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Variational methods are widely used to solve geophysical inverse problems. Although
gradient-based minimization algorithms are available for high-dimensional problems
(dimension > 106), they do not provide an estimate of the errors in the optimal solution.
In this study, we assess the performance of several numerical methods to approximate
the analysis-error covariance matrix, assuming reasonably linear models. The evaluation is
performed for a CO2 flux estimation problem using synthetic remote-sensing observations
of CO2 columns. A low-dimensional experiment is considered in order to compare the
analysis error approximations to a full-rank finite-difference inverse Hessian estimate,
followed by a realistic high-dimensional application. Two stochastic approaches, a Monte-
Carlo simulation and a method based on random gradients of the cost function, produced
analysis error variances with a relative error< 10%. The long-distance error correlations due
to sampling noise are significantly less pronounced for the gradient-based randomization,
which is also particularly attractive when implemented in parallel. Deterministic evaluations
of the inverse Hessian using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
are also tested. While existing BFGS preconditioning techniques yield poor approximations
of the error variances (relative error > 120%), a new preconditioner that efficiently
accumulates information on the diagonal of the inverse Hessian dramatically improves
the results (relative error < 50%). Furthermore, performing several cycles of the BFGS
algorithm using the same gradient and vector pairs enhances its performance (relative error
< 30%) and is necessary to obtain convergence. Leveraging those findings, we proposed
a BFGS hybrid approach which combines the new preconditioner with several BFGS
cycles using information from a few (3–5) Monte-Carlo simulations. Its performance is
comparable to the stochastic approximations for the low-dimensional case, while good
scalability is obtained for the high-dimensional experiment. Potential applications of these
new BFGS methods range from characterizing the information content of high-dimensional
inverse problems to improving the convergence rate of current minimization algorithms.
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1. Introduction

Many inverse problems in geophysics are solved within the
classical Bayesian framework, in which a maximum likelihood
estimate is derived from a combination of observational and
prior information as well as a model describing the physics

relating the two quantities (Enting, 2002; Tarantola, 2005).
Under the assumptions that the model is reasonably linear
and that the observational and prior probability distribution
functions (pdfs) are Gaussian (and unbiased with respect to
the true state), the posterior pdfs are also Gaussian and the
solution to the inverse problem is obtained by minimizing the cost
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function

J(x) =1

2
(Hx − y)TR−1(Hx − y)

+ 1

2
(x − xb)TB−1(x − xb) , (1)

where xb is the prior vector, defined in the control space E of
dimension n, x belongs to E, y is the observation vector, defined
on the observations vector space F of dimension p, H : E → F is
the forward model operator (also called observational operator),
which associates to any vector in E its corresponding observation
in F, and R and B are the covariance matrices of observation and
prior errors with dimension (p × p) and (n × n) respectively.

The argument of the minimum of Eq. (1) is called the analysis
and is referred to as xa. For high-dimensional systems, such
as those encountered in numerical weather forecast (NWF)
applications (n > 106), xa is often estimated using iterative
gradient minimization algorithms that require at each iteration
the calculation of the gradient of J with respect to x:

∇J(x) = HTR−1(Hx − y) + B−1(x − xb) , (2)

where H is the tangent-linear of the forward model, and HT its
adjoint.

For high-dimensional problems, H, B and R cannot be
represented explicitly and are usually decomposed into lower-
dimension operators (Bannister, 2008; Singh et al., 2011). Adjoint
techniques allow efficient numerical computations of Eq. (2)
by decomposing HT into a chain of lower-dimension adjoint
operators integrated backward in time (Henze et al., 2007).
Second-order information is also crucial in data assimilation. It
allows for computation of the analysis and forecast errors, as
well as the sensitivity of the inversion to input parameters (e.g.
observations, error statistics) and to improve the convergence
rate of the minimization (Courtier et al., 1994; Le Dimet
et al., 2002; Le Dimet and Shutyaev, 2005; Daescu, 2008).
Several approaches exist to derive second-order information
of large systems, including second-order adjoint, randomization
estimates, quasi-Newton methods, and singular value analysis
based on the Hessian-vector product (Davidon, 1991; Le Dimet
et al., 2002). These methods differ in term of their computational
efficiency, their accuracy, and their development requirements.
In variational methods, where the analysis-error covariance is not
directly obtained, being able to generate a good approximation
of this matrix is still a major challenge for high-dimensional
problems. Assuming that the forward model operator H can be
approximated by a linear operator in a neighbourhood of the
analysis xa, the analysis-error covariance matrix Pa is equal to the
inverse Hessian of the cost function at xa (Eq. (1)) (Tarantola,
2005):

Pa = (∇2J)−1(xa) = (B−1 + HTR−1H)−1, (3)

where Pa has dimension n × n. Estimating each element of
Pa using finite-difference approximations would require n(n +
3)/2 + 1 forward model integrations (Nocedal and Wright, 2006).
With an adjoint model, the cost of the calculation reduces to n + 1
forward model and n + 1 adjoint model integrations, which is still
prohibitive in most cases. Therefore, Pa is usually approximated
using low-rank estimates of the inverse Hessian (Fisher and
Courtier, 1995; Müller and Stavrakou, 2005).

When the model is a linear operator (H = H), the cost
function (Eq. (1)) is perfectly quadratic and the conjugate-
gradient (CG) algorithm is usually considered the best approach
for the minimization of Eq. (1) (Nocedal and Wright, 2006).
This method is closely related to the Lanczos algorithm and can
provide the leading eigenvalues and eigenvectors of the Hessian
as a by-product of the minimization. This allows an efficient
approximation to the analysis-error covariance matrix (Fisher
and Courtier, 1995). In the context of cyclic data assimilation, this

Lanczos eigendecomposition can also be used to precondition the
CG algorithm for subsequent assimilation windows and therefore
improve the rate of convergence of the minimization.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
was developed in the context of non-quadratic quasi-Newton
minimization methods (Broyden, 1969). The method extracts
local curvature information from a sequence of gradient and
vector pairs to calculate the line-search direction at each iteration.
For quadratic problems and exact line searches, it can be shown
that the BFGS and conjugate gradient algorithms are equivalent,
in the sense that they produce the same search direction at each
iteration (Nazareth, 1979). Its efficiency and also a number of
desirable mathematical properties make this algorithm one of
the best to approximate the inverse Hessian (Dennis and More,
1977). Since each iteration consists of a rank-two update, and
the number of available gradient and vector pairs is generally
small compared to the dimension of the problem, the rank of
the approximated inverse Hessian is usually very low (� n).
However, significant improvements to the BFGS inverse Hessian
estimate may be achieved by choosing a suitable starting matrix in
the algorithm, a technique referred as ‘preconditioning’ (Gilbert
and Lemaréchal, 1989). Preconditioning is especially critical in
the context of limited-memory BFGS (L-BFGS) optimization,
when only a few gradient and vector pairs can be stored in
computer core-memory (Veersé et al., 2000). However, it can
also have a significant impact on the inverse Hessian estimate in
the full-memory case, which is investigated in this study.

