1. Introduction to applied general-equilibrium modeling

(1) Multiple interacting agents

(2) Individual behavior based on optimization

(3) Most agent interactions are mediated by markets and prices
(4) Equilibrium occurs when endogenous variables (e.g., prices) adjust such that

(a) agents, subject to the constraints they face, cannot do better by altering their behavior

(b) markets (generally, not always) clear so, for example, supply equals demand in each market.

2. Steps in Applied General-Equilibrium Modeling

(1) Specify dimensions of the model.
 • Numbers of goods and factors
 • Numbers of consumers
 • Numbers of countries
 • Numbers of active markets
(2) Chose functional forms for production, transformation, and utility functions; specification of side constraints.
 • Includes choice of outputs and inputs for each activity
 • Includes specification of initially slack activities

(3) Construct micro-consistent data set.
 • Data satisfies zero profits for all activities, or if profits are positive, assignment of revenues
 • Data satisfies market clearing for all markets

(4) Calibration – parameters are chosen such that functional forms and data are consistent.
 • By “consistent”: data represent a solution to the model

(5) Replication – run model to see if it reproduces the input data.

(6) Counter-factual experiments.
Example M3-4a: 2-good, 2-factor closed economy with fixed factor endowments, one representative consumer.

Simply economy, two sectors (X and Y), two factors (L and K), and one representative consumer (utility function W).

L and K are in inelastic (fixed) supply, but can move freely between sectors.

\[p_x, \ p_y, \ p_l, \text{ and } p_k \] are the prices of X, Y, L and K, respectively.

CONS is consumer’s income and \(p_w \) will be used later to denote the price of one unit of W.
(1) \(X = X(L_x, K_x) \)

(2) \(Y = Y(L_y, K_y) \)

(3) \(L^* = L_x + L_y \)

(4) \(K^* = K_x + K_y \)

(5) \(W = W(X, Y) \)

(6) \(CONS = p_L L^* + p_K K^* = p_x X + p_y Y \)

How do we find equilibrium: prices, and factor allocations?
Equilibrium could be solved for by a constrained optimization problem: Max (5) subject to the constraints (1), (2), (3), (4), (6).

The usefulness of this approach breaks down quickly as the model becomes more complicated.

Alternative approach: convert the problem to a system of equations, and solve that system.

Solve the cost minimization problems for producers and consumers: individual optimizing behavior is embedded in the model.

These give the minimum cost of producing a good.
Unit cost functions for \(X \) and \(Y \)
\[
\begin{align*}
\text{cx} &= \text{cx}(p_l, p_k), \\
\text{cy} &= \text{cy}(p_l, p_k)
\end{align*}
\]

Unit cost (expenditure) function for \(W \)
\[
\text{e} = \text{e}(p_x, p_y)
\]

The next crucial step is provided by theory: Shepard’s lemma

\[
\begin{align*}
\frac{\partial \text{cx}}{\partial p_l} &= \text{cx}_{p_l} = \text{X demand for labor per unit of output} \\
\frac{\partial \text{cx}}{\partial p_k} &= \text{cx}_{p_k} = \text{X demand for capital per unit of output} \\
\frac{\partial \text{e}}{\partial p_x} &= \text{e}_{p_x} = \text{Consumer’s demand for X per unit of utility}
\end{align*}
\]
Now we are in a position to specify general equilibrium as the solution to a square system of 9 weak inequalities in 9 unknowns.

General-equilibrium formulated as a square system:

(1) Non-positive profits for X \[\text{cx}(p_l, p_k) \geq p_x \]

(2) Non-positive profits for Y \[\text{cy}(p_l, p_k) \geq p_y \] zero-profit inequalities

(3) Non-positive "profits" for W \[e(p_x, p_y) \geq p_w \]
(4) Supply \geq Demand for X \quad X \geq e_{px}(p_x, p_y)W

(5) Supply \geq Demand for Y \quad Y \geq e_{py}(p_x, p_y)W

(6) Supply \geq Demand for W \quad W \geq 1 / p_w \quad \text{market-clearing inequalities}

(7) Supply \geq Demand for L \quad L^* \geq cx_{pl}X + cy_{pl}Y

(8) Supply \geq Demand for K \quad K^* \geq cx_{pk}X + cy_{pk}Y

(9) Income balance \quad CONS = p_lL^* + p_kK^* \quad \text{income balance}

These weak inequalities can be solved for the unknowns X, Y, W, p_x, p_y, p_w, p_l, p_k, and l.
These inequalities are of three types, and this is generally true:

- Zero-profit conditions, inequalities (1)-(3) in the above example.
- Market clearing conditions, inequalities (4)-(8) in the above example.
- Income balance, equation (9) in the above example.

Formulating equilibrium as a complementarity problem requires that each inequality is associated with a particular variable.

If a zero profit conditions holds as a strict inequality in equilibrium, profits for that activity are negative, that activity will not used.
The complementary variable to a zero-profit condition is a quantity, the activity level.

If a market-clearing condition holds as a strict inequality, supply exceeds demand for that good or factor in equilibrium so its price must be zero.

Thus the complementary variable to a market clearing inequality is the price of that good or factor.

The complementary variable to an income balance equation is just the income of that agent.
<table>
<thead>
<tr>
<th>Inequality</th>
<th>Complementary Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Non-positive profits for X</td>
<td>$cx(p_l, p_k) \geq p_x$</td>
</tr>
<tr>
<td>(2) Non-positive profits for Y</td>
<td>$cy(p_l, p_k) \geq p_y$</td>
</tr>
<tr>
<td>(3) Non-positive "profits" for W</td>
<td>$e(p_x, p_y) \geq p_w$</td>
</tr>
<tr>
<td>(4) Supply \geq Demand for X</td>
<td>$X \geq e_{px}(p_x, p_y)W$</td>
</tr>
<tr>
<td>(5) Supply \geq Demand for Y</td>
<td>$Y \geq e_{py}(p_x, p_y)W$</td>
</tr>
<tr>
<td>(6) Supply \geq Demand for W</td>
<td>$W \geq I / p_w$</td>
</tr>
<tr>
<td>(7) Supply \geq Demand for L</td>
<td>$L^* \geq cx_{pl}X + cy_{pl}Y$</td>
</tr>
<tr>
<td>(8) Supply \geq Demand for K</td>
<td>$K^* \geq cx_{pk}X + cy_{pk}Y$</td>
</tr>
</tbody>
</table>
(9) Income balance \(\text{CONS} = p_L^* + p_K^* \) \(\text{CONS} \)

3.2 Micro consistent data

A data set is micro consistent when it satisfies the conditions for economic equilibrium (it could be generated as the solution to some model).

Data must satisfy zero profits, market clearing, and income balance.

The above problems can be thought of as consisting of three production activities, X, Y, and W, four markets, X, Y, L, and K income balance.
Represent the initial data for this economy by a rectangular matrix. This matrix is related to the concept of a “SAM” – social accounting matrix.

There are two types of columns in the rectangular matrix, corresponding to production activities (sectors) and consumers.

In the model outlined above, there are three production sectors (X, Y and W) and a single consumer (CONS).

