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Thermal Conductivity of Particulate

Nanocomposites

Jose Ordonez-Miranda, Ronggui Yang, and Juan Jose Alvarado-Gil

Abstract The modeling of the thermal conductivity of composites made up of

metallic and non-metallic micro/nanoparticles embedded in a solid matrix is

discussed in detail, at both the dilute and non-dilute limits of particle concentra-

tions. By modifying both the thermal conductivity of the matrix and particles, to

take into account the strong scattering of the energy carriers with the surface of the

nanoparticles, it is shown that the particle size effect shows up on the thermal

conductivity of nanocomposites through: (1) the collision cross-section per unit

volume of the particles and, (2) the mean distance that the energy carriers can travel

inside the particles. The effect of the electron–phonon interactions within metallic

particles shows up through the reduction of the thermal conductivity of these

particles with respect to its values obtained under the Fourier law approach. The

thermal conductivity of composites with metallic particles depend strongly on

(1) the relative size of the particles with respect to the intrinsic coupling length,

and (2) the ratio between the electron and phonon thermal conductivities. The

obtained results have shown that the size dependence of the composite thermal

conductivity appears not only through the interfacial thermal resistance but also by

means of the electron–phonon coupling. Furthermore, at the non-dilute limit, the

interaction among the particles is taken into account through a crowding factor,
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which is determined by the effective volume of the particles. The proposed

crowding factor model is able to capture accurately the effect of the interactions

among the particles for concentrations up to the maximum packing fraction of the

particles. The predictions of the obtained analytical models are in good agreement

with available experimental and numerical data and they can be applied to guide the

design and improve the thermal performance of composite materials.

3.1 Introduction

Composites based on the dispersion of a discontinuous phase of particles embed-

ded in a continuous matrix, have been used for more than a hundred years, due to

their outstanding properties that often cannot be obtained with single-phase mate-

rials [1, 2]. In many applications ranging from mechanical structures to electronics,

it is common to engineer material properties by combining the most useful proper-

ties of two or more phases. The prediction and understanding of the composite

properties has been a complex subject of research since the properties of composite

materials depend on a number of structural parameters and physical/chemical

properties including the volume fraction, size, shape and orientation of the particles

as well as the interfacial characteristics between the particles and matrix. The two

basic configurations of the particles in composites are defined by the random and

aligned distribution of particle inclusions, as shown in Fig. 3.1a, b, respectively. The

overall thermal conductivity of the first composite can be considered as isotropic,

while the thermal conductivity of the second one could be anisotropic.

Since Maxwell [3] who presented a theoretical basis for calculating the effective

thermal conductivity of particulate composites, a considerable amount of theoretical

and empirical approaches have been employed to analyze the thermal conductivity

of composites, as summarized in the books by Milton [1] and Torquato [2], and

references therein [4–15], in which most analysis has been performed based on an

effective medium approximation (EMA), under the framework of the Fourier law of

heat conduction. One of the most widely-used models was recently derived by Nan

et al. [8], who considered spheroidal inclusions with interfacial thermal resistance

and generalized the previous results of Benveniste [4], and Hasselman and Johnson

[5], for spherical, cylindrical and flat-plate inclusions. These EMA models can

predict reasonably well the thermal conductivity of composites with small volume

fraction of macro/micro-sized particles where heat conduction is governed by the

Fourier law.

However, the EMA models developed earlier have not considered the details of

heat-carrying carriers and their interaction with microstructures. As a consequence,

there are three major drawbacks of these classical models based on the Fourier’s

law: (1) They are not appropriate for predicting the thermal conductivity of

nanocomposites where the particle size could be of the order or smaller than the

mean free path of the energy carriers [13, 16, 17]. (2) They do not consider the

effect of the electron–phonon coupling and therefore they are not applicable for
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composites with metallic particles, where the heat conduction is due to the flow of

the electron and phonon gases and their interactions. (3) They do not consider the

effect of the interaction among the particles and therefore they are not applicable

for high concentration of particles (typically larger than 15 %).

In this chapter, we present in detail the modeling of the thermal conductivity of

composites made up of metallic and non-metallic micro/nanoparticles embedded in

a solid matrix, at both the dilute and non-dilute limits of particle concentrations,

which essentially addresses the above drawbacks. Before we present the detailed

modeling, we summarize in the rest of this section the basic physics behind the

drawbacks identified above. Section 3.2 is dedicated to address the size effects of

energy carriers in nanocomposites. A thermal conductivity model for metal-

nonmetal composites is developed in Sect. 3.3, which takes into account the effects

of both electron–phonon coupling and thermal boundary resistance. In Sect. 3.4, a

crowding factor model is presented that can be utilized to extend the thermal

conductivity models at the dilute limit to high concentrations. Section 3.5 concludes

this chapter.

3.1.1 On the Nanocomposites

Significant interest has recently been given to composites with nano-sized particles

(nanocomposites), due to their importance in electronics, structural and energy

applications [16]. In contrast to the composites with micro-sized particles, the

heat conduction through nanocomposites is expected to be strongly determined

by the interface/surface effects. The energy carriers (electrons and phonons) in

composites experience multiple scattering processes, which ultimately determine

the effective thermal conductivity of the material. One of these scattering

Fig. 3.1 Schematics of a composite with (a) random and (b) aligned distribution of particles
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mechanisms is defined by the collision of the energy carriers with the surface of the

embedded particles and its effects are strongly determined by the relative size of the

particles with respect to the intrinsic mean free path (MFP) associated with

the scattering among carriers and carriers with natural impurities. When the size

of the particles is much larger than the intrinsic MFP, the collisions of the energy

carriers with the surface of the particles is quite infrequent in comparison with the

other scattering processes, and therefore their effects can be neglected. By contrast,

if the size of the particles is of the order of the MFP or smaller, these collisions can

be very frequent and hence their contribution to the heat conduction is significant.

Considering that the MFP of electrons and phonons are in the order of a few

nanometers to hundreds of nanometers, in a wide variety of materials at room

temperature, the effects of the size of the particles are expected to be negligible for

micro-sized or bigger particles and become significant for nano-sized particles.

3.1.2 On the Composites with Metallic Particles

Metals usually have much higher thermal conductivities than ceramic or polymer

materials. It is expected that metallic nanoparticles can significantly enhance the

thermal conductivity of the matrix material [1]. Despite of its importance and

practice in using metallic fillers for composite materials, currently there exist no

models that can correctly describe the heat transport through nanocomposites with

metallic particles in dielectric materials. Heat transport through metallic particles,

in contrast to that in nonmetallic materials, is not only due to the phonon gas but

also due to the electron gas and their interactions [18]. In addition to the

electron–electron and phonon-phonon scatterings, the electron–phonon interactions

are also present in metals. In fact, the coupling between electrons and phonons

inside the metallic particles and their interaction with the matrix has a dominant

role in the heat transport through the composites. In addition, as the size of the

particles reduces to nanoscale, the frequent collisions of the electrons and phonons

with the surface of the embedded particles significantly shortens their effective

mean free path, as shown in Fig. 3.2, which further complicates the modeling of the

effective thermal conductivity of metal-nonmetal composite.

3.1.3 On the High Particle Concentrations

Most existing models for thermal conductivity of composites have assumed that the

volume fraction of the particles is small enough (typically smaller than 15 %) that

the interactions among the particles can be neglected. In such dilute limit, the heat

flux lines generated by one particle are not distorted by the presence of the

neighboring particles when the distance between neighboring particles is much

larger than their size, as shown in Fig. 3.3a. However, for higher particle
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concentrations, the distance between neighboring particles can be of the order of the

particle size or smaller and the interaction among particles have to be considered,

which results in distortion in heat flux that is different from the prediction of single

particle assumption, as shown in Fig. 3.3b. Due to this particle interaction, the

modeling of the thermal conductivity of composites at the non-dilute limit has been

a challenging research problem.

Fig. 3.2 Schematics of the different scattering processes of the energy carriers inside the

nonmetal matrix and the metallic particles of a composite

Fig. 3.3 Schematics of the lines of the heat flux inside a composite with a (a) dilute and (b)

non-dilute concentration of particles
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3.2 Size Effects in Nanocomposites

Theoretical models predicting the thermal conductivity of nanocomposites and

explaining how the nanoscale structures influence the bulk thermal properties are

scarce. Models for thermal conductivity of semiconductor and dielectric

nanocomposites just start to emerge. By calculating the scattering cross section

and the relaxation time due to a single particle, Khitun et al. [9] derived an

expression for the thermal conductivity of a composite with periodically arranged

nanoparticles. Even though they reported a particle-size dependence of the effective

thermal conductivity, their approach is limited to elastic scattering inside the

particles and specular scattering at the interfaces. More recently, based on the

phonon Boltzmann transport equation (BTE), Yang et al. [14–16, 19–21] studied

the phonon thermal conductivity of a variety of nanocomposites. Their simulations

showed that the temperature profiles in nanocomposites are very different from

those in conventional composites due to the ballistic phonon transport at nanoscale.

This indicates that the dependence of the thermal conductivity on the particle size

and volume fraction in nanocomposites can be significantly different from that of

macro/micro-composites. Along the same line, Prasher [11, 22] derived semi-

analytical expressions for the effective thermal conductivity of nanocomposites

with aligned nanowires. More recently, Minnich and Chen [13] proposed a modi-

fied EMA formulation based on Nan et al. model [8] by considering the interfacial

scattering of phonons in nanocomposites. The predictions of this modified EMA for

the thermal conductivity of composites reinforced with spherical and cylindrical

particles, as a function of the interface density, are in good agreement with the

numerical approaches based on the BTE and Monte Carlo (MC) simulations. We

have recently extend the formalism proposed by Minnich and Chen [13] for

nanocomposites with spheroidal inclusions. Our results exhibit an explicit depen-

dence of the composite thermal conductivity on the collision cross-section per unit

volume of the particles and the average distance that the energy carriers can travel

inside the particles.

3.2.1 Modified Effective Medium Approximation (MEMA)
Model

In general, the thermal conductivity k of composites can be written as,

k ¼ k km; kI; f ;Pð Þ, (3.1)

where km and kI are the thermal conductivities of the matrix and the particles,

respectively; f is the volume fraction of the particles and P stands for other

properties as the particles size, shape and orientation, and the interfacial thermal

resistance. The classical models [4, 5, 8, 12] derived under the framework of the

98 J. Ordonez-Miranda et al.



Fourier law of heat conduction have the form of (3.1), and they consider km and kI as
the bulk thermal conductivity of the constituents. To take into account the particle

size effects, the thermal conductivity of the matrix and the particles needs to be

modified, by determining the effective mean free path of the energy carriers

associated with all the scattering processes. These calculations have been proposed

and developed by Minnich and Chen [13] for spherical and cylindrical

nanoparticles, and subsequently they have been extended for spheroidal particles

by Ordonez-Miranda et al. [23].

