in Hajivassiliou and McFadden (1990), Lee (1992;

1995) and Gourieroux and Monfort (1993), among others. The SMLE can be asymptotically e¢ cient

when m increases at a rate faster than n1=2. However, as the likelihood function is nonlinear, the

SMLE might have an asymptotic bias if the number of random draws to construct the likelihood

simulator does not increase fast enough relative to the sample size. When m increases at a rate

of n1=2, as shown in Lee (1995), an asymptotic bias exists in the asymptotic distribution. The

asymptotic bias will dominate the variance when m increases at a rate slower than n1=2. Lee (1995)

invariant regressors. In the empirical model of this paper, all the explanatory variables are predetermined. So we
assume that the individual component �i can be normalized to have zero mean.

9Note that the dimension of integration does not depend on the number of peers because we assume that the
current decision of a subject is only a¤ected by the observed choices and characteristics of the peers in earlier periods.
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has suggested a simple bias-correction procedure to remove the leading bias term due to simulation.

The asymptotic e¢ ciency of the bias-adjusted estimator requires only that m grows at a rate faster

than n1=4.10

4 Empirical Models and Estimation Results

In this section, we apply the dynamic discrete choice setting to investigate the evolution of subjects�

behavior in the experiment. We estimate the model on two di¤erent samples: One from the ex-

perimental sessions with EHs and the other from the sessions with ELs. With EHs, we model the

learning process of MHs, treating choices of 3-5 by MHs as limit pricing as they learn to imitate

MLs and deter entry. For games with ELs, we focus on strategic play of MLs as they attempt to

distinguish themselves from MHs through choosing output levels 5-7, thereby deterring entry. Note

that using stricter de�nitions of limit pricing such as choices of 6 and 7 by MLs in games with ELs

or 4 and 5 for MHs in games with EHs yield similar results to those reported here.

As the adjustment (learning) process for the two samples are modeled analogously, we only detail

the model speci�cation for games with EHs.

4.1 A Markov Model with Lagged Social Interactions

The unobservable incentives for MHs to limit price are characterized by a Markov dynamic discrete

choice model with lagged social interactions. The Markov model assumes a subject�s current decision

depends on his/her last decision and the feedback information from the previous round of the game.

We will relax this restrictive assumption and consider a more general dynamic process in the next

subsection.

By experimental design, a subject is randomly assigned turns as an MH in di¤erent plays of the

game within an experimental session. At the same time, a subject can observe peers�choices and Es�

responses from all previous rounds of the game. As such, we distinguish between a decision period in

which a subject plays asMH with the opportunity to limit price and a (consecutive) calendar period.

For a subject i, let Ti be the total number of decision periods in which he/she has played as an MH .

Corresponding to each decision period � (� = 1; � � � ; Ti), there is a calender period. Let ti(�) be the
10We also conducted some Monte Carlo simulation experiments for the �nite sample performance of the simulated

estimator. An appendix containing the derivation of the likelihood function and simulation results is available upon
request.
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calendar period when subject i plays as MH . The Markov model for subject i is speci�ed as

y�iti(�) = �+ �xi;ti(�)�1 + �1yi;ti(��1) + �2zi;ti(�)�1 +  ln � + ��i + "iti(�); (3)

for � = 1; � � � ; Ti. We assume that "iti(�) = �"i;ti(��1) + viti(�), and �i and viti(�) are i.i.d.N (0; 1).

As the dynamic process starts at the �rst sampling period in the experiment, the initial conditions

on all variables for t � 0 are zero. Other variables in (3) are explained below.

If the latent dependent variable y�iti(�) > 0, subject i limit prices in their �th turn as an MH ,

and the corresponding dependent variable yiti(�) is 1; yiti(�) is 0 otherwise. Explanatory variables

are on the right hand side of (3). � is a constant. xi;ti(�)�1 is the perceived entry rate di¤erential

between choices 1-2 and choices 3-5.11 Speci�cally, let dLis (IN) (respectively, d
O
is (IN)) be a dummy

variable indicating that subject i chooses 3, 4 or 5 (respectively, 1 or 2) and observes the response

IN in calendar period s. Let dL�is (IN) (respectively, d
O
�is (IN)) be the number of Ms other than

i who, in calendar period s, choose 3, 4 or 5 (respectively, 1 or 2) and observe the response IN .

De�ne dLis (OUT ), d
O
is (OUT ), d

L
�is (OUT ), and d

O
�is (OUT ) in an analogous manner, where OUT

indicates potential Es staying out. Denote the weight a player puts on entry in response to other

Ms�choices by !. The perceived entry rate di¤erential is given by

xi;ti(�)�1 =
dOi;ti(�)�1 (IN) + !d

O
�i;ti(�)�1 (IN)

dOi;ti(�)�1 + !d
O
�i;ti(�)�1

�
dLi;ti(�)�1 (IN) + !d

L
�i;ti(�)�1 (IN)

dLi;ti(�)�1 + !d
L
�i;ti(�)�1

;

where dji;ti(�)�1 = dji;ti(�)�1 (IN) + d
j
i;ti(�)�1 (OUT ) for j = L;O.12 This term serves as a proxy

for the unobservable beliefs of Ms regarding Es� responses to di¤erent choices. The time-lagged

observed dependent variable yi;ti(��1) is introduced to measure the true state dependence of the

dynamic process. The regressor zi;ti(�)�1, which is a function of Yn;ti(�)�1, denotes the proportion of

like-type Ms (other than i) limit pricing in the preceding calendar period. It captures the potential

peer group e¤ect resulting from observing other like-type Ms�previous choices. The coe¢ cient on

ln � , where � is the number of decision periods that the subject i has played as MH (including

the current decision period), collects all other experience e¤ects within an experimental session.