Rows correspond to markets. Complementary variables are prices, so we have listed the price variables on the left to designate rows.
A positive entry signifies a receipt (sale) in a particular market. A negative entry signifies an expenditure (purchase) in a particular market.

Reading down a production column, we then observe a complete list of the transactions associated with that activity.

<table>
<thead>
<tr>
<th>Markets</th>
<th>X</th>
<th>Y</th>
<th>W</th>
<th>CONS</th>
<th>Row sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>100</td>
<td>-100</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PY</td>
<td></td>
<td>100</td>
<td>-100</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PW</td>
<td></td>
<td></td>
<td>200</td>
<td>-200</td>
<td>0</td>
</tr>
<tr>
<td>PL</td>
<td>-25</td>
<td>-75</td>
<td></td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>PK</td>
<td>-75</td>
<td>-25</td>
<td></td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Column sum 0 0 0 0 0
A rectangular SAM is balanced or “micro-consistent” when row and column sums are zeros.

Positive numbers represent the value of commodity flows into the economy (sales or factor supplies),

Negative numbers represent the value of commodity flows out of the economy (factor demands or final demands).

A row sum is zero if the total amount of commodity flowing into the economy equals the total amount flowing out of the economy.

Row sum = 0 = market clearance, and one such condition applies for each commodity in the model.
Columns in this matrix correspond to production sectors or consumers.

A production sector *column sum is zero* if the value of outputs equals the cost of inputs.

A consumer column is balanced if the sum of primary factor sales equals the value of final demands.

Zero column sums thus = *zero profits or “product exhaustion”* in an alternative terminology.
The numbers of the matrix are values, *prices times quantities*. The modeler decides how to interpret these as prices or quantities.

A good practice is to choose units so that as many things initially are equal to one as possible.

Prices can be chosen as one, and “representative quantities” for activities can be chosen such that activity levels are also equal to one (e.g., activity X at level one produces 100 units of good X).

In the case of taxes, both consumer and producer prices cannot equal one of course, a point we will return to in a later section.
3.3 Calibration and replication

Calibration is choosing functional forms and their parameters such that the initial micro-consistent data is a solution to the model.

We use Cobb-Douglas functions for the three activities. The share parameters for the functions are given in the data matrix above.

Goods in the utility function get equal shares of 0.5:

\[e(p_x, p_y) = p_x^{0.5} p_y^{0.5} \]

X is capital intensive: a capital share of 0.75, a labor share of 0.25.

\[c_x(p_l, p_k) = p_l^{0.25} p_k^{0.75} \]
Y is labor intensive with the opposite ordering of shares.

\[c_y(p_l, p_k) = p_l^{0.75} p_k^{0.25} \]

Example of Shepard’s lemma: demand for labor in Y.

\[
L_y = \frac{\partial c_y(p_l, p_k)}{\partial p_l} = 0.75p_l^{0.75-1} p_k^{0.25} Y = 0.75p_l^{0.75} p_k^{0.25} Y / p_l
\]

If \(p_x \) is the producer price of X, then this can be written as:

\[
L_y = \frac{\partial c_y(p_l, p_k)}{\partial p_l} Y = 0.75p_x / p_l * Y
\]
3.4 Model 3-4a

(1) The opening line $TITLE is not necessary, but used to the model in the listing (output) file.

(2) $ONTEXT.....$OFFTEXT is a way of designating a block of comments, to be ignored by GAMS.

 In this case, we put our data matrix inside this block, meaning it is not actually used in the computation.

(3) A text line can also be preceded by a *. GAMS ignores any line beginning with a *. * must be in the first column.

(4) We declare the parameter names, then assign them values (note where semi-colons do and do not go).
(5) Next we declare positive variables and then equation names. We write out the equation names in the syntax shown [equation name], then the equation itself ending with a semi-colon.

Note the use of the reference quantities such as “100”, “75 ” etc. in the equations. Then activity levels will be $X = Y = W = 1$ in the initial solution.

(6) GAMS was written to use greater-than-or-equal-to syntax ($=G=$).

(7) Then the model is specified, and we chose a numeraire (recall from theory that only relative prices are determined). Here we choose utility as the numeraire, so that factor prices are then real values in terms of utility. The notation is PW.FX, “FX” for “fixed”.

(8) Before the solve statement, we are going to help the solver by giving starting values for the variables. The syntax is, for example $X.L$, where the “L” stands for “level”.
(9) Default values are zero, and in non-linear problems it is very helpful and indeed sometimes necessary to help the solver with some initial guesses. We constructed this problem knowing the answer, so I give those values as .L values.

(10) Finally, the solve statement.

(11) After the first solve statement, we do two counterfactual experiments. In the first, we remove the tax and double the labor endowment of the economy.

“LENDOW” and “KENDOW” are multipliers on the initial factor endowment.

This file is saved in the relevant directory as M4-3a.GMS, although you can use any name you want, need not correspond to the model name.
$TITLE: Model M3-4a: TWOxTWOxONE Economy - Basics

$ONTEXT
This model is a closed economy version of the classic Heckscher-Ohlin model: two goods and two factors, one consumer. Utility is treated as a produced good: quantity W, price PW

<table>
<thead>
<tr>
<th>Markets</th>
<th>X</th>
<th>Y</th>
<th>W</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>100</td>
<td></td>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>PY</td>
<td></td>
<td>100</td>
<td></td>
<td>-100</td>
</tr>
<tr>
<td>PW</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>-25</td>
<td>-75</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PK</td>
<td>-75</td>
<td>-25</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

$OFFTEXT

$PARAMETERS

LENDO W labor endowment multiplier
KENDO W capital endowment multiplier;

LENDO = 1;
KENDO = 1;
NONNEGATIVE VARIABLES

X activity level for X production
Y activity level for Y production
W activity level for the "production" of welfare from X Y
PX price of good X
PY price of good Y
PW price of a unit of welfare (real consumer-price index)
PL price of labor
PK price of capital
CONS income of the representative consumer;

EQUATIONS

PRF_X zero profit for sector X
PRF_Y zero profit for sector Y
PRF_W zero profit for sector W (Hicksian welfare index)

MKT_X supply-demand balance for commodity X
MKT_Y supply-demand balance for commodity Y
MKT_L supply-demand balance for primary factor L
MKT_K supply-demand balance for primary factor L
MKT_W supply-demand balance for aggregate demand
I_CONS income definition for CONS;

* Zero profit inequalities

PRF_X.. 100*(PL**0.25 * PK**0.75) =G= 100*PX;
PRF_Y.. 100*(PL**0.75 * PK**0.25) =G= 100*PY;
PRF_W.. 200*(PX**0.50 * PY**0.50) =G= 200*PW;

* Market clearance inequalities

MKT_X.. 100*X =G= 100 * W * PW / PX;
MKT_Y.. 100*Y =G= 100 * W * PW / PY;
MKT_W.. 200*W =E= CONS / PW;
MKT_L.. 100*LENDOW =G= 25 * X * PX / PL +
 75 * Y * PY / PL;
MKT_K.. 100*KENDOW =G= 75 * X * PX / PK +
 25 * Y * PY / PK;
* Income balance equations (don't forget tax revenue)

\[I_{\text{CONS}} \quad \text{CONS} = 100 \times \text{LENDOW} \times \text{PL} + 100 \times \text{KENDOW} \times \text{PK}; \]