The efficiency of different preconditioning methods is highly
problem-dependent. A classical approach is to use an initial
identity matrix scaled by the so-called Oren–Spedicato scalar
(Nocedal and Wright, 2006). More sophisticated diagonal
preconditioners have been proposed in the literature, allowing
significant improvements in the minimization or inverse Hessian
approximation performances (Gilbert and Lemaréchal, 1989;
Veersé et al., 2000; Leong and Chen, 2013). Recent studies
have also proposed to combine information from several
minimizations. For instance, in the context of incremental 4D-
Var data assimilation, Tshimanga et al. (2008) and Gratton et al.
(2011b) exploit information gained from one CG minimization
to precondition the CG minimization of the next outer iteration.
They use a class of Limited-Memory Preconditioners (LMPs), of
which the quasi-Newton BFGS update is a particular member.

Besides deterministic algorithms such as BFGS, other
approaches for approximating the covariance matrix of analysis
errors make use of the probabilistic nature of the Bayesian inverse
problem. Recently, the stochastic method employing direct
Monte-Carlo calculation was used to estimate analysis errors
in a trace-gas variational inversion (Chevallier et al., 2007). In
practice, reliable estimates require at least 50 perturbed inversions
to be performed, which renders this method computationally
expensive and may preclude its use for time-limited applications
(e.g. operational NWP). Another study by Desroziers et al.
(2005) applied a randomization method to calculate the total
error reduction associated with a subset of observations. In
practice, this method allows estimation of only the trace of
the inverse Hessian and not the individual diagonal elements
(error variances). Rabier and Courtier (1992) proposed another
approach based on an ensemble of perturbed gradients that
allows one to approximate the observational term (HTR−1H) of
the inverse Hessian expression (3) (Courtier et al., 1994; Fisher
and Courtier, 1995). One drawback of stochastic approaches is
that they produce spurious long-range error correlations, a well-
known problem in sequential data assimilation methods such as
the Ensemble Kalman Filter (Anderson, 2001; Evensen, 2007).
The issue of sampling noise can be addressed by methods such as
localization by Schur products (Houtekamer and Mitchell, 2001)
or the wavelet-diagonal approach (Buehner, 2012).

Finally, a recent study by Gejadze et al. (2011) combined
stochastic and deterministic methods to estimate the analysis
error covariance in a variational setting. One implementation of
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their new ‘effective inverse Hessian’ (EIH) approach consists of
computing a sample mean of the inverse Hessian for different
perturbations of the true state. They demonstrate that their
method reduces both the linearization error obtained when
using the inverse Hessian and the sampling error associated
with stochastic estimates.

Here we present an evaluation of stochastic and deterministic
approaches to estimate the covariance matrix of analysis errors
in a large-scale variational inverse problem. For the stochastic
methods, a classical Monte-Carlo calculation as well as an
approach based on random gradients of the 4D-Var cost function
are considered, while the deterministic approach is based on BFGS
approximations of the inverse Hessian of the functional. First,
we consider a low-dimensional inverse problem in atmospheric
transport so that a full-rank estimate of the inverse Hessian using
finite differences is computationally feasible. This approximation
is used as a reference to evaluate the efficiency of the different
algorithms considered. Leveraging results obtained for existing
algorithms, we propose a new diagonal BFGS preconditioner
as well as simple techniques to dramatically improve the BFGS
inverse Hessian estimate. The computational requirements and
efficiency of each method are discussed. We also test the
scalability of the proposed algorithms by applying them to
a high-dimensional CO2 flux inversion system, the Carbon
Monitoring System (CMS) Flux Pilot Project, which is currently
under development by the National Aeronautics and Space
Administration (NASA; Liu et al., 2014)

The article is structured as follows. In section 2, we present two
existing stochastic approaches to estimate the covariance matrix
of analysis errors. Section 3 describes the BFGS algorithm and
some of its fundamental mathematical properties. It also reviews
commonly used preconditioning methods and proposes a new
preconditioning technique. Results are presented in section 4
for both the low-dimensional test case and the realistic high-
dimensional experiment. Conclusions are provided in section 5.

2. Stochastic approximations

2.1. Monte-Carlo method

One way to estimate the analysis-error covariance matrix (Pa) is
by directly calculating a sample estimate:

Pa = (xa − xt)(xa − xt)T (4)

≈ (x′
a − xref)(x′

a − xref)T (5)

≈ 1

N

N∑
i=1

(xi
a
′ − xref)(xi

a
′ − xref)

T,

where x is the expectation of x, xt is the true state, xref is
a known reference state, and each analysis xi

a
′

is obtained by
perturbing the reference state xref and the associated observations
(yref = H(xref)) according to the assumed error statistics for the
prior (B) and the observations (R), respectively (Chevallier et al.,
2007). Formally, it can be written as

yi = yref + VTv1/2pi,

xi
b = xref + WTw1/2qi,

}
(6)

where V and v are the eigenvector and eigenvalue matrices of
R, respectively, W and w are the eigenvector and eigenvalue
matrices of B, respectively, and i denotes a realization of the
random variables p and q which both follow a standard normal
distribution.

An important implicit assumption is made when using this
algorithm to estimate Pa. While the reference state xref being used
is different from the true state xt, it is assumed that Pa does not
depend on xref, at least in the vicinity of xt. In practice this is

equivalent to assuming that the model H is linear in the vicinity
of xt. Typical choices for xref are the prior xb or the analysis xa,
which represent the best estimates of the true state xt available
before and after the inversion, respectively.

A consequence of the Gaussian distributions assumed for the
prior and the observations is that each element (xi

a − xt)j of

the analysis error itself follows a Gaussian distribution N (0, σ
j
a),

where σ
j
a represents the standard analysis error of element j.

Therefore the sum
N∑

i=1

(xi
a − xt)

2
j

(σ
j
a)2

follows a chi-squared distribution with N degrees of freedom.
Basic statistics show that the relative standard error in the
estimated variance (σ 2

a ) and standard deviation (σa) are
√

2/N

and 1/
√

2N, respectively. This shows, for example, that a 10%
relative standard error for σa can be obtained with an ensemble
of only 50 vectors. Notably, the relative standard error in σa

is independent of the dimension (n) of the problem. However,
approximating the error covariances from a sample estimate is a
more difficult task than approximating the variance terms (e.g.
Berre and Desroziers, 2010).

2.2. Gradient-based randomization

Rabier and Courtier (1992) proposed a stochastic approach to
estimate the observational term HTR−1H in Eq. (3). It is based
on the equivalence between the observational term of the Hessian
matrix and the covariance matrix of gradients of the cost function,
and can be derived as follows. Consider

∇J(xb) = HTR−1ξ , (7)

where ξ ≡ H(xb) − y. We can generate an ensemble of
realizations of y (pseudo-observations) such that

ξ = 0 ,

ξξT = R .

}
(8)

We obtain

∇J(xb)∇J(xb)T = HTR−1ξξTR−1H. (9)

Therefore we can write

∇2J(xa) = B−1 + HTR−1H

= B−1 + ∇J(xb)∇J(xb)T. (10)

The covariance matrix of gradients in the right-hand side can be
approximated using a sample of gradients. The inverse Hessian
(∇2J)−1(xa) can then be obtained by inverting the above expres-
sion using (see Appendix) the Shermann–Morrison–Woodbury
formula (Sherman and Morrison, 1949). For practical implemen-
tations of the above method when R is not diagonal, we may use
the following change of variable:

∇J(xb)∇J(xb)T =HTR−1VTv1/2εεTv1/2VTR−1H, (11)

where V and v are the eigenvector and eigenvalue matrices of R,
respectively, and ε is a vector of independent random numbers
with standard normal distribution.