A random individual component �i is introduced to control for unobserved heterogeneity across

11The entry rates are calculated conditional on the output level selected, not on the type of M , since Es can not
observe Ms�type when deciding to play IN or OUT.
12We assume that (dj

i;ti(�)�1
(IN) + !dj�i;ti(�)�1

(IN))=(dj
i;ti(�)�1

+ !dj�i;ti(�)�1
) = 0:5, in the case that

dj
i;ti(�)�1

+ !dj�i;ti(�)�1
= 0 (j = L;O).
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players. The remaining disturbances are assumed to follow an AR(1) process, as we �nd in a Monte

Carlo study (available upon request) that �exible error speci�cations of this sort are favorable to

identifying potential peer group e¤ects.

We model the adjustment process of MLs� choices in experimental sessions with ELs in an

analogous manner, with xi;ti(�)�1 being the perceived entry rate di¤erential between choices 3-4 and

5-7.

By a quasi-di¤erence transformation of (3), i.e. by substituting "iti(�) = �[y�iti(��1) � (� +

xi;ti(��1)�1� + �1yi;ti(��2) + �2zi;ti(��1)�1 +  ln(� � 1) + ��i)] + viti(�) in (3), it is easy to see that

the empirical Markov model conforms to the general dynamic model (1). For subject i the likelihood

function involves (Ti�1)-dimension integrals which are analytically intractable and numerically hard

to evaluate. We circumvent this di¢ culty in the maximum likelihood estimation by a simulation

method based on the unbiased GHK simulator. Table 5 reports the SMLEs for the Markov model

based on simulations with 100 random draws using data from experimental sessions with EHs and

ELs respectively.13

The positive and statistically signi�cant SMLEs of �1 in all cases show that a subject�s current

choice depends heavily on his/her choice in the previous decision period, so that once strategic play

is initiated, it substantially increases the likelihood of it continuing in later periods. This provides

clear evidence of learning. Interaction terms (with the dummy variable NX representing sessions

with inexperienced subjects) are introduced to account for the di¤erences between experienced and

inexperienced subject sessions.14 The negative and signi�cant coe¢ cient estimate for the interaction

term of lagged choice and NX in games with ELs indicates that inexperienced subjects were much

less likely to play strategically having once chosen to do so than their experienced selves. We interpret

this as indicating that inexperienced Ms were less con�dent regarding their choice of strategic play

in games with ELs, than in games with EHs, due to the more challenging nature of the game.

Peer group e¤ects are modeled in two distinct ways in the Markov model: (i) through the entry

rate di¤erential in response to own choices and to otherMs�choices and (ii) through zi;ti(�)�1 which

captures the e¤ect of observing like-type Ms� choices. Exploring which of these two factors will

impact an M�s strategic choice and their relative importance provides much of the focus for the

13We have tried to add more interaction terms, or remove some regressors or interaction terms with insigni�cant
coe¢ cients. The estimation results are robust to these di¤erent speci�cations.
14The minus two times log likelihood ratios for testing jointly the signi�cance of those interaction terms in the

Markov model are, respectively, 8.78 for games with EH s, and 8.62 for games with ELs. Neither is signi�cant at the
5 percent level.
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analysis that follows.

For games with EHs, none of the peer group variables by itself has a statistically signi�cant

impact on MHs�likelihood of limit pricing. Further, none of the peer group coe¢ cients taken jointly

(�, !, and/or �2) are statistically signi�cant at conventional levels. However, as will be reported in

the next subsection, peer group e¤ects are identi�ed in the Polya model.

In games with ELs, the SMLEs of �2 and � are positive and statistically signi�cant, indicating

that both factors have positive impact on an ML�s decision to limit price. For the speci�cation

without interaction terms, the average marginal impact of other MLs�choices (�2) on the proba-

bility of limit pricing is 0:043.15 The average marginal impact of the entry rate di¤erential on the

probability of limit pricing is smaller, 0:033. However, the estimated ! is signi�cantly less than

1, indicating MLs place primary weight on what happens to themselves, with very limited weight

placed on what happens to others when they attempt to separate; e.g., in the speci�cation without

interaction terms, MLs place about 67 times more weight on own entry than on entry to another M

making the same choice (see Simonsohn et al., in press, for an experiment reporting similar severe

overweighting regarding own outcomes versus others in a prisoner�s dilemma experiment when, for

all practical purposes, they should be weighted equally). Further, the small weight placed on entry

in response to other Ms choices cannot be attributed to the presence of zi;ti(�)�1, as dropping it has

little impact on the coe¢ cient value for !.

The proportion ofMHs attempting to pool by choosing 3 and 4 in the previous round is introduced

as an additional explanatory variable in games with ELs because increased frequencies on this score

generates increased entry rates on 3 and 4, which in turn motivates MLs to separate. Although

positive in sign, its coe¢ cient fails to achieve statistical signi�cance in the Markov speci�cation.

