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Abstract

We introduce a social interaction model with ordered choices. We provide a micro-foundation

for the econometric model based on an incomplete information network game, and characterize

the suffi cient condition for the existence of a unique equilibrium of the game. We discuss the

identification of the model, and propose to estimate the model by the NFXP and NPL algo-

rithms. We conduct Monte Carlo simulations to investigate the finite sample performance of

these two estimation methods.
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1 Introduction

Estimation and inference methods have been proposed for social interaction models, with binary

choices (e.g., Brock and Durlauf, 2001; Lee et al., 2014; Lin and Xu, 2016), unordered multinomial

choices (e.g., Brock and Durlauf, 2002; Brock and Durlauf, 2006; Xu, 2016), and continuous choice

variables (e.g., Bramoullé et al., 2009; Lee et al., 2010; Liu and Lee, 2010). However, little work

has been done on the analysis of network models with ordered multinomial choices. Network data

are usually from surveys, and thus the response variable of an empirical study is often ordinal in

nature. For example, in the widely used National Longitudinal Study of Adolescent Health (Add

Health) data,1 academic performance in a certain subject (“A”, “B”, “C”, “D or lower”), study

effort (“I try very hard to do my best”, “I try hard enough, but not as hard as I could”, “I don’t try

very hard”, “I never try at all”), and smoking and drinking frequency (“never”, “once or twice”,

“once a month or less”, “2 or 3 days a month”, “once or twice a week”, “3 to 5 days a week”,

“nearly everyday”) are all coded as ordinal variables.

In this paper, we introduce a social interaction model with ordered choices. We provide a

micro-foundation for the econometric model based on an incomplete information network game. We

characterize the suffi cient condition for the existence of a unique rational expectation equilibrium

of the game, which in turn guarantees the coherency and completeness of the econometric model.

We discuss the identification and estimation of the econometric model. As the econometric model

involves the equilibrium rational expectation that needs to be solved from a fixed point mapping,

it can be estimated by the nested fixed point (NFXP) algorithm (Rust, 1987) or the nested pseudo

likelihood (NPL) algorithm (Aguirregabiria and Mira, 2007). We investigate the finite sample

performance of these two estimation methods in Monte Carlo simulations. We find the NFXP

estimator has a smaller standard deviation, while the NPL estimator is computationally more

effi cient.

The rest of the paper is organized as follows. Section 2 presents the econometric model and

provides the suffi cient condition for the existence of a unique equilibrium of the underlying network

1For more information about the Add Health data, see http://www.cpc.unc.edu/projects/addhealth.
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game. Section 3 discusses the identification of the model. Section 4 explains how to estimate the

model parameters by the NFXP and NPL algorithms and how to interpret parameter estimates in

terms of marginal effects. Section 5 provides simulation results on the finite sample performance

of the proposed NFXP and NPL estimators. Section 6 concludes. The proofs are collected in the

online appendix.

2 Model

A set of individuals N = {1, · · · , n} interacts within a network. Let W = [wij ] be an n × n

predetermined adjacency matrix, where the (i, j)th element wij (wij ≥ 0) captures the proximity

of individuals i and j in the network. As a normalization, wii = 0 for all i. We assume the network

topology captured byW is common knowledge among all individuals in the network.

Suppose all individuals in the network face m ordered alternatives. Individual i chooses alter-

native k, i.e. yi = k, if and only if

αk−1 < y∗i ≤ αk

where

y∗i = λ
∑n

j=1 wijy
E(i)
j + x′iβ + εi (1)

and αk’s are threshold parameters such that −∞ = α0 < α1 < · · · < αm−1 < αm =∞. In equation

(1), yE(i)j denotes individual i’s subjective expected value of yj .
∑n

j=1 wijy
E(i)
j is the weighted sum of

individual i’s subjective expectations on her peers’choices, and the coeffi cient λ represents the peer

effect. xi is a column vector of exogenous variables that captures the characteristics of individual

i and her peers. For instance, let X be an n × q matrix of observations on exogenous individual

characteristics. Then, a possible specification of X = [x1, · · · ,xn]′ is given by X = [X,WX], with

the coeffi cients of WX representing exogenous contextual effects (Manski, 1993). εi is a random

shock that is independent ofW and X and is independent and identically distributed (i.i.d.) with

a distribution function F (·). Only individual i observes εi while everyone in the network observes
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X. Then, givenW and X, the probability that individual i chooses alternative k is2

