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Phonon Transport and Thermal Conductivity Percolation in Random
Nanoparticle Composites

Weixue Tian1 and Ronggui Yang2

Abstract: In this paper, we investigated the

effective thermal conductivity of three dimen-

sional nanocomposites composed of randomly

distributed binary nanoparticles with large differ-

ences (contrast ratio) in their intrinsic (bulk) ther-

mal conductivity. When random composites are

made from particles with very different thermal

conductivity (large contrast ratio), a continuous

phase of high thermal conductivity constituent is

formed when its volumetric concentration reaches

beyond the percolation threshold. Such a contin-

uous phase of material can provide a potentially

low resistance pathway for thermal transport in

random composites. The percolation theory pre-

dicts the thermal conductivity of the random com-

posites to increase according to a scaling law with

increasing concentration of the high thermal con-

ductivity constituent after percolation. However,

when the characteristic size of the particles in the

nanocomposites is comparable to or smaller than

the phonon mean free path, the phonon scattering

at interfaces between two materials can introduce

significant thermal resistance in the highly con-

ductive phonon pathway. Such interfacial thermal

resistance can reduce the thermal conductivity of

the nanoparticle composites. The thermal con-

ductivity of the random nanoparticle composites

thus deviates significantly from the predictions of

the percolation theory. In this study, the Monte

Carlo simulation was employed to generate ran-

dom distribution of nanoparticles and to simulate

the phonon transport in random nanoparticle com-

posites. The effects of particle size, thermal con-
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ductivity contrast ratio, and the phonon-interface

scattering characteristics on the effective thermal

conductivity of random nanoparticle composites

are scrutinized. The effective thermal conduc-

tivity of the random nanoparticle composites are

mainly controlled by the interface density (inter-

facial area per unit volume) in the composites.

The percolating pathway formed by the high ther-

mal conductivity constituents is not as effective

in improving the thermal conductivity of the ran-

dom nanoparticle composites for a wide range of

volumetric concentrations compared to a random

composite with larger particle dimensions. Sim-

ilarly, the thermal conductivity contrast ratio of

the constituents only plays a limited role in deter-

mining the thermal conductivityof the composites

studied. This study can be important in studying

flexible thermoelectric materials and thermal in-

terface materials.

Keyword: nanocomposite, thermal conductiv-

ity, percolation theory, phonon transport, Monte

Carlo simulation

1 Introduction

Nanocomposites are finding important applica-

tions in many emerging technologies such as

high efficiency thermoelectric devices [Dressel-

haus et al (2007), Hsu et al (2004), Heremans

et al (2005)], thermal management system [Xu

and Fisher (2006), Huang et al (2005)], dye-

sensitized solar cells [Oregan and Gratzel (1991)]

and among others due to the abundant existence

of interfaces and their unique transport properties.

Studies over the past on periodic semiconductor

nanowire and nanoparticle composites composed

of materials with intrinsic thermal conductivity on

the same order of magnitude showed that the ther-
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mal conductivity of the nanocomposites is sig-

nificantly smaller than that of their bulk coun-

terparts due to phonon-interface scattering [Yang

and Chen, (2004), Yang et al (2005), Prasher

(2006), Tian and Yang (2007a)]. Such a thermal

conductivity reduction is an important bless for

thermoelectric materials where the figure of merit

(ZT) is defined as ZT = S2σT
k

, in which S, σ , k

and T are the Seebeck coefficient, electrical con-

ductivity, thermal conductivity, and absolute tem-

perature, respectively [Goldsmid (1964)]. Ther-

moelectric nanocomposites are thus expected to

play a more significant role in thermal manage-

ment and power generation using waste heat and

solar energy [Tritt and Subramanian (2006)].

Material research community has long been in-

terested in developing multifunctional materials

by tailoring the existing properties of constituents

with large contrast ratio. One of the typical ex-

amples is the efforts in developing nanostruc-

tured thermal interface materials using high ther-

mal conductivity fillers such as metallic particles

and carbon nanotubes [Hu et al (2004), Xu and

Fisher (2006)]. Several commonly used fabrica-

tion techniques such as hot pressing [Kusunose

et al (2005)] or spark plasma sintering [Zhan et

al (2003)] tend to produce nanocomposites with

random structures. Clustering of particles and

wires often occurs in these random composites.

When particles or wires with high transport prop-

erties [thermal conductivity or electrical conduc-

tivity] are randomly dispersed in a matrix ma-

terial with low transport properties, the largest

cluster can form a percolation network [Stauf-

fer and Aharony (1991)]. That says, the largest

cluster of highly conductive material can con-

nect the opposite boundaries when the volumet-

ric concentration of high conductivity materials

reaches certain limit. This limit of volumetric

concentration, defined as the percolation thresh-

old, is determined by the geometric characteris-

tics of particles or wires. The percolating net-

work can potentially create a low resistance path-

way for transport between these opposite bound-

aries and the conductivity of the composites thus

increases significantlywith volumetric concentra-

tion after percolation. Percolation theory predicts

that the conductivity of composites near the per-

colation threshold obeys the scaling law, i.e.σ ∝

(Φ−Φc)
t
, where σ is the conductivity of the

composite, Φ is the volumetric concentration of

the conductor, Φc is the percolation threshold and

t is a conductivity exponent which does not de-

pend on the lattice geometry but on the dimen-

sion [Stauffer and Aharony (1991)]. More rigor-

ous discussion of the percolation theory and its

prediction on conduction properties can be found

elsewhere [Stauffer and Aharony (1991), Kirk-

patrick (1973)]. Although its predictions for elec-

trical conductivity have been confirmed by several

experiments [Last and Thouless (1971), Dubson

and Garland (1985)], the percolation theory re-

mains largely a geometrical and empirical theory,

in which many factors in real composite materi-

als such as the interface resistance, particle size or

material property contrast can not be easily incor-

porated. For example, both the percolation thresh-

old and conductivity exponent for the electrical

conductivity of metallic nanoparticle composites

were found to deviate from the conventional per-

colation theory because of particle aggregation

and various electrical contact resistance [Gonon

and Boudefel (2006), Yamamuro et al (1999)].

The electrical conductivity of nickel nanoparti-

cle ceramic composites under percolation thresh-

old was also found to be larger than that pre-

dicted by the percolation theory because the ex-

tremely small particle size causes tunneling ef-

fects of next nearest neighboring particles [Ab-

durakhmanov et al (2006)]. Therefore, simula-

tions that can take account of these size or inter-

face induced effects are highly desirable for accu-

rately determining the transport properties (ther-

mal and electrical conductivity) for random com-

posites made of materials with high contrast ratio

properties.

