
Chapter 6

Independence of random variables

We want to speak of independence of random variables, but all we have is the notion of

independence of events. Recall that X : (⌦,F , P ) ! (R,B) is a random variable if 8B 2 B,

X�1(B) 2 F , or equivalently, from a notational perspective X�1(B) ⇢ F . In addition,

Example 1.1.4 shows that X�1(B) is a �-algebra associated with ⌦. Hence, it is appropriate

to refer to X�1(B) as a sub-�-algebra of F . As a mater of terminology, we refer to X�1(B)

as the �-algebra generated by X and it is common to write �(X) := X�1(B).

Before we proceed with the notion of independence of random variables we establish the

following theorem, which shows that it is possible to interchange the inverse image and the

generation of the �-algebra of a collection of subsets.

Theorem 6.1. Let X : (⌦,F , P ) ! (T, �(C)) and C a class of subsets of T . Then,

X�1(�(C)) = �(X�1(C)).

Proof. From Example 1.1.4 X�1(�(C)) is a �-algebra associated with ⌦. Since C ⇢ �(C),

X�1(C) ⇢ X�1(�(C)) and consequently �(X�1(C)) ⇢ X�1(�(C)).

For the reverse of the last set containment, first define U := {U 2 2T : X�1(U) 2

�(X�1(C))}. By definition of U , X�1(U) ⇢ �(X�1(C)) and if C 2 C, X�1(C) 2 �(X�1(C)).

Hence, C ⇢ U and X�1(C) ⇢ X�1(U) ⇢ �(X�1(C)). Then, if U is a �-algebra we have that

�(C) ⇢ U and X�1(�(C)) ⇢ X�1(U) ⇢ �(X�1(C)).
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We now show that U is a �-algebra. First, T 2 U since X�1(T ) = ⌦ 2 �(X�1(C)).

Second, if U 2 U , then X�1(U) 2 �(X�1(C)) and (X�1(U))c = X�1(U c) 2 �(X�1(C)),

showing that U c 2 U . Third, if {Ui}i2N ⇢ U , then X�1(Ui) 2 �(X�1(C)) for all i 2 N,

which implies that
S
i2N

X�1(Ui) = X�1

✓S
i2N

Ui

◆
2 �(X�1(C)), showing that

S
i2N

Ui 2 U , and

completing the proof. ⌅

Earlier, we defined a finite collection of events {Ei}ni=1 ⇢ F for 2  n 2 N as being

independent if

P

✓
\
j2J

Ej

◆
=
Y

j2J

P (Ej) for any J ⇢ I = {1, · · · , n}. (6.1)

We extend this definition of independence to sub-�-algebras of a probability space and to

random elements.

Definition 6.1. Let 2  n 2 N and {Ci}ni=1 be a collection of classes of events. That is, each

Ci contains events associated with the probability space (⌦,F , P ). The collection {Ci}ni=1 is

said to be independent if for any Ei 2 Ci we have that {Ei}ni=1 is an independent collection

of events.

This definition motivates the following:

Definition 6.2. Let I = {1, · · · , n}, 2  n 2 N and (⌦,F , P ) be a probability space. Then,

(a) Sub-�-algebras Fi of F with i 2 I are independent if for every J ⇢ I and all Ei 2 Fi

P

✓
\
j2J

Ej

◆
=
Y

j2J

P (Ej),

(b) Random variables Xi : (⌦,F , P ) ! (R,B) for i 2 I are independent if the sub �-

algebras �(Xi) := X�1
i

(B) are independent.

As a matter of notation, whenever two �-algebras F1 and F2 are independent we write

F1 ?? F2. Similarly, whenever two random variables X1 and X2 are independent we write

X1 ?? X2.
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Remark 6.1. Recall that by definition X�1(B) = {! : X(!) 2 B}. Hence, when we write

P (X 2 B) we mean P (X�1(B)), for B 2 B.

The following theorem provides a criterion for establishing the independence of �-algebras.