Each element {∇J(xb)}j = (HTR−1ξ )j of the random variable
∇J(xb) is a linear combination of elements of ξ , which follow
a Gaussian distribution. Therefore {∇J(xb)}j is itself a Gaussian
random variable. Thus the standard error for the sample estimate
of the variance

1

N

N∑
i=1

(HTR−1ξ i)2
j is (σ ′

j )2

√
2

N
,
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where (σ ′
j )2 represents the variance of {∇J(xb)}j. However, since

we seek to estimate the inverse of the stochastically approximated
Hessian matrix, the resulting estimator of the inverse Hessian
may be far from a chi-square variable. Therefore, as opposed to
the Monte-Carlo case, the sampled estimate of the diagonal of
the inverse Hessian may be significantly biased and the number
of samples required to reach a given relative standard error
depends upon the property of the problem (section 4.1.2). Finally,
since for high-dimensional problems the Hessian matrix cannot
be explicitly stored in memory nor directly inverted, efficient
numerical algorithms to extract information from this matrix
and perform algebraic operations are proposed in the Appendix.

3. The BFGS algorithm

3.1. Principle

The BFGS algorithm (Broyden, 1969) seeks to approximate the
inverse Hessian matrix of the cost function using gradient and
vector pairs generated during the minimization. To be consistent
with the notations commonly used in the literature while ensuring
clarity of the present article, in the following the inverse Hessian
will be noted as Ĥ, and needs to be distinguished from the
forward model operator H defined in previous sections. Likewise,
the vectors y with a subscript represent a difference of gradients
(see below), and not the vector of observations defined above. The
inverse Hessian update at each iteration k is given by (Nocedal
and Wright, 2006)

Ĥk+1 = (I − ρkskyT
k )Ĥk(I − ρkyksT

k ) + ρksksT
k , (12)

with

ρk = 1

yT
k sk

,

and

sk = xk+1 − xk ,

yk = ∇J(xk+1) − ∇J(xk) ,

where J is the cost function of the minimization problem.
At each iteration, the minimization update is given by

xk+1 = xk + αkpk ,

pk = Ĥk∇J(xk),

}
(13)

where αk is chosen to satisfy the so-called Wolfe conditions:

J(xk+αkpk) ≤ J(xk)+c1αk∇J(xk)Tpk,

∇J(xk+αkpk)Tpk ≥ c2∇J(xk)pk,

}
(14)

with 0 < c1 < c2 < 1.
For a general non-quadratic cost function, superlinear

convergence of the BFGS method can be demonstrated (Dennis
and More, 1977). Conditions for convergence of the inverse
Hessian approximation are more restrictive. If yk and sk are
generated using a quasi-Newton algorithm with exact line
searches, then the BFGS approximation to the inverse Hessian
converges to the true inverse Hessian in at most n iterations
(Bonnans et al., 2006). In the nonlinear case, exact line searches are
impossible, and therefore there is no guarantee that convergence
to the inverse Hessian can be reached in a finite number of steps.

3.2. BFGS preconditioning

Note that the initial inverse Hessian Ĥ0 in Eq. (12) can be freely
chosen. Moreover, at each iteration k, a new initial matrix, noted

Ĥ
0
k , can be used. The choice of the initial inverse Hessian plays

an important role in the performance of the BFGS algorithm.
Preconditioning methods have been mainly developed in the
context of limited-memory BFGS, where computer memory
capacity allows only a small number of gradient and vector pairs
to be stored. Assuming a maximum of m gradient and vector
pairs are available at each iteration k, the following formula can
be used to update Ĥk:

Ĥk = (VT
k−1...V

T
k−m)Ĥ

0
k(Vk−m...Vk−1)

+ρk−m(VT
k−1...V

T
k−m+1)sk−msT

k−m(Vk−m+1...Vk−1)

+ρk−m+1(VT
k−1...V

T
k−m+2)sk−m+1 sT

k−m+1(Vk−m+2...Vk−1)

+ ...

+ ρk−1sk−1 sT
k−1 , (15)

with Vk = I − ρkyksT
k . One advantage of this formulation is that it

allows an efficient two-loop recursion algorithm to compute any
matrix–vector product Ĥkv. This type of formula is referred to
as ‘implicit’ because the inverse Hessian matrix is never explicitly
formed, but rather implicitly known through the ensemble of
gradient and vector pairs (yk, sk), which can be used to extract
any element of the matrix or to perform matrix–vector product
(see Appendix).

Finding the appropriate method to define Ĥ
0
k (the precondi-

tioner) is critical to obtain good rates of convergence for the

minimization. A general principle is that Ĥ
0
k should retain as

much information as possible from previous BFGS iterations. It
is often set to some multiple of the identity, γ I, although more
sophisticated diagonal preconditioners have also been developed
(see below). The choice of the preconditioner is highly problem-
dependent, and in this section we present some of the commonly
used preconditioning techniques.

A method that has proved effective in practice is to use the
so-called Oren–Spedicato scalar γk:

γk = sT
k−1yk−1

yT
k−1yk−1

,

Ĥ
0
k = γkI .

⎫⎪⎬⎪⎭ (16)

In addition to its good performance, this preconditioner has
some desirable mathematical properties, among which is the fact

that γk is the Rayleigh quotient of Ĥ in the direction yk, i.e.
γk = yT

k−1Ĥyk−1/yT
k−1yk−1, where

Ĥ ≡
(∫ 1

0
∇2J(xk−1 + t sk−1) dt

)−1

. (17)

The reader is referred to Gilbert and Lemaréchal (1989) for more
details about the useful properties of γk. In the following we will
refer to this preconditioning method as INIT O.

It has been recently shown (Leong and Chen, 2013) that the
Oren–Spedicato preconditioner belongs to a broader class of
diagonal preconditioners of the form

Ĥ
0
k = αkI + (yT

k−1sk−1 − αkyT
k−1yk−1)

tr(Y2
k−1)

Yk−1, (18)

where Yk−1 = diag(y2
k−1,1, ..., y2

k−1,n), yk−1,i is the ith component
of the vector yk−1, and αk is some positive scalar. This class is
obtained using a variational technique based upon the weak-
quasi-Newton equation of Dennis and Wolkowicz (1993):

yT
k−1Ĥ

0
kyk−1 = yT

k−1sk−1. (19)

Note that Ĥ
0
k = γkI correspond to αk = γk in Eq. (18). In this

study we will consider the particular case where αk = 0, and will
refer to this preconditioner as LC DIAG.
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Figure 1. Analysis standard error estimates for all 200 optimized scaling factors using finite-difference calculation (solid line) and the stochastic methods (dashed
line): (a) Monte-Carlo estimate using 50 members, (b) gradient-based estimate using 50 members, (c) gradient-based estimate using 500 members.

In addition to diagonal preconditioners based on the weak-
quasi-Newton equation, other methods have been proposed by
Gilbert and Lemaréchal (1989) and Veersé et al. (2000), where an
initial diagonal matrix is updated following a diagonal version of

the BFGS formula. Starting from Ĥ
0
1 = γ0I, the update is

Di
k+1 = Di

k+
(

1

yT
k sk

+ yT
k Dkyk

(yT
k sk)2

)
(si

k)2− 2Di
kyi

ksi
k

yT
k sk

, (20)

where Di
k denotes the ith element of the diagonal preconditioner

Ĥ
0
k at iteration k. Note that, although this update preserves

positive-definiteness, it does not ensure that the quasi-Newton or
weak-quasi-Newton equations are satisfied. In the following we
will refer to this preconditioning method as GL DIAG.