According to the kinetic theory [24], the thermal conductivity of a material is

given by

kξ ¼ 1

3

ð
Cξ εð Þvξ εð Þlξ εð Þdε, (3.2)

where Cξ, vξ and lξ are the volumetric heat capacity per unit energy, the group

velocity and the total MFP of electrons (ξ ¼ e) or phonons (ξ ¼ p). For a compos-

ite as shown in Fig. 3.4a, the MFP of the energy carriers in the matrix is not only

determined by the intrinsic carrier-carrier scatterings but also by the carrier-

boundary collisions. According to the Matthiessen rule [24], the effective MFP

lξ,m of the energy carriers in the matrix can be written by

1

lξ,m
¼ 1

lξξ,m
þ 1

lξI,m
(3.3)

Fig. 3.4 Schematics showing the scattering process of an energy carrier inside (a) the matrix and

(b) the spheroidal particle
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where lξI,m is the MFP associated with the collisions of the energy carriers with the

outer surface of the particles, and it is assumed to be independent of the intrinsic

scattering of the energy carriers represented by lξξ,m.
To determine lξI,m, let us define A⊥ as the collision cross-section (the effective

area of collision) between an energy carrier and a particle, and n as the number of

particles per unit volume of them (the density of particles). If V is the volume of one

particle, the volume fraction of particles is f ¼ nV. Now if one energy carrier

travels a distance L, it collides with particles within the cylindrical swept volume

A⊥L, which contains nA⊥L particles (see the dashed lines in Fig. 3.3a). The MFP

lξI,m due to particle inclusions can be thus written as

lξI,m ¼ L

nA⊥L
¼ 1

nA⊥
¼ 1

σ⊥ f
, (3.4)

where σ⊥ ¼ A⊥/V is the collision cross-section per unit volume of one particle.

After replacing (3.3) and (3.4) into (3.2), it is found that the thermal conductivity kξ,m
of the electron (ξ ¼ e) or phonon (ξ ¼ p) gases in the matrix material are given by

kξ,m ¼ Kξ,m

1þ lξξ,mσ⊥ f
, (3.5)

where Kξ,m is the bulk thermal conductivity of the matrix given by (3.2) with the

replacement lξ ! lξξ,m, which, for the sake of simplicity, has been represented by

its average value. Equation (3.5) indicates that the size dependence of the effective

thermal conductivity kξ,m of the matrix is related by the collision cross-section per

unit volume (σ⊥ ¼ A⊥/V ) and not through the total surface area per unit volume of

the particles, as was suggested by other researchers [15, 21].

The effective thermal conductivity of the particles can be found similarly. Based

on the Matthiessen rule, the effective mean free path lξ,I of the energy carriers

within the particles is given by

1

lξ, I
¼ 1

lξξ, I
þ 1

c
: (3.6)

where c is the average distance traveled by the energy carriers inside the particles,

independently of the intrinsic carrier scattering associated with the MFP lξξ,I. After
replacing (3.6) into (3.2) and assuming that lξξ,I can be represented by its average

value, the following thermal conductivity kξ,I of the particles is obtained

kξ, I ¼ Kξ, I

1þ lξξ, I=c
, (3.7)

where Kξ,I is the bulk thermal conductivity of the particles, defined by (3.2) with the

replacement lξ ! lξξ,I. Equation (3.7) shows that the effective thermal conductivity

of the particles can be considerably smaller than its bulk value when c � lξξ,I, and it
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reduces to its bulk counterpart for c � lξξ,I. This is expected given that the distance
c is directly proportional to the size of the particles, as shown below.

If the particles are aligned spheroids as the one shown in Fig. 3.4b, and the heat

flux is in the z-direction (the resultant net direction of the energy carriers), the

energy carriers of the matrix “see” an effective area of collision A⊥ ¼ πa2, which
implies that σ⊥ ¼ πa2/(4πba2/3) ¼ 3/4b. Due to the symmetry of the problem, the

characteristic length c ¼ cz, can be calculated conveniently using prolate (if a < b)
or oblate (if a > b) spheroidal coordinates (η, ξ, ϕ) [25]. The oblate spheroidal

coordinates are related to the Cartesian coordinates (x, y, z) as follows

x ¼ p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2ð Þ 1þ ξ2

� �q
cosϕ, (3.8a)

y ¼ p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2ð Þ 1þ ξ2

� �q
sinϕ, (3.8b)

z ¼ p

2
ηξ, (3.8c)

where p is the interfocal distance, as shown in Fig. 3.5. These oblate spheroidal

coordinates are defined within the intervals 0 � ξ < 1, � 1 � η � 1, and 0 � ϕ
< 2π, such that the surface of the spheroid is defined by ξ ¼ contant ¼ ξ0, the
plane xy and the z axis are given by η ¼ 0 and jηj ¼ 1, respectively [25]. According

to these definitions and (3.8a)–(3.8c), the lengths of the axes of the spheroid are

determined by 2a ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ20

q
and 2b ¼ pξ0.

To calculate the mean distance c, we are going to assume that the energy carriers

undergo diffusive scattering at the inner surface of the spheroidal particles. This

means that the electrons and phonons are reflected from the boundary surfaces with

equal probability to any direction, as is the case of rough interfaces, which are

usually found in practical applications. In presence of a heat flux along the z axis the
distance c ¼ cz, is therefore determined by the average value of 2z0 ¼ pηξ0 (see

Fig. 3.5), that is to say

Fig. 3.5 Geometry of the

cross-section of an oblate

spheroid (a > b) with
r2 ¼ x2 + y2
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cz ¼ pξ0
A

ð
A

ηdA, (3.9)

where, according to (3.8a)–(3.8c), the differential element of area over the surface

of the spheroid is given by dA ¼ p=2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ξ2

p
dηdϕ. The integration in

(3.9) has to be performed over the total area A of the spheroid, and its result is

cz ¼ 4b

3ε

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p 3 � 1

ε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p þ arcsinh εð Þ , (3.10)

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=bð Þ2 � 1

q
is the eccentricity of the oblate spheroids. For spherical

particles, the characteristic length in (3.10) reduces to the radius of the spheres

(cz ¼ b ¼ a), which is consistent with its definition of mean distance. On the other

hand, for flat-plate particles (a � b), (3.10) becomes cz ¼ 4b/3 � 1.33b.
According to (3.7), this indicates that the thinner the particle, the smaller its thermal

conductivity across its plane, as expected.

If the heat flux is parallel to the xy-plane, the cross-section is given by A⊥ ¼ πab
and hence σ⊥ ¼ πab/(4πba2/3) ¼ 3/4a. Furthermore, according to Fig. 3.4, the

distance c ¼ cxy traveled by the energy carriers inside the oblate spheroids is given

the average value of 2y0 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2ð Þ 1þ ξ20

� �q
sinϕ , over the surface of the

spheroid. The final results is

cxy ¼ 8a

3πε

1þ ε2ð ÞD �ε2ð Þ � 1� ε2ð ÞE �ε2ð Þ
ε
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2

p þ arcsinh εð Þ , (3.11)

where D and E are the complete elliptic integrals of the first and second kind [26],

respectively. For spherical particles, (3.8b) predicts cxy ¼ b ¼ a, which agrees with
(3.10). On the other hand, for flat-plate particles (3.11) yields cxy ¼ 8a/3π � 0.85a,
which is independent of the minor semi-axis and increases linearly with the major

semi-axis of the spheroid. By comparing the values cz ¼ 1.33b and cxy ¼ 0.85a, for
a flat-plate particle (a � b), it is clear that its thermal conductivity along its plane is

much larger than the one across its plane (see (3.7)).

By using the prolate spheroidal coordinates and following a similar procedure

than the one performed for oblate spheroids, a direct calculation shows that for

prolate spheroids (a < b), (3.10) and (3.11) remains valid after the substit-

ution ε ! iε, where i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit and the new eccentricity is

ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=bð Þ2

q
. Therefore, for cylindrical inclusions (a � b), (3.10) and

(3.11) reduces to cz ¼ 8b/3π � 0.85b and cxy ¼ 32a/3π2 � 1.08a, which

indicate that the thermal conductivity along the axis of the particles can be

much larger than the one across its axis, as is the case of carbon nanotubes [27],

for instance. Figure 3.6a shows that for a fixed semi-axis b, the characteristic
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length cz is bounded and increases with the equatorial radius a of the spheroids.

On the other hand, for a given semi-axis a, the characteristic length cxy is also

bounded and increases with b. These behaviors are because of the average

distance that the energy carriers can travel inside the particles increases with

their dimensions. This is confirmed by Fig. 3.6b, which indicates that for prolate

spheroids (a < b), cxy < cz; while for oblate ones (a > b), cxy > cz; as expected.
By replacing the bulk thermal conductivities Kξ,m and Kξ,I involved in a Fourier-

law-based model for the thermal conductivity of composites with a defined distri-

bution of particles, with their corresponding modified values given by (3.5) and

(3.7), it is expected that the its validity can be extended for composites with nano-

sized particles, as is the case of nanocomposites. Given that the modified thermal

conductivities are smaller than their corresponding bulk values, it is expected that

the modified thermal conductivity of the whole composite is smaller than its

unmodified value.

3.2.2 Applications

Now let us consider a composite made up of aligned Si particles embedded in a Ge

matrix, where the main heat carriers are the phonons. A suitable model for this case,

was derived by Nan et al. [8], who proposed that the components ki of the thermal

conductivity of the composite, along the principal axes (i ¼ x, z) of the aligned

spheroidal particles are given by

ki ¼ Km
1þ βi 1� Lið Þ f

1� βiLi f
, (3.12)

where Km is the bulk thermal conductivity of the matrix, 2Lx + Lz ¼ 1, and

Fig. 3.6 (a) Normalized characteristic lengths and (b) characteristic length ratio cxy/cz as a

function of the aspect ratio a/b of spheroidal particles
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βi ¼
σi � Km

Km þ Li σi � Kmð Þ , (3.13a)

σi ¼ KI

1þ RLiKI 2=aþ 1=bð Þ , (3.13b)

Lx ¼ p2

2 p2 � 1ð Þ �
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p 3
arccosh pð Þ, (3.13c)

where KI the thermal conductivity of the inclusions, R the interfacial thermal

resistance and p ¼ b/a. According to (3.5) and (3.7), the modified thermal conduc-

tivity of the inclusions and the matrix are kI ¼ KI/(1 + lpp,I/c) and km ¼ Km/

(1 + 3lpp,mf/4d), respectively; where d ¼ a (b) for oblate (prolate) spheroids.

After replacing these two results into (3.12), (3.13a) and (3.13b), the modified

EMA model is obtained.

Figure 3.7a shows the thermal conductivity k ¼ kx ¼ kz of the nanocomposite as

a function of the volume fraction f for different values of the radius a ¼ b of

spherical particles, in comparison with numerical results obtained from the

Boltzmann transport equation [13, 15, 21]. Here, the cubic particles studied numer-

ically [21] are represented approximately by spherical particles. The calculations

were performed using the data shown in Table 3.1, for the modified (M) and

unmodified (UM) models.

Note that the predictions of the modified model are in good agreement with the

MC simulations, especially for a ¼ 5 and 25 nm, which are much smaller than the

phonon MFP, and therefore the interfacial scattering plays an important role.