Theorem 6.2. Let (⌦,F , P ) be a probability space. For i = 1, · · · , n and n 2 N let Ci be a

non-empty collection of events satisfying:

1. Ci is a ⇡-system,

2. {Ci}ni=1 is an independent collection.

Then, {�(Ci)}ni=1 is an independent collection.

Proof. First, let n = 2. In this case we need to consider C1 and C2. Choose an arbitrary

A2 2 C2 and let E = {A 2 F : P (A \ A2) = P (A)P (A2)}. E is the collection of events that

are independent of A2. Now, note that:

1. P (⌦ \ A2) = P (A2) = P (⌦)P (A2) since P (⌦) = 1. Thus, ⌦ 2 E .

2. Suppose A 2 E . Note that

P (Ac \ A2) = P ((⌦� A) \ A2)) = P (A2 � (A \ A2)) = P (A2)� P (A \ A2)

= P (A2)� P (A)P (A2) since A 2 E

= P (A2)(1� P (A)) = P (A2)P (Ac).

Thus, if A 2 E we have that Ac 2 E .

3. If {An}n2N ⇢ E is a pairwise disjoint collection

P

  
[

n2N

An

!
\ A2

!
= P

 
[

n2N

(An \ A2)

!

=
X

n2N

P (An \ A2) since the sets in the union are disjoint

=
X

n2N

P (An)P (A2) = P (A2)P

 
[

n2N

An

!
since the sets An are in E .
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Thus, if {An}n2N ⇢ E is a pairwise disjoint collection, we have that
S
n2N

An 2 E .

Since 1-3 are the defining properties of a Dynkin system, we conclude that E is a Dynkin

system. Note also that, by assumption, C1 is independent of C2, every A1 2 C1 is in E . Thus,

C1 ⇢ E . By Theorem 2.3, since C1 is a ⇡-system E � �(C1) = �(C1).1 Thus, all the events in

�(C1) are in E and we can conclude that �(C1) is independent of C2. We can also conclude,

by the symmetry of the argument, that �(C2) is independent of C1.

Now, repeat the argument above by choosing an arbitrary A2 2 �(C2). Then, E is a

Dynkin system, and by the fact that �(C2) is independent of C1 we have that C1 ⇢ E and, as

above, �(C1) ⇢ E . Consequently, �(C1) is independent of �(C2).

If n = 3, we need to consider �(C1), �(C2), �(C3) and establish that for any Ai 2 �(Ci):

1. P (\3
i=1Ai) =

Q3
i=1 P (Ai), 2. P (Ai \ Aj) = P (Ai)P (Aj) for 1  i < j  3. By

assumption {Ci}3i=1 forms an independent collection. Hence, using the arguments for n = 2,

the conditions in item 2 are met. We now verify item 1.

Fix A2 2 C2, A3 2 C3 and consider E = {A1 2 F : P (\3
i=1Ai) =

Q3
i=1 P (Ai)}. Then,

P (⌦ \ A2 \ A3) = P (A2 \ A3)

= P (A2)P (A3) by independence of C2 and C3

= P (⌦)P (A2)P (A3) since P (⌦) = 1.

Hence, we conclude that ⌦ 2 E . Now, let A 2 E . Then,

P (Ac \ A2 \ A3) = P (A2 \ A3)� P (A \ A2 \ A3)

= P (A2 \ A3)� P (A)P (A2)P (A3) since A 2 E

= P (A2)P (A3)� P (A)P (A2)P (A3) by independence of C2 and C3

= P (Ac)P (A2)P (A3).

1�(C1) is the smallest Dynkin system generated by C1.
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Hence, Ac 2 E . Now, let {An}n2N ⇢ E be pairwise disjoint. Then,

P

  
[

n2N

An

!
\ A2 \ A3

!
= P

 
[

n2N

(An \ A2 \ A3)

!