Most previous studies on random composites

made of materials with high thermal conductiv-

ity contrast ratio were focused on bulk composite

materials. The study of Ganapathy et al [Ganapa-

thy et al (2005)] showed that the effective medium

theory based on diffusive heat conduction can not

be used to model thermal conductivity of com-

posites with high volumetric concentration of the
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conductive materials because the percolation ef-

fects are not taken accounted for. Thovert et al

[Thovert et al (1990)] solved the Laplace equa-

tion in the two- and three- dimensional random

insulator-conductor composites (porous media)

and the conductivity exponents of the compos-

ites are found to be close to those of percolation

network. Liang and Ji [Liang and Ji (2000)] nu-

merically studied thermal conductivity of random

composites and found that the percolation thresh-

old of thermal conductivity for three dimensional

composites is around 0.4. Gerenrot et al [Gerenrot

et al (2003)] performed a random network anal-

ysis for the composite materials and found that

the thermal conductivity beyond the percolation

threshold is almost linear with volumetric concen-

tration. These studies mostly focused on how ge-

ometry may affect thermal transport and the in-

terface thermal resistance was neglected. The ef-

fects of thermal interface resistance on the ther-

mal conductivity percolation in composites were

examined by Devpura et al [Devpura et al (2001)].

Recent modeling efforts on thermal transport in

random nanocomposites are mostly inspired by

the experimental demonstration of significant im-

provements of thermal conductivity in polymer

- carbon nanotube composites [Biercuk et al

(2002)]. Nan et al [Nan et al (2004)] used a simple

effective media approach to explain the thermal

conductivity enhancement in the polymer-carbon

nanotube composites. Kumar et al [Kumar et al

(2007)] recently studied the role of nanotube per-

colation on the effective thermal conductivity of

the polymer nanocomposites using a finite vol-

ume model. Foygel et al [Foygel et al (2005)]

developed a Monte Carlo code to randomly dis-

perse carbon nanotube in a composite and showed

that geometrically the percolation threshold is ex-

tremely low due to the high aspect ratio of the

nanotubes. Shenogina et al [Shenogina et al

(2005)] simulated the thermal transport between

different nanotubes and explained the lack of the

thermal percolation in polymer matrix- carbon

nanotube composites due to the limited heat trans-

fer rate at the small contact areas between the

nanotubes. Duong et al [Duong et al (2005)]

performed random walk simulations for thermal

transport in carbon nanotube-polymer composites

with up to 8% of nanotube fillers and found that

the thermal conductivitywas smaller than the pre-

diction by Maxwell theory due to significant in-

terface thermal resistance. No percolation phe-

nomena were reported in their study. However,

carbon nanotubes typically have very high aspect

ratio and occupy a small volumetric concentra-

tion of the composites in these studies, the re-

sults therefore may not be able to extrapolate to

composites with a wider range of volumetric con-

centrations. More importantly, the thermal trans-

port in the composites was either modeled by

the Fourier’s law [Nan et al (2004), Kumar et

al (2007), Shenogina et al (2005)] or a simpli-

fied random walk model [Duong et al (2005)]. It

is known that thermal transport in nanocompos-

ites is a ballistic-diffusive transport process which

cannot be simply captured by Fourier heat con-

duction theory and the added thermal interfacial

resistance [Yang and Chen (2004), Chen (1998)].

Therefore, previous models for predicting com-

posite thermal conductivity based on solving the

heat diffusion equation may lack the predictive

power for the thermal conductivity of nanocom-

posites. A valuable tool to study the thermal trans-

port in crystalline nanocomposites is the phonon

Boltzmann transport equation when the charac-

teristic size of the nanoparticles and nanowires

is less than phonon mean free path. The solu-

tion of the phonon Boltzmann transport equation

can be obtained by deterministic methods simi-

lar to those employed in radiative heat transfer

or Monte Carlo simulations. However, previous

studies mostly focused on simple geometries such

as thin films [Chen (1998), Majumdar (1993),

Mazumder and Majumdar (2001), Lacorix et al

(2005)], or unit cells with limited number of

nanoparticles [Yang and Chen (2004), Yang et al

(2005) Jeng et al (2008)]. These models there-

fore can not be used for modeling the percolation

phenomena that occur in composites containing

a large number of particles. Although the gen-

eral principles of the Monte Carlo method [Jeng

et al (2008), Mazumder and Majumdar (2001),

Lacroix et al (2005)] can be applied for any ge-

ometric complexity, modifications or simplifica-

tions are needed to render the simulations feasible
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for random composite simulation domain contain-

ing hundreds or more particles with high thermal

conductivity contrast ratio.

In short, there is an immediate need to obtain

the thermal conductivity of random nanocompos-

ites in bulk form for various applications and to

understand how the phonon-interface scattering

might affect the thermal conductivity of random

nanocomposites. For the random and geometric

percolation scenario, previous periodic unit cell

approach with limited number of nanowires or

nanoparticles in the composites [Yang and Chen

(2004), Yang et al (2005), Jeng et al (2008)] can

not be used to predict the transport properties.

The aims of this study are therefore set forth: (1)

to extend the Monte Carlo simulation of phonon

transport for thermal conductivity prediction in

three-dimensional randomly distributed nanopar-

ticle composites, especially when the constituents

are with high thermal conductivity contrast ratio;

(2) to examine the effects of important factors in-

cluding phonon-interface scattering, nanoparticle

size, and intrinsic thermal conductivity contrast

ratio on the effective thermal conductivity of the

nanoparticle composites.

2 Numerical Simulation Procedure

The effective thermal conductivity of the ran-

dom composites is obtained by modeling phonon

transport using the Monte Carlo method in a sim-

ulation domain that contains a large number of

randomly distributed nanoparticles. We describe

in detail in this section the generation of random

distribution of nanoparticles in the simulation do-

main, a modified drifting-scattering scheme [Jeng

et al (2008), Mazumder and Majumdar (2001)]

that is based on our previous work but with sig-

nificantly reduced computation cost, and relevant

physics behind the simulation.

2.1 Generation of Random Composites and

Simulation Domains

The composites considered in this study are made

of nanoparticles of two different materials ran-

domly distributed in the simulation domain. The

periodic unit cell approach with limited number

of nanowires or particles [Yang and Chen (2004),

Jeng et al (2008)] employed in previous studies

can not be applied to the current nanocomposites

because of the random distribution and geometric

percolation of the nanoparticles. Instead, we ap-

plied the “representative volume element” (RVE)

[Drugan and Willis (1996), Kanit et al (2003),

Ren and Zheng (2002), Okada et al (2004), Wang

and Yao (2005)] containing many nanoparticles,

to obtain the effective thermal conductivity. The

RVE concept has been widely used for modeling

mechanical and thermal properties ofmacroscopi-

cally homogeneous but microscopically heteroge-

neous composite material. In our case, the RVE

can be regarded as the volume contains a suffi-

ciently large number of nanoparticles so that the

volume is a statistically representative of the ran-

dom composites simulated, i.e. the thermal con-

ductivity of the RVE represents that of the random

composites. The minimum number of nanopar-

ticles required in the RVE is numerically deter-

mined as discussed in section 3.1. A schematic of

the composites considered in this study is shown

in Fig. 1. The nanoparticles are assumed to be

cubical in this study. Geometrically the RVE is

made of Nt = Nx×Ny×Nz number of equal sized

cubical nanoparticles, where Nt is the total num-

ber of nanoparticles in the RVE, Nx, Ny and Nzis

the number of nanoparticles in x, y and z coordi-

nates, respectively.