A similar behavior is shown in Fig. 3.7b, for the thermal conductivity of composites

in the direction perpendicular to the aligned cylindrical particles (a � b), where

the predictions of the modified model again agree with the numerical results based

on the BTE. A remarkable disagreement between the predictions of the modified

and unmodified models is shown in Fig. 3.7a, b, for both spherical and cylindrical

particles, respectively. As the size of the particles increases (a ¼ 100 nm) and

becomes of the same order of magnitude than the MFP, this difference decreases, as

a consequence of the reduction of the boundary scattering of phonons.

Furthermore, the modified EMA model can also be used to predict anisotropic

thermal conductivity of nanocomposites with spheroidal particles. Figure 3.8a, b

show the anisotropic thermal conductivities kx and kz of nanocomposites as a

function of the volume fraction for three different particles sizes of a ¼ 5,

50, 300 nm and b ¼ 5a.
Figure 3.8a shows that kx has a similar decreasing trend than the one for spherical

particles shown in Fig. 3.7a. By contrast, Fig. 3.8b shows that the thermal conduc-

tivity of the composite can also increase with the volume fraction for a ¼ 300 nm.

According to (3.12), the increasing (decreasing) of the composite thermal conduc-

tivity when the volume fraction increases is determined by β > 0 (β < 0). Based on

this remark and according to (3.13a) and (3.13b), the thermal conductivity of a

composite will decrease independently of the value of the thermal conductivity of
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the particles, when the volume fraction of the particles increases, if the geometry of

the particles fulfills the condition

2

a
þ 1

b

� �
Li >

1

aK
, (3.14)

where aK ¼ RKm is the so-called Kapitza radius of the composite. Equation (3.14)

represents the selection rule to minimize the thermal conductivity of composite

Fig. 3.7 Thermal conductivity of a Si/Ge nanocomposite reinforced with (a) spherical and (b)

cylindrical nanoparticles, as a function of the volume fraction and the particle radius. Calculations

were performed with the data reported in Table 3.1

Table 3.1 Material properties used in the calculations [21]

Material

Bulk thermal

conductivity (W/mK) MFP (nm)

Interfacial thermal

resistance (m2K/W)

Si 150 268 6.8 � 10�9

Ge 51.7 171

Fig. 3.8 Thermal conductivities (a) kx and (b) kz of a Si/Ge nanocomposite reinforced with prolate

spheroids with semi-axes b ¼ 5a. Calculations were performed with the data reported in Table 3.1
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materials by arranging the size and shape of the spheroidal particles properly. For

spherical and cylindrical particles of radius a, (3.14) reduces to aK > a, which
agrees with the results shown in Fig. 3.7a, b.

3.3 Metal-Nonmetal Composites

In metal-nonmetal composites, heat is conducted by different carriers in the parti-

cles and in the matrix. The energy is transport by both electrons and phonons in

metallic particles and then coupled to the phonons in the matrix. Both the

electron–phonon coupling in the metallic particle and the energy coupling across

material interface become important factors that determines the thermal conduc-

tivity of composites, especially when the particle size is in the order of the

electron–phonon coupling length. In this section, the two-temperature model of

heat conduction [28] originally proposed by Kaganov et al. [29] and Anisimov

et al. [30] is used to take into account the electron–phonon interactions and to

determine the effective thermal conductivity of composites with spheroidal metallic

particles embedded in a nonmetallic matrix. The interfacial thermal resistance that

accounts for the phonon mismatch between the two phases is included in this

model. Our results generalize those obtained by Nan et al. [8] under the framework

of the Fourier law of heat conduction and show that the effective thermal conduc-

tivity depends strongly on (1) the relative size of the spheroidal particles with

respect to the electron–phonon coupling length, and (2) the ratio between the

electron and phonon thermal conductivities. It is shown that the composite thermal

conductivity has upper and lower bounds, which are determined by the particle size

in comparison with the electron–phonon coupling length. For the limiting case of

perfect electron–phonon coupling, the proposed model reduces to various previ-

ously reported results. This study could be useful for guiding the design of partic-

ulate composites with metallic inclusions from macro/micro- to nano-scales.

3.3.1 Theoretical Model

Figure 3.9a shows the particulate composite under consideration, in which coated

spheroidal particles with the orientation and geometry shown in Fig. 3.9b are

embedded in a dielectric matrix of thermal conductivity k3. The metallic core of

the spheroidal particles has electron and phonon thermal conductivities ke and kp
respectively, and it is covered by a dielectric layer of thermal conductivity k2 with
variable thickness. Note that the composite shown in Fig. 3.9a, b is a three-phase

composite, which can be used to model two-phase composite when the thickness of

the dielectric coating goes to zero and the coating is used to represent a finite

interfacial thermal resistance. The derivation of the effective thermal conductivity

of this composite will be based on finding the temperature profile outside the
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particle shown in Fig. 3.9b, when it is exposed to a constant heat flux q
!
0 . This

method is based on the approach developed by Maxwell for an analogous electro-

statics problem [3].

In the metallic core, the TTM of heat conduction is used to describe the coupled

heat transport due to the electron and phonon gases [31]. This model describes the

spatial evolution of electron temperature Te and the phonon temperature Tp by the

following coupled differential equations [28, 31]

∇2Te � G

ke
Te � Tp

� � ¼ 0, (3.15a)

∇2Tp þ G

kp
Te � Tp

� � ¼ 0, (3.15b)

where G is the electron–phonon coupling factor, which takes into account the

electron–phonon interactions. Note that if the electron gas is in thermal equilibrium

with the phonon gas (Te ¼ Tp), both (3.15a) and (3.15b) reduces to the Laplace

equation, which indicates that the difference between TTM and the Fourier law is

due to the non-equilibrium state between electrons and phonons inside the metallic

particles. According to (3.15a) and (3.15b), the thermal equilibrium between

electrons and phonons is reached when G ! 1 (perfect coupling), which indicates

that in this limit, the predictions of the current approach should reduce to the results

obtained under the Fourier law, as shown below.

We point out that the electron–phonon coupling G in nanostructures is

temperature-dependent and could be remarkably different from that in the bulk

materials [32–34]. However, many reported results have shown that the predictions

Fig. 3.9 Schematics of (a) the composite with aligned coated spheroidal particles and, (b) the

geometry of one of those particles made of a metallic core with electron thermal conductivity ke,
phonon thermal conductivity kp and electron–phonon coupling factor G; and a nonmetallic coating

layer with thermal conductivity k2. The semi axes a2 and b2 of the outer confocal spheroid satisfy

the relation a22 � b22 ¼ a21 � b21
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of the TTM with an average constant value of G are in good agreement with

experimental data [31–33]. Based on these results and with the objective of keeping

solvable the problem, we are going to consider that the coupling factor can be

represented by an average constant value to illustrate the importance of G in

modeling the thermal conductivity of composites. Phonons dominate the heat

conduction in the nonmetallic coating layer and in the matrix and therefore the

Fourier law of heat conduction can describe their temperature.

By subtracting (3.15a) and (3.15b), the electron and phonon temperature

difference ψ ¼ Te � Tp can be found by

∇2ψ � 1

d2
ψ ¼ 0, (3.16)

where d is the electron–phonon coupling length of metals defined by

d2 ¼ ka
G
, (3.17a)

1

ka
¼ 1

ke
þ 1

kp
, (3.17b)

where ka is the half of the harmonic mean of the electron and phonon thermal

conductivities. It was found that d ~ 10�7 m, for a wide variety of metals (as copper,

silver, gold and others) at room temperature [28, 31].

Due to the symmetry of the problem, we can use the prolate (b1 > a1) or oblate
(b1 < a1) spheroidal coordinates (η, ξ, ϕ) to simplify the solution of the problem.

Let us now first consider that the uniform heat flux q
!
0 shown in Fig. 3.9b is applied

in the z-direction. Then, based on the Fourier law and in the relations among the

oblate spheroidal coordinates with the Cartesian coordinates defined in

(3.8a)–(3.8c), the temperature T3 far away from the influence of the coated particle,

apart from an additive constant, is given by

T3 zj j ! 1ð Þ � T0 ¼ � q0
k3

z ¼ � q0p

2k3
ηξ, (3.18)

Taking into account the azimuthal symmetry of the problem, the method of

separation of variables indicates that the difference of the electron and phonon

temperature can be written as ψ(η,ξ) ¼ S(η)R(ξ). After replacing this expression

into (3.16), it is found that the functions S(η) and R(ξ) satisfy the following

differential equations

d

dη
1� η2
� � dS

dη

� �
þ λ� c2η2
� �

S ¼ 0, (3.19a)
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d

dξ
1þ ξ2
� � dR

dξ

� �
� λþ c2ξ2
� �

R ¼ 0, (3.19b)

where λ is a separation constant and c ¼ p/(2d ). Note that for c ¼ 0 (d ¼ 1), the

well-behaved solution of (3.19a) and (3.19b) can be expressed in terms of the first

and second Legendre polynomials Pl and Ql, respectively [26]. In this case (c ¼ 0),

(3.16) reduces to the Laplace equation and therefore it yields the solution for the

temperature T under the Fourier law description. Taking into account that Ql(μ) /
Pl(μ)Fl(μ) [35], the general solution for T, can be written as follows

T η; ξð Þ ¼
X1
l¼0

AlPl ηð ÞPl iξð Þ 1þ BlFl iξð Þ½ 	, (3.20)

where Al and Bl are constant that depend on the boundary condition of the problem,

i is the imaginary unit, and

Fl μð Þ ¼
ð1
μ

dx

x2 � 1ð Þ Pl xð Þ½ 	2: (3.21)

The temperature profile in the nonmetallic coating layer T2, and in the matrix T3,
can be therefore written as (3.20), which is a particular case (c ¼ 0) of the general

solution of (3.19a) and (3.19b).

For the case of c 6¼ 0 (d 6¼ 1) the solution of (3.19a) is determined by the

spheroidal angular functions S ¼ S0l(c,η), which are similar to the well-known

spherical harmonics and can be expanded in term of Legendre polynomials

[25]. Analogously, the solution of (3.19b) is given by the spheroidal radial functions

R ¼ R0l(c,iξ), which have a known expansion in terms of spherical Bessel functions

[25]. We can therefore write the general solution of (3.16) as follows

ψ η; ξð Þ ¼
X1
l¼0

ClS0l c; ηð ÞR0l c; iξð Þ, (3.22)

where Cl are numerical constants. According to (3.15a), the electron temperature Te
satisfies

∇2Te ¼ G

ke
ψ , (3.23)

which is an inhomogeneous partial differential equation, whose general solution is

given by the superposition of its complementary (Tec) and particular (Tep) solutions
(Te ¼ Tec + Tep) [26]. Taking into account that ∇2Tec ¼ 0, the solution for Tec is
given by (3.20). Furthermore, the combination of ∇2Tep ¼ ψG/ke with (3.16)

yields Tep ¼ ψka/ke. In this way, the general solution of (3.23) is
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Te η; ξð Þ ¼ T η; ξð Þ þ ka
ke

ψ η; ξð Þ: (3.24)

The phonon temperature Tp ¼ Te � ψ is then found to be

Tp η; ξð Þ ¼ T η; ξð Þ � ka
kp

ψ η; ξð Þ: (3.25)

Note that (3.24) and (3.25) shows that the temperature profiles predicted by the

TTM are given by the superposition of the Fourier law prediction (the common

term) and a non-equilibrium term, which takes into account the effects of the

coupling among the electrons and phonons of the metallic core of the particle

shown in Fig. 3.9b.

