
Chapter 3

Measurable functions

In this chapter we will define measurable functions and study some of their properties. We

start with the following definition.

Definition 3.1. Let (X,F) and (E, E) be two measurable spaces. A function f : (X,F) !

(E, E) is said to be F � E measurable if for all A 2 E, f�1(A) 2 F .

Remark 3.1. 1. Since f�1(E) is a �-algebra, measurability of f is equivalent to stating

that f�1(E) ⇢ F . It is standard notation to write �(f) := f�1(E) and call this �-algebra

the �-algebra generated by f .

2. If X := ⌦, (⌦,F , P ) is a probability space and f is F � E measurable, we say that

f is a random element. If, in addition, (E, E) := (R,B(R)) we will refer to f :

(⌦,F , P ) ! (R,B(R)) as a random variable. We will normally represent random

elements or random variables by uppercase roman letters, e.g., X or Y .

The next theorem shows that measurability of a function f can be established by ex-

amining inverse images of sets in a collection that generates the measurable sets associated

with the co-domain of f .

Theorem 3.1. Let C be a collection of subsets of E such that �(C) = E . Then, f : (X,F) !

(E, E) is F � E measurable () f�1(C) ⇢ F .
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Proof. ( =) ) Assume f is F�E measurable. f measurable () for all A 2 E , f�1(A) 2 F .

In particular, let A be an element of C, then f�1(A) 2 F , hence f�1(C) ⇢ F .

((=) Assume that f�1(C) ⇢ F , i.e., f�1(C) 2 F , for all C 2 C. We must prove that 8A 2 E ,

f�1(A) 2 F (or f�1(E) ⇢ F). Let G = {A 2 E : f�1(A) 2 F} and by construction C ⇢ G.

If G is a �-algebra, then �(C) = E ⇢ G. Also, by construction G ⇢ E , hence E = G, which is

what must be proven.

We need only show that G is a �-algebra. Consider a sequence A1, A2, · · · 2 E such that

f�1(Ai) 2 F , i.e., A1, A2 · · · 2 G. Then, since E is a �-algebra,
S
i2N

Ai 2 E . And since

f�1

✓S
i2N

Ai

◆
=

S
i2N

f�1(Ai), which is the union of elements in F , f�1

✓S
i2N

Ai

◆
2 F .

Now, if A 2 E is such that f�1(A) 2 F , i.e., A 2 G, then Ac 2 E and f�1(Ac) =

f�1(E)� f�1(A) = X� f�1(A) which is in F . Hence G is a �-algebra. ⌅

Example 3.1. Let A4 = {(�1, a] : a 2 R} be the collection A4 in Remark 1.2.4. Since

�(A4) = B(R),

X : (⌦,F , P ) ! (R, �(A4) = B(R))

is a random variable if, and only if, X�1(A4) ⇢ F . Equivalently we can state X is a random

variable if, and only if, X�1((�1, a]) = {! 2 ⌦ : X(!)  a} 2 F 8 a 2 R.

The next theorem shows that continuous functions are measurable.

Theorem 3.2. Let O1 and O2 be collections of open sets associated with X1 and X2. If

f : (X1, �(O1)) ! (X2, �(O2)) is continuous, then f is measurable.

Proof. f�1(O2) ⇢ O1 by continuity. But O1 ⇢ �(O1). Thus, by Theorem 3.1, f is measur-

able. ⌅

The composition of measurable functions is measurable.

Theorem 3.3. Let f : (X,F) ! (X1,F1) and g : (X1,F1) ! (X2,F2) be measurable

functions. Let (g � f) : (X,F) ! (X2,F2). Then, (g � f) is F � F2 measurable.
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Proof. Let F2 2 2X2 .

(g � f)�1(F2) = {x 2 X : g(f(x)) 2 F2} = {x 2 X : f(x) 2 g�1(F2)}

= {x 2 X : x 2 f�1(g�1(F2))}.

