Chapter 4

Integration

4.1 Simple functions

Often, it is necessary to use the symbols —oo or oo in calculations. In these cases we work
with the extended real line, i.e., R := RU{—00} U {oo} = [—00,0]. Functions that take
values in R are called numerical functions. The Borel sets associated with the extended
real line are denoted by B := B(R) and are defined as the collection of sets B such that
B = BUS where B € B(R) and S € {0, {—00}, {oo}, {—00,00}}. It can be verified that B is
a o-algebra and that B(R) = RNB(R) := {RUB : B € B(R)}. In addition, B is generated

by a collection of sets of the form [a, 00| (or (a, ], [-00,al, [-00,a)) where a € R.
Theorem 4.1. B = o(C), where C := {[a,00] : a € R} .

Proof. Let C := {[a,oc] : @ € R} and G := ¢ (C). Note that since [a, 0] = [a,00) U {o0},
[a,00] € B and C C B. Then, since B is a o-algebra o(C) := G C B. Now, let C; =
{la,b) : —00 < a < b < oo} and note that [a,b) = [a,00] — [b,00] € G. Hence, C; C G and
o(C1) = B(R) C G since G is a o-algebra.
Note that {0} = () [, 0], {—o0} = [ [-00,—n) = ) [-n, 0] and, consequently,
neN neN neN

{o0},{—00c} € G. Then, for all B € B(R) and S € {0,{—o0}, {oo}, {—00,0}} we have
BUS € G, showing that BC G. B
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Let (X, F) and (R, B) be measurable spaces. Since the indicator function of a measurable
set is a measurable function, it follows from Theorem [3.5] that if {A;}"_, with n € N is a

pairwise disjoint collection in F and a; € R for j = 1,--- ,n, the linear combination
fla) =Y ajl(x) (4.1)
j=1
is a F — B-measurable function.

Definition 4.1. A real-valued function on a measurable space (X, F) is said to be simple if

it has the representation (4.1). A standard representation of a simple function is given by
flz) = ZajIAj (z) with ag = 0 and Ag = (Uj_; A;)°. (4.2)
j=0

Remark 4.1. 1. If f: (X, F) — (R, B) is measurable and takes on finitely many values,
say {a;}j_, then it is a simple function. To see this, note that B; = {x : f(z) = a;} is
measurable, since B; = {z : f(z) < a;} —{x : f(z) < a;} and f is measurable. Also,

note that the collection {B;}}_, is pairwise disjoint. Hence,

f(z) = Z a;jlp,(z) = Z il f(2)=a;} (T). (4.3)

J=1

Conwversely, if f is simple it takes on finitely many values.

2. Representation (4.2)) is not unique, but a simple function has at least one representation
such as (4.2)) .

The next theorem shows that certain functions of simple functions are simple functions.

Theorem 4.2. Let f : (X, F) — (R,B) and g : (X, F) — (R, B) be simple functions. Then,
fEg,cf forc>0, fg, fT =max{f,0}, f~ = —min{f,0} and |f| are simple functions.
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4.2 Integral of simple functions

Definition 4.2. Let f : (X, F,u) — (R, B) be a non-negative simple function with standard

representation (4.2)). The integral of f with respect to u, denoted by fx fdu, is given by
[ fin =Y ajuta) € 0,00 (4.4)
X s

By definition a; € R for j = 0,1,--- ,n, but since p takes values in [0, oo] we can have
fx fdu = oo. If p is a finite measure, e.g., a probability measure P, then it must be that
fx fdpu € R. When X := ) an outcome space, f := X is a random variable and p := P
is a probability measure we write Ep(X) := [, XdP and call it the expectation of X given
probability P.

It will be convenient, in the case of simple functions, to write 1,(f) := fx fdu.

Remark 4.2. Since the representation (4.2)) is not unique, for uniqueness, the definition
of integral requires that it be invariant to the representation used. To see this, suppose that

fx) =30 gaila;(x) = 3 g bilp, (x). Then, X = Uj_yA; = Ui By and

Since p is finitely additive and the sets in the above unions are disjoint we have that

Yoau(A) =D a; > p(A;NBy) =YY au(A; 0 By).
j=0 j=0 k=0 j=0 k=0

Similarly,
k=0 k=0  j=0 §=0 k=0

But a; = by whenever A; N By # 0, and when A; N By = 0, p(A; N By) = 0. Thus,
ajp(A; N By) = bpp(A; N By) for all pairs (j,k), and I1,(f) is invariant to the representation

of the simple function.
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Theorem 4.3. Let f : (X, F,u) = (R,B) and g : (X, F, ) — (R, B) be simple non-negative

functions. Then,
1. [efdu=c[fdp for ¢ >0 and [Igdu = p(E) for E € F.
X X X
2. [(f+9)du= [fdu+ [gdp,
X X X