In this study we also propose a new diagonal preconditioner,
which is more adapted to the problem of estimating the diagonal
elements of the inverse Hessian matrix. At each iteration, the
BFGS algorithm is restarted using a diagonal matrix made of the
diagonal elements of the inverse Hessian estimate at the previous
iteration. Formally, the diagonal preconditioner is obtained as:

Ĥ
0
k = diag(Ĥk). (21)

In the following we will refer to this preconditioner as
LAST DIAG. Note that more information from previous
iterations is used to construct this preconditioner than GL DIAG.
While in GL DIAG only the last (y, s) pair is used to update
the preconditioner, in LAST DIAG one needs to use all
(yk−m+i, sk−m+i)(i=1,..,m) pairs to update the diagonal elements
of the inverse Hessian matrix at each iteration.

Finally, for high-dimensional problems it might not be
possible to store explicitly the entire inverse Hessian matrix
in computer memory. However, matrix–vector products and

Table 1. Performance statistics of the Monte-Carlo and gradient-based stochastic
approaches with respect to the finite-difference inverse Hessian estimate.

Stochastic PCC a, b SDRE
method

Monte-Carlo 0.96 1.00, −0.00 0.10
(50 members)
Gradient-based 0.88 0.54, 0.10 0.70
(50 members)
Gradient-based 0.99 0.95, 0.01 0.08
(500 members)

PCC= Pearson correlation coefficient.
a, b are coefficients in the linear fit y = ax + b.
SDRE= Standard deviation of relative error.

specific elements of this matrix can still be computed from the
gradient and vector pairs (yk, sk) using implicit formulations for
the BFGS update. Some of these algorithms are presented in the
Appendix.

4. Numerical experiments

4.1. CO2 flux inversion using remote-sensing pseudo-observations

In order to evaluate the performance of different methods
to approximate the covariance matrix of analysis errors, we
considered an inverse problem in atmospheric constituent
transport. We conducted an Observing System Simulation
Experiment (OSSE), where global fossil fuel CO2 fluxes were
estimated for the month of July 2009 using the GEOS-Chem global
chemistry transport model (CTM) (http://www.geos-chem.org;
accessed 20 November 2014) together with remote-sensing
pseudo-observations of CO2 columns from the Greenhouse gases

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. (2015)
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Monte−Carlo
(a)

(b)
Gradient−based randomization

( (

( (

Figure 2. Relative differences between the analysis-error correlations calculated
using finite-difference and the stochastic methods as a function of distance (values
have been averaged over all scaling factors for each distance bin): (a) Monte-Carlo
estimate, (b) gradient-based estimate.

Observing SATellite (GOSAT) instrument. In this inversion we
optimized scaling factors applied to prior CO2 fluxes instead of
the fluxes themselves.

The GEOS-Chem CO2 simulation has been described in recent
studies (Nassar et al., 2010, 2011; Liu et al., 2014; Deng et al.,
2014). In our experiment we consider a 4◦ × 5◦ horizontal model
grid resolution. Meteorological fields are obtained from the GEOS
(Goddard Earth Observing System) assimilated meteorology of
the NASA Global Modeling Assimilation Office (GMAO). A more
detailed description of the configuration of the GEOS-Chem CO2

simulation and of the CO2 data assimilation system can be found
in Liu et al. (2014).

We use the Orbiting Carbon Observatory (ACOS) GOSAT
CO2 b2.9 retrievals (O’Dell et al., 2012), which are based on
measurements from the Thermal And Near-infrared Sensor for
carbon Observation–Fourier Transform Spectrometer (TANSO-
FTS; Yokota et al., 2009). It follows a polar sun-synchronous
orbit with a crossing at the Equator at 1300 local time, repeated
every 3 days. The CO2 retrievals consists of column-integrated
dry mole fractions (XCO2 ). A more detailed description of the
GOSAT retrievals can be found in O’Dell et al. (2012).

Here the GEOS-Chem model is used as the forward model that
relates the CO2 fluxes to the CO2 concentration profiles, to which
a GOSAT observational operator is applied to reproduce the
observed CO2 columns. The observational operator is obtained
using the averaging kernels (A) of the retrieval. The standard error
for the prior fluxes is set to 20% for all locations and we assume
no error correlations (i.e. B is a diagonal matrix with 0.04 on the
diagonal). Note that this assumption is an oversimplification.
For instance, in the context of global biospheric CO2 flux
inversions, Chevallier et al. (2012) showed that, although spatial
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Figure 3. Analysis standard error estimates for all 200 optimized scaling factors
using the finite-difference calculation (solid line) and different existing BFGS
algorithms (dashed line): (a) INIT B, (b) INIT O, (c) LC DIAG, (d) GL DIAG
with prior initialization, and (e) GL DIAG with prior initialization and filtering.
All BFGS calculations use the same 26 vector and gradient pairs obtained from
one specific inversion.

Table 2. Performance statistics of several existing BFGS algorithms with respect
to the finite-difference inverse Hessian estimate.

BFGS PCC a, b SDRE
method
(initialization)

INIT O −0.07 0.00, 0.02 0.79
(Eq. (16))
INIT B 0.53 0.14, 0.17 1.39
GL DIAG 0.53 0.21, 0.16 1.22
(Eq. (20)) (with filtering)
LC DIAG −0.23 −0.04, 0.01 0.86
(Eq. (18))

Column headings are as in Table 1.
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error correlations are not significant, temporal error correlations
from one month to the next can be as large as 0.6 and should
therefore be included in the prior error covariance matrix B. The
error statistics for the observations (R) are those provided by the
GOSAT b2.9 retrievals, and it is assumed there are no correlations
between observation errors (i.e. R is diagonal).

The short inversion window (1 month) for this experiment
was chosen in order to lower the computational cost of
the simulations, but this causes the inversion problem to
be significantly ill-posed. To circumvent this difficulty, we
artificially increased the sensitivity of the retrieval to the CO2

surface concentrations (0–200 m) by a factor of 100. While this
modification has no implication for the conclusions presented
here, one must keep in mind that the results of this inversion have
no physical significance.

The OSSE experiment consists of the following steps:

(i) Generate a set of GOSAT pseudo-observations for July
2009 from known global CO2 fluxes. The vector of pseudo-
observations is computed as:

yi
t = Hixt = Ai(Mixt − ci

a) + yi
a , (22)

where Hi is the observational operator associated with
the ith observed CO2 column, Mixt is the GEOS-
Chem modelled CO2 profile associated with that column
generated using a vector xt of known CO2 flux scaling
factors, yi

a and ci
a are the GOSAT a priori CO2 column and

a priori profile, respectively, and Ai is the GOSAT averaging
kernel.

(ii) Apply a Gaussian random perturbation to each pseudo-
observation, consistent with the error statistics defined by
the covariance matrix of observation errors R:

yi = yi
t + pi, (23)

where pi is Gaussian noise with same standard deviation as
the observation errors.

(iii) Apply a Gaussian random perturbation to each CO2 flux
scaling factor, consistent with the error statistics defined
by the covariance matrix of background errors B:

xb = xt + q , (24)

where q is a vector whose elements are Gaussian noise with
same standard deviation as the corresponding background
errors.

(iv) Perform a 4D-Var inversion by minimizing

J(x) =1

2

p∑
i=1

(yi − Hix)TR−1(yi − Hix)

+ 1

2
(x − xb)TB−1(x − xb), (25)

where p is the number of observations.