MODEL TWOxTWO /PRF_X.X, PRF_Y.Y, PRF_W.W,
MKT_X.PX, MKT_Y.PY, MKT_L.PL, MKT_K.PK,
MKT_W.PW, I_CONS.CONS /;

* Chose a numeraire: real consumer price index

\[\text{PW.FX} = 1; \]

* Set initial values of variables:

\[\text{X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PK.L=1; PL.L=1; CONS.L=200;} \]

SOLVE TWOxTWO USING MCP;

* counterfactual 1: double the endowment of labor

\[\text{LENDOW} = 2; \]

SOLVE TWOxTWO USING MCP;

* counterfactual 2: double both endowments from the benchmark
LENDOW = 1;
KENDOW = 2;
SOLVE TWOxTWO USING MCP;

* counterfactual 3: double the endowment of both factors

LENDOW = 2;
KENDOW = 2;
SOLVE TWOxTWO USING MCP;

$ontext
We emphasize that the above formulation uses a simplifying trick: the marginal costs of X, Y, and W can be replaced by the producer prices PX, PY, and PW. This should "always" work because when marginal cost and price are not equal in equilibrium, the quantity is zero: marginal cost times quantity = producer price times quantity (MC_X*X = PX*X regardless of X > 0 or X = 0). But below is the model done "properly" with Shepard's lemma
$offtext

EQUATIONS
 MKT_X2
 MKT_Y2
 MKT_L2
 MKT_K2
I_CONS2;

MKT_X2.. 100*X =G= 100 * W * (PX**0.5 * PY**0.5) / PX;

MKT_Y2.. 100*Y =G= 100 * W * (PX**0.5 * PY**0.5) / PY;

MKT_L2.. 100*LENDOW =G= 25 * X * PL**0.25 * PK**0.75 / PL + 75 * Y * PL**0.75 * PK**0.25 / PL;

MKT_K2.. 100*KENDOW =G= 75 * X * PL**0.25 * PK**0.75 / PK + 25 * Y * PL**0.75 * PK**0.25 / PK;

* Income balance equations (don't forget tax revenue)

I_CONS2.. CONS =E= 100*LENDOW*PL + 100*KENDOW*PK;

MODEL TWOxTWOa /PRF_X.X, PRF_Y.Y, PRF_W.W,
 MKT_X2.PX, MKT_Y2.PY, MKT_L2.PL, MKT_K2.PK,
 MKT_W.PW, I_CONS2.CONS /;

LENDOW = 1; KENDOW = 1;

SOLVE TWOxTWOa USING MCP;

LENDOW = 2;
SOLVE TWOxTWOa USING MCP;
Exercise: declare a parameter alpha, which is a productivity shift parameter producing X. Higher alpha, more output per input.

Code this up. Hint: alpha will appear more than in the program. Change alpha and interpret results.

The output or listing file will automatically be written to the same directory, with name M3-4a.LST.

In the listing file, we will see the following information, along with a statement that the solution is normal and optimal.

The list of 1.000 indicates we successfully reproduced our benchmark data as an equilibrium, since we chose units such that this would be the case.

```
LOWER     LEVEL     UPPER    MARGINAL
---- VAR X    .        1.000     +INF       .      ---- VAR Y    .        1.000     +INF       .      ---- VAR W    .     ...     +INF       .      ---- VAR PK   .        1.000     +INF       .      ---- VAR CONS .      200.000     +INF       .
```
In the first counterfactual, we remove the tax, and double the labor endowment of the economy.

******counterfactual: double labor endowment

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR X</td>
<td></td>
<td>1.189</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR Y</td>
<td></td>
<td>1.682</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR W</td>
<td></td>
<td>1.414</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PX</td>
<td></td>
<td>1.189</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PY</td>
<td></td>
<td>0.841</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PW</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>VAR PL</td>
<td></td>
<td>0.707</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PK</td>
<td></td>
<td>1.414</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR CONS</td>
<td></td>
<td>282.843</td>
<td>+INF</td>
</tr>
</tbody>
</table>
Exercise 2A: model equilibrium as an optimization (NLP)

Exercise 2B: model equilibrium a complementarity problem (MCP)
 Let labor be numeraire with price one: then income = LBAR
 Hint1: you will need added variables P1, P2
 Hint2: get the Marshallian demand functions for X1 and X2
 Hint3: convert production functions to unit cost functions
 and COST1 = P1, COST2 = P2
 Hint4: hints 2 and 3 should give you a simple 4x4 model

PARAMETERS
 ALPHA share of X1 in utility
 BETA1 labor productivity in X1
 BETA2 labor productivity of X2
 LBAR labor endowment;

ALPHA = 0.5;
BETA1 = 1;
BETA2 = 1;
LBAR = 10;
Model 3-4b Adds taxes to model 3-4a

There are several important modifications that taxes introduce:

(1) There is no longer “a price” for a good or factor: the price received by a supplier and that paid for by the buyer are different.

(2) The tax base is important:
 net basis: \(p = (1+t)mc \) \(p \) is consumer price
 gross basis: \(p(1-t) = mc \) \(mc \) is producer price

(2) Revenue collected must go somewhere for GE adding up to be satisfied.

To consider the effect of purely distortionary taxes, it is typically assumed that the government lump-sum redistributes taxes back to consumers.
Assume that there are commodity taxes on X and Y, on a net basis

$$p_x = (1 + t_x)mc_x \quad p_y = (1 + t_y)mc_y$$

Then the representative consumer must get a redistribution equal to

$$t_x mc_x X + t_y mc_y Y$$

We can write out the expression for marginal cost or, from (1), note that this is equal to consumer price divided by one plus t.

$$t_x (p_x / (1 + t_x)) X + t_y (p_y / (1 + t_y)) Y$$
$TITLE: Model M3-4b: Closed TWOxTWO Economy - adds taxes
* adds taxes to model M3-1

$ONTEXT

<table>
<thead>
<tr>
<th>Production Sectors</th>
<th>Consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markets</td>
<td>X</td>
</tr>
<tr>
<td>PX</td>
<td>100</td>
</tr>
<tr>
<td>PY</td>
<td>100</td>
</tr>
<tr>
<td>PW</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>-25</td>
</tr>
<tr>
<td>PK</td>
<td>-75</td>
</tr>
</tbody>
</table>

PX and PY will denote the consumer prices of X and Y
since PX(1+TX) = MC (marginal cost), the producer price of X (MC) is PX/(1+TX) and similarly for Y

$OFFTEXT

PARAMETERS

TX ad-valorem tax rate for X sector inputs
TY ad-valorem tax rate for Y sector inputs
LENDOW labor endowment multiplier
KENDOW capital endowment multiplier;
TX = 0; TY = 0;
LENDOW = 1;
KENDOW = 1;

