$TITLE: M8-5.GMS: Large open economy model
* modeled as an MCP and then as an MPEC to solve for the optimal tariff

$ONTEXT
This is similar to model M8-1.gms, but the terms of trade now depend on the level of exports: high exports, lower prices
here this is modeled with an auxiliary variable TOT
where TOT is the relative price of exports to imports
TOT is set by the constraint equation T_TOT: TOT = E1**(−0.3)

<table>
<thead>
<tr>
<th>Production Sectors</th>
<th>Consumer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markets</td>
<td>X1</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
</tr>
<tr>
<td>P1</td>
<td>150</td>
</tr>
<tr>
<td>P2</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>-100</td>
</tr>
<tr>
<td>PK</td>
<td>-50</td>
</tr>
<tr>
<td>PW</td>
<td></td>
</tr>
<tr>
<td>PFX</td>
<td></td>
</tr>
</tbody>
</table>

$OFFTEXT

PARAMETERS

FIXT Fixed values of the tariff
OPTIMALT Optimal tariff in the MPEC;
FIXT = 0;

NONNEGATIVE VARIABLES

X1 Activity level for sector X1,
X2 Activity level for sector X2,
E1 Activity level for sector E1,
E2 Activity level for sector E2,
M1 Activity level for sector M1,
M2 Activity level for sector M2,
W Activity level for sector W,
P1 Price index for commodity X,
P2 Price index for commodity Y,
PL Price index for primary factor L,
PK Price index for primary factor K,
PW Price index for welfare (expenditure function),
PFX Read exchange rate index,

CONSH Income definition for home agent
TOT Terms of trade: world price of export good 1
TM2 Tariff - initially held fixed;

EQUATIONS

PRF_X1 Zero profit for sector X1
PRF_X2 Zero profit for sector X2
PRF_E1 Zero profit for sector E1
PRF_E2 Zero profit for sector E2
PRF_M1 Zero profit for sector M1
PRF_M2 Zero profit for sector M2
PRF_W Zero profit for sector W

MKT_X1 Supply-demand balance for commodity X1
MKT_X2 Supply-demand balance for commodity X2
MKT_PFX Supply-demand balance for commodity PFX
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor L
MKT_W Supply-demand balance for aggregate demand

I_CONSH Income definition for CONSH
T_TOT Equation for TOT
TARIFF Dummy equation to fix the tariff as if a parameter;

* Zero profit conditions

PRF_X1.. 150*PL**(2/3) * PK**(1/3) =G= 150*P1;
PRF_X2.. 50*PL**(1/4) * PK**(3/4) =G= 50*P2;
PRF_E1.. 50*P1 =G= 50*PFX*TOT;
PRF_E2.. 50*P2 =G= 50*0.99*PFX;
PRF_M1.. 50*PFX*TOT*1.01 =G= 50*P1;
PRF_M2.. 50*PFX*(1+TM2) =G= 50*P2;
PRF_W.. 200*P1**0.5*P2**0.5 =G= 200*PW;

* Market clearance conditions

MKT_X1.. 150*X1 + 50*M1 =G= 50*E1 + 100*W*PW/P1;
MKT_X2.. 50*X2 + 50*M2 =G= 50*E2 + 100*W*PW/P2 ;
MKT_PFX.. 50*0.99*E2 + (50*TOT)*E1 =G= 50*M2 + 50*1.01*M1;
MKT_W.. 200*W =G= CONSH / PW;
MKT_L.. 110 =G= 100*X1*P1/PL + 10*X2*P2/PL;
MKT_K.. 90 =G= 50*X1*P1/PK + 40*X2*P2/PK;

* Income balance, auxiliary equation

I_CONSH.. CONSH =E= 110*PL + 90*PK + 50*M2*PFX*TM2;
T_TOT.. TOT =G= E1**(-0.3);
TARIFF.. TM2 =E= FIXT;

MODEL LOE /PRF_X1.X1, PRF_X2.X2, PRF_E1.E1, PRF_E2.E2,
 PRF_W.W, PRF_M1.M1, PRF_M2.M2,
 MKT_X1.P1, MKT_X2.P2, MKT_PFX.PFX, MKT_L.PL,
 MKT_K.PK, MKT_W.PW,
 I_CONSH.CONSH, T_TOT.TOT, TARIFF.TM2 /

* Check the benchmark:

X1.L =1;
X2.L =1;
E2.L =0;
E1.L =1;
M2.L =1;
M1.L =0;
W.L =1;
P1.L =1;
P2.L =1;
PFX.L =1;
PK.L =1;
PW.FX =1;
PL.L =1;
CONSH.L =200;
TOT.L = 1;
TM2.L = 0;
LOE.ITERLIM = 0;
SOLVE LOE USING MCP;

LOE.ITERLIM = 10000;
SOLVE LOE USING MCP;

* Apply a tariff which improves the terms of trade and home welfare:

FIXT = 0.2;

SOLVE LOE USING MCP;

* now let's reformulate the problem as an MPEC to solve for the optimal tariff

VARIABLES
 WELOPT;

EQUATIONS
 WELFOPT;

WELFOPT.. WELOPT =E= W;
* ADD the objective function and DELETE the dummy equation TARIFF

MODEL OPTTARIFF /WELFOPT, PRF_X1.X1, PRF_X2.X2, PRF_E1.E1, PRF_E2.E2,
 PRF_W.W, PRF_M1.M1, PRF_M2.M2,
 MKT_X1.P1, MKT_X2.P2, MKT_PFX.PFX, MKT_L.PL,
 MKT_K.PK, MKT_W.PW,
 I_CONSH.CNSH, T_TOT.TOT/;

OPTION MPEC = nlpec;
SOLVE OPTTARIFF USING MPEC MAXIMIZING WELOPT;

OPTIMALT = TM2.L;
DISPLAY OPTIMALT;

* go back to the original MCP and "brute force" search for the optimal
* tariff and see if it matches the MPEC value

SETS I /I1*I51/;

PARAMETERS
 IMTARIFF(I)
 WELFARE(I);
LOOP (I,

FIXT = 0.005*ORD(I)**2 - 0.005;

SOLVE LOE USING MCP;

IMTARIFF(I) = TM2.L;
WELFARE(I) = W.L;

);

DISPLAY IMTARIFF, WELFARE;