The random arrangement of the nanoparticles is

realized by generating three random numbers that

determine the x, y and z coordinates for each

nanoparticle of one material in the RVE. Firstly,

the simulation domain is uniformly divided into

Nt = Nx×Ny×Nz lattice sites, with each nanopar-

ticle occupying one lattice site. To improve the

numerical resolution of the simulation results,

each nanoparticle is further divided into a number

of sub-elements. These sub-elements allow the

temperature gradients to develop within the parti-

cles, so that the thermal resistance of the particles

can be taken into account, especially for the parti-

cles with low thermal conductivity. The positions

(indices) of a nanoparticle are then determined by
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Figure 1: Schematic of nanoparticle compos-

ites. The composite materials compose of uni-

form sized cubic nanoparticles of two different

materials randomly dispersed in space. Beyond

the geometric percolation threshold, nanoparticles

made of the samematerial can form a large cluster

that connects one boundary to the opposite.

the following equations:

i = INT (Rx×Nx)

j = INT (Ry×Ny)

k = INT (Rz×Nz)

(1)

where i, j and k is the indices of the nanoparticle

in x, y, z coordinates, respectively, INT is a func-

tion to find the nearest integer, and Rx, Ry and Rz

are three random numbers uniformly distributed

in (0,1). In this study, a pseudo-random num-

ber generator RANLUX [Lüscher (1994)] is em-

ployed for all random number generations. This

arrangement process is done in sequence. If a

nanoparticle overlaps a site that has already been

occupied by an existing nanoparticle, three new

random numbers are generated to find a new site

for the nanoparticle. This process is repeated un-

til an empty site is found for the nanoparticle.

After filling all the nanoparticles of one mate-

rial randomly, the rest of the sites in the RVE are

then filled with nanoparticles of the other mate-

rial. This way, the randomness of the nanoparti-

cle is ensured with the statistical randomness of

the random number generators. The number of

the nanoparticles of one material versus the other

is determined by their volumetric concentrations,

Ni = INT (ΦiNt), where Ni and Φi is the num-

ber and volumetric concentration of nanoparticles

of one material in the composites. Therefore, the

exact volume concentration of different materials

can be satisfied within the error of half of nanopar-

ticle, corresponding to a relative error less than

1/2Nt in the composites. Other schemes to gen-

erate the random distribution of the nanoparticles

are also possible. For example, one can deter-

mine each individual lattice site occupied with

which material by comparing a random number

with its volumetric concentration. However, this

scheme can not guarantee the exact volumetric

concentration due to the statistical fluctuation of

the random numbers and was not adopted in this

study. Finally, the interfaces between the same

type of nanoparticles are removed, so that the

same type of nanoparticles with common faces

are continuous and form clusters. The numeri-

cal cluster forming process represents the physical

recrystallization [Mayrhofer et al (2003)] or melt-

ing processes after the nanoparticles are mixed to

fabricate nanocomposites The faces for different

types of nanoparticles form the interfaces for the

phonon scattering.

2.2 Phonon Properties and Transport

For most semiconductor and dielectric materi-

als, phonons (quantized lattice vibrations) are the

main energy carriers for heat conduction [Kit-

tel (1986), Chen (2005)]. This work is built

upon previous studies on the phonon transport

in nanoscale structures using Monte Carlo sim-

ulations. We would like to note that the frame-

work of this paper assumes that phonon concept

is still valid in nanocomposites. This is gener-

ally true as long as the nanocomposites form crys-

talline structures. Though the phonon spectrum in

nanostructures can be different from bulk materi-

als, our simulation uses bulk phonon dispersion

for constituent materials. This is due to the two

reasons [Chen (1998)]: (1) the change of phonon

spectrum, such as density of state and the group

velocity of phonons in nanostructures, is not the

most significant reason for thermal conductivity

reduction in nanostructures; (2) recent experi-
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ence with superlattices suggests that the idealized

phonon dispersion in nanostructures is difficult to

realize experimentally, because it is difficult to

obtain sufficiently smooth and uniform surfaces

for coherent interference. In other words, the in-

terface of nanocomposites often induces diffuse

scattering which makes the formation of phonon

minibands rather difficult. The phonon transport

therefore follows the Boltzmann transport equa-

tion:

∂ f

∂ t
+v•∇r f =

(

∂ f

∂ t

)

c

(2)

where f is the phonon distribution function, t

is time, v is the phonon group velocity vector,

r is the position vector, and the right hand side

of the equation represents the phonon scattering

term. Monte Carlo simulation that tracks the drift-

ing and scattering of phonon energy bundles is

used to model phonon transport governed by the

Boltzmann transport equation. Although phonon

spectral properties can be accounted for in Monte

Carlo simulation, a phonon gray media approxi-

mation [Yang and Chen (2004), Yang et al (2005),

Jeng et al (2008), Chen (1998)] is employed in

this study where the average phonon properties at

equilibrium state are assigned to the phonon en-

ergy bundles. The average frequency and group

velocity of the phonon bundles are estimated

by averaging the equilibrium phonon dispersion

curve of three branches of acoustic phonons in sil-

icon [Brockhouse (1959)]. The mean free path for

phonon transport is estimated by the kinetic the-

ory and experimental intrinsic thermal conductiv-

ity. Similar approximations have been employed

in previous studies for phonon transport in super-

lattices [Chen (1998)] and nanocomposites [Jeng

et al (2008)] in which the simulation results agree

well with experimental data. In the parametric

study, we vary the intrinsic thermal conductivity

by adjusting the phonon mean free path, as dis-

cussed in section 3.1.