POSITIVE VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>activity level for X production</td>
</tr>
<tr>
<td>Y</td>
<td>activity level for Y production</td>
</tr>
<tr>
<td>W</td>
<td>activity level for the "production" of welfare from X Y</td>
</tr>
<tr>
<td>PX</td>
<td>price of good X</td>
</tr>
<tr>
<td>PY</td>
<td>price of good Y</td>
</tr>
<tr>
<td>PW</td>
<td>price of a unit of welfare (real consumer-price index)</td>
</tr>
<tr>
<td>PL</td>
<td>price of labor</td>
</tr>
<tr>
<td>PK</td>
<td>price of capital</td>
</tr>
<tr>
<td>CONS</td>
<td>income of the representative consumer;</td>
</tr>
</tbody>
</table>

EQUATIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRF_X</td>
<td>zero profit for sector X</td>
</tr>
<tr>
<td>PRF_Y</td>
<td>zero profit for sector Y</td>
</tr>
<tr>
<td>PRF_W</td>
<td>zero profit for sector W (Hicksian welfare index)</td>
</tr>
<tr>
<td>MKT_X</td>
<td>supply-demand balance for commodity X</td>
</tr>
</tbody>
</table>
MKT_Y supply-demand balance for commodity Y
MKT_L supply-demand balance for primary factor L
MKT_K supply-demand balance for primary factor L
MKT_W supply-demand balance for aggregate demand

I_CONS income definition for CONS;

* Zero profit inequalities

PRF_X.. 100*(PL**0.25 * PK**0.75) * (1+TX) =G= 100*PX;
PRF_Y.. 100*(PL**0.75 * PK**0.25) * (1+TY) =G= 100*PY;
PRF_W.. 200*(PX**0.50 * PY**0.50) =G= 200*PW;

* Market clearance inequalities

MKT_X.. 100*X =G= 100 * W * PW / PX;
MKT_Y.. 100*Y =G= 100 * W * PW / PY;
MKT_W.. 200*W =E= CONS / PW;
MKT_L.. 100*LENDOW =G= 25 * X * (PX/(1+TX)) / PL +
 75 * Y * (PY/(1+TY)) / PL;
MKT_K.. 100*KENDOW =G= 75 * X * (PX/(1+TX)) / PK +
 25 * Y * (PY/(1+TY)) / PK;

* Income balance equations (don't forget tax revenue)

I_CONS.. CONS =E= 100*LENDOW*PL + 100*KENDOW*PK +
 TX*100*X*(PX/(1+TX)) +
 TY*100*Y*(PY/(1+TY));

MODEL TWOxTWO /PRF_X.X, PRF_Y.Y, PRF_W.W,
 MKT_X.PX, MKT_Y.PY, MKT_L.PL,MKT_K.PK,
 MKT_W.PW,I_CONS.CONS /;

* Chose a numeraire: real consumer price index

PW.FX = 1;

* Set initial values of variables:

X.L=1; Y.L=1; W.L=1; PX.L=1; PY.L=1; PK.L=1; PL.L=1;
CONS.L=200;

SOLVE TWOxTWO USING MCP;
* counterfactual 1: 50% tax on X

TX = 0.5;
SOLVE TWOxTWO USING MCP;

* counterfactual 1: 50% tax on X and Y

TX = 0.5;
TY = 0.5;
SOLVE TWOxTWO USING MCP;

* counterfactual 2: zero taxes, double the labor endowment

TX = 0;
TY = 0;
LENDOW = 2;
SOLVE TWOxTWO USING MCP;

* counterfactual 3: double both endowments from the benchmark

LENDOW = 2;
KENDOW = 2;
SOLVE TWOxTWO USING MCP;
$ontext
We emphasize that the above formulation uses a simplifying trick: the marginal costs of X, Y, and W can be replaced by the producer prices PX/(1+TX), PY/(1+TY), and PW. This should "always" work because when marginal cost and price are not equal in equilibrium, the quantity is zero: marginal cost times quantity = producer price times quantity (MC_X*X = PX*X regardless of X > 0 or X = 0). But below is the model done "properly" with Shepard's lemma
$offtext

EQUATIONS
MKT_X2
MKT_Y2
MKT_L2
MKT_K2
I_CONS2;

MKT_X2.. 100*X =G= 100 * W * (PX**0.5 * PY**0.5) / PX;

MKT_Y2.. 100*Y =G= 100 * W * (PX**0.5 * PY**0.5) / PY;

MKT_L2.. 100*LENDOW =G= 25 * X * PL**0.25 * PK**0.75 / PL + 75 * Y * PL**0.75 * PK**0.25 / PL;
Exercise: declare a parameter alpha, which is a productivity shift parameter producing X. Higher alpha, more output per input.
Code this up. Hint: alpha will appear more than in the program. Change alpha and interpret results.
$offtext
The results for our first counterfactual, in which we place a 50% tax on the inputs to X production.

*************** counterfactual: tax on X inputs

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR X</td>
<td>.</td>
<td>0.845</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR Y</td>
<td>.</td>
<td>1.147</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR W</td>
<td>.</td>
<td>0.985</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PX</td>
<td>.</td>
<td>1.165</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PY</td>
<td>.</td>
<td>0.859</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PW</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>VAR PL</td>
<td>.</td>
<td>0.903</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR PK</td>
<td>.</td>
<td>0.739</td>
<td>+INF</td>
</tr>
<tr>
<td>VAR CONS</td>
<td>.</td>
<td>196.946</td>
<td>+INF</td>
</tr>
</tbody>
</table>

X production decreases, Y production increases, and welfare falls due to the distortionary nature of the tax, even though the tax revenue is redistributed back to the consumer.
There is also a redistribution of income between factors.

The relative price of capital, the factor used intensively in X falls, and the relative price of labor rises as resources are shifted to Y production.
3.5 Initially slack activities

As noted in chapter one, an attractive and powerful feature of GAMS is that it solves complementarity problems in which some production activities can be slack for some values of parameters and active for others.

This allows researchers to consider a much wider set of problems that is allowed using software which can only solve systems of equations.

There are many uses of this in practice:

- alternative energy technologies that are unprofitable initially
- illegal activities that are inefficient relative to legal ones
- trade links that are initially inactive due to high trade costs
Model 3-5 presents an example, motivated by tax evasion activities, or a “green” but expensive technology

A third sector, Z, also produces good X but it is 10% less efficient (10% more costly) than the X activity itself. So initially, Z does not operate.

But when a tax of 25% is imposed on X, this activity goes slack and Z begins to operate.

We could think of Z as a tax evasion or “informal” activity that is less efficient but can successfully avoid the tax.

Another counterfactual assesses the effect of a 25% tax when the Z technology cannot operate, to assess switching costs.
The command Z.FX fixes the level of Z at its current value.

