$TITLE M3-5: use of an initially slack activity
* e.g., modeling tax avoidance or use of "green" but expensive
* technologies

$ONTEXT
sector "Z" produces good X, but with a less efficient technology
than activity X (sector X). High tax on X leads to switching
Z could be interpreted as an "informal" or "illegal" technology
such as smuggling. Or, Z is an expensive "green" technology

<table>
<thead>
<tr>
<th>Markets</th>
<th>X</th>
<th>Y</th>
<th>W</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>100</td>
<td></td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>PY</td>
<td></td>
<td>100</td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>PW</td>
<td></td>
<td>200</td>
<td></td>
<td>-200</td>
</tr>
<tr>
<td>PL</td>
<td>-40</td>
<td>-60</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PK</td>
<td>-60</td>
<td>-40</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

$OFFTEXT

PARAMETER
TX Ad-valorem tax rate on X sector inputs
INEF Inefficiency measure in sector Z;
TX = 0;
INEF = 1.1;

NONNEGATIVE VARIABLES

X Activity level for sector X
Y Activity level for sector Y
Z Activity level for sector Z initial inefficient
W Activity level for sector W
PX Price index for commodity X
PY Price index for commodity Y
PL Price index for primary factor L
PK Price index for Primary factor K
PW Price index for welfare (expenditure function)
CONS Income definition for CONS;

EQUATIONS

PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_Z Zero profit for sector Z
PRF_W Zero profit for sector W

MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor L
MKT_W Supply-demand balance for aggregate demand

I_CONS Income definition for CONS;

* Zero profit conditions:

PRF_X.. 100*(PL**0.4 * PK**0.6) * (1+TX) =G= 100*PX;
PRF_Y.. 100*(PL**0.6 * PK**0.4) =G= 100*PY;
PRF_Z.. 100*INEF*(PL**(0.40) * PK**(0.60)) =G= 100*PX;
PRF_W.. 200 * PX**0.5 * PY**0.5 =E= 200 * PW;

* Market clearing conditions:

MKT_X.. 100*X + 100*Z =G= 100*W*PW/PX;
MKT_Y.. 100*Y =G= 100*W*PW/PY;
MKT_W.. 200*W =G= CONS/PW;
MKT_L.. 100 =G= 40*X*(PX/(1+TX))/PL + 60*Y*PY/PL + 40*Z*PX/PL;
MKT_K.. 100 =G= 60*X*(PX/(1+TX))/PK + 40*Y*PY/PK + 60*Z*PX/PK;
* Income constraints:

I_CONS.. CONS =E= 100*PL + 100*PK + TX*100*X*(PX/(1+TX));

MODEL SLACK /PRF_X.X, PRF_Y.Y, PRF_Z.Z, PRF_W.W,
 MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK,
 MKT_W.PW, I_CONS.CONS /;

* Check the benchmark:

X.L =1;
Y.L =1;
W.L =1;
Z.L =0;
PL.L =1;
PX.L =1;
PY.L =1;
PK.L =1;
PW.FX=1;
CONS.L=200;
TX =0;
* introducing a calibration check

SLACK.ITERLIM = 0;
SOLVE SLACK USING MCP;

* now allow the solver to work

SLACK.ITERLIM = 2000;
SOLVE SLACK USING MCP;

* the first counterfactual shows how a tax leads to switching to the inefficient "informal" technology

TX = 0.25;
SOLVE SLACK USING MCP;

* the second counterfactual shows the different in welfare when the inefficient technology cannot be used

Z.FX = 0;

TX = 0.25;
SOLVE SLACK USING MCP;
Z.UP = +INF;
Z.LO = 0;

* scenario generation: loop over values of the tax

SETS I /I1*I30/;

PARAMETERS
 TAXRATE(I)
 WELFARE(I)
 ZPROD(I)
 RESULTS(I,*)

* scenario generation: loop of tax rates

LOOP (I,

 TX = 0.01*ORD(I) - 0.01;

SOLVE SLACK USING MCP;

 TAXRATE(I) = TX;
 WELFARE(I) = W.L;
 ZPROD(I) = Z.L;
RESULTS(I, "TAXRATE") = TAXRATE(I);
RESULTS(I, "WEFLARE") = WELFARE(I);
RESULTS(I, "ZPROD") = ZPROD(I);

DISPLAY TAXRATE, WELFARE, ZPROD, RESULTS;

$LIBINCLUDE XLDUMP TAXRATE M3-5.XLS SHEET1!B3
$LIBINCLUDE XLDUMP WELFARE M3-5.XLS SHEET1!B6
$LIBINCLUDE XLDUMP RESULTS M3-5.XLS SHEET1!B9