If F2 2 F2, and given that g is measurable, g�1(F2) 2 F1. Since f is measurable, f�1(g�1(F2)) 2

F . Hence, (g � f) is F � F2 measurable. ⌅

The next theorem shows that measurable functions can be used to transfer measures

between spaces.

Theorem 3.4. Let (X,F , µ) be a measure space, (E, E) be a measurable space and f : X! E

be a F � E measurable function. Then,

m(E) := µ(f�1(E)) for all E 2 E

is a measure on (E, E).

Proof. We verify the two defining properties of measures. First, note that if E = ;, m(;) =

µ(f�1(;)) = µ(;) = 0 since µ is a measure. Second, if {En}n2N is a pairwise disjoint

collection of sets in E then

m

✓
[

n2N
En

◆
= µ

✓
f�1

✓
[

n2N
En

◆◆
= µ

✓
[

n2N
f�1(En)

◆
=

X

n2N

µ(f�1(En)) =
X

n2N

m(En),

where the next to last equality follows from the fact that µ is a measure and the last equality

follows from the definition of m. ⌅

Example 3.2. Let (X,F , µ) := (⌦,F , P ), (E, E) := (R,B(R)), and f := X : (⌦,F , P ) !

(R,B(R)) then PX(B) := P (X�1(B)) is a measure on B(R).

The measurability of real valued functions can be characterized differently. In Example

3.1 it is shown that a function f : (X,F) ! (R,B(R)) is said to be F � B(R) measurable
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if for all a 2 R, the set Sa = {x 2 X : f(x)  a} 2 F . But since Sa 2 F and F is a

�-algebra, Sc

a
2 F . Hence, f is measurable if Sc

a
= {x 2 X : f(x) > a} 2 F . Also, consider

Sc

a�1/n = {x 2 X : f(x) > a � 1/n} and let S 0

a
=

T
n2N

{x 2 X : f(x) > a � 1/n} = {x 2

X : f(x) � a}. Clearly, by the properties of �-algebras S 0

a
2 F . Hence, f is measurable if

{x 2 X : f(x) � a} 2 F . Since, {x 2 X : f(x) < a} = {x 2 X : f(x) � a}c, measurability

could also be defined in terms of {x 2 X : f(x) < a}.

Example 3.3. 1. Let f : X ! R, such that for all x 2 X, f(x) = c, c 2 R. Let a 2 R

and consider Sc

a
= {x 2 X : f(x) > a} = {x 2 X : c > a}. If a � c, Sc

a
= ;, and if

c > a, Sc

a
= X. Since �-algebras always contain ; and X, f(x) = c is measurable.

2. Let E 2 F (F a �-algebra). Recall that the indicator function of E is

IE(x) =

(
1 if x 2 E

0 if x /2 E

If a � 1, Sc

a
= ;; if 0  a < 1, Sc

a
= E; if a < 0 Sc

a
= X. Since X, ; 2 F (always) and

E 2 F by construction, IE is measurable.

3. Let X = R and F = B(R). If f is monotone increasing, i.e., 8 x < x0, f(x)  f(x0),

f is measurable. Note that in this case, Sc

a
= {x : x > y for some y 2 R} = (y,1) or

Sc

a
= {x : x � y} = [y,1), which are Borel sets.

Theorem 3.5. Let f and g be measurable real valued functions and let c 2 R. Then,

cf, f 2, f + g, fg, |f | are measurable.