The positive and signi�cant estimates of the coe¢ cient on ln � in games with EHs picks up other

experience e¤ects that fail to be captured in the model. There is a strong interaction e¤ect with

NX indicating that these factors are largely con�ned to experimental sessions with inexperienced

15For the general model (1), E(yitj(y�is; Yns; Xns; s = 1; � � � ; t � 1); Xnt; �i) = � (hit). The average marginal
e¤ect over time and individual of, say xit (which is assumed continuous), on the transition probability P (yit =
1j(Yns; Xns; s = 1; � � � ; t� 1); Xnt), is given by

1

nT

Xn

i=1

XT

t=1

Z
� � �
Z
� (hit) (@hit=@xit)f

�
y�i1; � � � ; y�i;t�1; �ijYns; Xns; s = 1; � � � ; t� 1

�
dy�i1 � � � dy�i;t�1d�i

The multiple integrals here can be approximated by simulations. We simulate h(j)it following the same procedure
as in (2). With m independent simulation runs, the corresponding (sample average) simulated marginal e¤ects isPm
j=1

Pn
i=1

PT
t=1 �(h

(j)
it )(@hit=@xit)=mnT . Results reported in this paper are based on a simulator generated from

1000 random draws.
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subjects. These unexplained learning e¤ects are one factor motivating the development of a more

general empirical model in the next subsection.

The estimated coe¢ cients of the dummies for experienced players are positive and statistically

signi�cant in games with EHs and with ELs, indicating that in both cases experienced subjects

start out with much higher levels of strategic play than their inexperienced selves. The negative and

signi�cant estimates for the constants (�) indicate that it takes time for strategic play to develop in

all cases. The larger absolute value for � in games with ELs indicates that strategic play is much

slower to emerge in this case, a fact that is quite apparent in the raw data.

Though the overall correlation in the disturbances captured by ��i + "iti(�) is positive, the

estimated AR(1) parameter � is negative. In a Monte Carlo study (available upon request), we

found that the estimator of � can be strongly downward biased when a Polya process is misspeci�ed

as a Markov process. Hence, the negative �̂ could be a downward biased estimate due to model

misspeci�cation. In the next subsection, we generalize the Markov model to a more general dynamic

process.

4.2 A Polya Model with Lagged Social Interactions

As subjects have access to all previous outcomes in an experimental session, the entire history of

past plays could be relevant to the current choices. In this subsection, we model the in�uence of all

past plays on a subject�s current decision employing a Polya process with lagged social interactions.

Similarly to the Markov model, we assume that the unobservable incentives to limit price can be

characterized by

y�iti(�) = �+ ��xi;ti(�)�1 + �1

�X
s=1

�s�11 yi;ti(��s) + �2

Pti(�)
s=1 �

s�1
2 zi;ti(�)�sPti(�)

s=1 �
s�1
2

+  ln � + ��i + "iti(�); (4)

and "iti(�) = �"i;ti(��1) + viti(�), where �i; viti(�) are i.i.d.N(0; 1). The the initial conditions on

all variables for t � 0 set to be zero. Most variables in (4) are de�ned as in the Markov model

(3), except the cumulative entry rate di¤erential �xi;ti(�)�1. Let c
j
i;ti(�)�1 (R) =

Pti(�)�1
s=1 djis (R) and

cj�i;ti(�)�1 (R) =
Pti(�)�1

s=1 dj�is (R) for j = L;O and R = IN;OUT , with djis (R) given as before.

The perceived cumulative entry rate di¤erential between �myopic�choices and strategic choices is
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given by

�xi;ti(�)�1 =
cOi;ti(�)�1 (IN) + !c

O
�i;ti(�)�1 (IN)

cOi;ti(�)�1 + !c
O
�i;ti(�)�1

�
cLi;ti(�)�1 (IN) + !c

L
�i;ti(�)�1 (IN)

cLi;ti(�)�1 + !c
L
�i;ti(�)�1

;

where cji;ti(�)�1 = cji;ti(�)�1 (IN) + c
j
i;ti(�)�1 (OUT ) for j = L;O, with ! indicating the weight a

player puts on the entries on other Ms relative to his/her own. Similar to xi;ti(�)�1 in the Markov

model (3), �xi;ti(�)�1 here represents the payo¤ incentive for M to limit price.16 The depreciation

factors �1 and �2 measure the in�uence of past plays on current choices. The coe¢ cient on the

weighted average
Pti(�)

s=1 �
s�1
2 zi;ti(�)�s=

Pti(�)
s=1 �

s�1
2 captures the cumulative e¤ect of like-type Ms�

past choices. Thus, in the Polya model, a subject�s current decision is assumed to be in�uenced

by the (weighted) average of their peers�choices over the entire history of play. As in the Markov

model, for games with ELs, we introduce the proportion of MHs attempting to pool by choosing

output levels 3 and 4 as an additional explanatory variable. Unlike the Markov model where this

value is calculated based on MHs�choices in the previous round only, we calculate its cumulative

counterpart based on all past rounds in the Polya model. Based on the GHK simulator with 100

simulation draws, the SMLEs of the Polya model using data from the experimental sessions with

EHs and ELs are reported in Tables 6 and 7 respectively.

In games with EHs and ELs, the positive and signi�cant estimates of �1 on own past choices

imply that previous strategic play substantially increases the likelihood of current strategic play.

The coe¢ cient on the interaction term between own past choices and NX (the dummy for sessions

with inexperience subjects) is not statistically signi�cant in games with EHs but is negative and

statistically signi�cant in games with ELs.17 This is similar to the Markov model, indicating that

in more di¢ cult games (with ELs), inexperienced subjects are more likely to revert back to non-

strategic play than their more experienced selves.

