Chapter 10

Central limit theorems

10.1 Characteristic functions

We will start with the definition of a characteristic function. To this end recall that by a
complex number x we mean an ordered pair of real numbers. The set of all complex numbers
is denoted by C. Thus, if © = (z1, %) is a complex number, we say that z; is the real part
of z and x5 is the imaginary part of x. If z,y € C we define z + y = (x1 + y1, 22 + y2) and
xy = (T1y1 — Tay2, T1Y2 + T2y1). We write x = y if, and only if, 21 = y; and 23 = yo. The
complex number (0, 1) is denoted by i and is called the imaginary unit. Given the definition
of product of complex numbers, 1> = —1 (or > = (—1,0)).

Every complex number x can be written as x = 1 +izy. To see this, let z; = (z1,0) and
2o = (22,0). Then, izg = (0,1)(22,0) = (0, 29) and 1 +ixe = (21,0)+ (0, x2) = (21, 22) = .
The complex number Z = 1 — iz is called the complex conjugate of z and x7Z = (2% +22,0).
The “absolute value” of a complex number is defined by |z| = (2? + 22)'/? and if 2 # (0,0)
then 271 = (x/(2? + 22), —xo/ (2% + 22)) so that z7'z = (1,0).

If © = 21 + izo we define ¥ = ™72 := ™1 (cos(xy) + i sin(zq)) (Euler’s formula). This

definition gives the following desirable properties of complex exponentials,
ee¥ = ™Y e £ 0,]e™2| = | cos(x2) 4 7 sin(xs)| = (cos(xy)? + sin(xy)?)? = 1.
If Xy, Xo:(Q,F,P) — (R, B) are random variables, we say that X = X +iX5 is a complex
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valued random variable and its distribution F'y is defined as usual in terms of the joint

distribution of X; and X5, i.e.,
Fx(z1,29) = P({w: Xi(w) <z} N{w: Xo(w) <as}) = Px ((—00, 21] X (—00, 23]) .

Since, |X| = (X? + X2)/2 we have that E(|X|?) = E(X?) + E(X2). Thus, if X;, X, €
L£2(Q, F, P) then E(|X|?) < oo. Also, we naturally write E(X) = F(X;) +iFE(Xy).

Note that algebraically |X| is the Euclidean norm for vectors in R? and, therefore, it is
a convex function. By Jensen’s Inequality, for any Borel measurable convex function g and
integrable random variable Z we have that g(E(Z)) < E(g(Z)). Consequently, |E(X)| <

E(1X]).

Definition 10.1. The characteristic function of a random variable X : (2, F, P) — (R, B)

with distribution Fx is the complex valued function
ox(t) := E(e"™™) fort € R.
Remark 10.1. 1. By definition (or Euler’s formula) e"® = cos(tx) + isin(tz). Hence,

¢x(t) = E(cos(tX) +isin(tX)) = /

cos(tX)dP +z’/ sin(tX)dP
Q

Q

:/cos(tX)dPX—i—i/sin(tX)dPX
R R

:/]Rcos(t:r)dFX(:L')+i/sin(tx)dFX($).

R

2. |ox(t)| = |E(e"X)| < E(|e™]) = E(| cos(tX)+isin(tX)|) = E ((cos*(tX) + sin®(tX))"/?) =

1. Hence, E(e™X) always exists and ¢x(0) = 1.
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3. Now, for h € R

[Bx(t+ B) = dx(t)] = | B (X09%) = B (1) | = [B(e Y - o)
B (e — 1)

(je* e — 1)

:

<F
< B (| — 1)) = / €Y _1|dPy.
R

Now, e — 1 = cos(hz) — 1 +isin(hz) and
e — 1] = ((cos(ha) — 1)* + sin*(hx)) /> = (2(1 — cos(ha)))"/? < 2.

Hence, as |h| — 0, [e"* —1] — 0. Consequently, by Lebesgue’s Dominated Convergence
Theorem, [g e —1|dPx — 0 as |h| — 0. Thus, ¢x(t) is uniformly (the bound is

independent of t) continuous.