Fixing a variable involves setting both its upper and lower value. Thus to unfix a variable, both its upper and lower values must be reset.

\[
\begin{align*}
Z.\text{UP} &= +\text{INF}; \\
Z.\text{LO} &= 0;
\end{align*}
\]

Another thing introduced is a trick to find calibration errors

\[
\begin{align*}
\text{SLACK.ITERLIM} &= 0; \\
\text{SOLVE} &\text{ SLACK USING MCP;}
\end{align*}
\]

\[
\begin{align*}
\text{SLACK.ITERLIM} &= 2000; \\
\text{SOLVE} &\text{ SLACK USING MCP;}
\end{align*}
\]

Please see section 3.8 for an explanation of this command.
$TITLE M3-5: use of an initially slack activity
* e.g., modeling tax avoidance or use of "green" but expensive
* technologies

$ONTEXT
sector "Z" produces good X, but with a less efficient technology
than activity X (sector X). High tax on X leads to switching
Z could be interpreted as an "informal" or "illegal" technology
such as smuggling. Or, Z is an expensive "green" technology

<table>
<thead>
<tr>
<th>Markets</th>
<th>Production Sectors</th>
<th>Consumers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>PX</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>PY</td>
<td>100</td>
<td>-100</td>
</tr>
<tr>
<td>PW</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>-40</td>
<td>-60</td>
</tr>
<tr>
<td>PK</td>
<td>-60</td>
<td>-40</td>
</tr>
</tbody>
</table>

$OFFTEXT

$PARAMETER
TX Ad-valorem tax rate on X sector inputs
INEF Inefficiency measure in sector Z;
TX = 0;
INEF = 1.1;

NONNEGATIVE VARIABLES

X Activity level for sector X
Y Activity level for sector Y
Z Activity level for sector Z initial inefficient
W Activity level for sector W
PX Price index for commodity X
PY Price index for commodity Y
PL Price index for primary factor L
PK Price index for Primary factor K
PW Price index for welfare (expenditure function)
CONS Income definition for CONS;

EQUATIONS

PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_Z Zero profit for sector Z
PRF_W Zero profit for sector W

MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor L
MKT_W Supply-demand balance for aggregate demand

I_CONS Income definition for CONS;

* Zero profit conditions:

PRF_X.. 100*(PL**0.4 * PK**0.6) * (1+TX) =G= 100*PX;
PRF_Y.. 100*(PL**0.6 * PK**0.4) =G= 100*PY;
PRF_Z.. 100*INEF*(PL**(0.40) * PK**(0.60)) =G= 100*PX;
PRF_W.. 200 * PX**0.5 * PY**0.5 =E= 200 * PW;

* Market clearing conditions:

MKT_X.. 100*X + 100*Z =G= 100*W*PW/PX;
MKT_Y.. 100*Y =G= 100*W*PW/PY;
MKT_W.. 200*W =G= CONS/PW;
MKT_L.. 100 =G= 40*X*(PX/(1+TX))/PL + 60*Y*PY/PL + 40*Z*PX/PL;
MKT_K.. 100 =G= 60*X*(PX/(1+TX))/PK + 40*Y*PY/PK + 60*Z*PX/PK;
* Income constraints:

\texttt{I_CONS.. CONS =E= 100*PL + 100*PK + TX*100_X*(PX/(1+TX))};

\texttt{MODEL SLACK /PRF_X.X, PRF_Y.Y, PRF_Z.Z, PRF_W.W, MKT_X.PX, MKT_Y.PY, MKT_L.PL,MKT_K.PK, MKT_W.PW, I_CONS.CONS /};

* Check the benchmark:

\texttt{X.L =1; Y.L =1; W.L =1; Z.L =0;}

\texttt{PL.L =1; PX.L =1; PY.L =1; PK.L =1; PW.FX =1;}

\texttt{CONS.L =200; TX =0;
* introducing a calibration check

SLACK.ITERLIM = 0;
SOLVE SLACK USING MCP;

* now allow the solver to work

SLACK.ITERLIM = 2000;
SOLVE SLACK USING MCP;

* the first counterfactual shows how a tax leads to switching
* to the inefficient "informal" technology

TX = 0.25;
SOLVE SLACK USING MCP;

* the second counterfactual shows the different in welfare when
* the inefficient technology cannot be used

Z.FX = 0;
TX = 0.25;
SOLVE SLACK USING MCP;
Z.UP = +INF;
Z.LO = 0;

* scenario generation: loop over values of the tax

SETS I /I1*I30/;

PARAMETERS
 TAXRATE(I)
 WELFARE(I)
 ZPROD(I)
 RESULTS(I,*)

* scenario generation: loop of tax rates

LOOP (I,)

TX = 0.01*ORD(I) - 0.01;

SOLVE SLACK USING MCP;

TAXRATE(I) = TX;
WELFARE(I) = W.L;
ZPROD(I) = Z.L;
RESULTS(I, "TAXRATE") = TAXRATE(I);
RESULTS(I, "WEFLARE") = WELFARE(I);
RESULTS(I, "ZPROD") = ZPROD(I);

DISPLAY TAXRATE, WELFARE, ZPROD, RESULTS;

$LIBINCLUDE XLDUMP TAXRATE M3-5.XLS SHEET1!B3
$LIBINCLUDE XLDUMP WELFARE M3-5.XLS SHEET1!B6
$LIBINCLUDE XLDUMP RESULTS M3-5.XLS SHEET1!B9
3.6 Labor/leisure decision

Often general-equilibrium models used in international trade assume that factors of production, especially labor, are in fixed and inelastic supply.

But designing tax, welfare, and education systems, endogenizing labor supply is a crucial part of the story.

Model M3-6 endogenizes labor supply, allowing labor to chose between leisure and labor supply with leisure entering into the workers utility function.

In our formulation, we introduce an additional activity T, which transforms leisure (price PL) into labor supplied (price PLS).
The production block for W specifies that goods and leisure have an elasticity of substitution of 1. This may not be empirically plausible, but we want to stick with Cobb-Douglas for now.

The consumer is endowed with 200 units of labor/leisure, of which 100 units are supplied to the labor market initially.

The use of the labor supply activity is going to imply two separate prices in the present of the labor tax.

PL is the household (consumer) price of leisure and the take-home wage of labor supplied to the market. PLS is going to be the producer’s cost of labor.

$$PLS = PL(1+TL)$$
Second, note the equations and notation at the end.

\[
\text{WELFARE} = W \cdot L;
\]

\[
\text{REALCONS} = \frac{\text{PX} \cdot \text{L} \times \text{X} \cdot \text{L} \times 100 + \text{PY} \cdot \text{L} \times \text{Y} \cdot \text{L} \times 100}{\text{PX} \cdot \text{L}^{0.5} \times \text{PY} \cdot \text{L}^{0.5} \times 200};
\]

\text{DISPLAY WELFARE, REALCONS;}

Parameters (declared earlier) are assigned values following the solution to the model. The first is just the value of welfare, including the value of leisure.

The second, “REALCONS” is short for the real value of goods consumption. The REAL part is due to dividing the nominal value of consumption by the price index for consumption.
As you will see if you run this model, the labor tax leads to a reduction in labor supply.

This of course leads to a fall in commodity consumption but also to a rise in leisure.