In games with EHs, the e¤ect of peers�past choices in model (iii) of Table 6 is positive and

statistically signi�cant for inexperienced subjects (with a t-ratio of 2.95), with no signi�cant addi-

tional learning from peers�choice for experienced players. In contrast, the coe¢ cient estimate for

16We have tried to introduce a time depreciation factor to the speci�cation of the entry rate di¤erential. However,
the estimates of ! and that depreciation factor both have huge standard errors. As an alternative, we have tried to
assign a predetermined value to the depreciation factor (like 0.2, 0.6, and 1). The estimation results are quite robust
to the predetermined value of the depreciation factor.
17The interaction terms in the Polya model are jointly signi�cant at the 5 percent level with the minus two times

log likelihood ratios being 8:86 for the games with EH s, and signi�cant at the 1 percent level with the minus two
times log likelihood ratios being 22:06 for games with ELs.
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the cumulative entry rate di¤erential is not statistically signi�cant, which also makes the estimate

of ! extremely imprecise.18

In games with ELs, cumulative e¤ects of other MLs�choices are positive and statistically signif-

icant, with even stronger e¤ects for inexperienced subjects as indicated by the positive coe¢ cient

estimate for the interaction term between otherMLs�choices and NX (with a t-ratio of 1:91). Thus,

inexperienced MLs are in�uenced more than experienced MLs by their peers�choices. But unlike in

games with EHs, experienced subjects continue to be in�uenced by their peers, indicative of the fact

that it takes longer for a separating than a pooling equilibrium to emerge. In addition, the coe¢ cient

on the cumulative entry rate di¤erential is statistically signi�cant in games with ELs. The marginal

e¤ect of the entry rate di¤erential is essentially the same as the impact of other MLs choices for

experienced subjects, but not so for inexperienced players. Rather, for inexperienced MLs, what

drives limit pricing is the frequency with which MHs chose 3-4 as the coe¢ cient value here is among

the largest reported with a t-ratio of 2:94. The increased frequency ofMHs attempting to pool raises

entry rates on 3-4, providing a clear message to MLs that it�s no longer pro�t maximizing to stick

with 4, thereby driving them to choose higher output levels in order to distinguish themselves.

In games with EHs and with ELs, the SMLEs for both �1 and �2 are positive and statistically

signi�cant, indicating that a subject�s current decisions are in�uenced by all past plays of the game,

albeit with some depreciation as both �s are less than one.19 Other experience e¤ects as represented

by ln � are not statistically signi�cant at conventional levels in the Polya model.20 Further, the sign

of � in the AR(1) disturbances, which is negative in the Markov model, now becomes positive.

One element that has been left out of the analysis so far involves distinguishing between attempts

at limit pricing that have successfully deferred entry as opposed to those that have not. To capture

this we introduce two new variables into the regressions: an M�s own successful limit pricing and

the percentage of successful limit pricing by peers. We view these new regressors as, essentially,

interaction terms between Ms� choices and Es� responses. The results are reported in the last

columns of Tables 6 and 7. Introduction of these variables has essentially no e¤ect on the estimation

results for games with EHs. For games with ELs, the new regressors are jointly signi�cant at the 1%

18Note that ! would not be identi�able if the coe¢ cient of xit were zero.
19Note, �1 and �2 are not directly comparable, as the depreciation factor �1 for own lagged choices is de�ned on the

decision period whereas the depreciation factor �2 for like-type Ms choices are de�ned on the (consecutive) calendar
period. In addition �1 is associated with a weighted sum of past choices whereas �2 is associated with a weighted
average, so that they are not comparable on that dimension either.
20 It seems plausible that the experience of being the type that can limit price is more important than that of being

the other type. We have experimented with an additional regressor capturing the experience of being the other type
of M . But the coe¢ cient of that regressor failed to be signi�cant at the conventional level.
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level. Own success at limit pricing plays a statistically signi�cant role in promoting limit pricing,

and reduces the importance of own past attempts at limit pricing (�1). Not surprisingly, MLs

receive more encouragement to play strategically following success than failure. The e¤ect of the

cumulative entry rate di¤erential diminishes, but the frequency of MHs attempting to pool stays

signi�cantly positive in sessions with inexperienced subjects, with a t-ratio of 3:49. The successful

limit pricing by peers plays no independent, statistically signi�cant, role in promoting limit pricing,

while peers attempts�at limit pricing maintains its statistical signi�cance. This is consistent with

the low estimated weight for entry on peers (!) as MLs tend to ignore Es responses to peers�limit

pricing.

The �rst columns in Tables 6 and 7 consider the impact of neglecting peers�past choices. For

games with EHs, there is little if any e¤ect on any of the estimates and only a small change in the log

likelihood value. For games with ELs, the SMLEs for the coe¢ cient of the entry rate di¤erential (�)

and the weight of entries on peers (!) are a¤ected by dropping peers�past choices most, with upward

biases. This is not too surprising since it is the entry rate di¤erential between myopic and strategic

choices that driveMLs to limit price in the �rst place. In this context what the introduction of peers�

past choices does is to better identify what information agents are focusing on that generates peer

group e¤ects in these games.

4.3 Model Selection and Cost of Learning

We prefer the Polya model to the Markov model for the following reasons. First, the Polya model

is more consistent with a priori considerations that unless payo¤s have changed, its unreasonable to

think that subjects rely strictly on what happened in the previous period only. Second, the estimated

AR(1) coe¢ cient in the error term of the Markov model is negative while that of the Polya model

is positive. This is consistent with our �nding that in Monte Carlo experiments the estimate of the

AR(1) coe¢ cient in the error term will be downward biased when a Polya model is misspeci�ed as

a Markov process.21 Further, although the Polya model does not nest the Markov model because

of the di¤erent speci�cations of some regressors, the well known Akaike information criterion (AIC)

indicates the Polya model is better than the Markov model as the former has a smaller AIC value.22