4. LetY:%, for w € R and o > 0. Then,

X—p

oy (t) = E(e™) = E(eit( v )) =FEe ™~ e )
= e’ifTuE(eitoX) = e Ty (g) :

5. The characteristic function of —X is ¢_x(t) = E(""OX) = px(—t).

dx(—t) = /}R cos(—tX)dPx +i /R sin(—tX)dPx

= / cos(tX)dPx —z'/ sin(tX)dPx, because cos(x) is even and sin(x) is odd.
R R

dx(t), the complex conjugate of ¢px (t).

Since the imaginary part of a complex number x is (v — 7)/2 and ¢x(t) — dx(t) =
2 [ sin(tX)dPx, ¢x(t) is real valued if, and only if, [, sin(tX)dPx = 0. In this case,

—X and X have the same characteristic function.
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6. If there exists a density fx associated with Px, e.g.,

Fx<x) = / fxd)\
(—OOJ?}
such that fx is even, then

0

bx(t) = /}R ¢ fy (a)dz = / &t fy (a)d + / "ty (2)da

0
changing variables in the first integral by setting —y = x,

= [ vy s [T e

00 0

= /OO e fy(x)dx + /OO e fx (v)dx
0 0
= /Oo(em + ") fx(x)dx
0
= /Oo(cos(tx) —isin(tx) + cos(tx) + isin(tx)) fx (z)dz
0
=2 /OO cos(tx) fx (z)dz.
0
Hence, symmetric densities give real-valued characteristic functions.

7. If X andY are independent, then ¢x vy (t) is E(e"X)) = E(e* ) E(e™) = ¢x(t)py (1).

8. Let {X;}j=12,..n be a sequence of IID random variables and S, = Z?Zl X;.

n

B(e) = [ B = (6x, (1))

j=1
Theorem 10.1. Let ¢x(t) be a characteristic function. If E(|X|*) < oo for s =1,2,---
d’ ‘ '
%¢X(t) = /(iX)SetidPX = E((’iX)SeZtX)'
R

Proof. For h # 0 consider

qbX(t + h) - ¢X(t)
h

(E<€i(t+h)X) . E(eitX))

/ei(tJrh)XdPX . / eithPX)
R R

i(tHh) X _ itX

h

=S

€ dPy.

I
T
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Then, for x # 0

ciltth)z _ itz cos(z(t + h)) — cos(tx) N msin(x(t + h)) — sin(tx)

h o h h

Taking limits on both sides as h — 0 we have that
—e'" = lim —————— = —zsin(tz) + iz cos(tz) = iz(cos(tz) + isin(tr)) = ive™”

In addition, |ize™| = (z*sin®*(tx) + 22 cos®(tx))'/* = |z|. Hence, if [, |X|dPx < oo we have
by Theorem 3.15
d . .
Egbx(t) = / (1X)e" dPx = E((iX)e™™).
R

For s = 2,3,--- use the same argument with integrands (iz)*~ e, W
An immediate consequence of this theorem is that 4-¢x(0) = i*E(X*).

Theorem 10.2. For x € R we have

ol _ Z (le!)

k=0

) |x|n+1 2|:L,|n
< min , .
(n+ 11" nl

Proof. Note that for n > 0, z > 0 and integration by parts (Riemann-Stieltjes integrals)

T T _ o\nt+l
/ e (x — s)"ds = / ed (——(x s) )
0 0 n+1

) _ n+1 T _ n+1 }
n+1 0 (n+1)

xn—i—l T (ZL’ - 8)n+1 ]
= ' ——e"ds. 10.1
1l /0 nt1 O (10-1)
For n =0, fo e*ds = x +1 fo )e**ds. By Taylor’s Theorem, with remainder in integral

form, at x =0

e“:1+m+@/ T —s) ’Sds
0

T
=

=1+iz+1 (2| 21 (x — 8)26isd8) using equation (10.1)) with n = 1.
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Repeated substitution of the integral inside the parenthesis gives

. NAL vy in+1 T ‘
elle—i—lx_i_@_i__i_ﬂ_i_l (x_8>n€15d8
2! n! n! Jo

n (Z[L‘)k gl /z ‘
= + (x — s)"e"ds.
; k! n! Jo

Hence,

But,

(10.2)

l.nJrl

n—+1

/ (z — s)"e"ds
0

Thus,
— ()"
k!