3. If for E € F, we define m(E) = [ fIpdu, then m is a measure on F.
X

4- [ <g = [fdu< [gdp.
X X

Proof. For 1., note that ¢ > 0 = c¢f > 0 with representation cf(z) = Z;L:O ca;lq,; ().
Therefore, [ cfdp = 377 caju(A;) = ¢y i gaju(A;) = ¢ [ fdu. For the second part,
note that Ip(z) = Ig(x) + 0Ipe(x). Hence, [Ipdp = p(E).
For 2., let f(x) = > 7 a;la,(x) and 3;(3:) = > bl (x). Then, f(z)+ g(z) =
> =0 2ol + bi)la;np, () With (A; N By) N (Ay N By) = 0 whenever (j,k) # (5, k).
Then,
/X(f+g)du = ZZ aj + bg)(Aj N By)

]OkO
n

= ZGJZ’MA ﬂBk Zb Z (A ﬂBk)
J=0 =0 j=0
= Zagu +Zbku (B,

since X is the union of both {A;} and {By}. Then, by definition [, (f + g)du = [ fdu +

Jx gdp.
For 3., note that f(x)Ig(z) = > 7_;a;jla,np(x). From parts 2. and 1.,

E) = / Jedp = Zaj / Ia,ne(x)dp = Zaj,u(Aj NE).
X Jj=0 @ J=0

But ;1(A;NE) is a measure, and we have expressed m(E) as a linear combination of measures

on F, hence m is a measure on F.
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For 4., write g = f + (g9 — f). Note that g — f is simple and non-negative since g > f.

Hence, I,(g9) = 1,(f) + I.(9 = f) = 1,(f). W

4.3 Integral of non-negative functions

We start with the following fundamental theorem.

Theorem 4.4. Let f: (Q,F) — (R, B) be a non-negative measurable function. Then, there

exists a sequence , : (2, F) — (R, B) of simple non-negative functions such that:
1. pp(w) < vpi1(w), for allw € Q and n € N

2. lim ¢, (w) = f(w), for allw € Q.

n—o0

Proof. 1. For each n =1,2,--- define the sets

27’L 7 27‘L 27L

B - {wEQ:zﬁnSf(w)<2ﬁn+2%}=f_l([ﬁﬁ—l—i))fork:zo,l,---,nQ"—l
S {weQ: f(w)>n} = f[n,oo]) for k =n2".

For each n, the sets {Ej,, : K =0,1,--- ,n2"} are disjoint by construction, belong to F since
f is measurable and Up2 By, = Q. Now, let

n2m
k

Pule) = 5T ()

k=0

Fix w € 1 and for any n € IN we note that w € Ej, ,, for some ky. By definition

50 if kg =0,1,---,n2" —1
Pn(w) = . n
n if kg = n2".
First, let kg € {0,1,-- ,n2"—1} and consider n+1. The lower bound on [’2‘“—2, 5—2—1—2%) must co-

incide with %, which gives k = 2ko. Thus, Ey 41 = Eoggnt1 = f! ([ 2k 2ko 4 2n1+1)) =

2n+l7 2n+l
F7([55 55 + zr)) and

— k’o 1 k?() 2 _ ko 1 k?o 1
Eiiint1 = Boggrinsr = f ! ([2—n + onil’ o0 + ﬁ)) =f ! ([2—n + ol gn + 2—n) )
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Consequently, Ei, ,, = Eipni1UEprin11 = Eoggnt1 U Eoggt1nt1- I w € Eopgnp1 C By, then

i1 (W) = 22 and @41 (W) — Pp(w) = 220 — 42 = 0. Alternatively, if w € Eajys1,,41 then

Pni1(w) = 22 and g, (w) — pn(w) = 2ol — 2o — L5 (. Consequently, if w € Ej,

then 90n+1(w) - cpn(w) > 0.
Second, if kg = n2" then Ey, , = f~([n, 00]). Now, ifw € f~!([n+1, 00]) then ¢, 1 (w) =

n+ 1 and ¢,(w) = n. Consequently, ¢, 1(w) — @p(w) =1> 0. Ifw € f~([n,n + 1]) then

n(w) = n and @uy1(w) = 557 if w € f7H (557, 557 + 507)). Setting the lower bound

of the interval equal to n gives k = n2"™ and ¢,41(w) = nif w € f([n,n + 5257)),

giving @n1(w) — en(w) = 0. If w € f7H([n + 5, m + z27)) then pnp(w) = "Z5H

and consequently ¢,41(w) — ¢n(w) = 55 > 0. Continuing in this fashion for subsequent

sub-intervals of [n,n + 1] gives ¢,11(w) — pn(w) > 0.