After writing out the solutions for temperature distributions inside the particle

[(3.24) and (3.25)], in the coating layer and in the matrix [(3.20)], we now need

to specify interface and boundary conditions to find the required specific solutions.

In general, there are two possible pathways for energy transport across metal-

nonmetal interfaces, namely: (1) coupling between electrons and phonons within

the metal, and then subsequently coupling between phonons of the metal and phonons

of the nonmetal, and (2) coupling between electrons of the metal and phonons of the

nonmetal through anharmonic interactions at the metal–nonmetal interfaces.

Even though the direct electron–phonon coupling at metal-nonmetal interfaces is

always present (pathway 2), experimental or theoretical methodologies to quantify

its contribution are scarce [28, 36]. The description of this channel of heat transport

is complicated, and the mechanism is not well understood, especially when the

electrons of the metal are not in equilibrium with the phonons of the dielectric

material [37, 38]. The authors of these latter works also suggested that contribution

of the pathway 2 to the total heat flux through the metal-dielectric interface could be

small in comparison to that of the phonon-phonon interactions for a wide variety of

metals. Based on these facts and for keeping the problem analytically solvable, we

only consider the pathway 1 in this chapter.

Given that the metallic particles are embedded in a nonmetallic matrix, it is

reasonable to consider that the electrons are mainly isolated inside the particles. We

therefore assume that the electrons inside the core particle do not interact directly

with phonons in nonmetals and focus our study on the effect of electron–phonon

coupling on the effective thermal conductivity of the composite. Under this condi-

tion, the boundary conditions for the temperature and heat flux continuity at the

interfaces, can be written as

∂Te

∂ξ

				
ξ¼ξ1

¼ 0, (3.26a)

Tp

		
ξ¼ξ1

¼ T2jξ¼ξ1
, (3.26b)
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kp
∂Tp

∂ξ

				
ξ¼ξ1

¼ k2
∂T2

∂ξ

				
ξ¼ξ1

, (3.26c)

T2jξ¼ξ2
¼ T3jξ¼ξ2

, (3.26d)

k2
∂Tp

∂ξ

				
ξ¼ξ2

¼ k3
∂T3

∂ξ

				
ξ¼ξ2

, (3.26e)

where ξ1 and ξ2 represent the surfaces of the inner and outer spheroids, respectively.
The boundary conditions expressed in (3.18) and (3.26a)–(3.26e) determine the

temperature profiles everywhere in the space. An enormous amount of algebraic

calculations can be saved during the evaluation of these boundary conditions, by

recognizing that the general form of the temperature profiles is dictated by the form

of the external thermal excitation [39]. Given that (3.18) has a linear dependence on

η, the response of the materials should also have the same dependence, which

implies that l ¼ 1 in (3.20) and (3.22). Therefore (3.20), (3.24) and (3.25) can be

written as

Te η; ξð Þ ¼ AT0 η; ξð Þ 1þ B
ka
ke

i1 cξð Þ
ξ

� �
, (3.27a)

Tp η; ξð Þ ¼ AT0 η; ξð Þ 1� B
ka
kp

i1 cξð Þ
ξ

� �
, (3.27b)

T2 η; ξð Þ ¼ CT0 η; ξð Þ 1þ DF ξð Þ½ 	, (3.27c)

T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ EF ξð Þ½ 	, (3.27d)

where T0 is defined by (3.18), F(ξ) ¼ iF1(iξ), i1() is the modified spherical Bessel

function of the first kind and order one, and A, B, C, D and E are constants, which

are determined by substituting (3.27a)–(3.27d) into the five boundary conditions

given in (3.26a)–(3.26e). For the purposes of this work, just the temperature T3
outside of the spheroid is required and its explicit expression is

T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ β33
F ξð Þ

ξ2F
0 ξ2ð Þ

� �
¼ T0 η; ξð Þ 1� β33L

2ð Þ
33

F ξð Þ
F ξ2ð Þ

� �
, (3.28)

where the prime (0) indicates derivative of F with respect to its argument, and

β33 ¼
k33 � k3

k3 þ k33 � k3ð ÞL 2ð Þ
33

, (3.29a)

k33
k2

¼
1þ α33 1� L

2ð Þ
33


 �
ν

1� α33L
2ð Þ
33 ν

, (3.29b)
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α33 ¼ k1 � k2

k2 þ k1 � k2ð ÞL 1ð Þ
33

, (3.29c)

k1 ¼ ke þ kp
χ

, (3.29d)

χ ¼ 1þ ke
kp

d

b1

i1 b1=dð Þ
i
0
1 b1=dð Þ , (3.29f)

L
jð Þ
33 ¼ 1þ e�2

l

� �
1� arctan ej

� �
ej

� �
, (3.29g)

where ν ¼ a21b1/a
2
2b2 is the volume fraction of the core spheroid relative to the total

volume of the coated particle, ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj=bj
� �2 � 1

q
is the eccentricity of the j ¼ 1, 2

oblate spheroid (aj > bj) and all other parameters have been defined before. In

deriving (3.29a)–(3.29g), the relations aj ¼ pj=2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2j

q
and bj ¼ pjξj/2 have

been used [25]. It is worthwhile to point out the following remarks on

(3.29a)–(3.29g): (1) In absence of the coating layer (ν ¼ 1) and without consider-

ing the interfacial thermal resistance, the thermal conductivity k33 reduces to the

thermal conductivity of the inner spheroid (k33 ¼ k1). This indicates that in pres-

ence of the coating layer, the thermal conductivity k33 can be considered as the

effective thermal conductivity of the coated spheroidal particle. (2) The effect of

the electron–phonon coupling appears in the parameter χ through the ratio between
the minor semi-axis of the inner spheroid and the coupling length d defined in

(3.17a). Thus, the relative size of the particles with respect to the coupling length

plays an important role in the process of heat conduction. (3) Equation (3.29g)

defines the well-known geometrical factor [39], along the minor z axis of the oblate
spheroids.

The effective thermal conductivity of the composite can be derived using the

temperature profile given by (3.28). To do that, let us consider a large spheroid with

semi-axes a0 and b0, and surface ξ ¼ ξ0, composed by N aligned small spheroids

(see Fig. 3.9a), with the geometry and thermal conductivities shown in Fig. 3.9b,

embedded in a matrix of thermal conductivity k3. Assuming that the volume

fraction of the N spheroids f ¼ Na22b2/a
2
0b0 is small enough to neglect the interac-

tion among them (dilute limit), at distances much larger than the major semi-axis

a0, the heat flux (and therefore the temperature) is simply the superposition of the

heat fluxes due to each small spheroid. Under this condition, (3.28) indicates that

the temperature profile due to the system of N particles can be written as follows

T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ Nβ33
F ξð Þ

ξ2F
0
ξ2ð Þ

� �
: (3.30a)

By considering the large spheroid as a homogeneous spheroid with effective

thermal conductivity K33 along its minor axis (z-direction), the temperature profile

generated at a large distance is
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T3 η; ξð Þ ¼ T0 η; ξð Þ 1þ β
33
F ξð Þ

ξ0F
0
ξ0ð Þ

� �
, (3.30b)

where β
33 is defined by (3.29a) with the replacement k33 ! K33. After equating

(3.30a) with (3.30b), it is found that β
33 ¼ β33f, where f ¼ Nξ0F0(ξ0)/ξ2F0(ξ2) is the
volume fraction of the N particles. The solution of the former equation for K33

yields

K33

k3
¼

1þ β33 1� L
2ð Þ
33


 �
f

1� β33L
2ð Þ
33 f

: (3.31)

Note that (3.31) has a similar mathematical form as (3.29b), which indicates that

the effective thermal conductivities of the composite and the coated particles are

determined by the same mathematical equation with different physical parameters.

So far, the calculations have been performed considering that the applied heat

flux q
!
0 is along the z axis of the aligned oblate spheroidal inclusions. When this heat

flux is parallel to the x or y axis, we can follow a similar procedure to find the

effective thermal conductivities K11 and K22, along the x and y axes, respectively.
Indeed we find that K11 ¼ K22, as expected; due to the symmetry of the coated

spheroids and they are given by (3.31) with the replacement of the all subscripts

33 ! 11, while the geometrical factors L
ðjÞ
11 satisfy the relation

2L
jð Þ
11 þ L

jð Þ
33 ¼ 1, (3.32)

which implies that none of the (positive) geometrical factors of the spheroidal

particles is larger than the unity.

If the particles are prolate coated spheroids (b1 > a1), we can derive the effec-

tive thermal conductivities K11 ¼ K22 and K33 of the anisotropic composite along

the principal axes of the aligned spheroids using the prolate spheroidal coordinates

[25] and following a similar procedure as that we have performed for the oblate

spheroids. The results are indeed still given by equations of the form of (3.31), with

minor changes on the geometrical terms defined in (3.29f) and (3.29g) that are

specified below.

In summary, the effective thermal conductivities of the particulate composite

along the principal axes of the aligned oblate or prolate coated spheroids can be

written as follows

Kii

k3
¼

1þ βii 1� L
2ð Þ
ii


 �
f

1� βiiL
2ð Þ
ii f

, (3.33a)
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βii ¼
kii � k3

k3 þ kii � k3ð ÞL 2ð Þ
ii

, (3.33b)

kii
k2

¼
1þ αii 1� L

2ð Þ
ii


 �
ν

1� αiiL
2ð Þ
ii ν

, (3.33c)

αii ¼ k1 � k2

k2 þ k1 � k2ð ÞL 1ð Þ
ii

, (3.33d)

k1 ¼ ke þ kp
χ

, (3.33e)

χ ¼ 1þ ke
kp

d

b1

i1 b1=dð Þ
i
0
1 b1=dð Þ , Oblate spheroids

d

a1

i1 a1=dð Þ
i
0
1 a1=dð Þ , Prolate spheroids

8>>>><
>>>>:

(3.33f)

L
jð Þ
33 ¼

1þ e�2
j


 �
1� arctan ej

� �
ej

0
@

1
A, Oblate spheroids

1� e�2
j


 �
1� arctan h ej

� �
ej

0
@

1
A, Prolate spheroids

8>>>>>><
>>>>>>:

(3.33g)

where ej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aj=bj
� �2 � 1

q
for oblate spheroids and ej ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aj=bj

� �2q
for prolate

spheroids, and the prime (0) indicates derivative of i1() with respect to its argument. It

is important to note that as a result of the electron–phonon interactions at themetallic

particle, its total thermal conductivity (electron + phonon contributions) is reduced

by the factor χ, which can bemuch larger than the unity when the size of the particles

is of the same order of magnitude than the coupling length, as established in (3.33f).

This reduction is reasonable, given that these interactions represent a scattering

process between the electrons and phonons, which reduces their total mean free path

and therefore the corresponding thermal conductivity [24, 40].

When the applied heat flux q
!
0 is not parallel to any of the principal axes of the

coated spheroids, we can generalize (3.33a)–(3.33g). In this case, the heat flux q
!