Proof. If c = 0, cf = 0 is a constant and consequently, measurable. If c > 0, then {x 2 X :

cf(x) > a} = {x 2 X : f(x) > a/c} 2 F . Similarly for c < 0. If a < 0, {x 2 X : (f(x))2 >

a} = X and X 2 F . If a � 0, {x 2 X : f 2(x) > a} = {x 2 X : f(x) > a1/2 or f(x) <

�a1/2} = {x 2 X : f(x) > a1/2}[ {x 2 X : f(x) < �a1/2}. The first set in the union is in F

by assumption (f is measurable) and the second is in F by the comments following Example

3.2.
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Now, g(x) + f(x) > a =) f(x) > a � g(x) which implies that there exists a rational

number r such that f(x) > r > a � g(x). Hence, {x 2 X : g(x) + f(x) > a} = [
r2Q

{x 2

X : f(x) > r} \ {x 2 X : g(x) > a � r}. Since the rational numbers are countable [
r2Q

is countable. Since f and g are measurable, and unions of countable measurable sets are

measurable {x 2 X : g(x) + f(x) > a} 2 F . Note that �f = (�1)f . Hence if f is

measurable, �f is also measurable and so is f + (�g) = f � g.

Now, fg = 1/2[(f + g)2 � (f 2 + g2)]. Since f 2, g2, f + g, f � g and cf are measurable, if

f, g are measurable, so is fg.

Lastly, {x 2 X : |f(x)| > a} = {x 2 X : f(x) > a or f(x) < �a} = {x 2 X : f(x) >

a} [ {x 2 X : f(x) < �a} = {x 2 X : f(x) > a} [ {x 2 X : �f(x) > a}. Since f and �f

are measurable, {x 2 X : |f(x)| > a} 2 F . ⌅

Recall that if {xn}n2N is a sequence of real numbers

lim inf
n!1

xn := sup
k2N

inf
j�k

{xj} and lim sup
n!1

xn := inf
k2N

sup
j�k

{xj}.

Theorem 3.6. Let fi(x) : X ! R for i = 1, 2, · · · be measurable. Then sup{f1, · · · , fn},

inf{f1, · · · , fn}, sup
n

fn, inf
n

fn, lim sup
n

fn and lim inf
n

fn are all measurable functions.

Proof. Let h(x) = sup{f1(x), · · · , fn(x)}. Then, Sa = {x 2 X : h(x) > a} = [n

i=1{x :

fi(x) > a}. Consequently, since fi is measurable, Sa 2 F . Similarly if g(x) = sup
n2N

fn(x),

Sa = {x 2 X : g(x) > a} =
S
n2N

{x : fn(x) > a} 2 F . The same argument can be made for

inf. Since lim sup
n!1

fn = inf
n�1

sup
k�n

fk, lim sup fn is measurable. The same for lim inf
n!1

fn. ⌅

Definition 3.2. Let i 2 I an arbitrary index set and fi : (X,F) ! (Xi,Fi) be F � Fi

measurable. If G ⇢ F is a �-algebra, we say that fi is measurable with respect to G if

�(fi) ⇢ G. The smallest �-algebra G that makes all fi measurable with respect to G is

�

✓S
i2I

f�1
i

(Fi)

◆
and is denoted by �(fi : i 2 I).
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3.1 Exercises

1. Suppose (⌦,F) and (Y,G) are measure spaces and f : ⌦ ! Y. Show that: a)

If�1(A)(!) = (IA � f)(!) for all !; b) f is measurable if, and only if, �({f�1(A) :

A 2 G}) ⇢ F .

2. Show that for any function f : X ! Y and any collection of subsets G of Y,

f�1(�(G)) = �(f�1(G))

3. Let i 2 I where I is an arbitrary index set. Consider fi : (X,F) ! (Xi,Fi).

(a) Show that for all i, the smallest �-algebra associated with X that makes fi mea-

surable is given by f�1
i

(Fi).

(b) Show that �
✓S

i2I

f�1
i

(Fi)

◆
is the smallest �-algebra associated with X that makes

all fi simultaneously measurable.

4. Let X : (⌦,F , P ) ! (S,BS) where S ⇢ Rk and BS = {B \ S : B 2 Bk} be a random

vector with k 2 N, and g : (S,BS) ! (T,BT ) be measurable where T ⇢ Rp with p 2 N.

If Y = g(X), show that

(a) �(Y ) := Y �1(BT ) ⇢ �(X) := X�1(BS),

(b) if k = p and g is bijective, �(Y ) = �(X).
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