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Abstract Manipulating the spatial layout of heterogeneous materials at submicron scales al-
lows for the design of novel nano-engineered material with unique thermal properties. To ana-
lyze heat conduction at submicron scales of geometrically complex nano-structured materials,
an extended finite element method (XFEM) is presented. Appropriate for both diffusive and
ballistic domains, heat conduction is described by the phonon Boltzmann transport equations.
Specifically, the gray phonon model is used along with a diffusive scattering model describing
the transmission and reflection of phonons at material interfaces. The geometry of the mater-
ial interfaces is described by a level-set approach. The phonon distribution is discretized in
the velocity space by a discrete ordinate approach and in the spatial domain by a stabilized
Galerkin finite element method. Discontinuities of the phonon distribution across material in-
terfaces are captured via enriched shape functions. To enforce interface scattering conditions
and boundary conditions, a stabilized Lagrange multiplier method is presented. The proposed
method is verified through comparison with benchmark results. The utility of the XFEM ap-
proach is demonstrated through the thermal analysis of experimentally characterized material
samples and computer-designed nano-composites.

Key words: Extended finite element method, gray phonon model, diffusive mismatch model,
phonon Boltzmann transport equation, stabilized Lagrange multiplier formulation

1 Introduction

The ability to design, manipulate, and realize materials and devices at submicron
and nanometer scales is likely to lead to revolutionary advances across a wide
spectrum of technologies. Early successes have been achieved in nano-electronics,
nano-materials, and nano-medicine. Despite these advances, the design at submicron
scales is typically done in an ad-hoc manner. While scientific understanding and fab-
rication techniques for nano-scale materials and devices have dramatically advanced
and have become increasingly accessible in recent years, appropriate formal design
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Fig. 1. Heat transfer problems at submicron scale: (a) a nano-scale transistor that generates
heat in a ≈ 10 nm region, (b) thermoelectric PbSeTe/PbTe quantum-dot super-lattice [18].

approaches that take advantage of these advances are lacking. In particular, analysis
methods are needed that allow the efficient analysis and development of engineered
designs. Traditional atomistic modeling methods predominately developed for ad-
vancing the scientific understanding of nano-structures are often computationally too
costly to be employed in an iterative design process.

This paper is concerned with the development of an analysis tool that allows ef-
ficiently and accurately analyzing heat transfer processes at submicron scales. Man-
aging the heat transfer at such small scales plays an increasingly important role in
a broad range of applications. For example, in recent years the size of transistors
has dramatically decreased and the number of transistors on a chip increased, re-
quiring novel thermal management strategies [14, 28]. In particular the emergence
of nano-scale hot-spots (see Figure 1a) requires design concepts that mitigate the
thermal impact on the electronic performance. Another example is the development
of nano-composites for thermoelectric energy conversion [9]. The thermoelectric ef-
ficiency can be increased by simultaneously increasing the electric conductivity and
decreasing the thermal conductivity. The latter effect has been utilized by quantum-
dot composites and super-lattice structures (see Figure 1b).

The analysis of heat transfer phenomena at submicron scales requires new engin-
eering analysis tools as the commonly used Fourier model of heat conduction fails
at such small length scales [17, 22, 36]. Instead, the thermal properties of a material
need to be derived from quantum mechanics and statistical mechanics. In this study
we assume that heat is solely propagated via the vibration of atoms, i.e. via phonons.
The assumption holds for dielectric materials and semiconductors. However, in elec-
tric conductors electrons are the main heat carriers. Therefore this class of materials
is not considered in the sequel but the proposed numerical framework can be easily
extended to include electrons as carriers for heat conduction.

The vibration of a periodic lattice of atoms is typically described by the disper-
sion characteristics which defines the relation between the lattice vibration frequency
ωq,p and the wave vector k. The group velocity, with which the energy is propagated,
is given by the slope of dispersion curve: vq,p = dωq,p/dk. Dispersion diagrams for
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Fig. 2. Dispersion diagrams for Si, Ge, and GeAs.

typical semiconductor materials are shown in Figure 2. We can distinguish acoustic
and optical branches, denoted by the subscript q , as well as different polarization p

depending on the type and orientation of the vibration modes. A phonon is a quant-
ized mode of vibration associated with the lattice vibration frequency ωq,p.