‘Z'n—l—l‘ xn—‘rl :L,n—&—l
<

— nl (n+1) (n+1)V

k=0

Now, from equation ((10.1]

n

/ e(z —s)" tds — R i/ (z — s)"e™ds.
0 0

n n

Multiplying by Ll)!, we get

(n—

N0 z VRV 0} n+1 T )
Z—/ e(z —s)" tds — (i) = ! / (x — s)"e"ds.
"o 0

(n—1 n! n!

Hence, using equation ((10.2))

" ‘ 18 n—1 (Zx)n i . (Zx)k
— / e(x —s)" ds — — =" - ;
(n—1"!J, n! k!
and consequently
o — 4 —=2—.
¢ Z Kl = (n=1)!'n nl n!
k=0

Hence, combining the two bounds we have

o n (zx)k ' SCn+1 "
T = G B )

k=0
170
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< [[w—spletias = [ syas = =T
0 0
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A similar argument applies for z < 0 to give,

iw N\~ () O N
o3 | R

k=0
If x = 0 the two sides of the weak inequality coincide. Il

Remark 10.2. 1. Suppose X is a random variable such that E(|X|¥) < oo for k =

1,2,---,n. Then,

ox( = 3 W poen)| =

k=0

E(ez‘tX) _E (Z (k') Xk)

<F ( etX
k=0

o [2rX| [pXx |t
< F | min , )
nl T (n+1)!
Note that,

EGM{%MMWMHMW})SA%WM<WM_QW(wm.

n! (n+1)!

Hence, in this context there is no need to assume that E(|X|"™') exists, only E(|X|™).

2. In the case where E(|X|") exist and, if for allt
tnE(| X"
BT

n—o0 n!

=0

we have ¢x(t) = 1, (k? E(X*).

3. Different bounds can be obtained for the & (min { AX @) pX @I }) = F (min{g(w), h

n! » o (n+1)!

In particular, for any € >0 and A = {w : | X (w)| > €}

E (mm{Q’tX(“”)’n, |tX(“)’n+1}> < /g(w)]AdP+/h(w)IAch

n! (n+ 1)!
< Q‘ti/ |X(w)|”dP—l—ﬂe/|X(w)|”dP

or

E <min{2‘tX<°’)‘”, 'tX(”)|"+l}) _ /g(w)IAdP+/h(w)]Ach

nl (n+1)!
!t\"/ Itl"+1 1
X(w)["dP 4+ ———¢""

4. If X ~ N(u,c?) then E(e™) = ei/“f—%ﬁ,
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The characteristic function for a random vector X € R% is defined as follows.

Definition 10.2. The characteristic function of a random vector X : (Q, F, P) — (R%, BY)

with distribution Fx is the complex valued function
ox(t) = E("X) fort € R%

Remark 10.3. If X ~ N(u,X) where p € R? and X is a d X d matriz, the characteristic

function ng(t) 1S given by E<€itTX) _ eitTﬂ_%tht‘

It follows directly from the definition of a characteristic function ¢ that if F' = G where
F and G are distribution functions, then ¢ associated with F' is identical to the ¢ associated
with G. That is, if two distributions coincide, so do their characteristic functions. The next
theorem establishes that if two characteristic functions are the same they are associated with

the same distribution function.

Theorem 10.3. Let F' and G be two distributions with the same characteristic function.