Pr(yi = k|W,X) = F (αk − λwiyE(i) − x′iβ)− F (αk−1 − λwiyE(i) − x′iβ),

for k = 1, · · · ,m, where wi denotes the ith row ofW and yE(i) = [yE(i)1 , · · · , yE(i)n ]′. Let yEi denote

the mathematical expectation of yi. Then,

yEi ≡ E(yi|W,X) =
∑m

k=1 kPr(yi = k|W,X) = m−
∑m−1

k=1 F (αk − λwiy
E(i) − x′iβ).

In the rational expectation equilibrium (see, e.g., Brock and Durlauf, 2001; Lee et al., 2014), the

subjective expectation coincides with the mathematical expectation such that yE(i) = yE, where

yE = [yE1 , · · · , yEn ]′, for all i. Thus, in the equilibrium, the rational expectation is characterized by

the following system of equations,

yE = ~h(yE; δ), (2)

where ~h(yE; δ) = [h1(yE; δ), · · · , hn(yE; δ)]′ with

hi(y
E; δ) = m−

∑m−1
k=1 F (αk − λwiy

E − x′iβ),

and δ = (α1, · · · , αm−1, λ,β′)′. A suffi cient condition for the existence of a unique solution to

the system of equations (2) is given as follows. For an n × m matrix A = [aij ], let the row

sum and column sum matrix norms of A be denoted by ||A||∞ = maxi=1,··· ,n
∑m

j=1 |aij | and

||A||1 = maxj=1,··· ,m
∑n

i=1 |aij | respectively.

Assumption 1. (i) ε1, · · · , εn are random shocks that are independent of W and X and are

i.i.d. with a continuous distribution function F (·) and density function f(·). (ii) |λ| < [(m −

1) supu f(u)min{||W||∞, ||W||1}]−1.

If W is row-normalized with
∑m

j=1 wij = 1 for all i, then ||W||∞ = 1. If εi follows the

standard normal distribution, then supu f(u) = 1/
√
2π. If εi follows the logistic distribution, then

2Note that F (α0 − λ
∑n
j=1 wijy

E(i)
j − x′iβ) = 0 and F (αm − λ

∑n
j=1 wijy

E(i)
j − x′iβ) = 1.
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supu f(u) = 1/4. Hence, with a row-normalized adjacency matrix, Assumption 1 holds for an

ordered probit social interaction model if |λ| <
√
2π/(m− 1), and holds for an ordered logit social

interaction model if |λ| < 4/(m− 1). It is worth noting that, when m = 2, Assumption 1 coincides

with the suffi cient condition for the existence of a unique rational expectation equilibrium of the

social interaction model with binary outcomes in Lee et al. (2014).

Proposition 1. Under Assumption 1, the social interaction model with ordered outcomes has a

unique rational expectation equilibrium.

When Assumption 1 holds, the contraction mapping property of ~h(·) not only guarantees the

coherency and completeness of the model (Tamer, 2003), but also suggests the system of equations

(2) can be solved by recursive iterations.

3 Identification

For identification, we follow Lee et al. (2014), Xu (2016), Lin and Xu (2016) and others by assuming

F (·) is a strictly increasing distribution function with unity variance that is known to the econo-

metrician.3 Furthermore, as in a standard ordered choice model (McKelvey and Zavoina, 1975), we

impose an identification constraint that X does not have a constant column (i.e., the intercept is

set to be zero).4

Given the network topology W, two sets of parameters, δ = (α1, · · · , αm−1, λ,β′)′ and δ̃ =

(α̃1, · · · , α̃m−1, λ̃, β̃
′
)′, are observationally equivalent if

Pr(yi ≤ k|W,X) = F (αk − λwiyE − x′iβ) = F (α̃k − λ̃wiỹE − x′iβ̃),

for k = 1, · · · ,m − 1 and for any X in its support, where, under Assumption 1, yE and ỹE are

3 In constrast, Brock and Durlauf (2007) consider the identification of binary choice group interaction models when
the distribution of εi is unknown. In this paper, we discuss identification assuming F (·) is known as the proposed
estimation procedure is parametric in nature.