3

due to the temperature T3 outside of the spheroids is determined by the principle of

superposition and can be written as follows

q
!

3 ¼ �k3 x̂
∂T3

∂x

				
β11,q0,11

þ ŷ
∂T3

∂y

				
β22,q0,22

þ ẑ
∂T3

∂z

				
β33,q0,33

 !
, (3.34)
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where q0,ii for i ¼ 1, 2, 3 are the components of q
!

0 relative to the coordinate system

(x, y, z) defined as the principal axes of the coated spheroids, and T3 is given by

(3.28), for the appropriate parameters specified as subscripts. The components of the

heat flux vector q
!

3 relative to the (x
0,y0,z0) coordinate system, where the applied heat

flux vector q
!
0 is parallel to the z0 axis (for example), can be obtained with the

equation q
!
3


 �0
¼ M q

!
3


 �
, whereM is the transformationmatrix and the parenthesis

indicate that the heat flux vector is written in matrix form [41]. Note that this latter

equation represents the way in which the coordinates of any vector transform from

its original coordinate system to a rotated one. This relation together with (3.34)

implies that the parameters βii and βiiL
ð2Þ
ii (see (3.28)) transform according to [41]

βð Þ0 ¼ M βð ÞM�1, (3.35a)

βL 2ð Þ

 �0

¼ M βL 2ð Þ

 �

M�1, (3.35b)

where

βð Þ ¼
β11 0 0

0 β11 0

0 0 β33

0
@

1
A, (3.36a)

βL 2ð Þ

 �

¼
β11L

2ð Þ
11 0 0

0 β11L
2ð Þ
11 0

0 0 β33L
2ð Þ
33

0
B@

1
CA: (3.36b)

Let us now consider that the z axis of the coated spheroids forms an angle θ with
the direction of propagation of the applied heat flux (z0 direction), as shown in

Fig. 3.10. When the coated spheroids are randomly distributed in the plane x0y0, this
angular displacement between the z and z0 axes can be described by a single rotation
along the x axis. Therefore the transformation matrix M takes the form [41]

M ¼
1 0 0

0 cos θ sin θ
0 � sin θ cos θ

0
@

1
A: (3.37)

After inserting (3.36a), (3.36b) and (3.37) into (3.35a) and (3.35b), the param-

eters β0ii and (βL(2))
0
ii can be found. The substitution of these latter results into

(3.33a) shows that the components of the effective thermal conductivity K

ii along

the x0, y0 and z0 axes (the laboratory coordinate system) are determined by

K

11

k3
¼ K


22

k3
¼

2þ β11 1� L
2ð Þ
11


 �
1þ γð Þ þ β33 1� L

2ð Þ
33


 �
1� γð Þ

h i
f

2� β11L
2ð Þ
11 1þ γð Þ þ β33L

2ð Þ
33 1� γð Þ

h i
f

, (3.38a)
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K

33

k3
¼

1þ β11 1� L
2ð Þ
11


 �
1� γð Þ þ β33 1� L

2ð Þ
33


 �
γ

h i
f

1� β11L
2ð Þ
11 1� γð Þ þ β33L

2ð Þ
33 γ

h i
f

, (3.38b)

where γ ¼ cos 2θ. Note that when θ ¼ 0 (γ ¼ 1), (3.38a) and (3.38b) reduces to

(3.33a), as expected. Equations (3.38a) and (3.38b) determine the effective thermal

conductivity of particulate composites that are isotropic in the perpendicular direc-

tions to the applied heat flux and anisotropic under the heat flux direction. Thus, the

obtained results involve the effects of the coupling length, size, shape, orientation

and volume fraction of the particles.

We point out that the primary constituents of the composites under consideration

are the matrix and the metallic particles, which are separated by a coating layer, as

shown in Fig. 3.9b. This coating layer, as mentioned before, has been introduced to

model the lack of thermal coupling at the interface between the matrix and metallic

particles [42, 43]. Many experimental results have shown that this phenomenon

establishes a discontinuity on the temperature between two dissimilar materials

[42]. This temperature jump characterizes the interfacial resistance to the thermal

flow and is usually described by means of the interfacial thermal resistance

R defined by

R ¼ lim
δ ! 0

k2 ! 0

δ

k2
, (3.39)

where δ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � a2

1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 � b2

1

q
(see the caption of Fig. 3.9). Note that (3.39)

differs slightly from the usual definition of R, where the parameter δ is the constant

Fig. 3.10 Local (x, y, z) and
global (x0, y0, z0) coordinate
systems of a coated

spheroid
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thickness of the coating layer [8]. In the present case, even though the modeling of

the particles as confocal spheroids (see Fig. 3.9b) has allowed us to determine the

temperature profiles and the effective thermal conductivity of the composites

analytically, the thickness of the coating layer is not constant. Therefore despite

(3.51) provides a convenient form of introducing the interfacial thermal resistance,

it introduces a small variation in R due to the generic geometry of the particles we

chose in this study. Equation (3.51) combines the geometry and the thermal

conductivity of the coating layer in just one parameter, which takes into account

the interfacial mismatch between the phonons of the matrix and metallic particles.

Under these conditions, the coating layer disappears, the inner and outer spheroids

have the same geometry, and therefore they have the same geometrical factors

(L
ð1Þ
ii ¼ L

ð2Þ
ii � Lii), the phases of the composite shown in Fig. 3.9a, b decrease to

only two constituents, and (3.33c) reduces to

kii ¼ k1
1þ Rk1Lii 2=a1 þ 1=b1ð Þ , (3.40)

which, in absence of the interfacial thermal resistance, is equal to k1. The combi-

nation of (3.33b) and (3.40) yields

βii ¼
1� akγLiið Þk1 � k3

1þ akγ 1� Liið Þ½ 	k1 þ 1� Liið Þk3 , (3.41)

where γ ¼ 2/a1 + 1/b1 and aK ¼ Rk3 is the so-called Kapitza radius [8, 44]. This

radius aK can be interpreted as the equivalent thickness of a layer of the matrix

around the spheroidal particles, with a thermal resistance R ¼ aK/k3. It is important

to note that in this limit and in absence of the effect of the electron–phonon coupling

(χ ¼ 1) (3.38a) and (3.38b) reduce to the results derived by Nan et al. [8].

To have further insights on the predictions of (3.38a), (3.38b), (3.40) and (3.41),

we analyze the following four limiting cases of potential interest:

3.3.1.1 Spherical Particles: a1 ¼ b1

In this case, L11 ¼ L33 ¼ 1/3, and both (3.38a) and (3.38b) become independent of

the direction parameter γ and reduce to

K

11

k3
¼ K


22

k3
¼ k1 1þ 2rð Þ þ 2k3 þ 2 k1 1� rð Þ � k3½ 	f

k1 1þ 2rð Þ þ 2k3 � k1 1� rð Þ � k3½ 	f , (3.42)

where k1 ¼ (ke + kp)/χ and r ¼ aK/a1. In absence of the coupling factor (χ ¼ 1),

(3.54) reduces to the result derived by Hasselman and Johnson [5] and Nan

et al. [8].
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3.3.1.2 Aligned Cylindrical Particles: a1 � b1

For large cylinders aligned parallel to the z axis (θ ¼ 0), L11 ¼ 1/2, L33 ¼ 0 and

(3.38a) and (3.38b) take the form

K

11

k3
¼ K


22

k3
¼ k1 1þ rð Þ þ k3 þ ks 1� rð Þ � k3½ 	 f

k1 1þ rð Þ þ k3 � ks 1� rð Þ � k3½ 	 f , (3.43a)

K

33 ¼ k3 1� fð Þ þ k1f , (3.43b)

In the absence of the coupling factor ( χ ¼ 1), (3.43a) reduces to the results

presented by Hasselman and Johnson [5] and Nan et al. [8], and (3.43b) is just the

simple mixture rule for inclusion arranged in series, as shown by Torquato [2].

Note that a common feature of the effective thermal conductivities of compos-

ites reinforced with spheres and cylinders ((3.42) and (3.43a)) is that they both

reduce the thermal conductivity of the matrix, independently of the volume fraction

of the particles, for a critical radius a1 ¼ ac defined by k1=k3 ¼ 1= 1� rð Þja1¼ac
.

This relation implies

rc � aK
ac

¼ 1� χc
k3
ks
, (3.44)

where ks ¼ ke + kp and χc is defined in (3.33f) for a1 ¼ ac. In terms of the critical

ratio rc, both (3.42) and (3.43a) can be rewritten in the following compact form

K


k3
¼ 1þ σλf

1� λf
, (3.45)

where σ ¼ 1 and 2, for cylinders and spheres, respectively; and

λ ¼ 1� rð Þχc � 1� rcð Þχ
1þ σrð Þχc þ σ 1� rcð Þχ , (3.46)

Equations (3.44)–(3.46) express that the thermal conductivity of composites

reinforced with spheres or cylinders, is totally ruled by the relative radius of these

particles with respect to their critical radius ac, the Kapitza radius aK and the

coupling length d, involved in the parameters χ and χc. This shows explicitly that

the behavior of K* is determined by the size scale of the particles. Note that

in absence of the interfacial thermal resistance (r ¼ rc ¼ 0), (3.46) reduces to

λ ¼ (χc � χ)/(χc + σχ), which; in contrast to the models developed under the

Fourier law approach [1, 2, 4, 5, 12], still depends on the particle size. This

reaffirms that not only the interfacial thermal resistance but also the coupling

term has an important effect on the thermal conductivity of composites.

The critical radius ac is determined by (3.44), which in general cannot be solved

analytically (see (3.33f)). However if ac � d, χc � 1 + ke/kp and (3.44) yields
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rc � ak
ac

¼ 1� k3
ks

1þ ke
kp

� �
, (3.47a)

which indicates that the critical radius ac is independent of the coupling length

d, and is greater than the Kapitza radius ak (ac > ak). On the other hand, for

ac � d, χc � 1 + (ke/kp)/(ac/d � 1) and (3.44) roughly reduces to

ac ¼ 1

ks=k3 � 1

ks
k3

aK þ ke
kp

d

� �
: (3.47b)

Equation (3.47b) shows a linear dependence of the coupling length d and

suggests that ac can be interpreted as a weighted average between the Kapitza

radius ac, and d; where the weights are determined by the ratios of thermal

conductivities. In general, (3.47a) and (3.47b) establish the minimal and maximum

values of the critical radius, respectively.

3.3.1.3 Aligned Flat Plates: a1 � b1

When the particles are laminate flat plates oriented perpendicular to the z axis

(θ ¼ 0), L11 ¼ 0, L33 ¼ 1, and (3.38a) and (3.38b) becomes

K

11 ¼ k3 1� fð Þ þ ks

χ
f , (3.48a)

1

K

33

¼ 1� f

k3
þ χ þ ρð Þ f

ks
, (3.48b)

where ρ ¼ Rks/b1. Without taking into account the effect of the coupling factor

(χ ¼ 1), the (3.48a) and (3.48b) are identical to the results derived by Torquato [2]

and Nan et al. [8].

It is important to note that even though the coupling factor G could be different

for spherical, cylindrical and flat plates particles, the obtained results remains valid

when an average value of G is used, for each case; as explained in the text

underneath (3.15b).