The average frequency of the phonons at a tem-

perature can be calculated as:

ωavg =
1

N

3

∑
p=1

ϖmp
∫

0

ω 〈n〉D(ω)dω (3)

where p is the polarization branch index, ωmp is

the maximum cutoff frequency of each phonon

branch, ω is the phonon frequency and 〈n〉 is the
Bose-Einstein distribution. D(ω) is the phonon

density of state for each branch,

D(ω) =
k2

2π2

∂k

∂ω
(4)

in which k is the magnitude of the phonon wave

vector. N is the phonon number density,

N =
3

∑
p=1

ωmp
∫

0

〈n〉D(ω)dω (5)

The average group velocity of the phonon energy

bundle can be calculated as:

vavg =
1

N

3

∑
p=1

ωmp
∫

0

∂ω

∂k
〈n〉D(ω)dω (6)

The mean free path for phonon transport is calcu-

lated based on the kinetic theory,

Λ =
3kbulk

vavgCac

(7)

where kbulk is the thermal conductivity of the bulk

media, which can be obtained from experimental

data in the literature. In the above calculations, we

assume that three branches of acoustic phonons

contribute primarily to the thermal conductivity

of the material and the contribution of the optical

phonons is insignificant due to their small group

velocity [Chen (1998)]. Cac is the heat capacity of

the acoustic phonons:

Cac =
3

∑
p=1

ωmp
∫

0

h̄ω
∂ 〈n〉
∂T

D(ω)dω (8)

In the Monte Carlo simulation, phonon energy

bundles with the above calculated average fre-

quency and group velocity are initialized and al-

lowed to drift in the RVE. A prescribed heat flux

to generate the temperature gradients for ther-

mal conductivity calculation is then applied at the

boundaries perpendicular to the x coordinates by

emitting appropriate number of phonon bundles at

these boundaries. These phonon energy bundles
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also encounter different scattering events, which

create thermal resistance in the nanoparticle com-

posites. The thermal conductivity of compos-

ites is calculated after the temperature field in the

RVE reaches the steady state condition. The fol-

lowing sections provide a detailed description of

the Monte Carlo simulation procedure of phonon

transport.

2.3 Phonon Initialization and Drift

The initial condition of the RVE is set to be in

equilibrium. Due to the statistical nature of the

Monte Carlo method, the noise to signal ratio

is determined by the number of phonon bundles

simulated. The more phonon bundles tracked in

the Monte Carlo simulation, the higher accuracy

of the simulation results. However, to track a large

number of phonon bundles requires large mem-

ory and long computational time. Therefore, the

number of phonon bundle simulated is based on

a balance choice of computational time and ac-

curacy requirement. Since the number of sim-

ulated phonon energy bundles is much smaller

than the actual phonon numbers in the materials

[Mazumder and Majumdar (2001), Lacorix et al

(2005)], a scaling factor, for which each simu-

lated phonon bundle represents S actual phonons,

is needed:

S =
Na

Ns

=
CacTV/h̄ωavg

Ns

(9)

where Na and Ns represent the number of actual

phonons and simulated phonons in a sub-element,

T and V are the temperature and volume of the

sub-element. Equation (9) can also be used to cal-

culate the temperature of the sub-element in the

subsequent simulation procedure. Due to equi-

librium, the phonon bundles in each material are

uniformly distributed in space. The directions

of phonon bundles are randomly oriented in the

computational domain. The direction vector is

given by:

ŝ = îcosθ + ĵ sinθ cosφ + k̂ sinθ sinφ (10)

where the polar angle is determined by cosθ =
2R1−1 and the azimuthal angle is determined by

φ = 2πR2. R1 and R2 are two independent random

numbers uniformly distributed between (0,1).

At each time step, phonon bundles are allowed to

drift with group velocity. The positions (spatial

coordinates) of phonon bundles at a new time step

are calculated as:

xN = xO +vavg∆t cosθ (11)

yN = yO +vavg∆t sinθ cosφ (12)

zN = zO +vavg∆t sinθ sinφ (13)

where subscript “N” and “O” denotes phonon co-

ordinates at new and old time step. To achieve the

necessary grid resolution, the time step ∆t is cho-

sen that the phonon bundles are drifted less than a

sub-element within a time step.

2.4 Phonon Scattering

The thermal resistance of nanocomposites is

caused by two categories of phonon scatter-

ing mechanism: intrinsic scattering includ-

ing phonon-phonon, phonon-impurities, phonon-

dislocation scattering and phonon scattering at in-

terfaces between different materials. A modified

drift-scattering scheme is employed in this study

for phonon intrinsic scattering. The phonon inter-

face scattering is assumed to be partially diffusive

and partially specular in the Monte Carlo simula-

tion. The implementation of these scattering pro-

cesses is presented in the rest of the section.

Intrinsic scattering is the mainmechanism creat-

ing thermal resistance in bulk materials. The de-

tails of these scattering are not well understood

and modeling them in Monte Carlo simulation is

time consuming and difficult to obtain high ac-

curacy[Mazumder andMajumdar (2001), Lacorix

et al (2005)], a lumped mean free path approxi-

mation [Jeng et al (2008)] is instead used in this

study. In this approximation, the probability of a

phonon scattering is written as:

Ps = 1−exp(−vavg∆t/Λ) (14)

Similar to previous Monte Carlo simulations

for phonon transport [Mazumder and Majumdar

(2001), Jeng et al (2008)], the intrinsic scatter-

ing is performed at the end of each time step for

the phonon drift phase. A random number is gen-

erated for every phonon bundle. If Ri < Ps, the
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phonon bundle undergoes an intrinsic scattering

event. The scattering is assumed to be isotropic,

where the direction vector of the phonon bundle

after scattering is reset to be randomly distributed

over a solid angle, similar to the process in the

phonon initialization.

There is no explicit limitation for the above scat-

tering probability calculation in the Monte Carlo

simulation. In practice, however, when vavg∆t ≪
Λ or the phonon mean free path is much larger

than the drifting distance, the scattering proba-

bility become extremely small (Ps → 0) and a

large number of phonons are needed to sample the

scattering probability accurately and the Monte

Carlo simulation becomes inefficient. On the

other hand, when the drifting distance is much

larger than the phonon mean free path, the scat-

tering probability approaches to one and almost

all phonons get scattered after drifting. The

phonon drifting directions in the domain become

isotropic, and the temperature gradients can take

long time to establish in the Monte Carlo simula-

tion. Indeed, the current drift-scattering scheme is

not valid when the drifting distance is longer than

the phonon mean free path, because the scatter-

ing is performed after the phonon drifting phase,

which indicates that no scattering occurs within

the drifting distance. Therefore, every phonon is

allowed to drift longer distance than the mean free

path, which is in conflict with the definition of

the phonon mean free path and the Monte Carlo

simulation will over-predict the thermal conduc-

tivity. Several remedies are possible, for exam-

ple, one can further divide the drifting distance

into a number of smaller distances so that each

of them is smaller than the phonon mean free

path. Or one can calculate the scattering free

distance: d = −Λ ln(1−Ri) and compare it with

the drifting distance vavg∆t. In either case, multi-

scattering events are possible within one time step

and due to the interface scattering described in

the next paragraph, the process flow of the Monte

Carlo code becomes complicated and less effi-

cient. In the current simulations, we adopted a

strategy to ensure that the drifting distances of the

phonons energy bundles smaller than the phonon

mean free paths of both materials in the compos-

ites. The noise caused by vavg∆t≪Λ in one phase

of material is less problematic because the signif-

icant interface scattering in the nanoparticle com-

posites, as described in the next paragraph.