4 Instead of dropping the intercept, one could impose an identification constraint that one of the threshold para-
meters αk is a known constant (e.g., α1 = 0).
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uniquely determined by

yEi = m−
∑m−1

k=1 F (αk − λwiy
E − x′iβ)

ỹEi = m−
∑m−1

k=1 F (α̃k − λ̃wiỹ
E − x′iβ̃)

for i = 1, · · · , n, respectively. Identification holds if observational equivalence of δ and δ̃ implies

δ = δ̃. Let Z = [ιn,WyE,X], where ιn is an n× 1 vector of ones.5

Assumption 2. (i) F (·) is a strictly increasing distribution function with unity variance that is

known to the econometrician. (ii) plimn→∞n
−1Z′Z exists and is a finite positive definite matrix of

full rank.

Proposition 2. Under Assumptions 1 and 2, the social interaction model with ordered outcomes

is identified.

4 Estimation

One way to estimate this model is to use the NFXP algorithm. The NFXP algorithm was proposed

by Rust (1987) for the estimation of dynamic discrete choice models, and has recently been applied

in Lee et al. (2014) and Yang and Lee (2017) among others for the estimation of discrete choice

social interaction models. For the estimation of the social interaction model with ordered choices,

the NFXP algorithm use an inner loop that solves the system of equations (2) for yE by recursive

iterations at each candidate parameter value of δ = (α1, · · · , αm−1, λ,β′)′ in the search for the

maximum of the log-likelihood function

lnL(δ;yE) =

n∑
i=1

m∑
k=1

dik ln
[
F (αk − λwiyE − x′iβ)− F (αk−1 − λwiyE − x′iβ)

]
(3)

where dik = 1 if yi = k and dik = 0 otherwise.

5Although yE is unobservable, under Assumptions 1 and 2, it is a well defined, known function of the observables,
W and X, and model parameters δ.
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A computationally more effi cient estimation method for this model is the NPL algorithm pro-

posed by Aguirregabiria and Mira (2007). This method has recently been adopted by Lin and Xu

(2016) and Liu (2017) for the estimation of large network games. For the estimation of the social

interaction model with ordered choices, the NPL algorithm starts from an arbitrary initial value

yE(0) in its support and takes the following iterative steps:

Step 1 Given yE(t−1), obtain δ̂(t) = argmaxδ lnL(δ;y
E
(t−1)), with the log-likelihood function defined

in (3).

Step 2 Given yE(t−1) and δ̂(t), obtain y
E
(t) =

~h(yE(t−1); δ̂(t)), with the best response function defined

in (2).

Step 3 Update yE(t−1) to y
E
(t) in Step 1 and repeat Steps 1 and 2 until the process converges.

Kasahara and Shimotsu (2012) show that a key determinant of the convergence of the NPL

algorithm is the contraction property of (2), which is ensured by Assumption 1. When the NPL

algorithm converges, the NPL estimator δ̂ satisfies δ̂ = argmax lnL(δ; ŷE), where ŷE is the unique

solution of the system of equations yE = ~h(yE; δ̂). Under some standard regularity conditions, it

follows by a similar argument as in Aguirregabiria and Mira (2007) and Lin and Xu (2016) that

the NPL estimator is root-n consistent and asymptotically normal.

As in other discrete choice models, parameter estimates can be interpreted in terms of marginal

effects. With social interaction, marginal effects should incorporate changes in expected choices of

all individuals in the network caused by the change of an explanatory variable. There are two types

of marginal effects – direct and indirect marginal effects. The direct marginal effect captures the

impact of a unit change in an explanatory variable of an individual on her own choice probability.

The indirect marginal effect captures the impact of a unit change in an explanatory variable of an

individual on the choice probabilities of the other individuals in the network.