Thus in this case, the usual statistics overstate the burden of the tax and would overstate the benefit of removing the tax if labor supply increases (leisure falls).
$TITLE M3-6.GMS: Introduces a labor supply or labor/leisure activity

$ONTEXT
Activity T transforms leisure into labor supply
Initially, the consumer has 200 units of leisure and supplies 100 to the market, retaining 100 as leisure

X, Y and Leisure are all Cobb-Douglas substitutes

<table>
<thead>
<tr>
<th>Markets</th>
<th>A</th>
<th>B</th>
<th>W</th>
<th>T</th>
<th>CONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PX</td>
<td>100</td>
<td></td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY</td>
<td></td>
<td>100</td>
<td>-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td>-300</td>
</tr>
<tr>
<td>PLS</td>
<td>-40</td>
<td>-60</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td></td>
<td>-100</td>
<td>-100</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>PK</td>
<td>-60</td>
<td>-40</td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

PL will denote the CONSUMER (HOUSEHOLD) price of labor
PLS will denote the PRODUCER price or COST of labor to the firms

$OFFTEXT

PARAMETERS

TL ad-valorem tax rate on labor
WELFARE true welfare - including the value of leisure
REALCONS observed market value of consumption of X and Y;

TL = 0;

POSITIVE VARIABLES

 X Activity level for sector X
 Y Activity level for sector Y
 T Labor supply (transforms leisure to labor)
 W Activity level for sector W
 PX Price index for commodity X
 PY Price index for commodity Y
 PL Price index for primary factor L (household price)
 PLS Price index for labor supply (producer cost)
 PK Price index for primary factor K
 PW Price index for welfare (expenditure function)
 CONS Income definition for CONS;

EQUATIONS

 PRF_X Zero profit for sector X
 PRF_Y Zero profit for sector Y
 PRF_T Zero profit for sector T
 PRF_W Zero profit for sector W
 MKT_X Supply-demand balance for commodity X
 MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_LS Supply-demand balance for Leisure
MKT_K Supply-demand balance for primary factor K
MKT_W Supply-demand balance for aggregate demand

I_CONS Income definition for CONS;

* Zero profit conditions:

PRF_X.. 100*(PLS**0.4 * PK**0.6) =G= 100*PX;

PRF_Y.. 100*(PLS**0.6 * PK**0.4) =G= 100*PY;

PRF_T.. 100*(PL *(1+TL)) =G= 100 * PLS;

PRF_W.. 300*(PY**(1/3) * PX**(1/3)) * PL**(1/3)
 =G= 300 * PW;

* Market clearing conditions:

MKT_X.. 100*X =G= 300*W*(1/3)*PW /PX;

MKT_Y.. 100*Y =G= 300*W*(1/3)*PW /PY;

MKT_W.. 300*W =G= CONS/PW;
MKT_L.. 200 =G= 100*T + 300*W*(1/3)*PW/PL;

MKT_LS.. 100*T =G= 40*X*PX/PLS + 60*Y*PY/PLS;

MKT_K.. 100 =G= 60*X*PX/PK + 40*Y*PY/PK;

* Income constraints:

I_CONS.. CONS =E= 200*PL + 100*PK + TL*100*T*PL;

MODEL LABEIS /PRF_X.X, PRF_Y.Y, PRF_T.T, PRF_W.W,
 MKT_X.PX, MKT_Y.PY, MKT_L.PL,
 MKT_LS.PLS, MKT_K.PK, MKT_W.PW, I_CONS.CONS /;

X.L =1;
Y.L =1;
W.L =1;
T.L =1;

PL.L =1;
PLS.L =1;
PX.L =1;
PY.L =1;
PK.L =1;
PW.FX =1;
CONS.L = 300;

TL = 0;

LABELEIS.ITERLIM = 0;
SOLVE LABLEIS USING MCP;
LABELEIS.ITERLIM = 1000;
SOLVE LABLEIS USING MCP;

WELFARE = W.L;
REALCONS = (PX.L*X.L*100 + PY.L*Y.L*100)/(PX.L**0.5*PY.L**0.5*200);
DISPLAY WELFARE, REALCONS;

TL = 0.5;

SOLVE LABLEIS USING MCP;

WELFARE = W.L;
REALCONS = (PX.L*X.L*100 + PY.L*Y.L*100)/(PX.L**0.5*PY.L**0.5*200);
DISPLAY WELFARE, REALCONS;
3.7 Two households with different preferences and endowments

Questions of interest to trade and public finance economists involve issues of distribution rather than or in addition to issues of aggregate welfare.

Households may differ in their preferences and more importantly in their sources of income (or their factor endowments).

Adding multiple household types is a straightforward extension of our earlier models. M3-7 assumes two households.

Household A is relatively well endowed with labor, and also has a preference for good Y, which is the labor-intensive good.
Household B is relatively well endowed with capital and has a relative preference for the capital intensive good.

Our counterfactual experiment is to place a tax on the factor inputs to X, assigning half the revenue to each consumer. This lowers the welfare of household B.

However, household A is better off.

This welfare gain for A is a combination of
(a) a lowering of the relative consumer price of Y, the good favored by A
(b) an increase in the real return to labor, due to the shift toward the labor-intensive sector (Stolper-Samuelson)
(c) neutral redistribution of tax revenue.
Two household: differ in preferences and in endowments
Household A: well endowed with labor,
 preference for labor-int good Y
Household B: well endowed with capital,
 preference for capital-int good X
Allows for tax to be redistributed unevenly between households

The tax redistribution or sharing rule can also be interpreted as the relative number of households in each group, with all households getting an equal share of tax receipts
PARAMETERS

TX Ad-valorem tax rate for X sector inputs
SHA Share of tax revenue given back to household A
SHB share of tax revenue given back to household B;

TX = 0;
SHA = 0.5;
SHB = 0.5;

NONNEGATIVE VARIABLES

X Activity level for sector X
Y Activity level for sector Y
WA Activity level for sector WA
WB Activity level for sector WB
PX Price index for commodity X
PY Price index for commodity Y
PK Price index for primary factor K
PL Price index for primary factor L
PWA Price index for welfare A(expenditure function)
PWB Price index for welfare B(expenditure function)

CONSA Income definition for CONSA
CONSB Income definition for CONSB;
EQUATIONS

PRF_X Zero profit for sector X
PRF_Y Zero profit for sector Y
PRF_WA Zero profit for sector WA
PRF_WB Zero profit for sector WB

MKT_X Supply-demand balance for commodity X
MKT_Y Supply-demand balance for commodity Y
MKT_L Supply-demand balance for primary factor L
MKT_K Supply-demand balance for primary factor K
MKT_WA Supply-demand balance for consumer A
MKT_WB Supply-demand balance for consumer B

I_CONSA Income definition for CONSA
I_CONSB Income definition for CONSB;

* Zero profit conditions:

PRF_X.. 100*(PL**0.25 * PK**0.75) * (1+TX) =G= 100*PX;
PRF_Y.. 100*(PL**0.75 * PK**0.25) =G= 100*PY;
PRF_WA.. 100*(PX**0.4 * PY**0.6) =G= 100*PWA;
PRF_WB.. 100*(PX**0.6 * PY**0.4) =G= 100*PWB;
* Market clearing conditions:

\[\begin{align*}
\text{MKT}_X &. \quad 100 \times X = G \times 40 \times \text{WA} \times \text{PWA} / \text{PX} + 60 \times \text{WB} \times \text{PWB} / \text{PX}; \\
\text{MKT}_Y &. \quad 100 \times Y = G \times 60 \times \text{WA} \times \text{PWA} / \text{PY} + 40 \times \text{WB} \times \text{PWB} / \text{PY}; \\
\text{MKT}_{\text{WA}} &. \quad 100 \times \text{WA} = G \times \text{CONSA} / \text{PWA}; \\
\text{MKT}_{\text{WB}} &. \quad 100 \times \text{WB} = G \times \text{CONSB} / \text{PWB}; \\
\text{MKT}_L &. \quad 90 + 10 = G \times 25 \times X \times (\text{PX} / (1 + \text{TX})) / \text{PL} + 75 \times Y \times \text{PY} / \text{PL}; \\
\text{MKT}_K &. \quad 10 + 90 = G \times 75 \times X \times (\text{PX} / (1 + \text{TX})) / \text{PK} + 25 \times Y \times \text{PY} / \text{PK};
\end{align*}\]

* Income constraints:

\[\begin{align*}
\text{I}_{\text{CONSA}} &. \quad \text{CONSA} = E \times 90 \times \text{PL} + 10 \times \text{PK} + \text{SHA} \times \text{TX} \times 100 \times X \times \text{PX} / (1 + \text{TX}); \\
\text{I}_{\text{CONSB}} &. \quad \text{CONSB} = E \times 10 \times \text{PL} + 90 \times \text{PK} + \text{SHB} \times \text{TX} \times 100 \times X \times \text{PX} / (1 + \text{TX});
\end{align*}\]

MODEL TWOHOUSE /PRF_X.X, PRF_Y.Y, PRF_WA.WA, PRF_WB.WB,
\[\begin{align*}
\text{MKT}_X.X, \text{MKT}_Y.Y, \text{MKT}_{\text{WA}}.\text{WA}, \text{MKT}_{\text{WB}}.\text{WB}, \\
\text{MKT}_L.PL, \text{MKT}_K.PK, \text{MKT}_{\text{WA}}.\text{PWA}, \text{MKT}_{\text{WB}}.\text{PWB}, \\
\text{I}_{\text{CONSA}}.\text{CONSA}, \text{I}_{\text{CONSB}}.\text{CONSB} /;\]
* Check the benchmark:

X.L = 1;
Y.L = 1;
WA.L = 1;
WB.L = 1;

PL.FX = 1;
PX.L = 1;
PY.L = 1;
PK.L = 1;
PWA.L = 1;
PWB.L = 1;

CONSA.L = 100;
CONSB.L = 100;

TX = 0;

TWOHOUSE.ITERLIM = 0;
SOLVE TWOHOUSE USING MCP;
TWOHOUSE.ITERLIM = 1000;
SOLVE TWOHOUSE USING MCP;

TX = 0.50;
SOLVE TWOHOUSE USING MCP;
* counterfactual: give a larger share of tax to household B
* illustrates impossibility of making both types better off

```
TX   = 0.50;
SHA  = 0.25;
SHB  = 0.75;

SOLVE TWOHOUSE USING MCP;
```

* suppose that 80% of households are type A, 20% type B
* and all individual households get an equal share
* of tax receipts

```
TX   = 0.50;
SHA  = 0.80;
SHB  = 0.20;

SOLVE TWOHOUSE USING MCP;
```
3.8 Cobb-Douglas functions, calibration and calibration errors

Let good X be produced from inputs of labor L and capital K.

Let X^0, L^0, K^0, p^0_X, p^0_L, p^0_K denote the initial values of quantities and prices observed in the data. Assume that these are micro-consistent, meaning that they satisfy adding up:

$$p^0 X^0 = p^0_L L^0 + p^0_K K^0$$ \hspace{1cm} (1)

The generic Cobb-Douglas production function is:

$$X = A L^\alpha K^{1-\alpha}$$ \hspace{1cm} (2)

Calibration involves choose α and A such that the production function (1) is consistent with the initial (benchmark) data.
Assertion 1: α and $(1 - \alpha)$ will always be the value shares of the inputs in the value of output, that is:

$$\alpha = \frac{p_L L}{p_X X} \quad 1 - \alpha = \frac{p_K K}{p_X X}$$

so the initial date will allow us to calculate α, we need to find A.

Assertion 2: Let all prices be one initially. Then the correct calibration of the Cobb-Douglas function in this special case is:

$$X = \left(\frac{L}{\alpha} \right)^\alpha \left(\frac{K}{1 - \alpha} \right)^{1 - \alpha} \quad \text{in (2), } A = \alpha^{-\alpha} (1 - \alpha)^{\alpha - 1} \quad (4)$$

Check that this equation is satisfied if $X = 100$, $L = 75$ and $K = 25$ with all prices initially equal to one, and $\alpha = 0.75$.
Assertion 3: the unit cost function corresponding to this is:

\[c(p_L, p_K) = p_L^\alpha p_K^{1-\alpha} \]

where \(c(p_L, p_K) = p_X \) in equilibrium \((5) \)

Note that this equation is satisfied when all prices equal one and marginal (unit) cost equals the price of \(X \), which equals one.

Let \(l_x \) and \(k_x \) be the amounts of \(L \) and \(K \) that are optimal to produce one unit of \(X \). Shepard’s lemma gives the optimal inputs:

\[l_x = \frac{\partial c(p_L, p_K)}{\partial p_l} = \alpha p_l^{\alpha-1} p_k^{1-\alpha} = \alpha p_l^\alpha p_k^{1-\alpha}/p_l \] \((6) \)

\[l_x = \alpha c(p_L, p_K)/p_l = \alpha p_x/p_l \] with total factor demands \((7) \)

\[L_x = \alpha (p_x/p_l)X \] \(K_x = (1 - \alpha)(p_x/p_k)X \] \((8) \)
Check that this gives the correct factor demands for the above numerical example when all prices are one initially.

What if the prices of L and K are not equal to one initially? Suppose that the values 75 and 25 for labor and capital and 100 for X are broken down into price and quantity as:

$$p_L^0 = 1.5, \quad L_X^0 = 50, \quad p_K^0 = 0.5, \quad K_X^0 = 50 \quad p_X^0 = 2, \quad X^0 = 50$$

The simple form of the production and cost functions are not correct when prices do not equal one, but the general form is not too different.