4.1.1. Finite-difference approximation

In order to derive a full-rank estimate of the inverse Hessian
for the CO2 flux inversion, we reduced the dimension of the
control vector by considering only the first 200 model grid cells
with highest fossil fuel CO2 emissions. Given this set-up, the
dimensions of the control vector and the observational vector are
n = 200 and p = 33 822, respectively.

The following formula has then been used to estimate each
element of the Hessian by finite-difference calculation:

Ĥi,j = {∇J(x + εi) − ∇J(x)}j

ε
, (26)
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Figure 4. Analysis standard error estimates for all 200 optimized scaling factors
using the finite-difference calculation (solid line) and the new LAST DIAG
BFGS diagonal preconditioner (dashed line): (a) prior error initialization, (b)
Oren–Spedicato initialization, and (c) finite-difference estimate initialization. All
BFGS calculations use the same 32 vector and gradient pairs obtained from one
specific inversion.

Table 3. Performance statistics of the new LAST DIAG BFGS preconditioning
method with respect to the finite-difference inverse Hessian estimate.

BFGS No. of PCC a, b SDRE
LAST DIAG cycles
(initialization)

Prior 1 0.85 0.73, 0.06 0.47
Oren–Spedicato 1 −0.06 −0.03, 0.05 0.61
Prior 60 0.81 0.68, 0.01 0.27
Oren–Spedicato 60 0.59 0.39, 0.03 0.35
Prior+ 3 inversions 60 0.94 0.91, 0.01 0.19
(BFGS HYBRID)

Column headings are as in Table 1.

where εi = (εδi,k)k , δ is the Dirac function and ε is a small real
number. For this experiment ε = 0.01, which corresponds to a
1% perturbation of the CO2 flux for a particular grid cell. Since Ĥ
is symmetric, this calculation requires n + 1 gradient calculations,
which corresponds to n + 1 forward model integrations and n + 1
adjoint model integrations. Note that these gradient calculations
can be performed in parallel. The resulting Hessian matrix must
then be inverted in order to estimate the covariance matrix
of analysis errors. Here we used the Linear Algebra PACKage
(LAPACK) routines (http://www.netlib.org/lapack/; accessed 20
November 2014) to perform the inversion of Ĥ using LU
decomposition.
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Figure 5. Analysis standard error estimates for all 200 optimized scaling factors
using finite-difference calculation (solid line) and the new LAST DIAG CYC
diagonal preconditioner using 60 cycles (dashed line): (a) prior error initialization,
(b) Oren–Spedicato initialization, and (c) finite-difference initialization. All BFGS
calculations use the same 32 vector and gradient pairs obtained from one specific
inversion.

Figure 6. Cost function and norm of the gradient for 100 iterations of the BFGS
minimization algorithm. Crosses represent accepted iterations.

4.1.2. Stochastic estimates

Figure 1 shows the analysis standard error for each scaling factor
estimated using the finite-difference, Monte-Carlo, and gradient-
based stochastic methods. Performance statistics for each method
are summarized in Table 1. The Monte-Carlo estimate closely
matches the finite-difference calculation, with a relative standard
error of 10%, consistent with the theoretical value for an ensemble
of 50 members (section 2.1). As explained in section 2.2, when
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Figure 7. Analysis standard error estimates for all 200 optimized scaling factors
using the finite-difference calculation (solid line) and the new hybrid approach
(BFGS HYBRID) (dashed line). As in previous figures, the calculation used 32
vector and gradient pairs obtained from one specific inversion.

using the gradient-based approach, there is no guarantee that 50
members will be sufficient to obtain a 10% relative standard error
in the estimates. Here using 50 members results in a significant
positive bias of about 50% in the estimate (Figure 1). Based
on the Frobenius norm of the approximated inverse Hessian
matrix, we found that 500 members were necessary to reach
convergence. This yields an estimation of the analysis errors with
similar performance as the Monte-Carlo estimate, with a bias of
only 4%.

It is well known that randomization methods produce spurious
long-range error correlations due to sampling noise (Fisher
and Courtier, 1995). Figure 2 shows the relative errors in
the analysis-error correlation compared to the finite-difference
estimate as a function of distance. The fact that the gradient-
based approximation performs better at estimating the error
correlations stems from the fact that only the observational term in
the inverse Hessian formula (10) is stochastically approximated.
In addition to significantly reducing the sampling noise, the
gradient-based approximation requires much less computation
than the Monte-Carlo estimate. In our experiment, about 100
BFGS line searches were necessary for each inversion in the
Monte-Carlo ensemble, which corresponds to a total of 5000
gradient evaluations to estimate the analysis-error covariance
matrix. The gradient-based estimate required only 500 gradient
evaluations, which can all be performed in parallel.

4.1.3. Existing BFGS preconditioners

Figure 3 shows the analysis standard error for each scaling
factor estimated using the finite-difference calculation and several
existing BFGS algorithms described in section 3.2. Here INIT B
refers to the BFGS algorithm initialized with the diagonal
matrix of prior errors instead of the Oren–Spedicato scalar
(INIT O). Performance statistics are reported in Table 2. Large
errors and poor correlations are found for all approaches. The
difference between the analysis errors calculated with the different
methods largely reflects the influence of the initialization. Using
INIT B, only a few error reductions, albeit underestimated, are
captured. They are generally associated with the highest error
reductions calculated with finite difference. The INIT O and
LC DIAG methods give similar results and show a significant
underestimation of the analysis errors. As explained in section 3.2
(also Nocedal and Wright, 2006), in both methods the diagonal
elements of the initial matrix tend to approximate the eigenspectra
of the inverse Hessian. As a result, as seen on Figure 3, the analysis
error estimates are good approximations to the lowest analysis
errors, which are associated with the dominant eigenvalues of the
Hessian.
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Figure 8. Relative differences between the analysis-error correlations calculated using finite-difference and the new BFGS algorithms as a function of distance (values
have been averaged over all scaling factors for each distance bin): (a) LAST DIAG, (b) LAST DIAG CYC, and (c) BFGS HYBRID.

Figure 9. Singular values spectra of the inverse Hessian residual, which is the

difference between the finite-difference estimate and the approximation (Ĥ
−1
FD −

Ĥ
−1
approx) obtained with: Monte-Carlo (green), gradient-based randomization

(blue), BFGS LAST DIAG CYC (orange), and BFGS HYBRID (red) methods.

Our results also show that applying the GL DIAG precon-
ditioning method with prior error initialization yields a large
number of analysis errors significantly higher than the prior
error. Since by construction the inversion systematically reduces
the prior error, these noisy values can be filtered out by sim-
ply resetting them to the prior error at each iteration. In this
case we see that GL DIAG give similar results as INIT B, while
significantly improving the magnitude of the error reduction.

Overall our results show that existing BFGS preconditioning
techniques have little value for estimating the diagonal elements of
the inverse Hessian matrix. An alternative approach is proposed
in the next section.

