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1 Introduction

The principal objective of any science is the generation of testable hypotheses and conjectures regarding

its objects of study. These conjectures and hypotheses are tested by direct confrontation with relevant

observed reality. It is this direct confrontation with reality that allows for the establishment of an accepted

body of scientific knowledge. The repeated formulation and evaluation of scientific conjectures via the

observation of relevant phenomena is the essence of scientific inquiry and learning.

Economics would not be a bona fide social science if the propositions that emerge from the theoretical

models in microeconomics, macroeconomics, industrial organization, development economics, and finance,

to name just a few of its specialty branches, were not or could not be evaluated by direct confrontation

with relevant observed phenomena.

The observation of economic phenomena for scientific purposes is not a simple task. Economic reality

is an incredibly complex web of transactions and relationships among economic agents, and it is impossible

to understand it without the use of theoretical models. Theoretical models are simplifications of reality

which attempt to capture and relate its most salient features. The purpose of theoretical modeling is

to create a system of assumptions and relationships, that is a simple enough abstraction of reality to

allow for its understanding, and to draw conclusions regarding its evolution. Theoretical models can be

built and presented in a variety of ways, but modern economic theory has evolved into a collection of

mathematical models of economic reality. Hence, economic behavior and interaction among economic

agents is normally described by sets of mathematical concepts, equations and inequalities that entwine

economic variables. In practice, the observation of economic reality is in essence the observation of the

economic concepts and variables that appear in theoretical models.

An important question that arises is how adequately theoretical models represent reality. Theoretical

models can be evaluated from different perspectives. At one level, theoretical models can be evaluated

based on their internal mathematical consistency. A good theoretical model should be such that its

conjectures and hypotheses result deductively from its assumptions. Although internal consistency is a

necessary property of any theoretical model, it is not enough to give it scientific validity. As mentioned

before, scientific validity of an economic model can result only from testing its conjectures and hypotheses
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by observing relevant economic reality, normally in the form of economic variables. Thus, at a more

sophisticated level, theoretical models must be contrasted with reality.

As an example, consider a traditional model of consumer behavior. A first course in microeconomic

theory normally starts with a mathematical model of consumer behavior based on some assumptions

on consumer preferences and constraints. Under these assumptions, a variety of conjectures are drawn

about consumer behavior. They are obtained through a set of logical mathematical arguments. One of

these conjectures is that there is a relationship between the quantity demanded of a product q, its price

p, the prices of other products ρ and the consumer’s wealth w. Mathematically, such relationship can be

represented by

q = f(p, ρ, w), (1)

where f is an arbitrary function. The mathematical validity of (1) results from a logical chain of thoughts,

however complex it may be, and can be easily verified by consulting a standard microeconomics textbook.

However, the scientific validity of (1) depends on answering questions that go beyond the deductive logic

used in its derivation. More precisely, the scientific validity of (1) rest on whether or not it is supported

by observing and analyzing data on prices, quantity demanded and wealth.

It should be clear that there is nothing special or unique about the consumer behavior example of the

previous paragraph. The same distinction between internal mathematical consistency and scientific va-

lidity, could have been made using Robert Solow’s Macroeconomic Growth Model from a macroeconomic

theory textbook, or the Capital Asset Pricing Model that emerges from the theoretical finance literature,

to name just a few other theoretical models. Again, the scientific validity of the conjectures that emerge

from these models depends on the direct observation and analysis of relevant economic variables they

purport to relate.

Traditionally, Econometrics has been defined as the set of concepts, methods and procedures used

to summarize and analyze economic data that correspond to the economic variables that appear in

economic models. As such, Econometrics is the instrument used to evaluate the scientific validity of

economic theory. However, as will become clear throughout this class, Econometrics is much more than

that. First, economic data has properties that are shared by data observed in other social sciences,
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such as Political Science, Sociology, Psychology and other natural sciences such as Meteorology, Biology,

and Astronomy. Thus, many of the tools and procedures associated with Econometrics can be used to

analyze data and evaluate theoretical models in other sciences. Second, theoretical economists can use

the conclusions that emerge from the use of Econometrics to re-specify and fine tune their theoretical

models. Hence, Econometrics can be viewed as a tool for building better theoretical models of economic

reality. Third, Econometrics can be used, in conjunction with theoretical models, to predict and quantify

changes in economic variables. As such, Econometrics can be used as a tool for evaluating proposed

economic policy and to aid in forecasting the value of many economic variables of interest. In summary,

Econometrics plays important methodological and practical roles in Economics.