Recalling the wave-particle duality in quantum mechanics, we can consider the
energy transport both as a wave phenomenon and a particle transport process, de-
pending on length scale of interest. As heat conduction in solids is dominated by
modes with a wavelength of ≈ 1 nm and the feature sizes in nano-structures is typic-
ally larger than 1 nm, we conveniently describe the heat transport by a quasi-particle
model. The associated energy density e(ωq,p) of a phonon is

e(ωq,p) = nq,p(ωq,p) � ωq,p Dq,p(ωq,p) (1)

where nq,p is the particle density, � the Planck constant, and Dq,p the number of
modes per unit volume.

The energy transport via phonons is described by kinetic theory, in particular the
Boltzmann transport equations:

∂nq,p

∂t
+ vq,p · ∂nq,p

∂x
= C(nq,p) (2)

For designing nano-composites it is most often sufficient to consider only steady-
state conditions. In this case the time derivative term vanishes. The collision term
C(nq,p) is typically formulated via a relaxation time approximation which is sim-
ilar to the Bathnagar–Gross–Krook (BGK) collision operator [4] frequently used in
rarefied gas dynamics:

C(nq,p) = neq(nq,p, vq,p) − nq,p

τq,p

(3)
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where neq is the equilibrium distribution and τq,p the relaxation time. The latter
depends on the mean free path length �q,p and the group velocity of the phonons:

�q,p = ‖vq,p‖τq,p (4)

Depending on the ratio of the mean free path length over the characteristic length
of the heat transport problem, that is the Knudsen number, we distinguish two re-
gimes of heat transport. For Knudsen numbers smaller than 0.1, diffusive effects
dominate and Fourier’s law is valid. When Knudsen numbers are larger than one,
i.e. the feature size is smaller or equal the mean free path length of the phonons, a
phonon model is needed to capture ballistic phenomena, which is crucial to predict
correctly heat conduction.

A fundamental difference between the diffusive and ballistic regime is the trans-
port of heat across material interfaces. Unlike in the diffusive regime, the scattering
of phonons at material interfaces leads to an interfacial thermal resistance [36] and
a discontinuity in the phonon distribution. Accurately predicting the scattering of
phonons requires modeling nonlocal and non-equilibrium phenomena by resolving
the lattice vibrations [8]. In this study, we approximate the phonon scattering effects
at material interfaces via a diffusive mismatch model [36].

The Boltzmann transport equations provide a convenient framework for ana-
lyzing the heat transport by phonons as standard discretization schemes for partial
differential equations can be applied. The phonon Boltzmann transport equations
have been solved by Direct Monte Carlo Simulation [19, 37], finite volume schemes
in combination with discrete ordinate methods [23, 27], and finite element meth-
ods [13]. Finite element formulations have also been applied to solving the neutron
Boltzmann transport equations [11, 32]. However, these numerical schemes have
been developed primarily to study rather simple material layouts, such as spherical
or square inclusions in nano-composites and super-lattices.