2. From item 1, we have that ¢1(w) < @o(w) < -+ < f(w) forallw € Q. Hence, lim ¢, (w) =
n—oo

sup o, (w). But 0 < f(w) — pp(w) < 55 and taking limits as n — oo we have f(w) =

nelN 2"
lim ¢, (w) = sup pp(w). W
nelN

n—oo

Definition 4.3. Let f : (X, F,u) — (R,B) be a non-negative measurable function. The
integral of f with respect to p is given by
/ fdp = sup/ @(z)dp = sup I,(p) € [0,00], (4.5)
X ¢ JX ©

where the sup is taken over all simple functions ¢ which are non-negative satisfying o(x) <

f(z) for all z € X.
Remark 4.3. If f is a non-negative simple function [y fdu = I,(f).

Theorem 4.5. (Beppo-Levi Theorem) Let (X, F,u) be a measure space and {f;}jen be
an increasing sequence of mon-negative measurable functions f; : (X, F) — (R,B). Then

f =supf; s a non-negative measurable function and

jEN
/fdp ::/supfjdp:sup/ fidp.
X X jeN JEN JX
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Proof. That f is a non-negative measurable function follows from Theorem [3.6, Note that

if g and h are non-negative measurable functions, we have by definition that

/ gdp = sup/ wdp where ¢ < g, ¢ a simple function.
X ¢ Jx

But if g < h,

/gd,ufsup/ gpd,u:/ hdy where ¢ < h.
X ¢ Jx X

Now, f; < f :=supf;. By the monotonicity of integrals, which we just established,

JEN
[ tidn< [ sn

Taking sup on both sides gives sup [ fidu < [ fdp.
jEN jEN
Now, we establish the reverse inequality, i.e., sup fx fidp > fx fdu. Let o(x) be a simple
jEN

non-negative function such that ¢ < f. If we can show that

o) = [ edn <sup [ fan (4.6)
X jEN Jx

we will have the desired inequality since we can take sup over all simple functions on both

sides of (4.6) to give
sup [ pdui= [ fdu <su [ fid
X X X

¥ JeN
Let ¢ be a simple non-negative function such that ¢ < f. Since f(z) := supf;(z), for every
jEN
r € X and € € (0,1), there exists N, such that

[i(z) > ep(x) whenever j > N, ).

Now, if A; = {z : fi(z) > ep(x)} we note that the sets A; increase as j — oo since

fi < fo---. Furthermore, these sets are measurable by measurability of f; and ¢. By

definition of A;
L, ()p(e) < I (2)f,(@) < fy(w) (4.7
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Since ¢ is a simple function it has a standard representation ¢(z) = >\ vl (z) and
EIA]' <I> Z yi]Bi (l‘) =€ Z inBiﬂAJ‘ (l‘)
i=0 i=0

Thus, the integral of the simple function in this expression is given by €Y ", y;u(B; N A;).
By monotonicity of integrals and using we have

G;ym(& NA;) < /ijdu < ?lelnlg/xfjdu-
Since ¢ < f, the collection {A;} grows to X as j — oo. Thus, by the fact that  is continuous
from below

u(B;i N Aj) (B NX) = u(B;) as j — 0o

and

ey yin(B;) = e/ pdu < sup/ fidp.
X X

i=0 JeN

Now, just let € be arbitrarily close to 1 to finish the proof. l

Remark 4.4. 1. If we take f; = ¢; where ¢; are non-negative simple functions and

f =supyj, then
JEN

/fdu=sup/ pjdp.
X JeEN JX

Note that sup can be replaced with lim .

J]—00

2. If E € F, then Ig(x)f(x) is a non-negative measurable function if f > 0. We define

/Efd,u:/X[Efdﬂ- (4.8)

Theorem 4.6. Let (X, F, 1) be a measure space and f, g : (X, F,u) — (R, B) be numerical

non-negative measurable functions. Then
1. [afdp=affdp fora>0,
X X
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2. [(f+g)dp = [fdu+ [gdp,
X X X
8. IfE,FeF and ECF, then [, fdu < [, fdu.
Proof. 1. If a > 0, let ¢, be an increasing sequence of measurable non-negative simple
functions converging to f (such sequence exists by Theorem [4.4). Then, ayp,, is an increasing
sequence converging point wise to af. By Theorem 4.5/ and the fact that I,(ay,) = al, ()