21These simulation results are available on request.
22The AIC is given as AIC = � 2

n
logL+ 2k

n
, where n is the sample size, k is the number of parameters and logL is

log likelihood of a model. For the speci�cation without interaction terms, in games with EH s, the AIC of the Markov
model is 0.9890 and the AIC of the Polya model is 0.9848; and in games with ELs, the AIC of the Markov model is
0.7322 and the AIC of the Polya model is 0.7209.
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Two questions not addressed to this point are (i) what is the �nancial cost to players resulting

from the adaptive learning process as opposed to limit pricing, and (ii) what are the implied bene�ts

of attending to the peer group e¤ects associated with observing like type Ms choices? To answer

these questions, we conduct a limited simulation study. Given the observed entry rates in the raw

data, we generate Ms� choice using the estimated Markov and Polya models. We set the initial

conditions of all variables in the dynamic process to the observed values in the �rst period of the

raw data. For the Markov model, we use the estimates without interaction terms with the dummy

variables in Table 5. For the Polya model, we use the estimates for model/speci�cation (ii) in

Tables 6 and 7.23 To calculate M�s payo¤, we assume that MH chooses 4 when limit pricing and 2

otherwise in games with EHs. In games with ELs, we assume that ML chooses 6 when limit pricing

and 4 otherwise.24 The simulation results based on 200 repetitions are reported in Tables 8 and 9.

The simulated limit pricing rates based on the estimated Markov and Polya models are reported

in column (b) of Table 8. The simulated limit pricing rates for both models are quite close to the

actual rate in the raw data.25

[Tables 8 and 9 approximately here]

Regarding (i), we look at the expected revenue loss from the adaptive learning (i.e. column (c)

of Table 9) relative to the expected payo¤ of limit pricing (i.e. column (a) of Table 9).26 This is

minimal to begin with under both models mostly because it takes some time for Es�entry decisions

to converge to the equilibrium prediction. So we focus on the expected revenue loss in later plays of

an experimental session. Instead of following the Markov learning process, MHs would have earned

13.8% (7.7%) more as inexperienced (experienced) subjects in the last 12 plays (cycle 3) of games

with EHs by always limit pricing, and MLs would have earned 7.8% (6.3%) more as inexperienced

(experienced) subjects in cycle 3 of games with ELs by always limit pricing. On the other hand,

instead of following the Polya learning process, MHs would have earned 12.7% (6.2%) more as

inexperienced (experienced) subjects in cycle 3 of games with EHs by always limit pricing, and MLs

23The simulation results based on the estimates with interactions terms with dummy regressors are similar.
24Calculations based on choice of 3 versus 2 in games with EH s and those based on choice of 5 versus 4 in games

with ELs are similar to what are reported here.
25For both models, the biggest deviation of the simulated rates from the actual rate occurs in the last 12 plays

(cycle 3) of the experienced-subject sessions. This is mainly because most experienced-subject sessions only last 24
plays (2 cycles). There are only a small number of observations for cycle 3 in those sessions.
26One limitation on the following counterfactual study is Es�choices are based on the experimental data, whereas

more limit pricing would be expected to impact Es�choices. However, the fact that Es do not play equilibrium in the
data (e.g., always entering on 4 and always staying out on 6 in games with ELs) reduces the losses resulting from the
adaptive learning process versus strict limit pricing.
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would have earned 7.4% (5.4%) more as inexperienced (experienced) subjects in cycle 3 of games

with ELs by always limit pricing.27 Ms are slightly better o¤ by following the Polya process than

following the Markov process.

With respect to the question (ii) above, we look at the average di¤erence in limit pricing rate and

payo¤ of simulated learning process with and without like-type M peer group e¤ects (i.e. columns

(b) and (c) of Table 8 and columns (c) and (d) of Table 9). In cycle 3 of games with EHs, the average

di¤erence in the rate of limit pricing is less than 2% and the average di¤erence in payo¤s is less than

1% for both inexperienced and experienced subjects under the Markov learning process. The average

di¤erence in limit pricing is 18.8% (13.4%) and the average di¤erence in payo¤s is 3.6% (3.7%) for

inexperienced (experienced) subjects under the Polya learning process. In cycle 3 of games with

ELs, for inexperienced subjects, the average di¤erence in limit pricing is 17.4% (42.1%) under the

Markov (Polya) learning process, but the average di¤erence in payo¤s is minimal (less than 1%) in

both cases. For experienced players, the average di¤erence in limit pricing is 23.2% (46.5%) and

the average di¤erence in payo¤s is 3.3% (6.0%) under the Markov (Polya) learning process. The

reason limit pricing is not that rewarding in payo¤ as it should be is that the observed entry rate in

the raw data converges to the equilibrium prediction quite slowly, especially in game with ELs. For

example, in cycle 3 of an inexperienced-subject (experienced-subject) session with ELs, the entry

rate on choice 4 (i.e., not limit pricing) is 59.3% (68.2%) instead of 100% predicted by the Nash

equilibrium.

5 Summary and Conclusions

We have investigated learning and peer group e¤ects in laboratory experiments based on Milgrom

and Roberts�(1982) entry limit pricing game. We employed both Markov and Polya models with

lagged social interactions to characterize the development of strategic play over time. Compared to

the Markov model, the Polya model has a more natural justi�cation and provides a slightly better

�t to the data in terms of the AIC criteria. Both models tell the same story with respect to peer

group e¤ects in that entry rates play a signi�cant role in motivating strategic play as does strategic

27Translated into the dollar payo¤s employed in the Ohio State sessions, for the Markov model these amount to
losses per play of the game of 11.2 cents (7.2 cents) for inexperienced (experienced) subjects in games with EH s and
9.3 cents (8.3 cents) per play of the game for inexperienced (experienced) players in games with ELs. For the Polya
model these amount to losses of 10.6 cents (5.9 cents) for inexperienced (experienced) subjects in games with EH s
and 8.9 cents (7.3 cents) per play of the game for inexperienced (experienced) players in games with ELs.
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play of like-type monopolists.