2 Economic data

Economic data have two basic characteristics, they are stochastic, and they are largely observational

or non-experimental in nature. The stochastic nature of economic data results from the belief that

it is impossible to predict with certainty the value of any economic variable. Whether this results

from excessive simplicity of theoretical economic models, or inherent chance that permeates economic

relationships is for our purposes irrelevant. What is important is that most economic data can be assumed

to be realizations of stochastic phenomena which exhibit some degree of stochastic regularity.

Economic variables are therefore said to be stochastic variables. Economic data are observational

because they are almost always not generated under controlled (laboratory) conditions by economists.

They are collected by direct observation of the unconstrained actions of economic agents. Let us take a

closer look at these basic characteristics.

2.1 The Stochastic nature of economic data

The defining characteristic of data that emerges from stochastic phenomena is that they exhibit stochastic

regularity. By this, we mean that although it is impossible to predict with certainty what a particular

realization of a stochastic phenomenon will be, it is possible to identify patterns and draw conclusions

about the phenomenon when we observe a set of realizations. Consider, for example, Figure 1 which

represents quarterly annualized rate of change of the Gross Domestic Product (GDP) of the United States
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measured in 2000 (chained) dollars from 1959 until 2007. 1 What is interesting about these data is that

Figure 1: Percent change in US Real GDP from previous period.

although it seems impossible to predict at any particular year what the rate of growth will be, it is possible

to discern various regularities for the entire set of observations. First, it seems that the arithmetic average

of growth (taken over time) seems to be constant. Second, the variation around the average seems to

be declining over time. Third, the histogram for growth rates on Figure 2 seems to exhibit a certain

symmetry around the average. We are able to identify these patterns by simple graphical examination

of the data. Although we are still unable to predict precisely next quarter’s annualized GDP growth, it

seems warranted to make statements such as: (a) there is a small chance the GDP growth next year will

exceed 8 percent, or (b) there is a small chance of observing three consecutive negative growth rates of

GDP (recessions). These are examples of probabilistic statements which can be made only because the

data seems to exhibit some stochastic regularity. Discovering the stochastic regularities of economic data

and making precise probabilistic statements about the stochastic phenomenon under study is therefore

an important part of Econometrics.

1Source: US Department of Commerce, Bureau of Economic Analysis, http://www.bea.gov/
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Figure 2: Frequency histogram for GDP change

2.2 The Observational Nature of Economic Data

Regarding its stochastic nature, the GDP growth data discussed above is not very different from the data

shown in Figure 3. It shows the results of 100 tosses of a fair coin, with 0 representing the observation

of Heads and 1 representing the observation of Tails. As in the case of GDP growth, it is impossible

to predict what the will be the next outcome of a toss. However, a very clear stochastic regularity

emerges when we observe the histogram in Figure 4. As in the case of the GDP growth rate, a variety

of probabilistic statements can be made regarding the outcomes of the coin toss. However, there are

fundamental conceptual differences between the stochastic phenomenon that produced the coin data and

that which produced the GDP growth data. First, the coin data was generated under the auspices of

the observer and under her control, whereas the GDP growth data resulted from a stochastic mechanism

completely outside of the observer’s control. In fact, the user of economic data on GDP growth is in

most cases even different from those that have collected and measured the data. Second, with the help

of a computer we can repeat the coin experiment as many time as we want under ostensibly similar

circumstances. This is clearly not the case for the GDP growth data. Not only are we limited on the

number of observable data points, but we are also unable to guarantee that the observed data emerge

5



Figure 3: Heads/Tails in 100 tosses

Figure 4: Histogram for 100 tosses of a fair coin
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from the same stochastic phenomena. This inability to get repeated observations is a distinguishing

characteristic of many economic data. The observational nature of the GDP growth data is common to

most economic data and it has a profound effect on how we analyze them.