In this study we propose a novel computational framework based on a finite ele-
ment approach. To conveniently analyze complex geometries and vary the geomet-
ries in the design process, we describe the material layout by a level-set method and
enforce the boundary and interface conditions via an immersed boundary method
[16, 33]. This approach avoids the often cumbersome and lengthy generation of un-
structured meshes aligned with the material interfaces. In particular, we adopt the
extended finite element method (XFEM) that was originally proposed for modeling
the propagation of cracks [3,12,26]. Recently, XFEM has been applied, for example,
to phase change problems [10] and fluid-structure interaction problems [15, 38]. For
solving the Boltzmann transport equations we locally enrich the spatial discretization
of the phonon distribution to capture discontinuities at material interfaces and en-
force interface scattering conditions and boundary conditions with a stabilized Lag-
range multiplier method. We apply this computational approach to a simplified ver-
sion of the phonon Boltzmann transport equations based on the gray-phonon model,
verify its accuracy through comparison with results in the literature, and demonstrate
its versatility with the analysis of a typical nano-composite and a conceptual design
study.
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The remainder of this paper is structured as follows: In Section 2 we briefly
outline the level-set approach for describing the geometry of the material interfaces.
The governing equations of the gray phonon model are summarized in Section 3. The
methods for discretizing the gray phonon distribution in the velocity space and the
spatial domain as well as the Lagrange multiplier method for enforcing the bound-
ary and interface conditions are described in Section 4. We report on verification,
analysis, and design studies in Section 5.

2 Level-Set Description of Material Layout

The geometry of the material layout is described implicitly by the level set method.
This approach was first proposed by Osher and Sethian [31] and has been success-
fully applied in image processing and to describe the evolution of interfaces in sys-
tems governed by partial differential equations, such as multi-phase flows [35]. Re-
cently level-set method have become popular for shape and topology optimization
purposes [1]. For general overviews of level-set methods and their applications the
reader is referred to [29, 30, 34].

The geometry of a two-phase composite can be described via the level set func-
tion φ(x) as follows:

�1 = {x|φ(x) > 0} (5)

�2 = {x|φ(x) < 0} (6)

� = {x|φ(x) = 0} (7)

where phase 1 occupies subdomain �1 and phase 2 subdomain �2.
A level set representation of a Si-Ge nano-composite material is shown in Fig-

ure 3. Based on the gray intensity of an image of the composite a level-set function
is initialized. To reduce the noise in the image and to simplify the geometry, the level
set function is smoothed. The contour line of the zero level set is plotted representing
the interface of the material phases. This level-set description of the material layout
can be used by numerical analysis methods in combination with immersed bound-
ary techniques, such as XFEM, to enforce interface and boundary conditions (see
Section 4).

3 Gray Phonon Model

The Boltzmann transport equations (2) describe the evolution of the phonon distri-
butions nq,p associated with the lattice frequencies ωq,p of all branches q and po-
larization p. Depending on the dispersion characteristics, a large number of phonon
distributions need to be modeled to accurately predict the total energy transport. In-
stead, one can often simplify the phonon model by considering only one phonon
distribution carrying the total energy density ē and traveling with an average group
velocity v̄:
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Fig. 3. Level set description: (a) SEM image of Si-Ge nano-composite – brighter color marks
Si nano-particles [21], (b) smoothed level set function, and (c) contour plot of zero level set.

ē =
∑

q,p

∫ ωmax

0
nq,p(ωq,p) � ωq,p Dq,p(ωq,p) dωq,p (8)

The mode density Dq,p and the cut-off frequency ωmax can be approximated by the
Debye model [42]. The simplified model is referred to gray phonon model.

Introducing the gray phonon model into the Boltzmann transport equations (2) it
is convenient to rewrite the equations with ē being the total energy density distribu-
tion function. Restricting this study to steady-state problems, the governing equations
are

s · ∂ē

∂x
= ēeq − ē

�
(9)

where s is a unit vector describing the direction of the phonon motion:

s = (cos(πµ), sin(πµ)), µ ∈ [−1, 1) (10)

We assume that the phonons at equilibrium follow the Bose–Einstein statistics:

n
eq
q,p = 1

e
�ωq,p
kBT − 1

(11)
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where kB is the Boltzmann constant and T is the macroscopic temperature. The equi-
librium distribution ēeq can be determined analogously to (8) with nq,p = n

eq
q,p. Sum-

ming over all branches and polarizations and integrating over all lattice frequencies
ωq,p, the equilibrium distribution ēeq is only a function of the macroscopic temper-
ature T which is defined via the total energy carried by all phonons ē:

1

2

∫ 1

−1
ē dµ = C

(
T − Tref

)
(12)

where C is the heat capacity and Tref is a reference temperature. The equilibrium
distribution can be expressed as an integral of the directional distributions function ē

as follows:

ēeq = 1

2

∫ 1

−1
ē dµ (13)

To analyze the thermal properties of materials, one of the following boundary
conditions is frequently imposed:

ē(x, µ)|L − ē(x, µ)|R = constant (14)

For s · n < 0, x ∈ ∂D, ē(x, µ) = ē(x,−µ) (15)

For s · n > 0, x ∈ ∂D, ē(x, µ) = ē∗(x, µ) (16)

For x ∈ ∂D, T (ē) = T ∗ (17)

where n is outwards pointing normal, and ∂D is the domain boundary. Equations (14)
and (15) represent periodic and reflective boundary conditions, respectively. Equa-
tion (16) enforces an emitting heat flux and Eq. (17) prescribes the temperature.

While more accurate and complex models for predicting phonon scattering at
material interfaces are available, for the sake of simplicity, we assume in this study
that the phonon scattering at material interfaces is diffusive. The interface scattering
is described by the diffusive mismatch model (DMM) which assumes that phonons
emerging from an interface are independent of their origin. The transmission and
reflection of phonons at the material interfaces are governed by energy balance
conditions. In the case of a two-phase composite, these conditions can be written as
follows:

For s · n > 0

ē−(x, µ) = −ε21

∫

s·n<0
s · n ē− dµ + α12

∫

s·n>0
s · n ē+ dµ (18)

ē+(x, µ) = −α21

∫

s·n<0
s · n ē− dµ + ε12

∫

s·n>0
s · n ē+ dµ (19)

where

ē−(x, µ) = lim
ε→0,ε>0

ē(x + εn) (20)

ē+(x, µ) = lim
ε→0,ε>0

ē(x − εn) (21)
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and αij and εij denote the transmission coefficient and reflection coefficient from
phase i to phase j . The unit vector n is normal to the interface and points towards
phase 2. The transmission coefficient is determined by

αij = Cj v̄j∑
k Ckv̄k

(22)

where v̄k is the average phonon group velocity for phase k. The specific heat capacity
of phase k is denoted to Ck . Energy conservation at the interface implies that αij +
εij = 1. The assumption that scattered phonons bear no relationship to their origin,
i.e. whether they are transmitted or reflected, requires that αij is equal to εji .

4 Discretization Methods

In the gray phonon model, a single state variable ē defines the phonon distribution
at point x traveling with the velocity v̄s. To develop a numerical analysis method,
the phonon distribution ē is discretized both in velocity and spatial domains. For
the discretization in the velocity domain, spherical harmonics and discrete ordinate
methods are typically used [24, 40]. Spherical harmonics approximations are based
on global, periodic functions and are efficient for smooth phonon distributions, typ-
ically for diffusive energy transport. In the ballistic regime, the phonon distribution
in the velocity space often lacks smoothness. Therefore we apply a discrete ordinate
method which is based on a local, discontinuous approximation but requires a fine
resolution of the velocity space. Note only the angular space needs to be discretized
as the gray phonon model uses a single, average group velocity.

The spatial discretization can be performed by finite difference methods, finite
volume methods, and Galerkin finite element methods. In this study we focus on fi-
nite element approaches. Due to the convective operator in the Boltzmann transport
equations (2) and (9), the numerical solution needs to be stabilized either by a dis-
continuous Galerkin formulation [13, 41], a Galerkin least-square approach [6], or a
streamline upwind Petrov–Galerkin (SUPG) stabilization [7]. The latter approach is
adopted in this study due to its computational efficiency. To allow for a convenient
analysis of complex geometries, we embed the SUPG approach into an XFEM for-
mulation and enforce boundary and interface conditions via a Lagrange multiplier
method.