3.3.1.4 Randomly Oriented Spheroidal Particles

This case can be modeled by averaging the direction parameter γ over all possible
orientations of the spheroidal particles (0 � θ � π/2). The calculation of this

average is straightforward and is found to be < γ > ¼ 1/3. After inserting this

value into (3.38a) and (3.38b), both equations reduces to
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K


k3
¼ 3þ 2β11 1� L11ð Þ þ β33 1� L33ð Þ½ 	f

3� 2β11L11 þ β33L33½ 	f , (3.49)

which is the generalization of the Maxwell result [3], for isotropic composites with

spheroidal particles. Given that the leading coefficients of the volume fraction f (the
quantities in square brackets) in the numerator and denominator of (3.49) are

different, the concept of critical radius as was defined by spherical and cylindrical

particles, cannot be applied to the case of general spheroidal particles.

3.3.2 Numerical Results and Discussions

First of all, we would like to note the validity of our model. Given that the

microscopic electron–phonon interactions requires a space to take place, in general,

the TTM is suitable to study the heat conduction in materials with a physical size

greater than the mean free path (MFP) of the energy carriers (2a1, 2b1 > MFP).

This constraint was the assumption made by Qiu and Tien [31] to derived this

model from the Boltzmann transport equation, by evaluating its scattering term

using quantum mechanical and statistical considerations. It was found that the

coupling length d for a wide variety of metals (as the copper, silver, gold and

others) is of the order of hundreds of nanometers (10�7 m) [28, 31], and the mean

free path of the energy carriers is of the order of nanometers (10�9 m) [18] at room

temperature. Usually the phonon mean free path, in the order of a few nanometers to

tens of nanometer, [45–47] is much longer than the electron mean free path, which

could pose constraints on the validity of the model. However, by taking into

account the interfacial phonon thermal resistance, the TTM could be extended

into a validity regime for spheroidal particles with sizes as small as 5 � 10�9 m

[48, 49]. We thus can conclude that the model could be useful for studying the

impact of electron–phonon coupling effect on the thermal conductivity of metal-

nonmetal materials with a thickness as small as a few nanometers.

The results presented in Sect. 3.3.1 indicate that the major differences of thermal

conductivity of metal-nonmetal composites with previously published results is

given by the parameter χ, which introduces the effects of the electron–phonon

coupling through: (1) the ratio between one semi-axis (size) of the spheroids and

their associate coupling length, and (2) the ratio between the electron and phonon

thermal conductivities (see (3.33f)). For the limiting case where the particles are

nonmetallic, ke/kp < < 1 or d ! 1 (G ! 0), χ reduces to unity (χ ¼ 1), which is

its value used under the Fourier approach, and (3.42)–(3.49) reduce to the results

obtained by Nan et al. [8]. However, when the particles are metallic (χ > 1),

(3.42)–(3.49) exhibit remarkable differences with those results.

Figure 3.11 shows the coupling term χ as a function of the relative size of the

particles. Note that the effects of the coupling factor G can only be neglected

(χ ! 1) if the dimensions of the spheroidal particles are much larger than the
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coupling length (a � d ). However, as size of these particles becomes of the same

order or smaller than the coupling length (a � d ), the coupling term increases and

tends to the limit of χ ! 1 + ke/kp, when a � d. This indicates that the effects of χ
should be considered, especially when the electron thermal conductivity is much

greater than the phonon thermal conductivity (ke > > kp), as is the case of metallic

particles. Taking into account that for most metals the coupling length is of the

order of hundreds of nanometers (d ~ 10�7 m) [28, 31], Fig. 3.11 shows that the

Fourier law-based models fail when one is dealing with composites with metallic

nanoparticles. Another important parameter that determines the effective thermal

conductivity of composites involving spherical and cylindrical particles is given by

the critical radius ac, defined in (3.44). Figure 3.12 shows that ac increases with the
Kapitza radius and decreases when the ratio ks/k3 of thermal conductivities

increases. ac reaches its minimal value ac,min ¼ aK when ks/k3 ! 1. This behavior

of ac with ak indicates that the composites thermal conductivity decreases as ac
increases.

Figure 3.13 shows the influence of the relative particle size with respect to the

coupling length on the effective thermal conductivity as a function of the volume

fraction of spherical particles. Even though the derived formulas are likely not valid

for high volume fractions (f ! 1), the lines for the entire range of values of the

volume fraction has been plotted simply for completeness. Note that the thermal

conductivity of the composite increases when the normalized radius a/d of the

spheres increases, such that for a/d ! 1, the thermal conductivity reaches its

maximum values, which is predicted by the Fourier law (see Fig. 3.11). As the

normalized radius is scaled down, the thermal conductivity of the composite

decreases, and it reaches its minimal value for a/d ¼ 0. The change of the com-

posite thermal conductivity due to the relative size of the spheres with respect to the

coupling length is bounded by K*ja/d ¼ 0 � K* � K*ja/d ¼ 1, for any value of the

volume fraction. These bounds are determined by the two asymptotic values of

Fig. 3.11 The normalized

coupling term χ as a

function of the relative size

of the spheroidal particles,

for different kep ¼ ke/kp
values. a ¼ a1 for prolate

spheroids, and a ¼ b1 for
oblate spheroids

3 Thermal Conductivity of Particulate Nanocomposites 121



the coupling term χ ¼ 1, 1 + ke/kp. Note that K* > k3 for a > ac, K* < k3 when
a < ac, and K* ¼ k3 at a ¼ ac, for any volume fraction. These features of the

effective thermal conductivity are true for any value of the critical and Kapitza radii

(see Fig. 3.14a), and they are not only valid for the case of spheres but also for

cylinders, as can be shown from (3.45) and (3.46). This indicates that to increase the

thermal conductivity of the matrix, the thermal and geometrical properties have to

be selected such that, the radius of the particles is larger than their critical radius.

The normalized thermal conductivity of composites with spherical particles as a

function of their normalized radius and Kapitza radius is shown in Fig. 3.14a, b,

respectively; by comparing the predictions of the proposed approach in pre-

sence (solid lines) and absence (dashed lines) of the electron–phonon coupling

Fig. 3.12 Normalized

critical radius ac/d, as a
function of the normalized

Kapitza radius ak/d and the

ratio ks3 ¼ ks/k3.
Calculations were

performed for ke/kp ¼ 4

Fig. 3.13 Normalized

thermal conductivity of

composites with spherical

particles as a function of

their volume fraction, for

different values of the

normalized radius a/d.
Calculations were

performed using ac ¼ 5d,
ak ¼ 2d and ke ¼ 3kp
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factor G ( d ¼ ffiffiffiffiffiffiffiffiffiffiffi
ka=G

p
). Figure 3.14a shows that the thermal conductivity of

composites is strongly determined by the size of the particles and the Kapitza

radius with respect to the coupling length. For a particle radius of the order of the

coupling length (a ~ d ), the effects of G show up remarkably when the Kapitza

radius is comparable or smaller than the coupling length (aK � d ). On the other

hand, according to Fig. 3.14a, b, for a fixed Kapitza radius aK > d, those effects

become remarkable for a particle radius inside the interval d � a � 10d, and they

reduce for other particles sizes. Based on these remarks, it is clear that

the contribution of the coupling factor, for particles sizes within this interval

(d � a � 10d ), is not only present for a small Kapitza radius (aK � d ) but also
for large values (aK > d). Taking into account that the typical values of the

coupling length and Kapitza radius are d ~ aK ~ 10�7 m for metal-dielectric inter-

faces; this indicates that the effect of the electron–phonon coupling on the thermal

conductivity of composites could be observed for the case of micro-sized metallic

particles, and possibly be overshadowed by the interfacial thermal resistance for

nanoparticles.

Figure 3.15a–c show the effective thermal conductivity as a function of the

volume fraction of the particles. The comparison of the effective thermal conduc-

tivity k of a composite, predicted by the current approach, the models by Nan

et al. [8] and by Duan and Karihaloo [12] is shown in Fig. 3.15a, for two relative

values of the coupling length dwith respect to the radius a of the spherical particles.
For a fixed particle radius, k increases when the coupling length decreases, such that
for d � a, it approaches to the predictions of the Nan et al. and Duan and Karihaloo
models. Figure 3.15b, c show that the change of the composites thermal conduc-

tivity with the volume fraction of randomly oriented oblate (pancake-shaped) or

prolate (cigar-shaped) spheroids, respectively. Note that, as in the case of spherical

Fig. 3.14 Normalized thermal conductivity of composites as a function of (a) the normalized

radius of the spherical particles, and (b) the normalized Kapitza radius, for different values of the

Kapitza and particle radius, respectively. The continuous and dashed lines correspond to the

predictions of the proposed model in presence and absence of the electron–phonon coupling,

respectively. Calculations were performed for ks ¼ 5k3, ke ¼ 3kp and f ¼ 20 %
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particles (Fig. 3.13), the effective thermal conductivity is still bounded by its lower

values at a1/d ¼ 0, and higher values at a1/d ¼ 1. This means that the effective

thermal conductivity increases when the electron–phonon coupling factor

G increases (d ! 0). The corresponding bounds associated with the oblate spher-

oids are higher than those of the prolate spheroids for any volume fraction. This

points out that the composites with randomly oriented oblate spheroids have higher

thermal conductivities than those with prolate spheroids.

The effect of the normalized thermal resistance ρ ¼ Rks/b1, on K*/k3 for oblate
(b1/a1 < 1) and prolate (b1/a1 > 1) spheroids is shown in Fig. 3.16a, b, respectively.

Note that when the interfacial thermal resistance is large enough, the thermal con-

ductivity may not only increases but also decreases with the volume fraction, no

matter whether the value of b1/a1 is 1/5 or 5. The effective thermal conductivity is

largest when the interface thermal resistance is negligible, i.e. ρ ¼ 0. According

to Figs. 3.15b, c, and 3.16a, b, both the coupling length and the interface thermal

resistances impose bounds for the maximum and minimum values of the thermal

conductivity of the composite. However, while the thermal conductivity K* of the

Fig. 3.15 Normalized thermal conductivity of composites as a function of the volume fraction of

(a) spherical particles, and (b) and (c) ellipsoidal particles with aspect ratios of b1/a1 ¼ 1/5, and

b1/a1 ¼ 5/1, respectively. Calculations were performed using ks ¼ 25k3, ke ¼ 3kp and a ¼ 5aK
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composite just increases with the volume fraction, for any value of the coupling

length (for ks > k3), the interfacial thermal resistancemay lead to an effective thermal

conductivity of the composite that is lower than the one of the matrix (K* < k3), as
was reported by in the literature [8, 23, 50]. This latter feature represents a key

difference between the contributions of the interfacial thermal resistance and the

coupling length.

Figure 3.17 shows the thermal conductivity of composites as a function of the

aspect ratio b1/a1 of randomly oriented spheroidal particles and the normalized

interfacial thermal resistance ρ. When ρ ¼ 0, the thermal conductivity of composites

with oblate spheroids is larger than the one with prolate spheroids. The thermal

conductivity reaches its minimum value when the particles are spherical (b1/a1 ¼ 1).

