$TITLE: M4-1.GMS: Cournot and Bertrand with continuous strategies

$ONTEXT

begin with Cournot duopoly
single unified market, constant marginal costs
goods XH and XF are imperfect substitutes
inverse demand functions \(PH = ALPHA - BETA*XH - GAMMA*XF \) \(BETA > GAMMA \)
maximizing profits gives FOC (implicity reaction functions)
\(PROFIT = PH*XH - CH*XH = (ALPHA - BETA*XH - GAMMA*XF)*XH - CH*XH \)
first order condition: \(ALPHA - 2*BETA*XH - GAMMA*XF - CH = 0 \)

$OFFTEXT

PARAMETERS

ALPHA intercept of demand curve
BETA slope of inverse demand curve wrt own quantity
GAMMA slope of inverse demand curve wrt rival's quantity
CH marginal cost of home firm
CF marginal cost of foreign firm
WELHC0 welfare in country h before policy under Cournot
WELHB0 welfare in country h before policy under Bertrand;

ALPHA = 12;
BETA = 2;
GAMMA = 1;
CH = 2;
CF = 2;
NONNEGATIVE VARIABLES

PH price of XH
PF price of XF
XH quantity of XH
XF quantity of XF
PROFH profit of firm h
PROFF profit of firm f;

EQUATIONS

PRICEH inverse demand curve facing firm h
PRICEF inverse demand curve facing firm f
HCOURNOT cournot FOC for firm h (reaction function)
FCOURNOT cournot FOC for firm f (reaction function)
PROFITH profit of firm h
PROFITF profit of firm f;

PRICEH.. PH =E= ALPHA - BETA*XH - GAMMA*XF;
PRICEF.. PF =E= ALPHA - BETA*XF - GAMMA*XH;
HCOURNOT.. CH =G= ALPHA - 2*BETA*XH - GAMMA*XF;
FCOURNOT.. CF =G= ALPHA - 2*BETA*XF - GAMMA*XH;
PROFITH.. PROFH =E= PH*XH - CH*XH;
PROFITF.. PROFF =E= PF*XF - CF*XF;

MODEL COURNOT /PRICEH.PH, PRICEF.PF, HCOURNOT.XH, FCOURNOT.XF,
 PROFITH.PROFH, PROFITF.PROFF/;

SOLVE COURNOT USING MCP;

WELHC0 = PROFH.L;

$ONTEXT
now assume Bertrand price competition
requires you to invert the inverse demand functions
XH = INTERB - SLOPEB1*PH + SLOPEB2*PF
$OFFTEXT

PARAMETERS

INTERB intercept of the (direct) demand function
SLOPEB1 slope of the demand function wrt own price
SLOPEB2 slope of the demand function wrt rival's price;

INTERB = (ALPHA*BETA - ALPHA*GAMMA)/(BETA**2 - GAMMA**2);
SLOPEB1 = BETA/(BETA**2 - GAMMA**2);
SLOPEB2 = GAMMA/(BETA**2 - GAMMA**2);
EQUATIONS
 XBERTH demand for XH
 XBERTF demand for XF
 HBERTRAND bertrand FOC for PH
 FBERTRAND bertrand FOC for PF;

XBERTH.. XH =E= INTERB - SLOPEB1*PH + SLOPEB2*PF;
XBERTF.. XF =E= INTERB - SLOPEB1*PF + SLOPEB2*PH;
HBERTRAND.. -SLOPEB1*CH =E= INTERB - 2*SLOPEB1*PH + SLOPEB2*PF;
FBERTRAND.. -SLOPEB1*CF =E= INTERB - 2*SLOPEB1*PF + SLOPEB2*PH;

MODEL BERTRAND /XBERTH.XH, XBERTF.XF, HBERTRAND.PH, FBERTRAND.PF, PROFITH.PROFH, PROFITF.PROFF/;

SOLVE BERTRAND USING MCP;

WELHB0 = PROFH.L;

*now analyze a production subsidy by h (strategic trade policy)
PARAMETER
 S subsidy on H's output
WELFAREHC country h's welfare under Cournot
WELFAREHB country h's welfare under Bertrand;

S = 0.4;
CH = CH - S;

SOLVE COURNOT USING MCP;
WELFAREHC = PROFH.L - S*XH.L;
DISPLAY WELHC0, WELFAREHC;

SOLVE BERTRAND USING MCP;
WELFAREHB = PROFH.L - S*XH.L;
DISPLAY WELHC0, WELFAREHC, WELHB0, WELFAREHB;

$ONTEXT
now let's use nlq to find the OPTIMAL subsidies under Cournot and
Bertrand keep in mind that the optimal subsidy may be NEGATIVE, meaning
a tax let's play the goofy Brander-Spencer gams that all output is sold
to a third country. Then welfare = profits minus subsidy payments
or plus tax payments. PROFF will give the welfare of country f
$OFFTEXT
CH = 2;
S = 0;