From a methodological point of view the dynamic panel data model allows us to study the

adjustment process in substantially more detail than past studies that have typically employed

panel data models. The latter allows one to determine correlations between the aggregate frequency

of strategic play and subjects� experience but reveals very little about the detailed nature of the

learning process. However, there is a trade-o¤ between the more detailed modeling employed in

the present study and panel data models with time dummies in that the present analysis typically

requires substantially more data than the latter. In the present case we have employed data from

a large number of experimental sessions collected from several di¤erent papers. To get some idea

of the data session requirements to estimate the present model, we have played with estimating

the model for games with ELs under several natural ways of breaking up the data to get some

idea of the sensitivity of our results to the number of experimental sessions available to work with.

Results are sensitive to including data from inexperienced versus experienced sessions: it is easier

to identify the role of like-type monopolists�choices with more inexperienced subject sessions, and

easier to identify the role of entrants� responses with more experienced subject sessions. What

we can say is that sometimes we can distinguish between these two e¤ects with as few as 7-10

experimental sessions, but that in general it is far better to have more sessions. As such it may be

impractical to employ dynamic discrete choices learning models with social interactions within any

given experimental study as the data requirements are too intense, but are rather more appropriately

employed in a meta analysis of several di¤erent experimental studies.

The main substantive �nding of the present study relates to peer group e¤ects in learning. The

analysis shows that subjects respond to several di¤erent types of peer group e¤ects: (i) opponents�

(entrants�) behavior in the game (both in terms of responses to a player�s own choices and to other

players�choices) and (ii) peers� (like-type monopolists�) past decisions. One would expect agents

to respond to opponents� behavior in strategic interactions. From a theoretical perspective, one

would expect that agents would (or at least should) place more weight on the population sample

data than on one�s own experience, as the former is far more informative. Yet this is not what

happens with respect to direct observation of opponents choices, where the weight on the entry rate

di¤erential for the population sample (!) is small in size and not signi�cantly di¤erent from zero in

both models. This is not entirely unanticipated from a behavioral perspective. In a recent paper,

Simonsohn et al. (2008) look at repeated game experiments in which groups of players are randomly
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rematched in every round and receive feedback about the actions and outcomes of all players. They

�nd that, in a repeated prisoner�s dilemma game, players are substantially more likely to cooperate

when another player has cooperated with them in the last period than to the overall percentage

of cooperators in last period. Further, the attention paid to percentage of other cooperators is

substantially more mixed than to their own experience as the former does not rise to statistical

signi�cance at conventional levels, while the latter does.28

One question that has not been addressed so far is if the peer group e¤ect of observing what

like-type monopolists are doing is a pure imitation e¤ect, or an alternative/additional measure

players use to determine the likelihood of success at limit pricing. Although we are not able to

answer this question on the basis of the data reported here, a subsequent experiment using two

person teams as decision makers suggests that something more than pure imitation is at work.

In this experiment team dialogues were analyzed and coded into a number of di¤erent categories

to get some insight into players�decision processes. First, consistent with the peer group e¤ects

identi�ed here, by far the highest single coded category related to the information feedback players

got regarding otherMs choices and responses to same (Cooper and Kagel, 2005). Another frequently

coded category captured how teammates justi�ed strategic play to each other. The most frequently

coded subcategory here consisted of Ms explicitly reasoning from the point of view of Es potential

responses to their choices (reasoning from a game theoretic point of view).29 Having a conversation

of this sort proved to be a very good predictor of whether or not, having played strategically once,

a team continued to play strategically. This suggests that while looking at peer Ms choices, and

Es responses to same, may motivate strategic play initially, it takes some understanding of the

underlying strategic interactions, to generate continued strategic play.
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Table 1: A Monopolist�s Payo¤s

MH (High Cost M) ML (Low Cost M)

Your X Y X Y Your

Choice (In) (Out) (In) (Out) Choice

1 150 426 250 542 1

2 168 444 276 568 2

3 150 426 330 606 3

4 132 408 352 628 4

5 56 182 334 610 5

6 �188 �38 316 592 6

7 �292 �126 213 486 7

Source: Cooper et al. (1997b).

Table 2: A High Cost Entrant�s Payo¤s

M Player�s Type

MH ML

Your Action (High Cost M) (Low Cost M)

Choice Your Payo¤ Your Payo¤ Expected Valuea

X (In) 300 74 187

Y (Out) 250 250 250

a Based on prior distribution (50% MH ; 50% ML) of M types.

Source: Cooper et al. (1997b).
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Table 3: A Low Cost Entrant�s Payo¤s

M Player�s Type

MH ML

Your Action (High Cost M) (Low Cost M)

Choice Your Payo¤ Your Payo¤ Expected Valuea

X (In) 500 200 350

Y (Out) 250 250 250

a Based on prior distribution (50% MH ; 50% ML) of M types.

Source: Cooper et al. (1997b).