/afd,u = lim /agondp = a lim /gon(w)du = a/fdu
n—oo n—oo
X X

X X

2. Let ¢,,1, be non-negative increasing simple functions converging to f and g. Then

©n + 1, 18 an increasing sequence converging to f 4+ g. Again, by Theorem

/(f +g)dp = lim [ (¢, + ¥,)dp by Beppo-Levi’s Theorem

n—00
X X

= lim [ p,dp+ lim / Ypdp by Theorem
n—oo
X

n—00
X

= /fdu + /gd,u. by Beppo-Levi’s Theorem
X X

3. Since f is non-negative fIgp < fIp therefore

/E fdp = 4 fIpdp < 4 flpdy = /F fdu.

Corollary 4.1. Let {f;};en be a sequence of measurable non-negative numerical functions,

ie., fi: (X, F,pu) = (R,B). Then, > 52y fj is measurable and

Proof. Let Sy, = >0, fj, S = lim >, f; = 377, f; and note that 0 < S < Sy < ---.
m—00
Then, by Theorem [4.6]3 we have that

Spndu = /fd
/X M;X]M
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Taking limits as m — oo and using Theorem we have

lim Spmdp = lim Z/ fjd,uZZ/ fdeZ/ SdM:/ (ny) dp.
m—oo [y m—>oc>j:1 X /X X X \j=1
|

Theorem 4.7. (Fatou’s Lemma): Let {f;}jen be a sequence of measurable non-negative

numerical functions f; : (X, F,u) — (R,B). Then, f :=liminff; is measurable and
j—o0

/fdugliminf/ fidp.
X J7reo Jx

Proof. First, f is measurable by Theorem [3.6] Let g, = inf{f,, foi1,---} forn =1,2,---,

and note that g1 < f1, g1 < fo,-+-. Also, g2 < fo, go < f3--+. Thus, g, < f; for all n < j.
Furthermore, g; < go < ---. Now, recall that f := liminf f; := sup inf f; and
j—roo nelN j=n

lim g, = liminf f; := f.

n—oo j—o0

Also, [y gndp < [ fidp for all n < j and

/ gndp < liminf / fidp.
X I Jx

i h liminf f;, by Th 4.
Since the sequence g, 1 im in fi, by eorem

lim gndu:/ fdugliminf/ fi(w)dp.
X X J7ee Jx

n—oo

4.4 Integral of functions

Let f: (X, F,u) = (R,B) be a measurable numerical function and f* = max{f,0} and
fﬁ = _min{fv O}
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Definition 4.4. Let f : (X, F,u) — (R, B) be a measurable numerical function such that

fx ftdu < oo and fx f~du < oo. In this case, we say that f is u-integrable and we write

/X Fp = /X [y - /X fdn

We note that [y fdu € R and denote by Lg the set of integrable real functions and Lg
the set of integrable numerical functions. A non-negative function f is said to be integrable
if, and only if, [ fdu < co. If (X, F,p) := (R",B",A\"*) we call [, fd\" the Lebesgue
integral.

Theorem 4.8. Let f : (X, F,u) — (R,B) be a measurable function. Then, the following

statements are equivalent:
1. feLg,
2. |fl € Lg,
3. there exists 0 < g € Ly such that |f| < g.

Proof. (1 = 2) Since, |f| = f* 4 f~ and since integrability of f implies [ fTdu < oo
and [ f~dp < oo we have [ |fldu = [ fTdu+ [ [~ dp < oo.

(2 = 3) Just take g = |f|.

(3 = 1) Since fT < |f| < gand f~ <|f| < g, we have by the monotonicity of the integral

of non-negative functions and the integrability of g that f*, f~ € Lg. Hence, f € L. R

Theorem 4.9. Let Let f : (X, F, ) — (R, B) be a measurable function and assume that p

1s a finite measure. Then,
/|f|du<oo s Ve>036>0 9/ flIwdp < e ¥E 5 p(E) < 6.
X X

Proof. (<) Let A, = {x : |f(z)| < b} for b > 0. Since X = A, U Aj, choose b such that

p(Ag) < 6. Then, since u(A§) < ¢ and p is finite
Jstdn= [ A5idnes [ Ui < ba(a) + e < o
X A, Ag
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(=) Since [ |fldp < oo, for any € > 0, there exists b > 0 such that [y [f[Iacdp < e

Now, for any measurable set F,
E=AUA)NE=(ANE)U(ANE)C (A UE)UA;.