That 1is,
/ e dF(z) = / e dG(x) for allt € R.
R R

Then, F = G.
Proof. Let F(z) — G(z) = D(z). We need to show that
/ edD(z) =0 forallt € R (10.3)
R

implies D(x) = 0. We first note that D(z) is the difference between two distributions
functions, i.e., two bounded monotone increasing functions. Hence, D(z) is of bounded

variation on RJY} Now, equation (10.3) holds for any trigonometric polynomial

n

T(z) = Z a, e M)E

v=—"n

1See Natanson (1955, The Theory of Functions of a Real Variable, Frederick Ungar Publishing Co., New
York) Theorem 5, p. 239.
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for A € R. Consequently, (10.3) also holds for any function which is the uniform limit of a
trigonometric polynomial 7'(x). Hence, by Weierstrass approximation theorem it also holds
for any continuous periodic function h(z)f

Let g be a continuous function that vanishes outside a bounded interval I, and choose
m > 0 sufficiently large so that I C (—m, m|. Define h,, as a continuous periodic function
of periods 2m such that h,,(x) = g(z) for —m < & < m. Then, equation holds for
hu. Since D is of bounded variation it is possible to choose m sufficiently large so that the

variation of D(z) for |z| > m is arbitrarily small. Hence, the integral

/Rhm(x)dD(x)A/Rg(:c)dD(x) as m — oo.

Thus,

/]Rg(a:)dD(x) = /g(m)dD(g;) 0

I

for every continuous function that is zero outside of I. By the uniform boundedness of g

(continuous on a bounded interval) it follows that

[ st@in@ = [ gapw) =0

provided that a and b are points of continuity of D and that g is continuous for a < z < b.
But then, D(z) must be a constant on its continuity points. Hence, G(x) = F(z) for
x € C(F)NC(G). But since when F' and G coincide on their points of continuity they

coincide everywhere, and the proof is complete. ll
The next theorem gives an explicit representation of F' in terms of ¢.

Theorem 10.4. Let (R, F, ;1) be a finite measure space and ¢(t) = [, e*du(x). For all

a, b € R such that a < b we have

(u(fa}) + p((B1) + pl(a,0)) = 5 Jim [ (7 — e ) o)t

1
2 T T—o0 -T it

2See Natanson (1955) Theorem 4, p. 111.
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—ita

Before presenting the proof of this theorem, we note that that % (e

defined at ¢ = 0. But since lim & (e7#* — e™) = b — a, we define
t—0*

b—a, ift=0,
g(ta a, b) - { % (e—ita _ e—itb) 7 otherwise.

and note that

l9(t; a,b)| =

% (6—ita o e—itb)

b
— / e—itudu
a
Proof. First, we write

/_ig(t;a,b)(b(t)dt /T L_e_tb (/ e dp(x )) dt
_ / / %t(a Do e @t
:/T/]Rg(t;a—x,b—x)du(x)dt.

<b-—aforaltel|-T1T].

— e*”b) is not

(10.4)

(10.5)

From the remarks that precede the proof, we have |g(t;a —z,b—2)| < b—a and Pr% g(t;a—
—

x,b—x) =0b—a for all z € R. Furthermore,

//|g o b— 2)|du(x dt<//b—ad,u b—a//d,u

=2T(b—a)u(R) < oo since pu(R

Hence, by Fubini’s Theorem, we can interchange the integrals in (10.5) and write,

/_ig(t; a,b)(t)dt = /R/_Z — x,b — x)dtdp(x / Fr(z;a,b)du(z

where fr(z;a,b) = f_TTg(t; a—x,b—z)dt. Now,
0 T
fr(x;a,b) :/ g(t;a—x,b—x)dt—i—/ g(t;a —x,b—x)dt
T 0

T
=/ (g(tia— z,b—z) + g(—t;a — 2,b — x))dt
0

_ /0 ! (% sin(t(b — 7)) — %sin(t(a _ x))) dt.
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We note that fOT%sin(tQ)dt = sgn(h) fOTle‘ 2 sin(t)dt, where sgn(6) =11if 0 > 0, =1 if § < 0
and 0 if # = 0. Letting A(T'|0]) := [, Tiel 1 >sin(t)dt we have fr(z;a,b) = 2(sgn(b — z)\(T'|b —
x|) —sgn(a — 2)A(Ta — z[)) and [fr(z; a,0)] < 2(MT1b — z[)| + |MT|a — z)]).