=
X

n2N

P (An \ A2 \ A3) since {An}n2N is pairwise disjoint

=
X

n2N

P (An)P (A2)P (A3) since An 2 E .

Hence,
S
n2N

An 2 E . Thus, E is a Dynkin system. Since {Ci}3i=1 is an independent collection,

A1 2 C1 =) A1 2 E . Hence, �(C1) = �(C1) ⇢ E . Thus, {�(C1), C2, C3} forms an independent

collection. Now, fix A1 2 �(C1) and A2 2 C2. Define E = {A3 2 F : P (A3 \ A1 \ A2) =

P (A3)P (A1)P (A2)}. E is a Dynkin system and A3 2 C3 =) A3 2 E since {�(C1), C2, C3}

forms an independent collection. Hence, �(C3) = �(C3) ⇢ E . Thus, {�(C1), C2, �(C3)} forms

an independent collection. Lastly, fix A1 2 �(C1) and A3 2 �(C3). Define E = {A2 2 F :

P (A2 \ A1 \ A3) = P (A2)P (A1)P (A3)}. E is a Dynkin system and A2 2 C2 =) A2 2 E

since {�(C1), C2, �(C3)} forms an independent collection. Hence, �(C2) = �(C2) ⇢ E . Thus,

{�(Ci)}3i=1 forms an independent. Repeated use of this argument establishes that {�(Ci)}ni=1

is an independent collection. ⌅

Definition 6.3. Let I be an arbitrary index set (not necessarily finite or even countable).

The collection {Ci}i2I is independent if for each finite I ⇢ I, the collection {Ci}i2I is inde-

pendent.

Given Definition 6.3, we have the following corollary to Theorem 6.2.

Corollary 6.1. Let {Ci}i2I be a collection of non-empty independent ⇡-systems. Then,

{�(Ci)}i2I is an independent collection.

Theorem 6.3. Let {Fi}i2I be an independent collection of �-algebras, S be an index set,

{Is}s2S be a pairwise disjoint collection of subsets Is ⇢ I and

FIs = �

 
[

i2Is

Fi

!
.
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Then, {FIs}s2S is an independent collection of �-algebras.

Proof. Suppose S is finite. Define CIs :=

⇢T
t2T

Bt : Bt 2 Ft, T ⇢ Is, T finite
�

. If C,C 0 2 CIs ,

then

C \ C 0 =

 
\

t2T⇢Is

Bt

!
\
 
\

t2T⇢Is

B0

t

!
=

\

t2T⇢Is

(Bt \ B0

t
) where Bt, B0

t
2 Ft.

But since Ft is a �-algebra, Bt \ B0

t
2 Ft, establishing that CIs is a ⇡-system. Now, let

C 2 CIs and C 0 2 CIs0 for any s 6= s0, s, s0 2 S. Then,

P (C \ C 0) = P

0

@
 
\

t2T⇢Is

Bt

!
\

0

@
\

t2T 0⇢Is0

B0

t

1

A

1

A =
Y

t2T⇢Is

P (Bt)
Y

t2T 0⇢Is0

P (B0

t
) = P (C)P (C 0),

where the penultimate equality follows from independence of {Fi}i2I and the fact that

{Is}s2S is a pairwise disjoint collection. The last equality follows from independence of

{Fi}i2I and the definition of C and C 0. Hence, {CIs}s2S forms an independent collection of

⇡-systems.

Now, note that if C 2 CIs , C =
T
t2T

Bt where Bt 2 Ft, T ⇢ Is. Hence, Bt 2
S
t2T

Ft ⇢
S
t2Is

Ft

and consequently Bt 2 FIs = �

✓ S
s2Is

Fs

◆
. But since FIs is a �-algebra, it is closed under

countable intersections, and we conclude that C 2 FIs . Hence, CIs ⇢ FIs and

�(CIs) ⇢ FIs (6.2)

Also, setting T = {t}, we have that CIs contains Bt for t 2 Is. Hence, �(CIs) � Bt for t 2 Is.