4.1 Discrete Ordinate Method

The velocity space is discretized uniformly with equal weights for all discrete direc-
tions. We resolve the velocity domain by N directions:
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si · ∇ei = 1

�

⎛

⎝
N∑

j=1

wjej − ei

⎞

⎠ for i = 1, ..., N (23)

si =
(

cos

(

2π

(
i

N
− 1

2N

))

, sin

(

2π

(
i

N
− 1

2N

)))

(24)

wi = 1

N
(25)

where si is the discrete directional unit vector and the weighting factors wi are
chosen to be uniform. This discretization leads to the semi-discrete form of the gray
phonon Boltzmann equations which can be written in a weak formulation as follows:

Ri =
∫

�

δei

⎧
⎨

⎩
si · ∇ei − 1

�

⎛

⎝
N∑

j=1

wjej − ei

⎞

⎠

⎫
⎬

⎭
d� + Ri,stab + Ri,λ = 0 (26)

where Ri,stab and Ri,λ denote contributions from the SUPG stabilization and the
interface constraints, respectively. Both terms will be discussed in detail below.

4.2 Extended Finite Element Method

The main idea of XFEM is to enrich shape functions in elements where a bound-
ary/interface resides in order to capture discontinuities in the solution. The enrich-
ment function depends on the order of the discontinuity. In the phonon scattering
problem, there is a jump in the phonon distribution at the material interface. As-
suming again a two-phase composite, we capture this jump by enriching the shape
functions with a Heaviside function as follows:

ē(x) =
∑

I

NI (x)(ẽI + ψ(x)êI ) (27)

ψ(x) = H(x) =
{+1 ∀x ∈ �1

0 ∀x ∈ �2
(28)

where NI (x) are standard shape functions, and NI (x)ψ(x) are the enriched shape
functions. The standard degrees of freedom and the enriched degrees of freedom
are denoted by ẽI and êI , and the domains of phase 1 and 2 are denoted by �1
and �2, respectively. In this study, NI (x) are bilinear shape functions. Following
an isoparametric approach, the element geometry is also discretized by the shape
functions NI (x).

To increase the numerical accuracy, the intersected elements are integrated piece-
wise based on a Delaunay triangulization which is aligned with the intersection:

∫

�ELE

R(x)d� =
∑

i

∫

�i

R(x)d� (29)

where �ELE is the domain of an extended element, and �i is the i th triangular sub-
domain of �ELE. The triangular subdomains are shown in Figure 4b.
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Fig. 4. XFEM mesh and Delaunay triangulization; (a) the elements intersected by the interface
are enriched with Heaviside function. (b) the extended element is partitioned for the triangular
integration.

An SUPG approach is used to stabilize the convective term leading to the addi-
tional residual term Ri,stab:

Ri,stab =
∫

�

τstab si · ∇δe

⎧
⎨

⎩
si · ∇ei − 1

�

⎛

⎝
N∑

j=1

wjej − ei

⎞

⎠

⎫
⎬

⎭
d� (30)

where τstab is the stabilization factor. Owing to the simplicity of the convective term,
the stabilization factor is equal the element size, i.e. τstab = h.

4.3 Lagrange Multiplier Method

The boundary conditions and interface conditions are enforced by a Lagrange mul-
tiplier method. With c(ēi) = 0 representing a generic boundary and interface con-
dition, the contributions of the Lagrange multiplier formulation to the weak form of
the governing equations (26) are

Ri,λ =
∫

�

δλ c d� +
∫

�

δei
∂c

∂ei

λ d� (31)

where the Lagrange multiplier λ(x) is discretized by standard shape functions.
The Lagrange multiplier method leads to mixed finite element formulation. The

orders of the approximation of λ and ē need to satisfy the Ladysenskaja–Babuska–
Brezzi inf-sup condition [5]. This condition can be easily satisfied when imposing
constraints along element edges as the relation between the edge length and the size
of the element is known a-priori. However, satisfying the inf-sup condition along an
interface in an XFEM formulation is more challenging as the length of the interface
within an element varies in the mesh (see Figure 5a). This issue was first observed by
Dolbow et al. who noticed non-physical oscillations in the solution along the inter-
face [20]. The instability problem can be resolved by projecting the approximation
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Fig. 5. (a) Discretization of Lagrange multiplier along material interface, (b) projection of
Lagrange multiplier onto the lower dimensional space.

of the Lagrange multiplier onto an appropriate lower-order subspace that satisfies the
inf-sup condition [2, 25].