4.1.4. New BFGS preconditioner

One weakness of the GL DIAG preconditioner is that only
element-wise products of yk and sk are considered when updating
the diagonal matrix, neglecting the influence of cross-product
terms. In addition, the diagonal preconditioner is updated
independently from the main inverse Hessian update. Here we
propose to improve upon this method by using the LAST DIAG
preconditioner defined by Eq. (21), which ensures that the
information brought by each inverse Hessian update is also
used to update the preconditioner. This feedback mechanism
dramatically improves the accumulation of information along
the diagonal, as shown in Figure 4. Table 3 summarizes the
performance of this preconditioning technique. Results are
improved compared to previous BFGS algorithms, whether the
prior or the Oren-Spedicato scalar are used for initialization
(section 4.1.3). Also shown are the analysis errors obtained
by initializing LAST DIAG with the finite-difference estimate.
Although the relative stability of the ‘true’ initial diagonal matrix
under BFGS updates may be interpreted as a desirable property
of the algorithm, in fact it essentially reflects the strong influence
of the initialization, as we will show in the next section.

From these results it is evident that although the new precondi-
tioning technique significantly improves the performance of the
BFGS algorithm compared to previous approaches, the influence
of the initialization on the estimate is still dominant. In the next
section we discuss this issue and propose a new method to address
this problem.

4.1.5. Cycling the BFGS

As shown previously, inverse Hessian approximations calculated
using the BFGS algorithm are strongly dependent upon the
initialization. Among all approaches, the LAST DIAG algorithm
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Figure 10. Monte-Carlo estimate (50 members) of the relative error reduction (% of prior error) in biospheric fluxes for each month of the year 2010.

is the least sensitive to the initialization. The reason is that each
update of the initial diagonal matrix (Ĥ

0
k) reuses information

from all previous vector and gradient pairs multiple times. More
precisely, at iteration k, the LAST DIAG algorithm has used
the pair (ym, sm) exactly k − m + 1 times to update the inverse
Hessian. Therefore the amount of information coming from
the gradient and vector pairs is greatly enhanced and acts as a

forgetting factor with respect to the initial matrix (Ĥ
0
0).

A direct extension of this approach is to continue iterating the
algorithm after all available pairs have been used and perform
several cycles. Note that, although each cycle reuses information
from the same pairs, it is initialized using a different inverse
Hessian diagonal. Figure 5 shows the analysis errors calculated
using 60 cycles of LAST DIAG for different initializations
(prior error, Oren–Spedicato, and finite-difference estimate).
All methods now give similar results and reduce the relative
standard error in the analysis error compared to the case with
only one cycle. This demonstrates the need for cycling the BFGS
algorithm in order to obtain both convergence (independence
from the initialization) and better estimates of the diagonal
elements of the inverse Hessian. The number of cycles chosen
here (60) was based on the convergence of the Frobenius norm of
the BFGS inverse Hessian approximation (not shown). Note that
this number may vary with the dimension of the problem, since
we found that convergence can be achieved after only 30 cycles

for a similar experiment with a control vector of dimension 70. In
the following sections we will refer to the LAST DIAG algorithm
with cycling as LAST DIAG CYC.

4.1.6. Hybrid approach

Although the LAST DIAG CYC method consisting of cycling
the LAST DIAG algorithm proved to be superior over all other
BFGS methods for approximating the analysis errors, it still gives
poorer performances than the stochastic approaches. This is due
to the fact that in practice the dimension of the optimization
subspace from which the inverse Hessian approximation is built
is much smaller than the dimension of the entire control space
(n). As a result, the inverse Hessian estimate has a rank much
lower than n. In the case when line searches are not perfect
(this study), the rank of the inverse Hessian estimate is further
degraded. Even when n is relatively small, it may not be practical
to perform enough iterations to span the entire control space.
Figure 6 shows the cost function value and the norm of the
gradient for the first 100 line searches of the BFGS minimization
algorithm. After 25 accepted iterations, the proportion of accepted
iterations drops dramatically (only 7 out of 68). One approach
to increase the rank of the BFGS inverse Hessian approximation
is to use gradient and vector pairs from several inversions taken
from a Monte-Carlo ensemble. Since the perturbations applied
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Figure 11. Gradient-based estimate (1800 members) of the relative error reduction (% of prior error) in CO2 biospheric fluxes for each month of the year 2010.

to the prior and the observations are different between inversions
(section 2.1), in practice the search directions generated during
the minimization will be different and allow for sampling a larger
subspace of the control space. While directions corresponding to
strongest error reductions tend to be similar among inversions,
directions associated with smaller error reductions show more
variability. Figure 7 shows the results obtained with this hybrid
approach (BFGS HYBRID), which consists of applying the
LAST DIAG CYC algorithm to the set of gradient and vector
pairs from three different Monte-Carlo ensemble members. The
filtering described in section 4.1.3 was also applied throughout the
process to correct for potential prior error increases. Performance
statistics are summarized Table 3. The BFGS HYBRID method
dramatically improves the analysis error estimates, with results
now similar to the stochastic methods.

Figure 8 shows the relative error in the analysis-error
correlations with respect to the finite-difference estimate using the
LAST DIAG, LAST DIAG CYC, and BFGS HYBRID methods.
Cycling the BFGS (LAST DIAG CYC) remove the spurious long-
range correlations initially produced (LAST DIAG). However,
combining gradient and vector pairs from different inversions
in the BFGS estimate (BFGS HYBRID) introduces significant
spurious long-distance correlations. Overall, these results
demonstrate that the BFGS HYBRID approach provides analysis-
error estimates similar to the stochastic methods, while mitigating
the error correlations sampling noise obtained with the Monte-
Carlo estimate.

Note that the idea of using information from multiple
inversions to improve the inverse Hessian estimate is not new.
For example, the LMP described in Tshimanga et al. (2008) and
Gratton et al. (2011a), when used in the context of incremental
4D-Var data assimilation, can construct a BFGS approximation
of the inverse Hessian from the sequence of quadratic CG
minimizations of the outer loops, gradually improving the
preconditioning of the systems. In the BFGS HYBRID approach,
the ensemble of minimization problems is obtained through
random perturbations of the prior and observations in the 4D-
Var cost function. An important underlying assumption is that
the forward model is approximately linear so that the Hessian
of the cost function does not depend on the particular prior or
observations considered. However, different starting points for
the prior and the observations in the minimization will result in
different subspaces of the control space being explored. It is also
worthwhile to note that the EIH method presented in Gejadze
et al. (2011) also combines information from several BFGS inverse
Hessian estimates using stochastic methods. Nevertheless, in their
approach the ensemble of inverse Hessian estimates is obtained
from different quadratic problems (unlike ours), which aims at
taking into account large nonlinearities in their inverse problem.

4.1.7. Singular value decomposition analysis

A singular vector decomposition (SVD) analysis provides a useful
framework to assess the overall performance of the different
algorithms employed to approximate the inverse Hessian matrix
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Figure 12. BFGS LAST DIAG CYC estimate of the relative error reduction (% of prior error) in CO2 biospheric fluxes for each month of the year 2010.

(see Veersé et al., 2000). Figure 9 shows the singular value
spectra of the inverse Hessian ‘residual’ (the difference between
the finite-difference calculation and the approximate inverse
Hessian) for the stochastic approaches and the new BFGS-based
algorithms, namely BFGS LAST DIAG CYC and BFGS HYBRID.
This demonstrates the superiority of the BFGS HYBRID and
gradient-based approaches over other techniques, and clearly
shows the degrading effect of the sampling noise in the Monte-
Carlo estimate, for which significant biases are found in the higher
part of the spectra. This is expected since spurious long-range
error correlations will translate into increased variances error for
the eigenvectors of the inverse Hessian.