For any 0 < y < M for some M < oo the function y +— A(y) is uniformly continuous
on (0, M) since for any 0 < yo # y such that yo < M we have |A(y) — Ayo)| < |y — vo
given that |7 sin(t)| < 1. Since uniformly continuous functions on bounded sets are bounded,
there exists a constant 0 < C' < oo such that |[A(y)| < C for every y < M. Now, given that
yh_g)lo Ay hm f ssin tdt = 3 [see (Apostol, |1974, p. 286)] we conclude that there exists
y' such that for ally > ¢/, |\(y)| < w/2. Hence, by choosing M > 3/ we have |[\(y)| < C+7r/2
for all y. Hence, for all T, z and pairs a < b, | fr(x;a,b)| < C.

Letting h(t;z,a,b) = %sin(t(b —x))— % sin(¢(a — x)), we note that E}% h(t;x,a,b) =b—a

and that h(t; x, a,b) is continuous on [0, T]. Consequently,
T
fr(z;a,b) = 2/ h(t;x,a,b)dt < oo for all T.
0
Riemann integrability of h(t;x,a,b) on [0, T] implies h(t;z,a,b) € L(R, B, \) and

T
/ h(t;z,a,b)dt = / h(t;z,a,b)d\(t) for all T
0 (0,7

Hence, we have

1 1 0 ifz<aorzxz>hb,
o lim fr(z) = — lim h(t;z,a,b)d\(t) =< 1/2 ifz=aorz=0, (10.7)
e T Jio) 1 if a <z <b.
Since |fr(z;a,b)] < C for all T, a < b and € R, and since u(R) < oo, by Lebesgue’s

dominated convergence theorem,

—hm/foabdu() ZL/]Rhme(xab)du()

2T T—o0 T T—o00

= /]R ([{w:a<az<b} + %]{x:z:a}u{x:x:b}) dM(x)
_ % (n({a}) + u({b})) + pl(a,b)).
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u((0.2])  if e >0,

Remark 10.4. 1. Let F,(x) =< 0 if v =0, be the Stieltjes function associ-
—p((z,0]) if x <0,

ated with . It is right-continuous, increasing and vg,((a,b]) = F,(b) — F,(a) for all

a, b € R with a < b is a measure on (R, B) such that = vg,. Hence, we can always

write,
1 1
§WHMJ+MGHD+u«m®):§<EA)—ggF()+FM® hmF<>)
+ Fu(b) — Fu(a) (10.8)

2. From equation (|10.8) and Theorem 4, if a and b are points of continuity of F,,, then

we can write

F,(b) — F.(a) = L im / l (e7 — e7™) ¢(t)dt.

21 T—oo J_pit

3. Suppose ¢ € L(R,B,N), and let f(z) = 5= [ e ™ (t)dA(t). Then, if {z,}tnen C R,

for every z € R,

Um%ﬂM:%A@m“”%MM'<—/VW—MWIM)
=§Auﬂmw DMIOING =+ [ Lt
where f,(t) = (1~ cos(t(z, — )6, Now since |,(1)] < 26(t) and ¢ <

L(R,B,N), f, € L(R,B,\). In addition, if z, — x as n — oo, lim f,(t) = 0,
n—o0

and consequently, by Lebesque’s dominated convergence theorem,

|f(2n) = f(2)] = = [ tim (1 = cos(t(wn — 2)))|@(t)|dA(t) = 0.

v R n—oo

Hence, for any a,b € R with a < b we have that f is continuous on [a,b] and

therefore Riemann integrable on [a,b]. In addition, |f(x)] < [, le”"[o(t)][dA(t) <
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Jr lo(t)]dA(t) < C < oo for all . Thus, consider

/a f(x)dx:/ab (QL/RG—“%(t)dA(t)) dx

T
1 b
= _/ ¢(t)/ e " dx d\(t), by Fubini’s Theorem

- o (ﬂ“ ‘%vdxw

iat 2

Now, since ¢(t) and —==<"

= are continuous functions on any interval [=T,T], the

T e—tat _ o—ibt
[0 (—ﬁ )

exists. Since, [ o(t) <L_bt> d\(t) = 27rf f(x)dz < 0o, we have

T —mt —1bt —zat —zbt
(5o o

and we write,
T —iat _ ,—ibt
et —e
=—1 t)| —— | dt.
/f S Aim ﬁ“( it )

Hence, if a and b are points of continuity of F,,, then from item 2 of this remark

/fmm=a@—&w.