In this study, we approximate the Lagrange multiplier in each element by piece-
wise constant shape functions. As the interface length becomes less than a critical
value, Lcrit, this approximation violates the inf-sup condition. We therefore project
the Lagrange multiplier approximation onto a lower-order subspace by imposing
additional constraints on the Lagrange multiplier degrees of freedom of adjacent in-
terface segments:

P λ̂ = 0 (32)

The construction of the projection P is illustrated in Figure 5a. To satisfy the inf-sup
condition we collect nλ adjacent interfaces such that

nλ∑

i

Li ≥ Lcrit (33)

and require λ̂i = λ̂j , i, j = 1 . . . nλ. In other words, we assign one Lagrange mul-
tiplier degree of freedom to all segments i. The effect of this projection on the dis-
cretization of the Lagrange multiplier along a material interface is illustrated in Fig-
ure 5b showing the original piecewise constant Lagrange multiplier discretization
before projection and the lower dimensional approximation after projection.

5 Numerical Examples

We study the accuracy and versatility of the proposed computational framework by a
verification example, the analysis of a real nano-composite specimen and a concep-
tual design study.
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5.1 Verification Example

The accuracy of the proposed XFEM approach is verified through comparison with
the results of Yang and Chen [39], which were obtained by a combination of finite
volume and discrete ordinate methods for solving the gray phonon Boltzmann trans-
port equations. We consider a periodic Ge-Si nano-composite made of a square Si
inclusion embedded into a Ge host. We study the thermal conductivity for two in-
clusion sizes. For the small inclusion ballistic effects dominate while for the large
inclusion heat conduction is dominated by diffusive effects.

The mean free path of Ge and Si are 198.6 and 268.2 nm, respectively. The aver-
age group velocities are 1042 m/s for Ge and 1804 m/s for Si at room temperature.
The transmission coefficient from Ge to Si is 0.65 following the diffusive mismatch
model. For simulating heat conduction in the ballistic regime, a square Si inclusion
of size 10 nm is bedded into a Ge host. The length of the unit cell is 23.5 nm. To sim-
ulate predominantly diffusive heat conduction, a square Si inclusion of size 268 nm
is considered. The length of the unit cell is 629.8 nm.

We predict the phonon distribution and the macroscopic temperature fields ap-
plying periodic boundary conditions between the left and right edge of the computa-
tional domain by Eq. (14) and imposing a temperature difference of 1 K. Reflective
boundary conditions are applied at the upper and lower sides. Transmission and re-
flection conditions defined by Eq. (21) are enforced at the material interface.

The simulation results for a 64×64 mesh are shown in Figure 6. Note the material
interface is not aligned with the mesh. The temperature distribution in the computa-
tional domain and along y∗ = 0.5, 0.7, 0.85 are shown, where y∗ denotes the vertical
position of the horizontal cuts relative to the length of the computational domain. The
XFEM results are in good agreement with those of Yang and Chen [39]. Minor dif-
ferences along the interfaces are likely to stem from differences in the spatial and
angular resolutions.

The convergence of the proposed XFEM approach is studied by refining dis-
cretization of the velocity space, increasing the mesh size, and varying critical in-
terface length Lcrit in ballistic regime. In Figure 7 we show the dependency of the
effective thermal conductivity computed from the phonon distribution on the dis-
cretization parameters. The numerical results suggest for the present example that
the velocity space needs to be resolved by about 10 directions. The thermal con-
ductivity converges monotonically as the mesh is refined. A critical interface length
of Lcrit = 0.6–0.7 relative to the edge length of the element leads to a stable and
accurate enforcement of the interface conditions.