Phonon-Interface scattering caused by a

phonon intersecting interfaces between different

materials is an important phonon scattering

mechanism that creates thermal resistance in

nanoparticle composites. Existing theories such

as modeling phonon interface scattering as

acoustic waves [Chen (1999)] across interfaces

generally involve many assumptions and are

cumbersome to implement in the Monte Carlo

simulation. In addition, the interfaces properties

may be affected by different modifications [S.

Namilae et al (2007)]. Therefore, we simplified

the interface scattering modeling based on several

characteristics such as the roughness of the inter-

face. Phonons are diffusively scattered with no

preferential directions when the roughness of the

interface is much larger than phonon wavelength,

while scattering are specular when the interface

is smooth compared with the phonon wavelength

[Chen (2005)]. We define the specularity, Sp, as

the ratio of specular scattering events and total

scattering events at the interface with Sp = 0

for completely diffusive interface scattering and

Sp = 1 for completely specular scattering, to ac-

count for the partially specular, partially diffusive

scattering at the interface. A random number

Rs is generated for each scattering event to take

account for the specularity of the interfaces.

If Rs < Sp, the phonon interface scattering is

specular and undergoes specular reflection and

transmission. Otherwise, the phonon scattering

is diffusive. The phonon drifting direction after

specular reflection is model as:

sr = si−2(si • n̂) n̂ (15)

where sr and si represent the reflected and incident

phonon direction vectors, respectively. n̂ is a unit

vector normal to the interface. In specular trans-

mission, we assume phonons do not change drift-

ing directions across the interface. The direction

of a phonon after diffusive transmission or reflec-

tion is modeled according to the interface normal
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and tangent vectors:

s =±n̂cosθ ′+ t̂1 sinθ ′ cosφ ′+ t̂2 sinθ ′ sinφ ′

(16)

The polar angle θ ′ and azimuthal angle φ ′ in Eq.

(16) can be determined by θ ′ = sin−1
(√

R3

)

and

φ ′= 2πR4, where R3 and R4 are two random num-

bers. Note that the angles are with local interface,

therefore, a transformation of θ ′ and φ ′ to global

θ and φ is needed to track the phonon according

to the global coordinates.

The phonon transmissivity and reflectivity at the

interface is estimated by:

T12 =
CU2v2

U1v1 +U2v2
(17)

R12 = 1−T12 (18)

where T12 and R12 is the phonon transmissivity

and reflectivity from medium 1 to 2, C is an ad-

justable constant and Eq. (17) agrees with the dif-

fusive mismatch model [Dames and Chen (2004)]

previously derived when C = 1, U is the phonon

energy density. C is chosen to be unity for most

cases in this study, except when the effects of

phonon interface tramsmissivity are investigated

in section 3.4. It can be shown that Eq. (17)

and (18) satisfy the detailed energy balance across

interface at thermal equilibrium, i.e. there is no

net heat flux across interface when material are at

thermal equilibrium. A random number Rt is gen-

erated to compare with the transmissivity of the

interface T12. If Rt < T12, the phonon is transmit-

ted through the interface. Otherwise, the phonon

is reflected at the interface.

The interface scattering occurs when the phonon

path within a time step from (xO,yO, zO) to

(xN ,yN , zN) has intersectionwith the interfaces. In
previous models [Tian and Yang (2007a)], the po-

sitions of the interfaces were pre-stored in com-

puter memory after setting up the simulation do-

main. Then a global searching is performed

to find the appropriate intersection (x′N ,y′N , z′N),

which needs to lie within the phonon path and the

interface. Mathematically, (x′N ,y′N , z′N) is the so-

lution that satisfies both equations for the line de-

scribing the phonon path and the plane describing

the interface. However, this global searching al-

gorithm becomes vastly inefficient and becomes

a bottleneck for computational time as the num-

ber of interfaces dramatically increases with the

number of particles in the composites. In each

time step, the number of searches needed is on

the order of 1
2
NiNa, where Ni is the number of

interfaces in the simulation domain. The cur-

rent simulation employs an improved algorithm

that only checks the interfaces of the nearest and

next nearest neighboring sub-elements from the

sub-element (xO,yO, zO) is located. It was esti-

mated that the number of interface searches for

each time step decreases to 1
2 × 54×Na, where

54 represents the number of possible scenarios

of a phonon path intersecting with an interface

in this study. To further increase the computa-

tional efficiency, a number of other improvments

is employed. For example, if both (xO,yO, zO) and
(xN ,yN , zN) locate within the same sub-element

or nanoparticle, no interface scattering search is

needed. When the phonon energy bundle is lo-

cated close to the edge or corner of the nanopar-

ticle, multiple scattering events may occur. After

the first scattering, (xO,yO, zO) is replaced by the

intersection (x′N ,y′N , z′N) for the next intersection

search. However, the phonon bundle is located on

the interface and the solution which is the start-

ing position of the phonon bundles needs to be

eliminated. We can achieve this elimination by

rejecting intersection solutionwithin a certain dis-

tance from the starting position. The multiple in-

terface searches are performed until the accumu-

lated time for phonon drifting between multiple

scattering events approaches the total time step.

Phonon bundles after intrinsic scattering or in-

terface scattering have different frequencies and

the energy conservation is not observed. Previ-

ous Monte Carlo simulations employed different

phonon creation-destruction schemes [Jeng et al

(2008), Mazumder and Majumdar (2001)] or an

adjusted phonon distribution function [Lacroix et

al (2005)] to ensure the energy conservation. In

the current simulation, no frequency re-sampling

is performed after phonon intrinsic scattering be-

cause of the phonon gray media approximation

and assuming the material properties independent
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of temperature change, which implies that the

thermodynamic temperature of the simulation do-

main does not deviate significantly from the ini-

tial equilibrium temperature. For phonon bun-

dles cross the interface between two materials,

the actual phonon frequency changes if the ma-

terials have different average phonon frequencies

ωavg. However, the energy conservation can be

achieved by adjusting the scaling factor for each

material in the initial condition so that each sim-

ulated phonon energy bundles in both materials

have the same amount of energy albeit different

frequencies, i.e. the phonon creation-destruction

in interface scattering is incorporated in the scal-

ing factor and no explicit creation-destruction

scheme [Jeng et al (2008), Mazumder and Ma-

jumdar (2001)] is used.

2.5 Boundary Conditions

The RVE is assumed to be periodically stacked to

form the nanoparticle composites. The periodic

boundary conditions can be applied to simulate

the phonon transport in the RVE due to the ge-

ometric periodicity. This is valid when the RVE

is located far away from the surface of the bulk

nanocomposites. However, there are interfaces at

the boundaries between the periodically stacked

RVEs and interface scattering poses a problem for

implementing such periodic boundary conditions,

because the diffusive phonons scattering from the

interface change drift directions and destroy the

periodicity. To overcome this problem, the sim-

ulation domain is shifted from the original RVE

described in section 2.1 by half of a nanoparticle

size in all x, y, z coordinates so that the bound-

aries of the simulation domain do not contain in-

terfaces. A similar procedure for two dimensional

nanowire composites was performed in our pre-

vious study [Tian and Yang (2007b)] where more

details were given. The boundary conditions at

y = 0 and y = Ly (Ly is the size of the simula-

tion domain in y coordinate) are set to be peri-

odic, i.e. for each phonon leaving a boundary, a

phonon with exactly the same direction, position

and velocity enters from the opposite boundary.

