$TITLE: M2-2.GMS: consumer choice, modeled as an NLP and a MCP
* maximize utility subject to a linear budget constraint
* two goods, Cobb-Douglas preferences

$ONTEXT
This program introduces economic students to GAMS and GAMS solvers.
The problem itself is known and loved by all econ students from
undergraduate intermediate micro economics on up:
Maximizing utility with two goods and a linear budget constraint.

Four versions are considered
OPTIMIZE: direct constrained optimization using the NLP
(non-linear programming) solver
COMPLEM: uses the first-order conditions (FOC) to create a square
system of n inequalities in n unknowns, solved using the MCP
(mixed complementarity problem) solver
COMPLEM2: instead of the utility function and FOC, uses the expenditure
function and Marshallian demand functions, solved as an MCP
COMPLEM3: instead of the utility function and FOC, uses the expenditure
function and Hicksian demand functions, solved as an MCP

$OFFTEXT

PARAMETERS
M Income
P1, P2 prices of goods X1 and X2
S1, S2 utility shares of X1 and X2;
M = 100;
P1 = 1;
P2 = 1;
S1 = 0.5;
S2 = 0.5;

NONNEGATIVE VARIABLES

X1, X2 Commodity demands
LAMBDAM Lagrangean multiplier (marginal utility of income);

VARIABLES

U Welfare;

EQUATIONS

UTILITY Utility
INCOME Income-expenditure constraint
FOC1, FOC2 First-order conditions for X1 and X2;

UTILITY.. U =E= 2*(X1**S1)*(X2**S2);
INCOME.. M =G= P1*X1 + P2*X2;
FOC1.. LAMBDA*P1 =G= 2*S1*X1**(S1-1)*(X2**S2);

FOC2.. LAMBDA*P2 =G= 2*S2*X2**(S2-1)*(X1**S1);

* set starting values
U.L = 100;
X1.L = 50;
X2.L = 50;
LAMBDA.L = 1;

* modeled as a non-linear programming problem

MODEL OPTIMIZE /UTILITY, INCOME/;
SOLVE OPTIMIZE USING NLP MAXIMIZING U;

* modeled as a complementarity problem

MODEL COMPLEM /UTILITY.U, INCOME.LAMBDA, FOC1.X1, FOC2.X2/;
SOLVE COMPLEM USING MCP;

* counterfactuals

P1 = 2;

SOLVE OPTIMIZE USING NLP MAXIMIZING U;
SOLVE COMPLEM USING MCP;

P1 = 1;
M = 200;

SOLVE OPTIMIZE USING NLP MAXIMIZING U;
SOLVE COMPLEM USING MCP;

* now use the expenditure function, giving the minimum cost of buying
 * one unit of utility: COSTU = P1**S1 * P2**S2 = PU
 * where PU is the "price" of utility: the inverse of lambda
 * two versions are presented:
 * one using Marshallian (uncompensated) demand: X_i = F_i(P1, P2, M)
 * one using Hicksian (compensated) demand: X_i = F_i(P1, P2, U)

P1 = 1;
M = 100;

NONNEGATIVE VARIABLES
 PU price of utility;

EQUATIONS
 COSTU expenditure function: cost of producing utility = PU
 DEMANDM1 Marshallian demand for good 1
 DEMANDM2 Marshallian demand for good 2
DEMANDH1 Hicksian demand for good 1
DEMANDH2 Hicksian demand for good 2
DEMANDU Demand for utility (indirect utility function);

COSTU.. P1**S1 * P2**S2 =G= PU;

DEMANDM1.. X1 =G= S1*M/P1;
DEMANDM2.. X2 =G= S2*M/P2;

DEMANDH1.. X1 =G= S1*PU*U/P1;
DEMANDH2.. X2 =G= S2*PU*U/P2;

DEMANDU.. U =E= M/PU;

PU.L = 1;

MODEL COMPLEM2 marshall /COSTU.U, DEMANDM1.X1, DEMANDM2.X2, DEMANDU.PU/;
MODEL COMPLEM3 hicks /COSTU.U, DEMANDH1.X1, DEMANDH2.X2, DEMANDU.PU/;

SOLVE COMPLEM2 USING MCP;
SOLVE COMPLEM3 USING MCP;

* counterfactuals
P1 = 2;

SOLVE COMPLEM2 USING MCP;
SOLVE COMPLEM3 USING MCP;

P1 = 1;
M = 200;

SOLVE COMPLEM2 USING MCP;
SOLVE COMPLEM3 USING MCP;