Table 4: Experimental Treatments

Payo¤ Tables Number of Sessions Location Dates BNE Prediction

GCa MC

1 & 2 (EHs) 2 (30) / 0 (0)b 5 (72) / 4 (41) Pittsburgh 03/93-03/98 Pure-strategy pooling &

5 (70) / 4 (50) 4 (60) / 3 (44) Columbus 04/01-03/02 separating equilibria exist

1 & 3 (ELs) 7 (108) / 4 (62) 8 (110) / 5 (66) Pittsburgh 03/93-03/98 No pure-strategy

8 (128) / 7 (100) 4 (62) / 4 (54) Columbus 03/01-03/05 pooling equilibria exist
aGC: generic context; MC: meaningful context.
bnumber of inexperienced-subject sessions / number of experienced-subject sessions; number of subjects in parentheses.
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Table 5: SMLEs for the Markov Model
High-Cost Type Entrants� Low-Cost Type Entrants��

w/ interactions w/ interactions

entry rate di�erential (�) 0:105 (:084) 0:184 (:182) 0:335 (:072)c 0:389 (:106)c

entry rate di�erential �NX - �0:154 (:195) - �0:070 (:123)
weight of entries on peers (!) 0:001 (:261) 0:525 (2:84) 0:015 (:076) 0:018 (:079)

own past choices (�1) 0:829 (:181)c 0:811 (:238)c 1:768 (:101)c 2:033 (:130)b

own past choices �NX - 0:137 (:209) - �0:397 (:141)c

peers�past choices (�2) 0:050 (:127) �0:071 (:285) 0:434 (:118)c 0:365 (:163)b

peers�past choices �NX - 0:113 (:317) - 0:121 (:236)

% of MH choosing 3,4 - - 0:038 (:099) �0:105 (:183)
% of MH choosing 3,4 �NX - - - 0:226 (:226)

experience in a session () 0:222 (:080)c �0:119 (:211) 0:052 (:048) �0:014 (:077)
experience in a session �NX - 0:387 (:206) - 0:080 (:087)

constant (�) �0:554 (:154)c �0:627 (:153)c �1:705 (:097)c �1:731 (:106)c

random e¤ects (�) 1:100 (:100)c 1:061 (:096)c 0:763 (:061)c 0:752 (:062)c

serial correlation (�) �0:139 (:099) �0:189 (:097)a �0:260 (:051)c �0:250 (:055)c

Dummies:

sessions w/ experienced players 0:674 (:132)c 1:015 (:236)c 0:790 (:078)c 0:883 (:145)c

sessions w/ meaningful context �0:089 (:160) �0:080 (:158) �0:082 (:094) �0:075 (:094)

Log Likelihood �1070:53 �1066:14 �1663:94 �1659:63
NX is a dummy variable for experimental sessions employing subjects with no experience of the same or related games
� 2185 observations on MH ;

�� 4575 observations on ML

a signi�cantly di¤erent from 0 at the 10 percent level
b signi�cantly di¤erent from 0 at the 5 percent level
c signi�cantly di¤erent from 0 at the 1 percent level

standard errors in parentheses
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Table 6: SMLEs for the Polya Model (Experiments with High-Cost Type Entrants)

model (i) model (ii) model (iii) model (iv)

cumulative entry rate di¤. (�) 0:074 (:135) 0:046 (:135) 0:241 (:212) 0:173 (:180)

cumulative entry rate di�: �NX - - �0:227 (:263) -

weight of entries on peers (!) 0:528 (5:42) 0:556 (9:20) 0:652 (5:94) 0:947 (5:06)

own past choices (�1) 0:530 (:164)
c

0:554 (:163)
c

0:470 (:182)
c

0:498 (:179)c

own past choices �NX - - 0:152 (:142) -

own successful limit pricing - - - 0:083 (:107)

depreciation factor (�1) 0:593 (:150)
c

0:585 (:147)
c

0:512 (:170)
c

0:581 (:149)c

peers�past choices (�2) - 0:464 (:252)
a �0:387 (:519) 0:797 (:360)b

peers�past choices �NX - - 1:290 (:616)
b -

peers�successful limit pricing - - - �0:565 (:445)
depreciation factor (�2) - 0:929 (:321)

c
0:990 (:194)

c
0:895 (:271)c

experience in a session () 0:103 (:109) 0:040 (:111) 0:043 (:110) 0:044 (:113)

constant (�) �0:401 (:141)c �0:534 (:156)c �0:719 (:168)c �0:544 (:157)c

random e¤ects (�) 0:963 (:126)
c

0:941 (:124)
c

0:961 (:122)
c

0:938 (:126)c

serial correlation (�) 0:103 (:107) 0:084 (:106) 0:042 (:118) 0:088 (:107)

Dummies:

sessions w/ experienced players 0:624 (:138)
c

0:541 (:152)
c

1:217 (:314)
c

0:556 (:150)c

sessions w/ meaningful context �0:105 (:154) �0:112 (:153) �0:135 (:157) �0:118 (:153)

Log Likelihood �1065:78 �1063:86 �1059:43 �1062:87
model (i) only accounts for opponents�actions;

model (ii) accounts for peers�actions and opponents�responses;

model (iii) is model (ii) with some interaction terms with NX (dummy for sessions with inexperienced subjects);

model (iv) accounts for peers�actions, opponents�responses, and their interaction terms (i.e. outcomes of peers�actions);
a signi�cantly di¤erent from 0 at the 10 percent level
b signi�cantly di¤erent from 0 at the 5 percent level
c signi�cantly di¤erent from 0 at the 1 percent level

standard errors in parentheses
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Table 7: SMLEs for the Polya Model (Experiments with Low-Cost Type Entrants)

model (i) model (ii) model (iii) model (iv)

cumulative entry rate di¤. (�) 0:652 (:121)c 0:437 (:119)c 0:529 (:182)b 0:202 (:124)