Similarly, the boundary condition at z = 0 and z

= Lz (Lz is the size of the simulation domain in z

coordinate) are also assumed to be periodic. For

boundaries at x = 0 and x = Lx (Lx is the size of

the simulation domain in x coordinate), a speci-

fied heat flux is applied to generate the tempera-

ture gradients needed to obtain thermal conduc-

tivity,

q(y, z)|x=0 = q(y, z)|x=Lx
(19)

where q is the heat flux. To ensure the identical

heat flow distribution along the two boundaries,

the pattern of phonons emitted at one boundary

is the same as the pattern of phonons leaving the

opposite boundaries. The effective thermal con-

ductivity ke f f of the simulation domain is then ob-

tained by:

ke f f =
q

∆T
Lx (20)

where

q =
1

LzLy

Lz
∫

0

Ly
∫

0

q|x=0dydz (21)

∆T =
1

LzLy

Lz
∫

0

Ly
∫

0

(

T |x=0− T |x=Lx

)

dydz (22)

3 Results and Discussion

3.1 Model Validation

The developed Monte Carlo phonon transport

code was extensively tested before it is used for

three dimensional random nanoparticle compos-

ites. We compared the predicted temperature-

dependent thermal conductivity for bulk Si with

experimental data and found good agreements.

The predictions of the current Monte Carlo code

for the thermal conductivity of two- and three- di-

mensional periodic nanocomposites were found

to agree well with previously reported results

[Yang and Chen (2004), Jeng et al (2008)]. Fig-

ure 2 shows one of the comparisons of thermal

conductivity for two dimensional periodic Si-Ge

nanowire composites calculated by the determin-

istic solution [Yang and Chen (2004)] and the cur-

rent Monte Carlo code. The thermal conductivity
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Figure 2: Comparison of thermal conductivity of

two dimensional periodic Si-Ge nanowire com-

posites predicted by solving the phonon Boltz-

mann transport equation (BTE) using determin-

istic solution [Yang and Chen (2004)] (denoted as

BTE in the figure) and the Monte Carlo simula-

tion.

obtained by both methods agrees well with each

other for different nanowire size.

Before examining the phonon transport and ther-

mal conductivity percolation in the nanoparticle

composites, one important question needs to be

answered is how many nanoparticles the RVE

should contain so that the thermal conductivity

of the RVE represents that of the composites.

Two numerical approaches can be taken to ver-

ify whether the number of nanoparticle is large

enough. The first approach is to compare the ther-

mal conductivity of RVEs with different indepen-

dent random distributions of nanoparticles. The

number of nanoparticle would be large enough

if the thermal conductivity does not deviate from

each other significantly. This can be achieved by

using different seeds in initializing the random

number generator to distribute the nanoparticles

as described in section 2.1. An additional ap-

proach is to compare the thermal conductivity of

RVEs with different number of nanoparticles and

if the thermal conductivity does not vary signifi-

cantly, the number of nanoparticles is sufficient.

Both approaches were employed in this study.

The results of the latter approach were shown in

Fig. 3. The nondimensionalized effective thermal

conductivity is defined by ke f f /k2, where ke f f is

the effective thermal conductivity of the nanopar-

ticle composites. The horizontal axis is the volu-

metric concentration,Φ1, of the high thermal con-

ductivity constituents. The intrinsic thermal con-

ductivity contrast ratio k1/k2 is 100, where sub-

script 1, 2 denote the high and low thermal con-

ductivity constituents, respectively. In this study,

the thermal conductivity difference of the con-

stituents is generated by multiplying the silicon

phononmean free path obtained from Eq. (7) with

different values while keeping the group velocity

and specific heat constant. Based on the simple

kinetic theory, the contrast ratio of the intrinsic

thermal conductivity equals to that of the phonon

mean free path, or k1/k2 = Λ1/Λ2. The nanopar-

ticle size is 30 nm. Figure 3 also presents a com-

parison of thermal conductivity for simulations

with each nanoparticle containing 8(2×2×2) and

64(4× 4× 4) cubical sub-elements. In the sim-

ulation results, we found the difference of ther-

mal conductivity for the RVEs containing 1000

(10×10×10) and 2197 (13×13×13) nanopar-

ticles is within 6% for all volumetric concentra-

tions. In addition, no significant improvement

was found when the number of sub-elements in

the nanoparticle increase from 8 to 64. Therefore,

all the results presented in this paper were carried

out with 1000 nanoparticles in the RVE and each

particle containing 8 cubical sub-elements.

3.2 Effect of Nanoparticle Size

The nanocomposite thermal conductivity is very

sensitive with the nanoparticle size, especially

when the phonon transport in the composites

is ballistic [Yang and Chen (2004)]. Figure 4

shows the size dependence of the nondimension-

alized effective thermal conductivity for random

nanoparticle composites. The thermal conductiv-

ity contrast ratio k1/k2 = Λ1/Λ2 is assumed to

be 100. The nanoparticle sizes, denoted as a in

the figure, are 6 nm, 30 nm and 150 nm, with

Λ2/a approximately equals to 5, 1, and 1/5, re-

spectively. The dashed line represents the effec-

tive thermal conductivity ke f f beyond percolation

threshold predicted by a revised scaling law [Ma-
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Figure 3: Thermal conductivity predictions for

the RVE containing 1000 and 2197 nanoparticles

and each nanoparticle containing 8 and 64 cubical

sub-elements. The good agreement between re-

sults of a RVE containing 2197 and 1000 nanopar-

ticles, 8 sub-elements shows that the thermal con-

ductivity of a RVE with 1000 nanoparticle sta-

tistically represents that of the nanoparticle com-

posites. The agreement between results of a RVE

1000 nanoparticle with each nanoparticle contain-

ing 8 and 64 sub-elements demonstrates that fur-

ther refinement of mesh is not necessary. All

the subsequent simulations are therefore based on

a RVE containing 1000 nanoparticles and each

nanoparticle divided into 8 cubical sub-elements.