Riemann integral

Since, f is continuous on |a,bl, fy x)dx is a primitive of f fory € la,b].
That is, the derivative %Fu(y) exists and d—yF#(y) = f(y) for almost ally € (a,b). The
set of points in (a,b) for which this is possibly not true is at most finite. Since, F), is
an increasing function f(y) > 0 for almost all y € (a,b). Then, if pu is a probability
measure on R, lim f: f(x)dx := f_boo f(z)dx = F,(b) = u((—o0, b)) and f is a density

associated with F,.

Corollary 10.1. If u is a probability measure on (R,B) and x is a point of continuity of

the Stieltjes function F),, then
T itz —itx
—t) — t




10.2 A central limit theorem for independent random
variables

Theorem 10.5. Let {X,};—12.. be a sequence of IID random wvariables with E(X;) = p,
V(X;)=0%and S, = Z;;l X
-1¢ _ ~1(¢ _ _
n SUn H _ n (ST; nlu) — Sn ny _d> Z ~ N(O,l)
v 7 Vo
Proof. Without loss of generality take E(X;) = 0 and V(X;) = 1 (otherwise, define Y; =

Zis (Y;) =0, V(Y;) = 1). Then,
Su—nn _ S,
Vo

and by the fact that {X;};=1 .. is IID we have

o5u =8 () =5 () 8 () = (569) = (o0 (7))

Since E(X,) = 0, B(X2) = 1,

o (J5) == Frron- () e
Ox, (Ln) —1+%; <

1 . tXq)? )
= EE (mln {W, |tX1|

Now, min{M \tX1|2} < [tX1* € L, since E(X}) = 1. Also, min{'tXf/Q,]tXl\ }

IN

6nl/29

|tX1|3
6nl/2

— 0 as n — oo. Thus, by Lebesgue’s Dominated Convergence Theorem,

tXi)?
FE (mln{|6n—11/|2,]tX1‘2}) —)O,
; ) 1t2
ond i o, () =1+ 3

Now, note that for i = 1,2,--- ,n and a;,b; € C with |a;], |b;| <1, |T]; a0 — [T, o] <

()2

— 0.

Z?:l |ai — bl‘ Then,

() -1

<n
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Since (1 — %%) — e 2" we see that ¢57a(t> — ¢(t) = e"2'". Then, by Theorem [10.3| it

must be that Z ~ N(0,1). B

Remark 10.5. We observe that if the sequence of random wvariables {X;}iew is heteroge-

neously distributed with p; = E(X;) and V(X;) = 02 < oo, then
Sh X .
E <;> (Zt 1 t) Z,ut?
Sn Z?zl Xt 1 - 72’L

Let Yy, = 2214 and note that E(Yy,) = 0 and V(Yy,) = E(Yt%) = L B(X, — )? Then,

2
Sn

=1
n?2 ¢

s S Xemp) | S (o) X sy

Sn

Theorem 10.6. Let {Y},}i—12...n be an independent triangular array of random variables

with E(Yy,) =0, 07, :=V (Vi) = 2 E(Xy — w)? with Y., o7, = 1. Then, if

lim / Y2dP =0
for all € > 0, we have that S, = S-" Yy, 5 N(0,1).