cumulative entry rate di�: �NX - - �0:155 (:192) -

weight of entries on peers (!) 0:055 (:042) 0:014 (:028) 0:013 (:027) 0:010 (:051)

own past choices (�1) 0:858 (:150)c 0:872 (:161)c 1:045 (:178)c 0:447 (:183)b

own past choices �NX - - �0:253 (:101)c -

own successful limit pricing - - - 0:634 (:122)c

depreciation factor (�1) 0:634 (:090)c 0:598 (:099)c 0:590 (:096)c 0:587 (:105)c

peers�past choices (�2) - 0:964 (:218)c 0:617 (:257)b 0:861 (:454)a

peers�past choices �NX - - 0:827 (:432)a -

peers�successful limit pricing - - - 0:235 (:490)

depreciation factor (�2) - 0:784 (:135)c 0:822 (:116)c 0:793 (:126)
c

% of MH choosing 3,4 (cumulative) 0:480 (:209)b 0:302 (:207) �0:275 (:280) 0:313 (:209)

% of MH choosing 3,4 �NX - - 1:248 (:424)c -

experience in a session () �0:024 (:059) �0:066 (:059) �0:101 (:062) �0:052 (:059)
constant (�) �1:576 (:113)c �1:613 (:115)c �1:856 (:134)c �1:629 (:118)c

random e¤ects (�) 0:695 (:073)c 0:723 (:074)c 0:699 (:076)c 0:745 (:076)c

serial correlation (�) 0:251 (:096)c 0:223 (:102)b 0:233 (:102)b 0:208 (:111)a

Dummies:

sessions w/ experienced players 0:735 (:097)c 0:574 (:102)c 1:139 (:183)c 0:605 (:104)c

sessions w/ meaningful context �0:150 (:095) �0:127 (:096) �0:117 (:097) �0:089 (:099)

Log Likelihood �1647:38 �1635:95 �1624:92 �1621:65
model (i) only accounts for opponents�actions;

model (ii) accounts for peers�actions and opponents�responses;

model (iii) is model (ii) with some interaction terms with NX (dummy for sessions with inexperienced subjects);

model (iv) accounts for peers�actions, opponents�responses, and their interaction terms (i.e. outcomes of peers�actions);
a signi�cantly di¤erent from 0 at the 10 percent level
b signi�cantly di¤erent from 0 at the 5 percent level
c signi�cantly di¤erent from 0 at the 1 percent level

standard errors in parentheses
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Table 8: Simulated Percentage of Limit Pricing

Markov Model Polya Model

(a) (b) (c) (b) (c)

Experiments with High-Cost Entrants

Inexperienced subjects

cycle 1 42:2% 45:4% 44:9% 45:3% 40:3%

cycle 2 58:6% 56:1% 55:2% 57:9% 49:5%

cycle 3 57:6% 60:7% 59:8% 63:3% 53:3%

Experienced subjects

cycle 1 66:8% 66:4% 65:8% 66:3% 59:5%

cycle 2 63:1% 76:4% 75:4% 78:2% 68:3%

cycle 3 45:8% 79:4% 78:5% 83:2% 73:4%

Experiments with Low-Cost Entrants

Inexperienced subjects

cycle 1 14:1% 14:7% 13:6% 15:7% 13:4%

cycle 2 24:0% 20:6% 18:0% 22:9% 17:4%

cycle 3 29:0% 23:6% 20:1% 27:0% 19:0%

Experienced subjects

cycle 1 41:2% 45:9% 41:1% 45:1% 35:2%

cycle 2 56:3% 67:7% 56:5% 64:9% 46:3%

cycle 3 66:2% 73:4% 59:6% 76:6% 52:3%

(a) % of limit pricing in the raw data;

(b) simulated % of limit pricing with estimated coe¢ cients;

(c) simulated % of limit pricing with estimated coe¢ cients

under the restriction that �2 = 0.
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Table 9: Simulated Average Payo¤ of Monopolists

Markov Model Polya Model

(a) (b) (c) (d) (c) (d)

Experiments with High-Cost Entrants

Inexperienced subjects

cycle 1 306:0 308:4 308:3 308:3 308:3 308:5

cycle 2 304:5 299:0 298:7 298:5 298:9 297:8

cycle 3 375:9 326:8 330:3 329:3 333:4 321:8

Experienced subjects

cycle 1 329:9 314:7 314:6 314:3 314:5 311:4

cycle 2 375:0 322:4 341:3 339:9 343:9 329:8

cycle 3 402:9 327:2 374:1 372:9 379:4 365:7

Experiments with Low-Cost Entrants

Inexperienced subjects

cycle 1 498:5 506:7 506:7 506:8 506:6 506:8

cycle 2 516:6 492:4 491:3 490:5 492:0 490:3

cycle 3 513:1 478:6 475:9 474:2 477:6 473:7

Experienced subjects

cycle 1 555:5 500:6 504:9 500:4 504:1 494:9

cycle 2 564:4 513:4 526:7 513:7 523:5 501:8

cycle 3 564:4 522:2 531:2 514:1 535:3 504:9

(a) expected payo¤ of limit pricing based on the observed entry rates;

(b) average payo¤ in the raw data;

(c) simulated average payo¤ with estimated coe¢ cients;

(d) simulated average payo¤ with estimated coe¢ cients

under the restriction that �2 = 0.
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Figure 1: Experiments with High-Cost Type Entrants under Meaningful Context
Inexperienced-Subject Sessions
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Figure 2: Experiments with Low-Cost Type Entrants under Meaningful Context
Inexperienced-Subject Sessions
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