Let $X^0, L^0, K^0, p_X^0, p_L^0, p_K^0$ denote the initial values of quantities and prices observed in the data.
Assertion 4: Then the correctly calibrated production, cost, and factor-demand functions for the Cobb-Douglas are:

\[X = A \left(\frac{L}{\alpha} \right)^{\alpha} \left(\frac{K}{1 - \alpha} \right)^{1-\alpha} \quad A = \left(p_L^0 \right)^{\alpha} \left(p_K^0 \right)^{1-\alpha} / p_X^0 \quad \alpha = \frac{p_L^0 L^0}{p_X^0 X^0} \quad (9) \]

\[c(p_L, p_K) = p_X^0 (p_L / p_L^0)^{\alpha} (p_K / p_K^0)^{1-\alpha} \quad (= p_L^\alpha p_K^{1-\alpha} / A) \quad (10) \]

\[L_x = \alpha (p_X / p_L) X \quad K_x = (1 - \alpha) (p_X / p_K) X \quad (11) \]

Note that (11) is the same as (8), hence they don’t depend on any assumption about the initial values of prices.

Check that this is valid for the numbers given above.
Go through this in more detail using (1):

First, of all for assertion 1. The profits for a firm can be written as:

$$\Pi = p_x A L^\alpha K^{1-\alpha} - p_L L - p_K K$$

(12)

The first-order condition for profit maximization is:

$$\frac{\partial \Pi}{\partial L} = \alpha p_x A L^{\alpha-1} K^{1-\alpha} - p_L = 0$$

(13)

$$= \alpha p_x [A L^\alpha K^{1-\alpha}] L^{-1} - p_L = \alpha p_x X/L - p_L = 0$$

$$\alpha = \frac{p_L L}{p_x X}$$ Note this is independent of A, so valid for (4), (9)
Assertion 5: For initial, micro-consistent values \(X^0, L^0, K^0, p_X^0, p_L^0, p_K^0 \), the correct production function can be written as:

\[
X = X^0 \left(\frac{L}{L^0} \right)^\alpha \left(\frac{K}{K^0} \right)^{1-\alpha}
\]

where \(\alpha = \frac{p_L^0 L^0}{p_X^0 X^0} \) \(\text{ (14)} \)

Check that this is satisfied for the initial values just mentioned.

Some multiplying and dividing will give us:

\[
X = \left(\frac{L}{L^0/X^0} \right)^\alpha \left(\frac{K}{K^0/X^0} \right)^{1-\alpha}
\]

\(\text{ (15)} \)

\[
X = \left[(p_L^0)^\alpha (p_K^0)^{1-\alpha} / p_X^0 \right] \left(\frac{L}{p_L^0 L^0/(p_X^0 X^0)} \right)^\alpha \left(\frac{K}{p_K^0 K^0/(p_X^0 X^0)} \right)^{1-\alpha}
\]

\(\text{ (16)} \)
\[X = A \left(\frac{L}{\alpha} \right)^{\alpha} \left(\frac{K}{1 - \alpha} \right)^{1 - \alpha} \]

\[A = \frac{(p_L^0)^\alpha (p_K^0)^{1-\alpha}}{p_X^0} \quad (17) \]

which is (9). Now use our earlier result on the value of \(\alpha \) to get the optimal amounts of L and K to produce one unit of X: \(l_x \) and \(k_x \)

\[\alpha = \frac{p_L L}{p_X X} \quad \Rightarrow \quad l_x = \alpha p_X / p_L \quad k_x = (1 - \alpha) p_X / p_K \quad (18) \]

Setting \(X = 1 \) in (17), this equation is:

\[1 = A \left(\frac{l_x}{\alpha} \right)^\alpha \left(\frac{k_x}{1 - \alpha} \right)^{1 - \alpha} \quad (19) \]

Now substitute (18) into (19).
Now invert (21) and substitute in for A from (17) to get the cost function

\[c(p_L, p_k) = p_X^0 (p_L / p_L^0)^\alpha (p_K / p_K^0)^{1-\alpha} \]

The application of Shepard’s lemma to (22) gives factor demands

\[
\frac{\partial c(p_L, p_k)}{\partial p_L} = \alpha p_X^0 (p_L / p_L^0)^{\alpha - 1} (p_K / p_K^0)^{1-\alpha} / p_L^0 \\
= \alpha c(p_L, p_k)(p_L^0 / p_L) / p_L^0 = \alpha c(p_L, p_k) / p_L
\]
\[l_x = \frac{\partial c(p_L, p_K)}{\partial p_L} = \alpha p_x/p_L \]

(24)

So total factor demands are

\[L_x = \alpha (p_x/p_L)X \quad K_x = (1 - \alpha) (p_x/p_K)X \]

(25)

Use the example quantities and prices given above to show that this gives the correct figures.
Identifying and correcting calibration errors.

A calibration error occurs when parameters are set at incorrect values such that the model does not reproduce the benchmark data when run.

Run model M3-4a setting LENDOW = 2 initially (which is the first counterfactual.

The problem is that you will have no idea (in general) where the mistake occurs.

Solution is to (at first) not allow the model to solve, returning the initial imbalances in the model: syntax <MODELNAME>.ITERLIM = 0;

TWOxTWO.ITERLIM = 0;
SOLVE TWOxTWOa USING MCP;
This will return the solution:

<table>
<thead>
<tr>
<th>VAR</th>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>2.000</td>
<td>+INF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Y</td>
<td>2.000</td>
<td>+INF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>W</td>
<td>2.000</td>
<td>+INF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PX</td>
<td>1.000</td>
<td>+INF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PY</td>
<td>1.000</td>
<td>+INF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PW</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>3.3316E-9</td>
</tr>
<tr>
<td>PL</td>
<td>1.000</td>
<td>+INF</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>PK</td>
<td>1.000</td>
<td>+INF</td>
<td>-100.000</td>
<td>.</td>
</tr>
<tr>
<td>CONS</td>
<td>400.000</td>
<td>+INF</td>
<td>100.000</td>
<td>.</td>
</tr>
</tbody>
</table>

This gives you a big hint as to where the error is located:

There is an error in the equations MKT_L and in l_CONS (after finding the error return iterlim to = 1000;)

However, this can create a problem if there is not actually an error in setting parameters, but in setting the starting values.
Try running M3-4a with PX.L = 2; Here is what you will get:

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>VAR X</td>
<td>.</td>
<td>2.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR Y</td>
<td>.</td>
<td>2.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR W</td>
<td>.</td>
<td>2.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR PX</td>
<td>.</td>
<td>2.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR PY</td>
<td>.</td>
<td>1.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR PW</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR PL</td>
<td>.</td>
<td>1.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR PK</td>
<td>.</td>
<td>1.000</td>
</tr>
<tr>
<td>----</td>
<td>VAR CONS</td>
<td>.</td>
<td>400.000</td>
</tr>
</tbody>
</table>

This is a big mess. Always start with trying to find the error in the pricing equation, in this case fo X: equation PRF_X.
But before putting in too much sweat, simply run the model a second time with ITERLIM set at 1000:

if this reproduces the benchmark, then the model is correctly calibrated and there is a starting value error.

For the first two solve statements, use:

```
TWOxTWO.ITERLIM = 0;
SOLVE TWOxTWOa USING MCP;
```

```
TWOxTWO.ITERLIM = 1000;
SOLVE TWOxTWOa USING MCP;
```

A true calibration error means non-zero marginals in the first, and the second does not reproduce the benchmark.

A starting value error reproduces the benchmark in the second solve