2.3 Representing Data

Since we will be working with economic data, we require a convenient way to represent observations on

variables that are of interest. We represent n observations on the economic variable X as a sequence

{xk}nk=1. Hence, X may represent quarterly annualized GDP growth and xk will represent the observed

value of this variable at time period k. When k is an index representing time, we say that {xk}nk=1 is

a time series on X. When k represents something other than time, e.g., a specific economic agent, a

region of the country, etc. we say that {xk}nk=1 is a cross-section on X. For example, X may be the year

2000 GDP and xk will represent the observed value for country k. Whenever k = (i, t) with i = 1, 2, ...N

and t = 1, 2, ...T indexing sections and time respectively, we say that {xit}N,Ti=1,t=1 is a panel on X. For

example, X may represent GDP and xit will represent the observed GDP for country i in time period t.

Measurement scale and ordering also provide a useful terminology for the description of economic

data. The variable X is said to be measured in ratio scale if for any two observation xk and xs: (a)

xk

xs
and (b) xk − xs are meaningful quantities, and (c) there exists an order relation between xk and xs,

i.e., xk ≥ xs or xk ≤ xs or both. Many economic data are measured in the ratio scale. These include

costs, prices, quantities demanded and supplied, etc. The variable X is said to be measured in interval

scale if (b) and (c) are valid, but (a) is not. A typical example is time. X is said to be measured in

ordinal scale if (c) is valid, but not (a) and (b). Examples of such variables include income level (upper,

middle, low), educational level (High School degree, Bachelor’s degree, Graduate degree), etc. X is said

to be measured in nominal scale if neither (a), (b) or (c) are valid. Variables such as marital status,

gender and employment status are in this category. Variables measured in ordinal or nominal scales are

normally referred to as categorical data.

3 Statistical Models

The stochastic and observational nature of economic data makes statistical models the primary tool for

their analysis. A statistical model is a set of general assumptions regarding the stochastic nature of the
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phenomenon which produced the observed data. Ideally, these assumptions are general enough to account

for the stochastic regularity patterns exhibited by the data. A precise description of a statistical model

requires the definition of concepts that we will study later, such as probability, stochastic variables,

probability distributions, and statistical independence. However, at this stage, it is important

to gain a general appreciation for what constitutes a statistical model. We provide two examples that

illustrate some of the basic characteristics of these models.

Example 1: Suppose that the stochastic phenomenon of interest is the toss of a coin. The toss produces

a result R which takes the value H for heads or T for tails. We have data on R that results from n

consecutive tosses. They are represented by the time series {rt}nt=1. If n = 3 such time series could be

{H,T, T} or {T, T,H}, etc. A statistical model for R can be described by the following assumptions,

1. rt = H with probability p and rt = T with probability 1 − p for all t = 1, ..., n. p is an unknown

parameter of the model (in this case it represent a probability) that takes values in the interval [0, 1].

2. rt and rs are statistically independent for all t 6= s.

Abstracting from the statistical terminology, assumption 1 states that there is a chance p of observing

heads and 1 − p of observing tails at any particular toss. Assumption 2 suggests that the fact that a

particular result from toss t conveys no information about future or past results.

This very simple statistical model contains the basic elements that are present in many (parametric)

statistical models. (i) A parameter (p) that takes value in a pre specified set [0, 1] that defines a class of

probabilities (all pairs (p, 1 − p) for p ∈ [0, 1]) associated with the occurrence of the variable of interest

(R). (ii) an assumption about how the data is obtained. In this case the time series is assumed to come

from n independent tosses with the same chance of observing T and H in each toss. Statistical models

can be more complicated, but they will in many cases retain these features.

Let us now look at an example closer to economics.

