$TITLE: M4-3b.GMS: modeling health insurance
* with moral hazard, adverse selection modeled as an MCP
* COPYRIGHT JAMES R. MARKUSEN

$ONTEXT
MODELING DEMAND FOR HEALTH INSURANCE

|---Sick
|--Do not buy Insurance--choose effort --|

---Healthy

Income---|
+ Type |
|---Sick
|-- Buy Insurance --choose effort---|

---Healthy

$OFFTEXT

PARAMETERS

M0 income in the first time period
MH income in the second time period when healthy
MS income in the second time period when sick (before insurance)
ACUF actuarially fairness 1 = actuarially fair ACUF < 1 unfair
BETA needed to make the consumption concave(diminishing returns)

TYPE1 low-risk type: probability of good health at effort = 0
TYPE2 high-risk type: probability of good health at effort = 0
RISKAV average riskiness at effort = 0
EFFT1 effort of type 1
EFFT2 effort of type 2

PROFIT1 profit from insuring type 1
PROFIT2 profit from insuring type 2
PROFIT profit for insurance company from insuring person 1 and 2;

ACUF=1.0;
BETA = 0.5;
M0 = 10;
MH = 10;
MS = 4;
TYPE1 = 0.5; TYPE2 = 0.5;
RISKAV = (1-TYPE1) + (1-TYPE2))/2;
*PROFIT = 0;

POSITIVE VARIABLES

U1 expected utility type 1
INS1 insurance purchased
PNS1 payoff from insurance if sick
ALPHA1 probability of good health
EFFORT1 effort spent to insure good health: diet exercise and such
LAMINS1 Lagrangean multiplier on constraint equation INSURANCE1
LAMEFF1 Lagrangean multiplier on constraint equation MORALHAZ1
U2 expected utility type 2
INS2 insurance purchased
PNS2 compensation from purchasing insurance if sick
ALPHA2 probability of good health
EFFORT2 effort spent to insure good health: diet exercise and such
LAMINS2 Lagrangean multiplier on constraint equation INSURANCE2
LAMEFF2 Lagrangean multiplier on constraint equation MORALHAZ2;

EQUATIONS

UTILITY1 expected utility type 1
INSURANCE1 the amount of insurance purchased
MORALHAZ1 good health depends on effort but effort reduces U
FOCINS1 first-order condition for insurance purchased
FOCPNS1 first-order condition for payoff when sick
FOCEFF1 first-order condition for effort1
FOCALK1 first-order condition for alpha1

UTILITY2 expected utility type 2
INSURANCE2 the amount of insurance purchased
MORALHAZ2 good health depends on effort but effort reduces U
FOCINS2 first-order condition for insurance purchased
FOCPNS2 first-order condition for payoff when sick
FOCEFF2 first-order condition for effort2
FOCALK2 first-order condition for alpha2;
UTILITY1.. U1 =E= (M0-INS1)**BETA
 + ALPHA1*MH**BETA + (1-ALPHA1)*(MS+PNS1)**BETA
 - 0.06*(EFFORT1 + EFFORT1**2);

INSURANCE1.. INS1*ACUF =E= PNS1*RISKAV;

MORALHAZ1.. TYPE1 + 0.15*EFFORT1 =G= ALPHA1;

FOCINS1.. BETA*(M0-INS1)**(BETA-1) =G= LAMINS1*ACUF;

FOCPNS1.. LAMINS1*RISKAV =G= (1-ALPHA1)*BETA*(MS+PNS1)**(BETA-1);

FOCEFF1.. 0.06 + 0.12*EFFORT1 =G= 0.15*LAMEFF1;

FOCALP1.. LAMEFF1 =G= MH**BETA - (MS+PNS1)**BETA;

UTILITY2.. U2 =E= (M0-INS2)**BETA
 + ALPHA2*MH**BETA + (1-ALPHA2)*(MS+PNS2)**BETA
 - 0.06*(EFFORT2 + EFFORT2**2);

INSURANCE2.. INS2*ACUF =E= PNS2*RISKAV;
MORALHAZ2.. TYPE2 + 0.15*EFFORT2 =G= ALPHA2;
FOCINS2.. BETA*(M0-INS2)**(BETA-1) =G= LAMINS2*ACUF;
FOCPNS2.. LAMINS2*RISKAV =G= (1-ALPHA2)*BETA*(MS+PNS2)**(BETA-1);
FOCEFF2.. 0.06 + 0.12*EFFORT2 =G= 0.15*LAMEFF2;
FOCALP2.. LAMEFF2 =G= MH**BETA - (MS+PNS2)**BETA;

MODEL INSURE /UTILITY1.U1, INSURANCE1.LAMINS1, MORALHAZ1.LAMEFF1
 FOCINS1.INS1, FOCPNS1.PNS1, FOCEFF1.EFFORT1, FOCALP1.ALPHA1
 UTILITY2.U2, INSURANCE2.LAMINS2, MORALHAZ2.LAMEFF2
 FOCINS2.INS2, FOCPNS2.PNS2, FOCEFF2.EFFORT2, FOCALP2.ALPHA2/;

U1.L = 1;
INS1.L =2;
PNS1.L = 4;
ALPHA1.L = 0.5;
EFFORT1.L = 0;
U2.L = 1;
INS2.L =2;
PNS2.L = 4;
ALPHA2.L = 0.5;
EFFORT2.L = 0;
SOLVE INSURE USING MCP;

PROFIT1 = INS1.L - (1 - ALPHA1.L)*PNS1.L;
PROFIT2 = INS2.L - (1 - ALPHA2.L)*PNS2.L;
PROFIT = PROFIT1 + PROFIT2;
EFFT1 = EFFORT1.L;
EFFT2 = EFFORT2.L;
DISPLAY TYPE1, TYPE2, EFFT1, EFFT2, PROFIT1, PROFIT2, PROFIT;

* counterfactual: two risk types

TYPE1 = 0.55;
TYPE2 = 0.45;
RISKAV = ((1-TYPE1)+(1-TYPE2))/2;

SOLVE INSURE USING MCP;

PROFIT1 = INS1.L - (1 - ALPHA1.L)*PNS1.L;
PROFIT2 = INS2.L - (1 - ALPHA2.L)*PNS2.L;
PROFIT = PROFIT1 + PROFIT2;
EFFT1 = EFFORT1.L;
EFFT2 = EFFORT2.L;
DISPLAY TYPE1, TYPE2, EFFT1, EFFT2, PROFIT1, PROFIT2, PROFIT;
* can the insurance companies make money by offering actuarially unfair insurance?

ACUF = 0.9;

SOLVE INSURE USING MCP;

PROFIT1 = INS1.L - (1 - ALPHA1.L)*PNS1.L;
PROFIT2 = INS2.L - (1 - ALPHA2.L)*PNS2.L;
PROFIT = PROFIT1 + PROFIT2;
EFFT1 = EFFORT1.L;
EFFT2 = EFFORT2.L;
DISPLAY TYPE1, TYPE2, EFFT1, EFFT2, PROFIT1, PROFIT2, PROFIT;