$TITLE: M10-1.GMS: steady state capital stock, comparative steady-states

$ONTENT
"closure rule": instead of the capital stock being fixed (quantity closure), the stock adjusts to satisfy the steady-state relationship between the rental rate and the price of producing new capital (price closure):
 \[\delta = \text{depreciation rate} \]
 \[\rho = \text{rate of time preference} \]

rental rate = \((1 - (1 - \delta)/(1 + \rho)) \) * (price of new capital)

this is done via a subsidy to capital use that creates the wedge
subsidy = \((1 - \delta)/(1 + \rho) \)

<table>
<thead>
<tr>
<th>Production Sectors</th>
<th>Consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markets</td>
<td>X</td>
</tr>
<tr>
<td>PX</td>
<td>100</td>
</tr>
<tr>
<td>PY</td>
<td></td>
</tr>
<tr>
<td>PW</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>-40</td>
</tr>
<tr>
<td>PK</td>
<td>-120</td>
</tr>
<tr>
<td>SUB</td>
<td>60</td>
</tr>
</tbody>
</table>
PARAMETERS
RHO Time preference parameter
DELTA Depreciation rate
TAU Effective capital use subsidy
KTAX Tax on new capital production
NEWCAP New capital stock after counterfactual (= 1 initially);

RHO = 0.4;
DELTA = 0.3;
TAU = -(1 - DELTA)/(1 + RHO);
KTAX = 0;

NONNEGATIVE VARIABLES
X Activity level for sector X
Y Activity level for sector Y
W Activity level for sector W (Hicksian welfare index)
K Capital stock index

PX Price index for commodity X
PY Price index for commodity Y
PL Price index for primary factor L
PK Price index for primary factor K
PW Price index for welfare (expenditure function)
CONS Income definition for CONS
KFORWRD Capital stock from previous period;

EQUATIONS

PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_W Zero profit for sector W (Hicksian welfare index)
PRF_K Zero profit for capital index

MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for factor K
MKT_W Supply-demand balance for aggregate demand

I_CONS Income definition for CONS
A_KFORWRD Auxiliary equation to determine the carry forward;

* Zero profit conditions:

PRF_X.. 100 * PL**0.4 * (PK*(1+TAU)/0.5)**0.6 =G= 100 * PX;
PRF_Y.. 100 * PL**0.6 * (PK*(1+TAU)/0.5)**0.4 =G= 100 * PY;
PRF_W.. 200 * PX**0.5 * PY**0.5 =G= 200 * PW;
PRF_K.. 60*PL =G= 60 * PK * (1-KTAX);

* Market clearing conditions:

MKT_X.. 100 * X =G= 100 * W * PW/PX;
MKT_Y.. 100 * Y =G= 100 * W * PW/PY;
MKT_W.. 200 * W =G= CONS / PW;
MKT_L.. 160 =G= 60*K + 40* X*PX/PL + 60*Y*PY/PL;
MKT_K.. 140*KFORWRD + 60*K =G= 120 * X * PX*0.5/(PK*(1+TAU)) +
 80 * Y * PY*0.5/(PK*(1+TAU));

* Income constraints:

I_CONS.. CONS =E= 160 * PL + 140*KFORWRD *PK +
 PK * TAU * (120 * X * PX*0.5/(PK*(1+TAU)) +
 80 * Y * PY*0.5/(PK*(1+TAU))) +
 60* PK * KTAX * K;

* Auxiliary constraints:

A_KFORWRD.. 140*KFORWRD =E= 60*K * (1-DELTA) / DELTA;

X.L =1;
Y.L =1;
W.L =1;
K.L =1;

PX.L =1;
PY.L =1;
PK.L =1;
PW.FX =1;
PL.L =1;

CONS.L =200;

KFORWRD.L = 1;

ALGEBRAIC.ITERLIM = 0;
SOLVE ALGEBRAIC USING MCP;
ALGEBRAIC.ITERLIM = 2000;
SOLVE ALGEBRAIC USING MCP;

* Raise the rate of time preference from 0.4 to 0.6:
RHO = 0.6;
TAU = - (1 - DELTA)/(1 + RHO);

SOLVE ALGEBRAIC USING MCP;

NEWCAP = K.L/60;
DISPLAY NEWCAP;

* Set rho back to 0.4, tax new capital at 0.20

RHO = 0.4;
TAU = - (1 - DELTA)/(1 + RHO);

KTAUX = 0.20;

SOLVE ALGEBRAIC USING MCP;

NEWCAP = K.L/60;
DISPLAY NEWCAP;