Proof. We must show that |¢g, () —e 2¥| = )H?Il by (N) — T2, e~2M%in| = 0asn — oo,

since Y i, 02 = 1. Now,

1432 1 1 _1y2,2
65,00 — ¢4 = ([T o) — [T~ a20) + [[(1 — a2 — [[ o

e —1—2z| = izfj"—l—z:z 7 zQi
=0 J° =2 I i




But |z| <1/2, SOZ 00+2,_Z]02j G < 3 ZJOQJZ

Also, note that by Lindeberg’s condition
2 2 2 2 2 2
O = E(lvin<a V) + Elpn>aYe) < € + E(Ipi,>aY5) — €

as n — 00. Since € can be made arbitrarily small lim maxo? = 0.
n—ool<t<n
Letting z = —3X?07, and taking n to be sufficiently large we can make |z| < 1/2. Hence,

Tin < >opy |0vin (A) — (1 — 2X%02,)|. Using item 3 in Remark [10.2] for n = 2, we have

1 2 2 . |/\ tn|3 2
oy, (N) — 1—5)\ o;, || < E | min 3 | AY ]

< XB(VG I, 150) + g APEB(V2).

Thus,

D o, (N) - (1- 5)\20t2n)| <N BV Iy sa) + 6|)‘|3€Z‘7t2n
t=1 — <
= )‘QiE(’Ytn\zIﬂY >e}) + EP\\?’G — 61’)\‘3, as n — 0o,
— tn 6 6

since >, E (|Yin|*I{jvin>ey) — 0 by Lindeberg’s condition. Now, for T, we have

n n

T2n = H 6_%>\2a?n - H( - _>‘2O-tn)

t=1 t=1

1 u 1
< 24 2 2 _ 14 2
< 4)\ (1r£1ta<>;am)20m 4)\ (1r£1ta<>;am) — 0,

completing the proof. l

Remark 10.6. We observe that

lim ZE(|Ym\2+5) =0 for some § >0 = lim /Y | Y2dP =0,
t tn|>€

n—0o0 n—oo
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for all e > 0. This is easily verified by noting that

EYu*" > E (L, 5e|Yu|*™°) for all e >0
> 6(SE(I\lex|Ytn|2)'
Hence, Y 1 | E(|Yin*™) > € Y0 | E(Iiy,>e|Yin|?). Letting n — oo, we have, for fived e,
Jin 3 Bl =0 = lim 3 Bl Yinl?) =0

The requirement that lim, e Y 1 E(|Yin|*™®) = 0 is called Lyapounov’s condition. Note

that

n

1 n
> B+ = Y [t — s DB - P
t=1 n t=1

and E|X; + (—pe) [0 < 2B X270 + | — we|*°).  This inequality is a special case of

2+6 |2+5

. a E’Xt — Mt
- Z 8%4-5

t=1

Loéve’s c,.-Inequality, which states that for m finite, r > 0

E() X)) < e ) EIX)|", where ¢, = { . Z.fr -
t=1 t=1

m ifr>1

So, B| Xy — |70 < 2O B X |20 4 210 |20 If B X120 and |pe|*T° < C uniformly in t,

2
then Y 1| B|¥k el AR QH = < " < oo, ifinf, 22 > 0.

n n

Consequently, we have that zf > 0 uniformly in n and E|X|**°, |u|**° < oo uniformly

in t, Liapounov’s condition holds. By consequence, Lindeberg’s condition holds.

Theorem 10.7. (Lévy’s Continuity Theorem) Let {F,}new be a sequence of distribution
functions in R with F,, = F (F,, converges pointwise to F for every point of continuity of
F), where F is any non-negative, bounded, non-decreasing, right-continuous function. Let

{bn}nen be the sequence of characteristic functions for F,. If
On(t) — @(t) where ¢(t) is continuous att =0,

F' s a distribution function and ¢ is its characteristic function.
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Proof. See Billingsley (1986, Probability and Measure, Chapter 5). B

The following theorem allows the use of the central limit theorems we studied to obtain
the asymptotic distribution of random vectors. It os known in Statistics as the Cramér-Wold

device.

Theorem 10.8. Let {X,},—012.. be a sequence of random vectors taking values in RX.
Then, for any A € RX
ATX, 5 ATX, & X, 5 X,

Proof. It X,, % X,
e, (x) = B(e™ ") = g, (at) = ox, (xt) = dyry, (x)

which shows that AT X, <% AT X.

If ATX,, % AT X, then

dx, (1) = B %) = g1y, (1) = durx, (1) = ¢ (@)

which shows that X, A Xo. 1
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