4.2. Application to a high-dimensional problem

In this OSSE experiment we use the Carbon Monitoring System
(CMS) flux estimation model to infer error reduction in global
monthly CO2 biospheric fluxes from the assimilation of ACOS-
GOSAT XCO2 data in 2010 (Liu et al., 2014). More specifically, the
control vector is composed of all CO2 biospheric flux scaling
factors at every grid cell of a 4◦×5◦ global simulation, for
every month. It is therefore of dimension 72 × 46 × 12 = 39 744.
With such a large number of scaling factors, it is not possible to
perform a finite-difference estimate of the analysis-error variance.
However, since the relative standard error in the Monte-Carlo
estimate is ≤ 10% with 50 ensemble members, independently

from the dimension of the problem, we will consider this
approximation as a reference against which other methods will
be evaluated. In this study, the prior error covariance matrix B is
defined as diagonal (therefore assuming no error correlation
between fluxes), and was constructed from a Monte Carlo
run of CASA-GFED 3 by sampling the distributions of model
parameters. For more details on the experimental set-up, the
reader is invited to refer to Liu et al. (2014).

Figures 10–13 represent maps of monthly error reduction
relative to the prior error after inversion of the CO2 biospheric
fluxes, calculated using the Monte-Carlo, gradient-based, BFGS
LAST DIAG CYC, and BFGS HYBRID approaches. Performance
statistics from these results are summarized in Figure 14, which
shows a scatter plot of each approximation against the Monte-
Carlo estimate, as well as the associated linear regression analysis.
Generally the Monte-Carlo and gradient-based estimates show
very similar error reduction patterns and magnitudes. However,
the Monte-Carlo method tends to exhibit higher error reduction
than the gradient-based approach over some areas with weak
constraints on the fluxes (i.e. Europe and Asia in September). The
very good agreement between the two methods is characterized by
a strong correlation coefficient (R = 0.93) and a linear regression
fit close to 1 : 1. Note that the size of the random gradient
ensemble necessary to obtain convergence of the error reduction
estimates is significantly greater for this realistic inversion (1800
members) than for the previous low-dimensional problem (500
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Figure 13. BFGS HYBRID estimate (five members) of the relative error reduction (% of prior error) in CO2 biospheric fluxes for each month of the year 2010.

members). Although the performances of the stochastic estimates
are by nature independent from the dimension of the problem,
the convergence rate of the gradient-based method (as opposed to
the Monte-Carlo one) can still be affected by other characteristics
of the problem (see section 3.3.2). In particular, the realistic
inversion is more ill-posed, which results in lower error reductions
and higher analysis error correlations than in the low-dimensional
experiment, and likely explains the observed differences in
performance for the gradient-based estimate.

Similar to results obtained with the previous low-dimensional
experiment, the analysis errors estimated with the BFGS
LAST DIAG CYC algorithm using information from only one
inversion yields a significant overestimation of the error reduction
compared to the Monte-Carlo estimate. Although the spatial
distribution of the error reduction is well reproduced in a relative
sense (compare Figures 10 and 12), which results in a good
correlation between the two methods (R = 0.60), the linear
regression analysis (Figure 14) shows a consistent overestimation
of the error reduction by up to a factor 3 by the BFGS method.
Again, using information from multiple Monte-Carlo inversions
to compute the BFGS estimate (BFGS HYBRID) results in a
dramatic improvement of the analysis error approximation, as
seen from Figure 13 and the linear regression fit (Figure 14). In
particular, the average BFGS overestimation of the error reduction
(50%) is much smaller than for the BFGS LAST DIAG CYC
estimate. Overall, these results show that, while the performance
of the gradient-based method is fairly unaffected by the dimension

of the problem, the accuracy of the improved BFGS estimates can
be significantly reduced for high-dimensional inversions. Still, the
BFGS HYBRID approach offers good scalability properties. Here
five Monte-Carlo members were used to compute the inverse
Hessian, while three members were used for the low-dimensional
case. Therefore, using a similar number of Monte-Carlo samples
in a system whose dimension is two orders of magnitude higher
than the low-dimensional case results in a decrease of only
0.20 in the linear regression coefficient. Although using more
Monte-Carlo ensemble members in the BFGS HYBRID algorithm
could in principle improve the performance of the estimate,
the computational cost of the calculation can become rapidly
prohibitive when more than 200 gradient and vector pairs are
considered (see A.1.2). This is primarily due to the numerous
BFGS cycles through the gradient and vector pairs necessary to
efficiently accumulate information on the diagonal of the inverse
Hessian. As an example, for our BFGS HYBRID estimate of
the inverse Hessian using five Monte-Carlo inversions (i.e. 140
gradient and vector pairs), performing one BFGS cycle takes
about 5.5 h on a system with dual hexa-core 2.67 GHz Intel Xeon
processors and 12 MB of RAM.

5. Conclusions

In this study we tested several numerical methods to estimate
the analysis-error covariance matrix of high-dimensional 4D-
Var inverse problems, when the forward model considered is
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Figure 14. Scatter plot and linear regression analysis for the comparison between
the Monte-Carlo and (a) the gradient-based, (b) BFGS LAST DIAG CYC and (c)
BFGS HYBRID methods. The dashed line denotes 1:1.

approximately linear. An experimental framework consisting of
a low-dimensional inversion of CO2 emissions constrained by
remote-sensing pseudo-observations of CO2 columns has been
used to derive a direct finite-difference estimate of the inverse
Hessian of the cost function. Both stochastic and deterministic
approaches were then tested and evaluated against the finite-
difference estimate.

A standard Monte-Carlo method as well as a calculation based
on stochastic gradients of the cost function gave excellent analysis-
error estimates, with a relative standard uncertainty within
10% of the finite-difference estimate. Spurious long-range error
correlations were produced with both approaches due to sampling
noise. While mitigating the sampling noise, the gradient-based
method required about ten times fewer gradient evaluations than
the Monte-Carlo calculation.

Deterministic estimations of the inverse Hessian have also
been tested using the BFGS algorithm. Existing preconditioning

methods were unable to provide useful estimates of the analysis
errors (relative error > 120%). Therefore, a new diagonal
preconditioner has been proposed (LAST DIAG), which better
accumulates information on the diagonal of the inverse Hessian
and dramatically improves the results (relative error < 50%). We
found that the BFGS method was very sensitive to initialization
and that cycling the algorithm a number of times (∼ 40) using the
same gradient and vector pairs (LAST DIAG CYC) was necessary
to reach convergence and obtain more accurate analysis-error
estimates (relative error < 30%). However, Hessian information
obtained from only one inversion yielded analysis-error estimates
of poorer quality than obtained with the stochastic methods. We
showed that using a hybrid approach (BFGS HYBRID) which
combines BFGS algorithm cycles with inversion outputs from only
a few (3 here) Monte-Carlo ensemble members, it is possible to
obtain analysis-error estimates of similar quality to the stochastic
calculations.

These methods have also been tested with a realistic high-
dimensional problem, consisting of a global inversion of monthly
CO2 biospheric fluxes for the year 2010, using the Carbon
Monitoring System (CMS) Flux Pilot Project developed at NASA
(Liu et al., 2014). In this case the gradient-based randomization
approach and the improved BFGS algorithms were compared to a
Monte-Carlo estimate with 50 members, and only error variances
were considered. The gradient-based estimate required about
three times more sampling to reach convergence than in the low-
dimensional experiment. These results demonstrate that unlike
for the Monte-Carlo approach, the computational efficiency of
the gradient-based method can significantly vary between inverse
problems, and suggest more sampling will be necessary as the
average error reduction of the inversion decreases. The improved
BFGS HYBRID algorithm exhibited good scalability with respect
to the dimension of the problem. Indeed, using a similar number
of ensemble members (5) as for the low-dimensional case
(3), good correlations (R = 0.56) with respect to the standard
Monte-Carlo calculation were obtained, as well as a good spatial
representation of the main error variance characteristics.