Hence, I < layomyoas = Laur) + Lag, where the equality follows from the fact that the

two sets in the union are disjoint. Then,

J Pttedn < [ 7\t [ 17\ < bu(E) + € < 2
X X X

where the last inequality follows if u(£) <0 = 7. W

Theorem 4.10. Let f, g : (X, F,u) — (R, B) be measurable functions such that f,g € Ly

and a € R. Then,
1. af € Ly and [ afdp=a [ fdu,
2. (f+9) € Ly and [((f +9)dp = [y fdu+ [y gdp,
3. max{f, g}, min{f, g} € L,
4. if f < g then [ fdu < [ gdp.
Proof. Homework. Use Theorems [4.8 and [4.6 W
Remark 4.5. Note that

/de,u‘ﬁ /Xf+du‘+ /Xf_d#’:/ijLd’u+/Xf_d'u:/X(fJFJrf_)d/‘:/XUWM-

Theorem 4.11. Let f : (X, F,u) = (R, B) be a non-negative measurable function such that

f €Ly and
m(E) = / fdu for all E € F.
E

Then, m is a measure on F.
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Proof. Since f >0, m(E) > 0. If E =0, then fIr =0 and

m(@)Z/wfd,u:/XfI@du:/XOdu:O.

Now, let {E;}jen be a disjoint collection of sets in F such that U2, F; = E and let

fn(x) = Z?:l f(I)IE] (I’) By Theorem fx fndu = Z?:l fx fIE]d,u ThUS, fX fnd:u =
> -1 m(Ej). Note that f; < fo <--- and converges to fIp. Hence, by Theorem Iﬂ

/fIEd,u— hm/fndu—gl_{go Zm
|

Remark 4.6. 1. Suppose X : (Q, F,P) — (R, B(R)) is a random variable and Py is the
probability measure induced by X on B(R) as in Ezample . Then, in Theorem
letting (X, F,u) = (R, B(R), Px), we conclude that

mx(B) = /dePX for all B € B(R)

is a measure on B(R). In particular, if B = (—o0,z] for x € R, mx((—o0,z]) =

Jsow fdPx

2. m is called the measure with density function f with respect to p and is denoted by
m = fu. If m has a density with respect to p it is traditional in mathematics to
write dm/du for the the density function. We note that with a little more work we can

recognize f as the Radon-Nikodym derivative of m with respect to the measure .

4.5 Exercises

1. Prove Theorem 4.2.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in

Definition 4.3 is equal to 1,(f).
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3. Let (X, F) be a measurable space and {, }new be a sequence of measures defined on

it. Noting that p = > 4 is also a measure on (X, F) (you don’t have to prove

[ tan=3 [ rn,

nelN

this), show that

for f non-negative and measurable.

4. Let (X, F,u) be a measure space and f : (X, F,u) — (R,B) be measurable and

non-negative. For every F' € F consider [ Irfdu. Is this a measure?

5. Let (2, F, P) be a probability space and {F, },en C F.

(a) Prove that it p, = liminf I, and Dimsup r, = limsup Ix,.
n— oo n—oo

n—oo n—oo

(b) Prove that P <lim inf Fn> < liminf P(F,).

n—oo n—o0

n—oo n—o0

(¢) Prove that limsup P(F,) < P (lim sup Fn>.

70



	Probability spaces
	-algebras
	The structure of R and its Borel sets
	Measures
	Properties and characterization of measures

	Null sets and complete measure spaces
	Independence of events and conditional probability
	Exercises

	Construction of probability measures
	 systems, Dynkin systems, semi-rings and -algebras
	Uniqueness of measures
	Existence of measures - Carathéodory's Extension Theorem
	Lebesgue measure on (Rn,B(Rn))
	Distribution functions and probability measures on (R,B(R))
	Exercises

	Measurable functions
	Exercises

	Integration
	Simple functions
	Integral of simple functions
	Integral of non-negative functions
	Integral of functions
	Exercises

	Lebesgue's convergence theorems and Lp spaces
	Convergence theorems
	Lp spaces
	Stieltjes measure
	Abstract and Riemann integrals

	Independence of random variables
	Product measures
	Random elements

	Convergence of random variables
	Convergence almost surely and in probability
	Convergence in Lp 
	Convergence in distribution

	Laws of large numbers
	Conditional expectation
	Inner product spaces
	Conditional expectation for random variables in L2(,F,P)
	Conditional expectation for random variables in L(,F,P)
	The Radon-Nikodým Theorem

	Central limit theorems
	Characteristic functions
	A central limit theorem for independent random variables

	Estimation of Parametric Statistical Models
	Set algebra