Fig. 3.16 Normalized thermal conductivity of composites as a function of volume fraction for

different values of the normalized interfacial thermal resistance and aspect ratios of (a) b1/a1 ¼ 1/5,

and (b) b1/a1 ¼ 5/1. Calculations were performed using ks ¼ 25k3, ke ¼ 3kp and a1/d ¼ 1/2

Fig. 3.17 Normalized

thermal conductivity of

composites as a function of

the aspect ratio b1/a1, for
different values of the

normalized interfacial

thermal resistance.

Calculations were

performed using ks ¼ 25k3,
ke ¼ 3kp, f ¼ 20 % and a1/
d ¼ 1/2
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This suggests that the thermal conductivity can be maximized if laminate flat plates

are used instead of cylinders or spheres. On the other hand, in presence of the

interface thermal resistance (ρ > 0) and for a wide range of its values, the effective

thermal conductivity increases when the aspect radio b1/a1 decreases. However, this
trend may be inverted when the interfacial thermal resistance is large enough. K*/k3
can be significantly modified by the shape and relative size of the particles with

respect to the coupling length, and the Kapitza radius, as shown in Fig. 3.16a, b.

3.4 Composites with High Concentration of Particles

The discussions of Sects. 3.2 and 3.3 are applicable only when the interactions among

the particles can be neglected. In such dilute limit, the heat flux lines generated by one

particle are not distorted by the presence of the neighboring particles when the

distance between neighboring particles is much larger than their size. However, for

higher particle concentrations, the distance between neighboring particles can be of

the order of the particle size or smaller and the interaction among particles have to be

considered, which results in distortion in heat flux that is different from the prediction

of the single particle assumption.

One of the first tries to address the problem of the non-dilute concentration of

particles was reported by Nielsen [51], who proposed an empirical model for the

thermal conductivity of composites based on the analogy between the elastic and

thermal properties, which is claimed to be valid for volume fractions of particles up to

their maximum packing fraction. One of the key features of this model is the

introduction of the maximum volumetric packing fraction of particles, whose effects

on the thermal conductivity of the composites increases with the volume fraction of

the particles [51–53]. Even though the predictions of this model are in good agree-

ment with a wide variety of experimental data involving composites with spherical

and cylindrical particles [51, 52], its semi-empirical nature does make it difficult to

explain how the model takes into account the particle interactions, which are strongly

present at high particle concentrations. On the other hand, by using the differential

effective medium theory proposed by Bruggeman [54], Norris et al. [55], Every

et al. [56], and more recently Ordonez-Miranda et al. [57, 58] have reported different

models that can potentially be used for the prediction of thermal conductivity in

composites with high volume fractions of particles. These Bruggeman theory-based

models explain clearly how the composite can be built up by means of a process of

incremental homogenization, provided that the matrix remains as a continuous

medium and the particles are disconnected. These models agree reasonably well

with the experimental data for thermal conductivity of various composites [55–58]

and porous media [59], even when the particles are non-uniform as long as the

particles do not form large clusters [2, 58]. However, the Bruggeman-based models

do not involve the maximum packing fraction of the particles, which plays an

increasingly important role on the thermal conductivity of composites with high

volume fractions of particles [51, 52]. Despite the limitations of these two approaches,
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Nielsen [51] and Bruggeman-based models [55–57], represent the major efforts to

describe the thermal conductivity of composites with high concentrations of particles.

Thus, a more general approach that takes into account the particle interactions and the

maximum packing fraction of the particles is highly desirable.

3.4.1 A Crowding Factor Model

To extend the applicability of the model developed in Sects. 3.2 and 3.3 to higher

concentrations, we have recently used the concept of crowding factor to take into

the particle interactions [60]. The concept of crowding factor has been introduced in

economy as a population density to explain the flow of capital in open and closed

economies [61]. In this area of research, the crowding factor determines how

different economical agents such as the government and private entities crowd

each other with similar solutions to a particular financial problem. Furthermore,

the crowding factor is also involved in crowding theory of viscosity of a concen-

trated suspension of spherical particles [62, 63]. To take into account the particles

interactions, in this theory the crowding factor γ is defined as the effective volume

fraction of the suspended particles, such that spheres with a partial concentration f1
crowd other spheres into the remaining free volume fraction 1 � γf1. The analytical
results of this theory and its generalization have shown good agreement with

experimental and simulation data reported in the literature for both low and high

concentrations of suspended spherical particles [63]. We extend the use of the

crowding factor to describe the thermal conductivity of composites made up of

particles with an arbitrary size, shape and orientation within the matrix. The effect

of this factor is expected to be important at high particle concentrations, where the

crowding among particles is strongly present.

As shown in Fig. 3.18, the composite with volume fraction f of particles can be

viewed as embedding particles successively into the matrix with two volume fractions

f1 and f2, i.e. f ¼ f1 + f2. We can then analyze the effect of such a homogeneous

addition. The addition of the first fraction f1 of particles increases (or decreases) the
thermal conductivity of the matrix by the factor k1/km ¼ F(f1), where k1 and km are

the thermal conductivities of the matrix in presence and absence of particle inclusions,

respectively.When f1 ! 0, the functionF should reduce to a dilute-limit model. If the

second fraction f2 is added beyond the first fraction, the thermal conductivity will have

a further increase (or decrease). This second addition of particles with respect to

the first one is to homogeneously place particles with volume fraction f2 in the

available space not occupied by the particles with concentration f1. By defining the

crowding factor γ as the effective volume of particles per unit “real” volume of them,

such as γV1 is the effective volume of the particles in V1, which is “seen” by the

particles in V2. Therefore, the second addition of f2 fraction of particles further

changes the effective thermal conductivity to k/k1 ¼ F(f21), where f21 ¼ V2/(VT �
γV1) ¼ f2/(1 � γf1) is the volume fraction of V2 in the accessible volume VT � γV1,

whereVT is the total volume of the composite. The contribution of the crowding factor
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γ is particularly clear for high volume fractions of particles. For instance, given that a

particle of V2 does not fit in between particles i and ii (see Fig. 3.18), the effective

volume of the particles should be slightly larger than its “real” volume. Therefore, it is

expected that the parameter γ depends strongly on the geometry and maximum

packing volume fraction of particles.

Taking into account that the introduction of f2 also reduces the free volume

available for f1, the crowding factor for fractions f1 and f2 is mutual and therefore

the effective concentration of f1 in the composite is f12 ¼ f1/(1 � γf2). To account

for this mutual effect, the function F(f1) must be replaced by F( f12). We can then

determine the normalized thermal conductivity k/km ¼ (k1/km)(k/k1) of the com-

posite with a total concentration f ¼ f1 + f2 of particles by

F f 1 þ f 2ð Þ ¼ F
f 1

1� γf 2

� �
F

f 2
1� γf 1

� �
, (3.50)

which is a functional equation for the function F( f ) ¼ k/km. Equation (3.50)

establishes that this function satisfies these two conditions: F(0) ¼ 1 and F
(2x) ¼ F2(x/(1 � γx)) > 0, which implies that F( f ) is always positive. The

solution of (3.1) can be determined by noting that: (1) For the limiting case of

γ ! 0, (3.1) reduces to Cauchy’s exponential equation [64], whose solution is

given by F(x) ¼ exp(Cx), where C is an arbitrary constant. (2) Based

on this asymptotic solution and on the Wentzel-Kramers-Brillouin-Jeffreys

method [65], which is usually applied to solve the one-dimensional

Fig. 3.18 Diagram of the

composite under

consideration with a total

volume of particles V1 + V2
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Schrodinger equation with a position-dependent potential, the general solution

of (3.1) when γ 6¼ 0 can be written as

F fð Þ ¼ exp CfG fð Þð Þ, (3.51)

where the function G( f ) reduces to the unity when the parameter γ ¼ 0. By com-

bining (3.50) and (3.51), it is found that G satisfies a functional equation, which for

f1 ¼ f2 ¼ x, takes the form

G 2xð Þ ¼ 1

1� γx
G

x

1� γx

� �
: (3.52)

Since G( f ) should be a well-behaved function of f, we can seek a solution for

(3.52) in the form of

G xð Þ ¼
X1
n¼0

An γxð Þn, (3.53)

where A0 ¼ 1 to guarantee that (3.51) reduces to the solution of the Cauchy’s

exponential function for γ ¼ 0. Equation (3.53) represents the well-known power

series method, which is usually applied to find the solution of second-order ordinary

differential equations [26, 66]. After inserting (3.53) into (3.52), the following

relation is found for the coefficients An,

X1
n¼0

An 2γxð Þn ¼
X1
n¼0

An γxð Þn
1� γxð Þnþ1

: (3.54)

By applying the binomial theorem to expand the factor (1 � γx)�(n + 1) in the

power series of γx, and rearranging the resulting double series in (3.54), one finds

that An are determined by the following recurrence relation,

2nAn ¼
Xn
l¼0

n!Al

l! n� lð Þ!, A0 ¼ 1: (3.55)

Based on mathematical induction, it is easy to find that all the coefficients

determined by (3.55) are given by An ¼ 1. This simple result transforms the right-

hand side of (3.53) into a geometric series [26], which allows writing the solution of

(3.52) in the closed form G(x) ¼ (1 � γx)� 1. Thus, the general solution for the

function F( f ) of (3.50) is given by

F fð Þ ¼ k

km
¼ exp

Cf

1� γf

� �
, (3.56)

where C is a constant that should depend on the thermal properties and the geometry

of matrix and particles. Based on (3.56), it is easy to verify that
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F fð Þ ¼
YN
n¼1

F
f n

1� γ f � f nð Þ
� �

, (3.57)

if the volume fraction f is divided intoN small fractions, such that f ¼ f1 + f2 . . . + fN.
This means that the functional form of (3.56) is independent of the number of small

volume fractions used to derive it.

Equation (3.56) establishes that the effect of the crowding factor γ increases

with the volume fraction f of the particles, as expected. Taking into account that

the heat conduction through composites depends on the thermal, geometrical and

interfacial properties of their components, (3.56) indicates that the combined

effect of these properties can be unified in two parameters γ and C, which are

usually proportional, as shown in the next section. Furthermore, according to

(3.56), a higher crowding factor is expected when the thermal conductivity of the

particles is higher than that of the matrix and the interfacial thermal resistance

between the matrix and particles is not so high, as shown below. This is physically

reasonable, given that in this case, the particles represent favorable pathways for

the heat conduction through them.

The crowding factor γ should vary with f, because the physical process of filling
the matrix with particles depends on their volume fraction. We can therefore

re-write the crowding factor as γ( f ) ¼ γ0ψ( f ), such that γ(0) ¼ γ0 (ψ(0) ¼ 1).

However, the constants C and γ0, should then be determined by comparing (3.56)

with a dilute-limit model, as shown in the next sub-section, to find the final form of

the effective thermal conductivity at the non-dilute limit.

3.4.2 Applications

We apply the generalized crowding factor approach, as derived above, to specific

model systems where a dilute-limit model of effective thermal conductivity of

composites is available. After finding constants C and γ0 for specific models, this

generalization will extend the applicability range of the existing dilute-limit

model for both low and high volume fractions of particle inclusions. Two com-

posites of potential interest are dielectric or metallic particles embedded in a

dielectric matrix.