Formally, the average direct marginal effect (ADME) of a continuous explanatory variable xih
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on the probability of individual i choosing alternative k is6

ADMEk,h =
1

n

n∑
i=1

(fi,k−1 − fi,k)(λwi
∂yE

∂xih
+ βh)

and the average indirect marginal effect (AIME) of a continuous explanatory variable xih on the

probability of individual j (j 6= i) choosing alternative k is

AIMEk,h =
1

n

n∑
i=1

n∑
j=1,j 6=i

(fj,k−1 − fj,k)λwj
∂yE

∂xih

where fi,k = f(αk − λwiy
E − x′iβ) and f(·) is the density function of εi. The marginal effect

includes a term ∂yE/∂xih, which represents the impact of a unit change in an explanatory variable

on the rational expectation of equilibrium choices. Using the implicit function theorem,

∂yE

∂xih
= (In − λDW)−1D

∂X

∂xih
β.

where D = diagni=1(
∑m−1

k=1 fi,k).

5 Monte Carlo Experiment

To investigate the finite sample performance of the proposed estimation procedures, we conduct a

limited simulation study with the latent variable given by

y∗i = λ
∑n

j=1 wijy
E(i)
j + β1xi + β2

∑n
j=1 wijxj + εi,

where xi and εi are, respectively, i.i.d. standard normal and logistic random variables. In the ex-

periment, we consider a circular network where the n individuals are equidistantly located around a

circle and are only connected with the nearest neighbors. The non-zero elements of the correspond-

ing adjacency matrixW = [wij ] are w1,2 = w1,n = wn,1 = wn,n−1 = 1/2 and wi,i−1 = wi,i+1 = 1/2

6For notational simplicity, in the derivation of marginal effects, we assume the model does not include a contextual
effect regressor such that ∂xjg/∂xih = 0 if i 6= j or g 6= h.

7



for i = 2, · · · , n − 1. We set λ = 0.5, β1 = β2 = 1, and m = 3 with the threshold parameters

α1 = 0 and α2 = 1. We conduct 1000 repetitions in the simulation with n ∈ {500, 1000, 2000}. We

report the mean and standard deviation (SD) of the empirical distributions of the NFXP and NPL

estimates in Table 1. We also report the average computation time (in seconds) per repetition of

the Monte Carlo simulation.7

Table 1: Monte Carlo Simulation Results
λ = 0.5 β1 = 1.0 β2 = 1.0 α1 = 0.0 α2 = 1.0 computation time

NFXP (seconds)
n = 500 0.438(0.483) 1.023(0.150) 1.031(0.263) −0.151(1.070) 0.862(1.077) 0.347
n = 1000 0.453(0.336) 1.018(0.109) 1.025(0.190) −0.114(0.752) 0.894(0.751) 0.416
n = 2000 0.454(0.241) 1.014(0.078) 1.022(0.133) −0.105(0.536) 0.900(0.536) 0.538
NPL
n = 500 0.471(0.533) 1.016(0.156) 1.012(0.287) −0.078(1.181) 0.935(1.188) 0.233
n = 1000 0.490(0.380) 1.010(0.116) 1.005(0.208) −0.031(0.849) 0.977(0.849) 0.257
n = 2000 0.496(0.274) 1.004(0.083) 1.002(0.147) −0.012(0.609) 0.993(0.609) 0.311

Mean(SD)

First, we notice from the simulation results that the estimates of the peer effect coeffi cient λ

and threshold parameters α1 and α2 are downwards biased. The bias is more severe for the NFXP

estimator. The bias reduces as the sample size increases. When n = 2000, the NPL estimator is

essentially unbiased. Second, as the NPL estimator maximizes the “pseudo”log-likelihood function

evaluated at yE(t−1) that is not necessarily the equilibrium y
E associated with δ in its every iteration,

the NPL estimator may not be asymptotically as effi cient as the NFXP estimator. This is reflected

by the slightly larger standard deviations of the NPL estimator. Finally, as the NPL algorithm

does not require to solve the fixed point mapping (2) at each candidate parameter value of δ in the

search for the maximum of the log-likelihood function, it is faster than the NFXP algorithm. From

the last column of Table 1, we can see that the computational advantage of the NPL estimator is

more pronounced when the sample size is large.