Since, �-algebras are closed under countable unions, �(CIs) �
S
t2Is

Bt and we conclude that

�(CIs) � �

 
[

t2Is

Bt

!
= FIs . (6.3)

By the set containments in 6.2 and 6.3 we conclude that �(CIs) = FIs . Hence, by Theorem

6.2 we have that {FIs}s2S is an independent collection of �-algebras. Given Definition 6.3

and Corollary 6.1 the index set S can be arbitrary, completing the proof. ⌅
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Example 6.1. Consider a collection {Xi}i2N of independent random variables. Then, by

definition {�(Xi)}i2N is an independent collection of �-algebras. Let S = {1, 2}, I1 =

{1, · · · , n} and I2 = {n+ 1, n+ 2, · · · }. Then,

�(X1, · · · , Xn) := �

 
n[

i=1

Fi

!
?? �

 
[

i>n

Fi

!
:= �(Xn+1, · · · ).

Since for all i = 1, · · · , n, Xi is such that �(Xi) ⇢ �(X1, · · · , Xn),these random variables are

all �(X1, · · · , Xn)� B measurable. Hence,
P

n

i=1 Xi is �(X1, · · · , Xn)� B measurable. Sim-

ilarly, for any n1 2 N,
P

n+n1

i=n+1 Xi is �(Xn+1, · · · , Xn+n1)� B measurable, and consequently

nX

i=1

Xi ??
n+n1X

i=n+1

Xi.

Definition 6.2 can be naturally expanded in accordance to Definition 6.3 to accommodate

an arbitrarily indexed collection of random variables. We now provide some characterizations

for independence of random variables.

Definition 6.4. Let {Xi}i2I be a collection of random variables defined on the probability

space (⌦,F , P ). For any finite I ⇢ I, the finite dimensional distribution function (fddf) is

given by

FI(xi, i 2 I) = P

 
\

i2I

{! : Xi(!)  xi}
!

for xi 2 R. (6.4)

Theorem 6.4. The collection {Xi}i2I of random variables defined on the probability space

(⌦,F , P ) is independent if, and only if, for all finite I ⇢ I we have

FI(xi, i 2 I) =
Y

i2I

P ({! : Xi(!)  xi}) for xi 2 R. (6.5)

Proof. From Definition 6.3 it suffices to show that for an arbitrary finite I ⇢ I the collection

{Xi}i2I is independent if, and only if, equation (6.5) holds.

((=) Let Ci := {{! : Xi(!)  x}, x 2 R} := {X�1
i

((�1, x]), x 2 R} and note that these

are subsets of ⌦. Furthermore,
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1. Ci is a ⇡-system since

{! : Xi(!)  x} \ {! : Xi(!)  y} = {! : Xi(!)  min{x, y}}.

2. Recall that �({(�1, x], x 2 R}) = B. By Theorem 3.1 Xi is a random variable

(X�1
i

(B) ⇢ F) if, and only if,

{X�1
i

((�1, x]), x 2 R} = Ci ⇢ F .

Hence,

�(Ci) = �({X�1
i

((�1, x]), x 2 R})

= X�1
i

(�({(�1, x], x 2 R})) by Theorem 6.1

= X�1
i

(B) := �(Xi).

Now, equation (6.5) implies that {Ci}i2I is independent collection, therefore, by Theo-

rem 6.2, the collection {�(Ci) = �(Xi)}i2I is independent. Consequently, by definition,

{Xi}i2I is an independent collection of random variables.

(=)) This follows directly from the definition of independence. ⌅

Remark 6.2. 1. It follows directly from Theorem 6.4 that a finite collection of random

variables {Xi}ni=1 is independent if, and only if,

P (\i2I{! : Xi(!)  xi}) =
Y

i2I

P ({! : Xi(!)  xi}), for all I ⇢ {1, · · · , n}.