munya et al (2002)]:

ke f f −k2

k1−k2
=

(

Φ1−Φc

1−Φc

)2

(23)

where Φc is the percolation threshold and the con-

ductivity exponent t = 2. Equation (23) agrees

both the scaling law predicted by the percolation

theory and the physical bound of the thermal con-

ductivity, i.e. when Φ1 = 1, ke f f = k1. The nondi-

mensionalized effective thermal conductivity of

all volumetric concentration decreases with de-

creasing nanoparticle size because of increasing

interface density, defined by the interfacial area

per unit volume. When the size of the nanoparti-

cle is larger than the mean free path of the lower

thermal conductivity material (Λ2/a = 1/5), the

effective thermal conductivity increases monoton-

ically with the volumetric concentration of the

high thermal conductivity material. However, the

rate of change for the thermal conductivity of the

nanoparticle composites is much smaller than pre-

dicted by Eq. (23), even when the volumetric con-

centration of the high thermal conductivity con-

stituents is larger than 0.3116, which is the per-

colation threshold for the cubic lattices [Stauffer

and Aharony (1991)] This is because the percolat-

ing channels that connect the opposite boundaries

of the composites are torturous and the effective

width of the channels are not much larger than

the nanoparticle size, which is smaller than the

phonon mean free path of the high thermal con-

ductivity constituents. Therefore, interface scat-

tering dominates the thermal resistance and the

percolating network is not effective in promot-

ing phonon energy transport. For comparison,

the effective thermal conductivity of the three di-

mensional bulk composites with the same ther-

mal conductivity contrast ratio of the constituents

[Liang and Ji (2000)] is also plotted in the figure.

The thermal conductivity of the bulk composites

is higher than that predicted by Eq. (23), although

they agree with each other at high Φ1. In fact,

the thermal conductivity of nanoparticle compos-

ites with Λ2/a = 1/5 is also larger than that pre-

dicted by Eq. (23) for a small range of Φ1 close

to Φc. This is probably because conventional

percolation theory does not take account of the

transport within the low thermal conductivity con-

stituents in the composite [Stauffer and Aharony

(1991)]. However, for the composites made from

particles with thermal conductivity contrast ratio

of 100, the thermal transport in the low conductiv-

ity constituent is accounted for, thus yields higher

thermal conductivity. The effect of thermal con-

ductivity contrast ratio of the constituents on the

effective thermal conductivity of the nanoparticle

composites is discussed in the next section.

When the nanoparticle size is further decreased to

30 nm and 6 nm, or Λ2/a =1 and 5, phonon trans-

port in both materials is ballistic and the thermal

conductivity in the nanoparticle composites actu-

ally decreases with increasing high thermal con-

ductivity volumetric concentration even beyond

percolation threshold. This phenomenon was not

observed in previous studies for bulk composites
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even when the thermal interface resistance be-

tween the two materials is very high [Devpura et

al (2001)]. However, such a reduction of thermal

conductivity due to increase of interface density

was observed in models for SiGe nanocompos-

ites [Yang et al (2005)] and in experiments for

Si3N4/SiC nanocomposites [Hirano et al (1995)].

This is due to the dominance of interface scat-

tering in phonon ballistic transport regime. Due

to geometric symmetry, the maximum interface

density occurs at Φ1 = Φ2 = 0.5. Therefore, the

magnitude of the effective thermal conductivity

is determined by the competition between the in-

crease of the interface density which lowers the

thermal conductivity, and the increase of volu-

metric concentration of high thermal conductivity

constituents which improves the thermal conduc-

tivity. The minimum thermal conductivity of the

nanocomposites therefore occurs at Φ1 slightly

smaller than 0.5.

3.3 Effect of Thermal Conductivity Contrast

Ratio

One of the techniques to improve the effective

thermal conductivity of composite material is to

disperse high thermal conductivity material such

as metallic, carbon nanotube or graphene fillers

into the low thermal conductivity matrix such as

polymers. The extremely high thermal conductiv-

ity of carbon nanotubes recently observed [Hone

et al (1999), Berber et al (2000), Kim et al (2001),

Pop et al (2006)] attracted many excitements for

such applications [Biercuk et al (2002)]. Previ-

ous modeling studies on random composites all

showed a significant impact of the material con-

trast on the effective properties of the composites

[Ganapathy et al (2005), Liang and Ji (2000), De-

vpura et al (2001)]. In this section, we investi-

gated the effect of the intrinsic thermal conduc-

tivity contrast ratio defined as k1/k2 = Λ1/Λ2 be-

tween the constituent materials on the effective

thermal conductivity of the nanoparticle compos-

ites.

Figure 5 shows that the thermal conductivity con-

trast ratio plays a limited role in determining the

nondimensionalized effective thermal conductiv-

ity (ke f f /k2) of the nanoparticle composites when
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Figure 4: Effect of the nanoparticle size on the

nondimensionalized effective thermal conductiv-

ity of nanoparticle composites. The thermal con-

ductivity contrast k1 : k2 = Λ1 : Λ2 between the

nanoparticles is assumed to be 100. The ther-

mal conductivity of nanocomposites made of the

smallest nanoparticle continue to decreases with

increasing high thermal conductivity constituents

volumetric concentration beyond its percolation

threshold of 0.3116, which demonstrates that the

interface density dominates the phonon transport

and percolating network is not effective in im-

proving thermal conductivity when phonon trans-

port is ballistic. The dashed line is calculated ac-

cording to equation (23).

the nanoparticle size, a, is similar to the phonon

mean free path of the low thermal conductivity

constituents, Λ2. For Λ1 : Λ2 : a = 10 : 1 : 1 and

Λ1 : Λ2 : a = 100 : 1 : 1, the nondimensionalized

effective thermal conductivity ke f f /k2 moderately

increases at very high volumetric concentrations

of the high thermal conductivity constituents Φ1,

while the difference of ke f f /k2 at low Φ1 is very

small. As the contrast ratio of intrinsic thermal

conductivity is further increased from Λ1 : Λ2 :

a = 100 : 1 : 1 to 1000 : 1 : 1, no further improve-

ment of the nondimensionalized effective ther-

mal conductivity is observed for Φ1 from 0.1 to

0.9. This trend can be explained as the following.

For composites with low volumetric concentra-

tion of high thermal conductivity constituent, per-

colation network can not be formed and the ther-
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mal conductivity of the composites is effectively

controlled by the low thermal conductivity con-

stituents and phonon-interface scattering. There-

fore, no significant difference can occur by chang-

ing the thermal conductivity of the high thermal

conductivity constituents. When the volumetric

concentration of high thermal conductivity con-

sitituents is higher than the percolation thresh-

old, geometrically percolate channels for phonon

transport is formed. These channels are neverthe-

less torturous and the effective width of the perco-

lating channels is not much larger than the size of

the nanoparticles except at extremely high volu-

metric concentrations. Phonons in these percola-

tion channels experience many interface scatter-

ing events, similar to the boundary scattering in

torturous nanowires, which suppress the phonon

transport. Therefore, on the contrary to the bulk

composites, increasing the thermal conductivity

of one type of nanoparticles only moderately in-

crease the effective thermal conductivity initially,

while further increasing the constituent thermal

conductivity has negligible effect on the effec-

tive thermal conductivity of the composites. In

fact, the short of high thermal conductivity con-

trast ratio was postulated to be the main reason for

the lack of the thermal conductivity percolation

in composite materials [Mamunya et al (2002)],

the results of the current simulation show that

improving the thermal conductivity contrast ra-

tio of constituents is not effective in improving

the phonon thermal conductivity of composites

when the phonon transport in one phase of the

constituent materials is ballistic.

