$TITLE: M10-5.GMS CALIBRATION EXERCISE, FROM SHEET IO-2, M10-IOTABLE.XLS

*CALIBRATES MODEL TO SHEET IO-2 IN M10-IOTABLE.XLS
*assumes 10% of factors are sector specific to prevent "flats" problem
*assumes domestic and foreign goods are Armington substitutes, sigma = 5
*assume foreign goods only used for consumption, not intermediate usage
*aggregates household, government, and investment demand to single consumer

SETS
R rows of the IO table /1*8/
C columns of the IO table /1*11/;

SETS
RS(R) subset of rows for production sectors /1*5/
CS(C) subset of columns for production sectors /1*5/;

SETS
RV(R) subset of rows for value added /6*7/
CD(C) subset of columns for final demand /6*8/;

SETS
I allows switching of rows and columns in sectors /1*5/;

PARAMETERS
IO(RS,I) extracts intermediate use for $prod blocks
VA(RV,I) extracts factor requirements for $prod blocks
TAX(I) computes implied tax rates assuming output taxes
VALUE(I) value of sector I's output at consumer prices
PRODQ(I) output quantity = value (consumer prices = 1)
PRODP(I) producer prices calculated from consumer prices (=1)+ taxes
PRODR(I) producer revenue: prodp*prodq
COST(I) cost of all inputs to the sector: should equal prodr
DCONS(I) final demand (household + government + investment demand)
FCONS(I) foreign goods demand including tariffs (domestic prices = 1)
EX(I) exports of sector i
TAR(I) implied tariff rates on foreign goods
PIM(I) implied foreign prices: 1 = pim*(1+tar)
TBAL trade balance: exports minus imports
SHARE share of each factor in each sector that is sector specific;

SHARE = 0.1;

TABLE BENCH(*,*)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.7</td>
<td>24.9</td>
<td>76.0</td>
<td>19.2</td>
<td>13.0</td>
</tr>
<tr>
<td>2</td>
<td>7.9</td>
<td>124.9</td>
<td>187.5</td>
<td>15.9</td>
<td>20.3</td>
</tr>
<tr>
<td>3</td>
<td>19.6</td>
<td>29.5</td>
<td>311.8</td>
<td>129.8</td>
<td>63.7</td>
</tr>
<tr>
<td>4</td>
<td>37.4</td>
<td>105.3</td>
<td>317.1</td>
<td>723.2</td>
<td>143.0</td>
</tr>
<tr>
<td>5</td>
<td>12.4</td>
<td>8.6</td>
<td>18.7</td>
<td>57.1</td>
<td>264.4</td>
</tr>
<tr>
<td>6</td>
<td>60.3</td>
<td>167.2</td>
<td>508.8</td>
<td>680.1</td>
<td>556.7</td>
</tr>
<tr>
<td>7</td>
<td>75.2</td>
<td>50.7</td>
<td>175.7</td>
<td>821.4</td>
<td>202.1</td>
</tr>
<tr>
<td>8</td>
<td>-10.3</td>
<td>4.7</td>
<td>8.7</td>
<td>26.4</td>
<td>-15.3</td>
</tr>
</tbody>
</table>
6 7 8 9 10 11
1 71.2 0.0 8.4 10.5 14.7 6.0
2 39.4 0.0 23.6 153.6 55.2 2.1
3 296.5 0.0 504.0 495.5 239.7 6.4
4 1002.3 21.4 87.6 141.0 75.0 30.2
5 188.7 755.8 7.2 4.4 36.9 32.5
6 0
7 0
8 0

;

DISPLAY BENCH;

IO(RS, I) = BENCH(RS, I);
VA(RV, I) = BENCH(RV, I);

DISPLAY IO, VA;

VALUE(I) = SUM(RS, BENCH(RS, I)) + SUM(RV, BENCH(RV, I)) + BENCH("8", I);
TAX(I) = BENCH("8", I)/VALUE(I);

DISPLAY VALUE, TAX;