Example 2: One of the most enduring and studied questions in the field of finance is whether or not

financial asset prices are predictable. Suppose we observe a time series {pt}nt=1 on the price P of a stock.

One of the earliest statistical models proposed to capture the stochastic regularities of such data is that

of Bachelier (1900). His model can be generally described by the following assumptions,

1. log pt− log pt−1 = µ+ εt for all t = 1, ..., n and µ is an unknown parameter taking values in the set

8



M.

2. εt are unobserved values of a stochastic variable ε which takes values in (−∞,+∞) and has

probabilities of occurrence given by a function Fθ that depends on an unknown parameter θ that takes

values in the set Θ. It is also assumed that realizations εt and εs are statistically independent.

Assumption 1 tells us that the difference between the log price of the stock from one period to another

is a constant - called the drift, plus an increment εt. Assumption 2 makes a series of assumptions regarding

the stochastic nature of the increment. Since, µ is a parameter of the statistical model, Assumption 2

is in effect making various statements about the observed differences log pt − log pt−1 for t = 1, 2, ..., n.

As in the case of the first example, this model depends on parameters µ and θ that take values in pre

specified sets. These parameters define a class of probabilities (given by the function Fθ) associated

with the occurrence of the variable of interest (P ). There is also an assumption about how the data is

obtained. It is assumed that price differences between any two adjacent periods (log pt− log pt−1) contain

no information about future or past price differences and that the probabilities associated with these

price differences do not change with time.

The adequacy of a postulated statistical model depends how well it captures the stochastic regularities

of the relevant observed data. Assessing the adequacy of statistical models depends on two separate

but interrelated procedures: estimation and specification testing. Estimation is a set of procedures,

normally the result of an analysis of the data, that produce values (estimates) for the unknown parameters

of the model. With estimated parameters we can make predictions, for example, about the future price

of a stock or assess the probability that heads will show on the next toss of a coin. Specification testing

is a set of data based procedures that permit the evaluation of some of the underlying assumptions of

the model. Estimation and specification testing are interrelated activities. First, specification testing

cannot be done without prior estimation. However, testing can reveal characteristics of the stochastic

phenomena that produced the data that call for new or modified assumptions on the statistical model.

This new set of assumptions in turn normally call for different estimation procedures. Figure 1.5 gives a

condensed diagrammatic representation of the interdependency of estimation and specification testing.
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Statistical Model + Observed Data → Estimation→ Testing →

Respecification- New Statistical Model + Observed Data → Estimation→ Testing.

Figure 1.5

The combined use of observed data, statistical models, estimation and testing procedures to capture

the regularities that characterize a stochastic phenomenon is known as Empirical Modeling. There

is an underlying characteristic of the discussion above that should be emphasized. The adequacy of a

statistical model depends only on how effective it is in capturing the stochastic regularity of the observed

data, and should be in no way dependent on the theoretical model it will be used to evaluate. In this

sense, empirical modeling is (economic) theory free .

Although empirical modeling is very much a data driven process, it depends on some important ways

on the theoretical models we wish to evaluate. First, in most instances, the variables that appear in

the statistical model are suggested by the theoretical model. Second, the mathematical structure that

relates variables in the theoretical model is in many cases incorporated into the statistical model by

representing chracteristics of the postulated probabilistic structure. Therefore, theoretical models are an

indispensable input in the specification of statistical models. However, once these basic specification steps

are taken, empirical modeling should proceed free of any theoretical dictates. This separation allows for

the revelation of empirical regularities among variables that theory may not had suggested. This can be

used by theorists to refine and re-specify theoretical models.

There is a major issues with the evaluation of theoretical models viaempirical modeling. It is often

the case that variables that are collected and used in empirical modeling do not correspond precisely

to the variables a theorist envisioned when constructing the theoretical model. In this case, empirical

modeling is of little, if any, use in weeding out bad from good theoretical models. To avoid this problem,

it is important to: a) know how the data was collected and measured, b) assert, to the highest degree

possible, the correspondence between observed variables and theoretical variables.
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