3.4 Effect of Interface Phonon Properties

The results of previous sections show that the

phonon-interface scattering plays a critical role in

determining the effective thermal conductivity of

nanoparticle composites. It is thus worthwhile

to investigate how the phonon-interface scatter-

ing properties may affect the thermal conductiv-

ity prediction. A more detailed study on how the

phonons are reflected transmitted and converted at

interfaces needs to resort to more advanced ato-

ministic simulation tools such as molecular dy-

namics. For parametric study, we here vary the
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Figure 5: Effect of the constituents’ intrinsic

thermal conductivity contrast ratio on the nondi-

mensionalized effective thermal conductivity of

nanoparticle composites. Λ2 : a = 1 : 1 is used

in this simulation. The contrast ratio plays little

role in differentiating the thermal conductivity of

the composites when Φ1 is small. At higher Φ1,

the thermal conductivity increases with increas-

ing contrast ratio, however, further increase of the

contrast ratio does not lead to higher thermal con-

ductivity of the nanoparticle composite.

adjustable constant C in Eq. (17) to change the

transmissivity for diffuse interface scattering with

Sp = 0. The adjustable constantC can be regarded

as a correction factor for the diffusive mismatch

model [Dames and Chen (2004), Swartz, and Pohl

(1989)] to account for the fact that it under-predict

transmissivity for an imaginary surface within the

same material [Chen (2005)] and other nanopar-

ticle surface features such as defects, oxidization.

The simulations are based on Λ1 : Λ2 : a = 100 :

1 : 1. The results are shown in Fig. 6 with trans-

missivity varying from T12 = 0.1 to 0.9 for con-

centrations of high thermal conductivity particle

Φ1 = 0.1 and 0.5. The effective thermal conduc-

tivity of the composites almost linearly increases

with increasing interface transmissivity. When

Φ1 = 0.1, the nondimensionalized effective ther-

mal conductivity for T12 = 0.9 is 1.3 times around

larger than that for T12 = 0.1. Although not shown

in Fig. 6, the nondimensionalized effective ther-

mal conductivity for T12 = 0.9 is around 1.7 times
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larger than that for T12 = 0.1 when Φ1 = 0.9.
This is because the effects of interface scattering

are more important when the phonon transport in

the constituents is more ballistic. The effect of

phonon transmissivity is also more apparent when

Φ1 is 0.5. The nondimensionalized effective ther-

mal conductivity with T12 = 0.9 is around three

times higher than that of T12 = 0.1 for Φ1 = 0.5.
This is because the interface density is higher and

the interface properties play a more important role

in determining the thermal conductivity of com-

posites at Φ1 = 0.5.

Figure 7 shows the effect of the specularity on the

effective thermal conductivity of the nanoparticle

composites. The specularity is chosen as 0, 0.5

and 1 for the cases studied where 0 corresponds to

totally diffusive and 1 corresponds to totally spec-

ular scenarios. These simulations are again based

on Λ1 : Λ2 : a = 100 : 1 : 1 and T12 = 0.5. The

nondimensionalized effective thermal conductiv-

ity of the nanoparticle composites increases with

increasing specularity for all volumetric concen-

tration. This is because when the interface is par-

allel to the heat flux direction, specular reflection

does not create interfacial resistance for phonon

transport, while diffusive reflection does. How-

ever, specular reflection creates similar thermal

resistance as diffusive reflection when the inter-

face is perpendicular to the heat flux direction.

Therefore, the thermal conductivity increase is

limited by the interfaces perpendicular to the heat

flux direction, which is the main contributor for

thermal resistance.

4 Conclusion

Monte Carlo simulation was conducted to study

the phonon transport in random composites made

from nanoparticles of two different materials with

large thermal conductivity contrast ratio. The ef-

fective thermal conductivity of nanoparticle com-

posites was obtained based on the RVE with

1000 or more nanoparticles randomly stacked in

space. The drift-scattering scheme [Jeng et al

(2008), Mazumder and Majumdar (2001)] previ-

ously employed to simulate phonon transport in

nanostructured materials were simplified and im-

proved to render the simulation feasible for ran-
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Figure 6: Effect of the phonon-interface transmis-

sivity on the nondimensionalized effective ther-

mal conductivity of the nanocomposites. Λ1 : Λ2 :

a = 100 : 1 : 1 is used in this simulation. The in-

terface scattering is assumed to be diffusive. The

interface transmissivity is varied by changing the

adjustable constant C in equation (17). Due to

higher interface density, the effect of interface

transmissivity is more significant for Φ1 = 0.5
than Φ1 = 0.1.
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Figure 7: Effect of the specularity of phonon-

interface scattering on the nondimensionalized ef-

fective thermal conductivity of nanoparticle com-

posites. Λ1 :Λ2 : a = 100 : 1 : 1 is used in this sim-

ulation. The thermal conductivity of nanoparticle

composites moderately increases with increasing

the specularity because the interfaces parallel to

the heat flux direction do not introduce thermal

resistance when the reflection is specular.
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dom nanoparticle composites studied. For the

constituents with large thermal conductivity con-

trast ratio, we examined the effects of interface

scattering on thermal conductivity percolation of

random nanoparticle composites. Due to interface

scattering, the geometrical percolating network

formed by the high thermal conductivity particles

was found not effective for the thermal conduc-

tivity improvement of nanocomposites when the

nanoparticle size is comparable or smaller than

the phonon mean free path of the high thermal

conductivity constituent. Because the dominance

of the phonon-interface scattering, the minimum

thermal conductivity for composites made from

small nanoparticles (particle size smaller than the

phonon mean free path of both materials) occurs

when the volumetric concentration of high ther-

mal conductivity constituent is around 0.5. This

lack of thermal conductivity percolation may be

beneficial for improving the ratio of the electri-

cal and thermal conductivity and thermoelectric

applications beyond the percolation threshold in

nanoparticle composites, because previous exper-

iments demonstrated electrical conductivity per-

colation in nanocomposites, albeit different per-

colation thresholds and conductivity exponents

from conventional percolation theory. Increasing

the thermal conductivity contrast ratio improves

the thermal conductivity of the composites only

when the volumetric concentration of the high

thermal conductivity constituents is large. This

effect can saturate with further increasing the con-

trast ratio having no effect on the composite ther-

mal conductivity because the dominance of inter-

face scattering. The effective thermal conductiv-

ity of the nanoparticle composites was found to

moderately increase with the transmissivity and

specularity of the interface scattering.
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