3.4.2.1 Dielectric/Dielectric Composites

Typical examples of dielectric/dielectric materials are ceramic and semiconductor

particles/fillers in polymer matrix. For these composites with a low volume fraction

of spherical particles (dilute limit), the experimental data on the thermal conduc-

tivity agree well with the model derived by Nan et al. [8], whose result can be

written as
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k

km
¼ 1þ 2Af

1� Af
, (3.58)

where

A ¼ 1� km=kp þ aK=a
� �

1þ 2 km=kp þ aK=a
� � , (3.59)

where aK ¼ Rkm is the so called the Kapitza radius [8], R is the interfacial thermal

resistance between the matrix and the particles of radius a. Note that the composite

thermal conductivity depends equally on the ratios km/kp and aK/a of thermal

conductivities and particle size with the Kapitza radius, respectively.

By expanding (3.56), for a first-order approximation (low volume fractions of

particles) and comparing the obtained result with (3.58), it is found that C ¼ 3A and

γ0 ¼ A. Therefore the thermal conductivity of the dielectric/dielectric composites

for both low and high volume fractions of particles is determined by

k

km
¼ exp

3Af

1� Aψ f

� �
: (3.60)

The function ψ( f ) in (3.60) should also satisfy the following limiting values:

ψ(0) ¼ 1 and ψ(f0) ¼ f�1
0 , where f0 is the maximum packing fraction of the

particles. The values of f0 are reported in literature for different types of particles

and packing [51]. For instance, for spherical particles with a random distribution,

f0 ¼ 63.7%. The first of these conditions ensures the agreement between (3.58) and

(3.60), at low volume fractions (f � f0); and the second one guarantees the max-

imum increase (or decrease) of the thermal conductivity of the composite is at

f ¼ f0 [51, 53]. This last fact can be seen in the denominator of the exponential

function in (3.60), which indicates that the maximum (A > 0) or minimum (A < 0)

value of the composite thermal conductivity occurs for ψ(f0)f0 ¼ 1. The simplest

function that satisfies both conditions is given by the equation of a straight line, as

follows

ψ ¼ 1þ 1� f 0ð Þ
f 20

f : (3.61)

Equation (3.61) shows that the effect of the maximum packing fraction of the

particles on the thermal conductivity of the composite appears through the function

ψ . Even though this function is not unique, under the current approach, it is expected
that (3.61) represents a good approximation given that the crowding factor γ( f ) ¼
γ0ψ( f ) depends slightly on the volume fraction f, as was shown by Lewis and Nielsen
[52], to modify the Kerner equation. Note also that the first-order approximation of

(3.60) resembles to the semi-empirical model of these last researchers, which
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indicates that the proposed approach provides a consistent extension of Nan et al. [8]

and Lewis and Nielsen [52] models, who also generalize previous results.

Figure 3.19a, b shows the comparison of the predictions of the current crowding

factor model, a Bruggeman-based model [57] and the model by Nan et al. [8] for the

thermal conductivity of dielectric/dielectric composites with spherical particles, as

a function of their volume fraction and normalized Kapitza radius, respectively.

Note that for low volume fractions of particles (f < 15 %), the predictions of

the three models are in good agreement. For higher particles concentrations

(f > 15 %), however, the predictions of the crowding factor model are larger

than the ones of the Bruggeman-based model and the model by Nan et al.,

especially when the ratio a/aK between the particle and Kapitza radii increases.

This is expected for kp > km (in this case kp ¼ 15km), given that the current model

takes into account the interactions among the particles through the crowding

factor, which increases the overall thermal conductivity of the composite. For a

particles radius of the order of or smaller than the Kapitza radius (a/aK ¼ 2, 1/3,

in Fig. 3.19a), the predictions of the Bruggeman-based model and the model by

Nan et al. are almost overlapped, due to the strong effect of the interfacial thermal

resistance. Both the Bruggeman-based model and the crowding factor model take

into account the particle interactions. However, both Fig. 3.19a, b show that

predictions of the crowding factor model are larger than the ones of the

Bruggeman-based model, which suggests that the crowding factor model con-

siders a stronger contribution of the particles interactions than that of the

Bruggeman-based model.

For aK/a < 1 � km/kp (aK/a > 1 � km/kp), Fig. 3.9b shows that the composite

thermal conductivity predicted by the three models increases (decreases) when

the volume fraction of the particles increases, as reported in the literature

[7, 40]. On the other hand, the composite thermal conductivity becomes

Fig. 3.19 Comparison of the predictions of the crowding factor model, a Bruggeman-based model

[57] and the model by Nan et al. [8] for the thermal conductivity ratio of composites with spherical

dielectric particles as a function of their (a) volume fraction and (b) normalized Kapitza radius.

Calculations were performed for kp ¼ 15km and f0 ¼ 64 %
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independent of f and equals to the matrix thermal conductivity, for aK/a ¼ 1 �
km/kp(¼1 � 1/15, in Fig. 3.19b).

Figure 3.20a–c shows the experimental data reported for the thermal conductiv-

ity of silica/epoxy [67], alumina/epoxy [67], and aluminum nitrate/polyimide [68]

composites as a function of the volume fraction f f, in comparison with the

theoretical predictions of the crowding factor model in (3.60), the Bruggeman-

based model [57], the models by Nielsen [51] and Nan et al. [8]. The required

physical properties at room temperature of each phase used for the calculations are

given in Table 3.2. The radius of the spherical particles reported here stands for the

average value.

Based on Fig. 3.20a–c, it is clear that the predictions of the three models reported

in the literature remarkably underestimate the composite thermal conductivity,

while the crowding factor model shows much better agreement with the experi-

mental data. We also note that better agreements are found in Fig. 3.20a and that in

Fig. 3.20c, especially for the experimental point of highest volume fraction. We can

attribute the discrepancy to the fact that the aluminum nitrate particles were not

Fig. 3.20 Comparison of the theoretical curves and experimental data [67, 68] for the thermal

conductivity of (a) silica/epoxy, (b) alumina/epoxy and (c) aluminum nitride/polyimide compos-

ites, as a function of the volume fraction of the spherical particles
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totally spherical. The effect of particles shape becomes stronger as the volume

fraction of particles increases. The good general agreement of the crowding factor

model with experimental data at low as well as at high volume fractions of particles

shows that this model represents a remarkable improvement with respect to the

dilute-limit models, which are not able to describe the thermal conductivity of

composites at high volume fractions of particles.

3.4.2.2 Metal-Nonmetal Composites

To extend the validity of the results obtained in the Sect. 3.3 to concentrations of

particles up to the maximum packing fraction, we need to apply the developed

crowding factor model. This can be done by equating the first-order expansion

k/km ¼ 1 + Cf/(1 � γ0f ) of the crowding factor model in (3.56) with the dilute

limit model expressed in (3.38a) and (3.38b), to find the constants C and γ0.
For the case of spherical metallic particles uniformly distributed within a

dielectric matrix, this comparison applied to (3.42) and (3.56) yields C ¼ 3A and

γ0 ¼ A, where the parameter A is determined by

A ¼ 1� χk3=ks þ aK=að Þ
1þ 2 χk3=ks þ aK=að Þ , (3.62a)

χ ¼ 1þ ke
kp

d

a

i1 a=dð Þ
i
0
1 a=dð Þ , (3.62b)

Therefore, according to (3.56), the thermal conductivity of the metallic/dielec-

tric composite for both low and high volume fractions of particles is given by

k

k3
¼ exp

3Af

1� Aψ f

� �
, (3.63)

which has the same mathematical form than (3.60), derived for dielectric/dielectric

composites, but with a different parameter A.
The thermal conductivity of composites with spherical metallic particles as a

function of their volume fraction and normalized radius is shown in Fig. 3.21a, b,

respectively. The continuous lines correspond to the predictions of the present

crowding factor model and the dashed ones to the dilute-limit result in (3.42).

As expected, the predictions of the current model are larger than the ones of the

Table 3.2 Material properties used in the calculations [50, 67, 68]

Properties kp (W/mK) km (W/mK) a (μm) aK (μm)

Silica/Epoxy 1.5 0.195 13.5 1.89

Alumina/Epoxy 36 0.195 13.5 1.34

Al nitrate/Polyimide 200 0.22 2 0.146
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dilute limit model, especially when the volume fraction of the particles increases.

Taking into account that the thermal conductivity of the metallic particles is usually

much larger than the ones of the dielectricmatrix (in this case ks ¼ 15k3), this increase
over the predictions of the dilute limit approach is due to the particle interactions,

whose contribution is considered in (3.63). According to both Fig. 3.21a, b, the dilute

and non-dilute approaches predict that the composites thermal conductivity increases

with the particles volume fractions and size, when a/d > (1 � χk3/kp)
� 1aK/d(�1.5,

in this case) (see (3.62a) and (3.63)). On the other hand, for a/d < (1 � χk3/kp)
� 1

aK/d, the composites thermal conductivity decreases when the particles radius

decreases and/or the particles volume fraction increases.

3.5 Conclusions

The thermal conductivity of composites made up of metallic and non-metallic micro/

nanoparticles embedded in a solid non-metallic matrix has been modeled and ana-

lyzed at both the dilute and non-dilute concentrations of particles. Taking into

account the strong scattering of the energy carriers with the surface of the embedded

nanoparticles, the thermal conductivity of nanocomposites has been determined in

the dilute limit, by modifying both the thermal conductivity of the matrix and

particles, accordingly. It has found that the particle shape and size dependence of

the composite thermal conductivity shows up through the collision cross-section per

unit volume of the particles and the mean distance that the energy carriers travel

inside the particles.

The effect of the electron–phonon interactions within metallic particles shows up

through the reduction of the thermal conductivity of these particles with respect to its

Fig. 3.21 Comparison of the predictions of the crowding factor model and the dilute-limit model

for the thermal conductivity of composites with spherical metallic particles as a function of their

(a) volume fraction and (b) normalized radius. Calculations were performed for ks ¼ 15k3,
ke ¼ 5kp, aK ¼ d and f0 ¼ 64 %

3 Thermal Conductivity of Particulate Nanocomposites 135



values obtained under the Fourier law approach. The thermal conductivity of com-

posites with metallic particles depend strongly on (1) the relative size of the particles

with respect to the intrinsic coupling length, and (2) the ratio between the electron and

phonon thermal conductivities. The obtained results have shown that the particle size

dependence of the composite thermal conductivity appears not only through the

interfacial thermal resistance but also by means of the electron–phonon coupling.

The applicability of the proposed approach for the dilute limit has been further

extended to describe the thermal conductivity of composites with particle concentra-

tions up to the maximum packing fraction of the particles. This has been achieved by

considering the particle interactions by means of the crowding factor, which is

determined by the effective volume of particles. The comparison of the predictions

of the crowding factor model with other non-dilute models reported in the literature

has shown that this model not only generalize those models but also capture accu-

rately the effect of the particle interactions. The predictions of the two analytical

approaches proposed to describe the particle size and particle interaction effects are in

good agreement with experimental and numerical data reported in the literature.
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