PRODQ(I) = VALUE(I);
PRODP(I) = 1 - TAX(I);
PRODR(I) = PRODQ(I)*PRODP(I);
COST(I) = SUM(RS, BENCH(RS, I)) + SUM(RV, BENCH(RV, I));

DISPLAY PRODQ, PRODP, PRODR, COST;

DCONS(I) = SUM(CD, BENCH(I, CD)) - BENCH(I,"10") - BENCH(I,"11");
FCONS(I) = BENCH(I, "10") + BENCH(I, "11");
EX(I) = BENCH(I, "9");

DISPLAY DCONS, FCONS, EX;

TAR(I) = BENCH(I, "11")[/FCONS(I)];
PIM(I) = 1/(1+TAR(I));
TBAL = SUM(I, EX(I) - (FCONS(I)*PIM(I)));

DISPLAY TAR, PIM;

$ONTEXT
$MODEL:IOCAL

$SECTORS:
X(I) !domestic production of good i
E(I) !exports of good i
M(I) !imports of good i
ARM(I) !Armington aggregator of domest (X) and foreign (M) good i
WEL !welfare
$COMMODITIES:
 PX(I) !price of domestic good i
 PXF(I) !price of foreign good i
 PFX !price of "foreign exchange"
 PF(RV) !price of factor rv (mobile factors)
 PFS(RV,I) !price of specific factor rv in sector i
 PARM(I) !price of the Armington aggregate good i
 PW !real consumer price index

$CONSUMERS:
 CONS !representative consumer

$PROD:X(I) s:1
 O:PX(I) Q:PRODQ(I) P:PRODP(I) A:CONS T:TAX(I)
 I:PX(RS) Q:IO(RS,I) P:1
 I:PF(RV) Q:(VA(RV,I)*(1-SHARE)) P:1
 I:PFS(RV,I) Q:(VA(RV,I)*SHARE) P:1

$PROD:E(I)
 O:PFX Q:EX(I) P:1
 I:PX(I) Q:EX(I) P:1

$PROD:M(I)
 O:PXF(I) Q:FCONS(I)
 I:PFX Q:(FCONS(I)*PIM(I)) A:CONS T:TAR(I)
$PROD:ARM(I) s:2
 O: PARM(I) Q: (DCONS(I) + FCONS(I))
 I: PX(I) Q: DCONS(I)
 I: PXF(I) Q: FCONS(I)

$PROD:WEL s:1
 O: PW Q: (SUM(I, DCONS(I) + FCONS(I)))
 I: PARM(I) Q: (DCONS(I) + FCONS(I))

$DEMAND:CONS
 D: PW Q: (SUM(I, DCONS(I) + FCONS(I)))
 E: PF(RV) Q: (SUM(I, VA(RV,I)) * (1-SHARE))
 E: PFS(RV,I) Q: (VA(RV,I) * (SHARE))
 E: PFX Q: (-TBAL)

$OFFTEXT

$SYSINCLUDE MPSGESET IOCAL

PW.FX = 1;

IOCAL.ITERLIM = 0;
$INCLUDE IOCAL.GEN
SOLVE IOCAL USING MCP;
*perturbation: check that calibrated solution is indeed an equilibrium

\[X.L("2") = 2; \]

\[ILOCAL.ITERLIM = 5000; \]
$\text{INCLUDE ILOCAL.GEN}$
\textbf{SOLVE ILOCAL USING MCP;}

*counterfactual: abolish all taxes

\[\text{TAX(I)} = 0; \]
\[\text{TAR(I)} = 0; \]

$\text{INCLUDE ILOCAL.GEN}$
\textbf{SOLVE ILOCAL USING MCP;}

\textbf{PARAMETER}
\textbf{OUT(I);} \\
\textbf{OUT(I)} = X.L(I);

\textbf{DISPLAY OUT;}
$\text{LIBINCLUDE XLDUMP OUT M10-IOTABLE.XLS SHEET4!A3}$