VARIABLES
 WELFJ joint welfare
 SUBH subsidy on XH is now a (free) variable: it can be negative
 WELHS welfare of country h: objective to maximize
 SUBF subsidy on XF is now a (free) variable: it can be negative
 WELFS welfare of country F: objective to maximize;

EQUATIONS
 WELJ joint welfare - Cobb-Douglas
 WELH welfare of country h is WELH = PROFH - SUBH*XH
 PROFITHS new equation for profits of firm h - replaces PROFITH
 WELF welfare of country f is WELF = PROFF - SUBF*XF
 PROFITFS new equation for profits of firm f - replaces PROFITF
 HCOURNOTS new Cournot reaction function firm h - replaces HCOURNOT
 HBERTRANDS new Bertrand reaction function firm h - replaces HBERTRAND
 FCOURNOTS new Cournot reaction function firm f - replaces FCOURNOT
 fBERTRANDS new Bertrand reaction function firm f - replaces fBERTRAND;

 WELJ.. WELFJ =E= WELHS**0.5*WELFS**0.5;
 WELH.. WELHS =E= PROFH - SUBH*XH;
 PROFITHS.. PROFH =E= PH*XH - (CH - SUBH)*XH;
HCOURNOTS.. (CH - SUBH) =E= ALPHA - 2*BETA*XH - GAMMA*XF;

HBERTRANDS.. -SLOPEB1*(CH-SUBH) =E= INTERB - 2*SLOPEB1*PH + SLOPEB2*PF;

WELF.. WELFS =E= PROFF - SUBF*XF;

PROFITFS.. PROFF =E= PF*XF - (CF - SUBF)*XF;

FCOURNOTS.. (CF - SUBF) =E= ALPHA - 2*BETA*XF - GAMMA*XH;

FBERTRANDS.. -SLOPEB1*(CF-SUBF) =E= INTERB - 2*SLOPEB1*PF + SLOPEB2*PH;

SUBH.L = 0.4;
WELHS.L = 8;

* first, a unilateral action by the government of country h

SUBF.FX = 0;

MODEL COURNOTS /WELH, HCOURNOTS, FCOURNOT, PRICEH, PRICEF,
PROFITHS, PROFITF/;

SOLVE COURNOTS USING NLP MAXIMIZING WELHS;
MODEL BERTRANDS /WELH, HBERTRANDS, FBERTRAND, XBERTH, XBERTF,
 PROFITHS, PROFITF/;
SOLVE BERTRANDS USING NLP MAXIMIZING WELHS;

SUBF.UP = +INF;
SUBF.LO = -INF;

* compute cooperative and non-cooperative outcomes between governments

SETS I /I1*I10/
 J /COOP, NONCOOP/;

PARAMETER
 RESULTSC(*, J);

* compute a cooperative Nash eq between the governments

MODEL WELFJOINT /WELJ, WELH, WELF, HCOURNOTS, FCOURNOTS, PRICEH, PRICEF,
 PROFITHS, PROFITFS/;
SOLVE WELFJOINT USING NLP MAXIMIZING WELFJ;

RESULTSC("WELJ", "COOP") = WELFJ.L;
RESULTSC("WELH", "COOP") = WELHS.L;
RESULTSC("WELF", "COOP") = WELFS.L;
RESULTSC("PROFITH", "COOP") = PROFH.L;
RESULTSC("PROFITF", "COOP") = PROFF.L;
RESULTSC("SUBH", "COOP") = SUBH.L;
RESULTSC("SUBF", "COOP") = SUBF.L;

DISPLAY RESULTSC;

* compute a non-cooperative outcome in subsidy rates
* iterative procedure:
* max WELHS subject to SUBF fixed
* hold SUBH at it's solution level and free up SUBF
* max WELFS solve model for fixed SUBH
* repeat 10 time

SUBH.L = 0;
SUBF.L = 0;

LOOP (I,

SUBH.LO = -INF;
SUBH.UP = +INF;
SUBF.FX = SUBF.L;

SOLVE WELFJOINT USING NLP MAXIMIZING WELHS;
SUBF.LO = -\textbf{INF};
SUBF.UP = +\textbf{INF};
SUBH.FX = SUBH.L;

\textbf{SOLVE} WELFJOINT USING NLP MAXIMIZING WELFS;

); Resultsc("WELJ", "NONCOOP") = WELFJ.L;
RESULTSC("WELH", "NONCOOP") = WELHS.L;
RESULTSC("WELF", "NONCOOP") = WELFS.L;
RESULTSC("PROFITH", "NONCOOP") = PROFH.L;
RESULTSC("PROFITF", "NONCOOP") = PROFF.L;
RESULTSC("SUBH", "NONCOOP") = SUBH.L;
RESULTSC("SUBF", "NONCOOP") = SUBF.L;

\textbf{DISPLAY} RESULTSC;