In summary, the choice of the algorithm employed should be
guided by the targeted application and by the computational
resources available. A SVD analysis revealed that overall
best performances are obtained using the gradient-based
randomization approach. Although in our experiments 500 to
1800 gradient evaluations were necessary to converge, in practice
these calculations can be all performed in parallel. Therefore, this
method is especially well suited when an evaluation of the analysis-
error covariances is sought prior to optimization. However, it
is worthwhile to note that the gradient-based approach can
be superseded by the Monte-Carlo method in cases where
the optimization requires only a small number of iterations.
On the other hand, the improved BFGS cycling approach
(LAST DIAG CYC) affords a relatively good approximation of
the inverse Hessian in directions corresponding to highest error
reductions, at a small computational cost. While it may not be
adapted to fine-scale error analysis, other applications requiring
fast evaluations of the inverse Hessian may be envisaged. For
instance, it would be useful to test this new preconditioner in a
limited-memory BFGS minimization context in order to assess
its impact on the convergence rate. Moreover, in an incremental
4D-Var assimilation system, an approximate Hessian derived
from a similar methodology could be used to precondition
the CG minimization of the inner loops. In particular, the
LAST DIAG CYC preconditioner could be used in the quasi-
Newton LMP approach proposed by Tshimanga et al. (2008)
and Gratton et al. (2011a) to further improve the convergence
of the inner loops. Another interesting application of the BFGS
method in variational data assimilation was suggested by Fisher
and Courtier (1995). In the case where observations occur only
at or after the time at which the forecast error matrix is required,
the BFGS transformation formula can be used to propagate
the analysis-error covariance matrix using only information
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generated during the minimization, allowing a computationally
efficient approximate Kalman filter to be implemented. Such
implementation should benefit from the BFGS LAST DIAG CYC
algorithm proposed, by improving the inverse Hessian estimate.
Finally, the hybrid approach (BFGS HYBRID) combines an
accurate estimate of the analysis-error covariance matrix with the
numerical efficiency of the BFGS matrix–vector product recursive
algorithm (see Appendix). Therefore, its use would be particularly
well adapted to characterize the information content of high-
dimensional inversions using SVD algorithms, since they usually
require numerous matrix–vector products. In addition, since the
performance of the BFGS HYBRID estimate seems only weakly
impacted by the dimension and information characteristics of the
problem, this algorithm can be an efficient alternative to either
the Monte-Carlo or the gradient-based analysis error estimates
in case numerous iterations are required in the optimization and
a large number of random gradients is necessary for the inverse
Hessian estimate to converge.
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Appendix

Practical algorithms for high-dimensional systems

A1. BFGS method

A1.1. Matrix-vector product

The implicit formulation in Eq. (15) can be used to derive
a two-loop recursion algorithm to calculate the product
Ĥkv of the approximate inverse Hessian with any vector v
(Nocedal, 1980):

Algorithm 1 (L-BFGS two-loop recursion)

q ← v
for i = k − 1 to k − 2, ..., k − m do

αi ← ρis
T
i q

q ← q − αiyi

end for

r ← Ĥ
0
kq

for i = k − m to k − m + 1, ..., k − 1 do
β ← ρiy

T
i r

r ← r + si(αi − β)
end for
stop with result Ĥkv = r

where m corresponds to the number of gradient and vector pairs
stored in computer memory. Therefore, the two-loop recursion

algorithm requires 4mn + n multiplications if Ĥ
0
k is diagonal,

where n represents the dimension of the control state.

A1.2. Matrix element extraction

In order to be able to calculate specific elements of Ĥk, the formula
(12) can be rewritten in the form (Fisher and Courtier, 1995):

Ĥk+1 = Ĥk + sksT
k

(
1

yT
k sk

+ yT
k Ĥkyk

(yT
k sk)2

)
− 1

yT
k sk

{
sk

(
Ĥ

T
k yk

)T+(
Ĥkyk

)
sT

k

}
, (A1)

where for any vectors u and v, (uvT)i,j = uivj. Since Ĥk is

symmetric, one has Ĥ
T
k = Ĥk, and the product Ĥkyk in Eq. (A1)

can be computed using Algorithm 1. When m gradient and vector

pairs are used and the diagonal initial matrix (Ĥ
0
k) is updated at

each iteration k, the algorithm requires

m∑
q=1

q∑
i=1

(4in + 2n) = n(2m3 + 9m2 + 11m)

multiplications.

A2. Gradient-based randomization

A2.1. Matrix-vector product

As explained in section 2.2, the formula (10) needs to be inverted
in order to compute the analysis error covariance matrix. This
can be done iteratively using the Sherman–Morrison–Woodbury
formula. For any invertible matrix M, and any vectors u, v, one
has:

(M + uvT)−1 = M−1 − M−1uvTM−1

1 + vTM−1u
. (A2)

Applying Eq. (A2) to Eq. (10) gives the following recursive
algorithm to compute the analysis-error covariance matrix:

Pa
k+1 =Pa

k − (1/m)Pa
k∇J(xb)k{∇J(xb)k}TPa

k

1 + (1/m){∇J(xb)k}TPa
k∇J(xb)k

,

Pa
0 =B ,

⎫⎪⎬⎪⎭ (A3)

where ∇J(xb)k denotes the kth sample of the random variable
∇J(xb) (section 2.2), and m is the number of samples used.

From Eq. (A3) we obtain the following recursive formula to
compute the product Paq of the analysis-error covariance matrix
with any vector q:

uk+1 =uk−
vk

k(vk
k)Tq

1 + (1/
√

m){∇J(xb)k}Tvk
k

,

vk+i
k+1 =vk+i

k − 1√
m

vk
k(vk

k)T∇J(xb)k+i

1+(1/
√

m){∇J(xb)k}Tvk
k

,

1 ≤ i ≤ m − k,

u0 =Bq ,

vi
0 = 1√

m
B ∇J(xb)i, 0 ≤ i ≤ m,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A4)

where m is the total number of gradient samples used, and um

gives the approximated product Paq.
At each iteration uk and vk+i

k (0 ≤ i ≤ m − k) are calculated and
stored for the next iteration. The initial terms u0, vi

0(0 ≤ i ≤ m)
are calculated using the algorithms presented in Singh et al. (2011),
based on a computationally efficient square-root formulation for
B. If B is diagonal, the total number of multiplications required
to approximate the product Paq using m gradient samples is
nm2 + 2nm − n.
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A2.2. Matrix element extraction

Once the vectors vk
k have been computed using Eq. (A4), any

element of Pa can be approximated using the following recursive
formula:

(Pa
k+1)i,j = (Pa

k)i,j−
(vk

k)i(vk
k)j

1+(1/
√

m){∇J(xb)k}Tvk
k

,

(Pa
0)i,j = Bi,j .

⎫⎪⎬⎪⎭ (A5)

If B is diagonal, the total number of multiplications required
to approximate any elements (Pa)i,j using m gradient samples is
nm2.
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