7The computation is conducted on a PC with an Intel(R) Core(TM) i7-6700 CPU @ 3.4 GHz and 32 GB RAM.
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6 Summary

In this paper, we introduce a new econometric model for the analysis of social networks with ordered

choices. The specification of the econometric model can be motivated by an incomplete information

network game. We provide the suffi cient condition for the existence of a unique equilibrium of the

underlying network game. We discuss the identification of the model and propose to estimate the

model by the NFXP and NPL algorithms. We derive the marginal effect formula that facilitates the

interpretation of the estimated parameters. We also conduct simulation experiments to study the

finite sample performance of the proposed NFXP and NPL estimators. We find the NFXP estimator

has a smaller standard deviation, while the NPL estimator is computationally more effi cient.
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A Proofs

Proof of Proposition 1. Under Assumption 1 (i), ~h(·) is continuous, and thus the existence of a

solution to the system of equations

yE = ~h(yE), (A.1)

is guaranteed by the Brouwer fixed-point theorem. By the contraction mapping theorem, the system

of equations (A.1) has a unique solution if ~h(·) is a contraction mapping with respect to some matrix

norm || · ||. Thus, to show the desired result, we only need to show that, under Assumption 1 (ii),
~h(·) is a contraction mapping.

First, we show that ~h(·) is a contraction mapping with respect to a (submultiplicative) matrix

norm || · ||, if ||~h′(·)|| < 1 where ~h′(x) = ∂~h(x)/∂x′. Let ~k(t) = ~h(x1 + t(x2 − x1)). If ||~h′(·)|| < 1,

then

||~h(x2)− ~h(x1)|| = ||~k(1)− ~k(0)|| =
∥∥∥∥∫ 1

0

~k′(t)dt

∥∥∥∥ = ∥∥∥∥∫ 1

0

(x2 − x1)~h′(x1 + t(x2 − x1))dt
∥∥∥∥

≤
∫ 1

0

||x2 − x1|| · ||~h′(x1 + t(x2 − x1))||dt < ||x2 − x1||,

1



i.e. ~h(·) is a contraction mapping.

Next, as the (i, j)-th element of ∂~h(yE)/∂yE′ is given by

∂hi(y
E)/∂yEj = λwij

∑m−1
k=1 f(αm−k − λ

∑n
j=1 wijy

E
j − x′iβ),

we have

|∂hi(yE)/∂yEj | ≤ (m− 1)|λ| · |wij | · sup
u
f(u).

Hence, under Assumption 1 (ii), either

||∂~h(yE)/∂yE′||∞ ≤ (m− 1)|λ| · ||W||∞ sup
u
f(u) < 1,

or

||∂~h(yE)/∂yE′||1 ≤ (m− 1)|λ| · ||W||1 sup
u
f(u) < 1.

Therefore, under Assumption 1 (ii), the system of equations (A.1) is a contraction mapping with

respect to the || · ||∞ or || · ||1 norm, whichever is a smaller matrix norm ofW.

Proof of Proposition 2. Given the network topologyW, observational equivalence requires

Pr(yi ≤ k|W,X) = F (αk − λwiyE − x′iβ) = F (α̃k − λ̃wiỹE − x′iβ̃),

for k = 1, · · · ,m − 1 and for any X in its support, where, under Assumption 1, yE and ỹE are

uniquely determined by

yEi = m−
∑m−1

k=1 F (αk − λwiy
E − x′iβ) (A.2)

ỹEi = m−
∑m−1

k=1 F (α̃k − λ̃wiỹ
E − x′iβ̃) (A.3)

for i = 1, · · · , n, respectively. The model is identified if observational equivalence of δ and δ̃ implies

δ = δ̃. That is,

F (αk − λwiyE − x′iβ) = F (α̃k − λ̃wiỹE − x′iβ̃), (A.4)
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for k = 1, · · · ,m− 1, implies δ = δ̃. If (A.4) holds for k = 1, · · · ,m− 1, then the right hand sides

of (A.2) and (A.3) are identical, i.e., yEi = ỹEi , for i = 1, · · · , n. Therefore, (A.4) can be rewritten

as

F (αk − λwiyE − x′iβ) = F (α̃k − λ̃wiyE − x′iβ̃), (A.5)

for k = 1, · · · ,m− 1. Under Assumption 2, (A.5) implies

(αk − α̃k)ιn + (λ− λ̃)WyE +X(β − β̃) = 0,

which, in turn, implies αk = α̃k, λ = λ̃ and β = β̃, for k = 1, · · · ,m − 1. Hence, observational

equivalence of δ and δ̃ implies δ = δ̃, i.e., the model is identified.
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