5.2 Analysis of Nano-Composites

The utility of the proposed XFEM approach is illustrated with the analysis of a Ge-Si
nano-composite sample shown in Figure 8, which is taken from the study of Joshi et
al. [21]. The size of the sample is 1000 nm × 750 nm. Converting the image of the
sample into a level-set representation, as described in Section 2, the proposed XFEM
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Fig. 6. XFEM verification example: (a) geometry and mesh; (b) diffusive regime: temperature
contour; (c) diffusive regime: temperature distribution at y∗ = 0.5 (black), y∗ = 0.7 (red), and
y∗ = 0.85 (blue); (d) ballistic regime: temperature contour; (e) ballistic regime: temperature
distribution at y∗ = 0.5 (black), y∗ = 0.7 (red), and y∗ = 0.85 (blue).
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Fig. 7. Convergence of thermal conductivity.

approach analyzes the problem without any additional steps, such as constructing a
spline representation of the interfaces and generating body-fitted meshes.

We analyze the thermal properties of the sample by applying periodic bound-
ary conditions at the left and right edges and reflective boundary condition at the
upper and lower edges of the computational domain. Again, transmission and reflec-
tion conditions based on a diffusive mismatch model are applied along the Ge-Si
interfaces. In Figure 8 the temperature contours for a 64 × 48 mesh are shown. The
resolution of the velocity space is 16, and the threshold for projection Lcrit is 0.7.
The computed effective thermal conductivity is 3.176 W/mK which agrees well with
the experimental results of Joshi et al. [21].

5.3 Design Study

The proposed XFEM approach also facilitates conceptual design studies and can be
conveniently integrated into formal optimization procedures. This feature is illus-
trated with a simple example. We consider again a Ge host material and study the
influence of the shape and layout of Si inclusions on the effective thermal conduct-
ivity. To illustrate the importance of accurate modeling ballistic effects at submicron
scales, we compare temperature predictions and thermal conductivity calculations
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Fig. 8. (a) Real nano-composite material image, (b) the computed temperature contour and
interface applying the level set of (a).

Table 1. Effective thermal conductivity for different material layouts, W/mK.

Domain 2 circles 2 circles & 1 clover

Diffusive 80.45 85.21
Ballistic 38.23 15.66

based on Fourier’s law (diffusive regime) and the gray phonon model. In the latter
case, we consider a computational domain of 23.5 × 23.5 nm and apply a diffusive
mismatch model to predict phonon scattering at the material interfaces.

First we consider two circular inclusions and then add a clover-shaped inclu-
sion. The temperature contours and Si-Ge interfaces are shown in Figure 9 and the
predictions of the effective thermal conductivity are summarized in Table 1. Note
the thermal conductivities predicted by the diffusive and ballistic models differ con-
siderably. Furthermore, the diffusive model predicts that the thermal conductivity
increases when inserting the clover-shaped inclusion. This seems to be intuitive as
Si has a higher thermal conductivity than Ge. However, the phonon model predicts a
drop in thermal conductivity as the addition of the clover increases the scattering of
phonons at material interfaces.

6 Conclusions

We have presented an extended finite element method for the analysis of heat con-
duction phenomena at submicron scales. Our approach combines a level-set rep-
resentation of the geometry, a SUPG stabilized finite element formulation of the
gray phonon Boltzmann transport equations, a local enrichment strategy to represent
discontinuous phonon distributions at material interfaces, and a stabilized Lagrange
multiplier method to enforce boundary conditions and interface conditions.

As illustrated by numerical examples, this computational framework allows for
the efficient, accurate and convenient analysis of complex layouts of composite ma-
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Fig. 9. Design study of Si inclusions and Ge host in ballistic and diffusive regimes.

terials. These features render the proposed method an attractive computational tool
for scientist to quickly analyze new materials and for design engineers to develop
novel materials. Furthermore, the proposed computational framework is applicable
to other problems that can be modeled by the Boltzmann transport equations, such
as radiation problems and hydrodynamic flows.
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