2. If each Xi has a density {Xi}ni=1 are independent if, and only if,

P (\i2I{! : Xi(!)  xi}) =
Y

i2I

Z

(�1,xi]

fXid�.
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6.1 Random elements

The most common cases where we deal with random elements occur when the co-domain of

the element is endowed with a metric, so that the co-domain is a metric space.

Definition 6.5. Let X : (⌦,F , P ) ! (T, T = �(O)), where O are the open sets in T . Then,

X is a random element if

X�1(B) 2 F for all B 2 T .

In this definition, T is the collection of Borel sets of T and we write B(T ). The following

examples include definitions.

Example 6.2. Let X : (⌦,F , P ) ! (Rk,B(Rk)) where k 2 N. Then X is a random vector

if X�1(B) 2 F for all B 2 B(Rk). Now, define dE : Rk ⇥ Rk ! [0,1) as dE(x, y) =
⇣P

k

i=1(xi � yi)2
⌘1/2

. It can be easily verified that dE is a metric on Rk.

Example 6.3. Let m : R2 ! R be given by m(x1, x2) = |x1�x2|

1+|x1�x2|
. Clearly, from the

definition of m, m � 0, m = 0 if, and only if, x1 = x2 and m(x1, x2) = m(x2, x1). To verify

that m(x1, x2)  m(x1, z) +m(z, x2) we note that |x1 � x2| = m(x1,x2)
1�m(x1,x2)

. Since |x1 � x2| =

|x1 � z + z � x2|  |x1 � z|+ |z � x2|, we have

m(x1, x2)

1�m(x1, x2)
 m(x1, z)

1�m(x1, z)
+

m(z, x2)

1�m(z, x2)
.

Let c = m(x1, x2), a = m(x1, z) and b = m(z, x2). Then, c

1�c
 a

1�a
+ b

1�b
= a+b�2ab

(1�a)(1�b) and

a+ b � c

1� c
(1� a)(1� b) + 2ab = � c

1� c
(a+ b) +

c

1� c
+

1

1� c
(2ab� abc) .

Then,
a+ b

1� c
� c

1� c
+

1

1� c
(2ab� abc) () a+ b � c+ ab(2� c).

Since 0  m  1, ab(2� c) � 0 and c  a+ b. Hence, m(x1, x2)  m(x1, z)+m(z, x2). This

shows that m is a metric on R2.
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Now, consider a space of sequences {xi}i2N where xi 2 R for all i and define m1 :

R1⇥R1 ! R as m1 ({xi}i2N, {yi}i2N) = lim
n!1

P
n

j=1
1
2jm(xj, yj) = lim

n!1

Sn. Since 0  S1 

S2  · · · is a monotonic sequence, it converges if, and only if, it is bounded. Boundedness

follows from the fact that |Sn| 
P

n

j=1
1
2jm(xj, yj) 

P
n

j=1
1
2j 

P
1

j=1
1
2j = 1. Hence, the

limit in the definition of m1 exists and 0  m1  1. If m1 ({xi}i2N, {yi}i2N) = 0 then it

must be that m(xj, yj) = 0 for all j, which implies xj = yj for all j. Clearly, if xj = yj for

all j we have m1 ({xi}i2N, {yi}i2N) = 0.

Since m(xj, yj)  m(xj, zj) +m(zj, yj) we have

nX

j=1

2�jm(xj, yj) 
nX

j=1

2�jm(xj, zj) +
nX

j=1

2�jm(zj, yj).

Taking limits on both sides as n ! 1 gives m1 ({xi}i2N, {yi}i2N)  m1 ({xi}i2N, {zi}i2N)+

m1 ({zi}i2N, {yi}i2N). Hence, m1 is a metric in the space of infinite sequences.

Alternatively, we can define µ1 : R1 ⇥R1 ! R as

µ1 ({xi}i2N, {yi}i2N) = lim
n!1

nX

j=1

1

2j

P
j

i=1 |xi � yi|
1 +

P
j

i=1 |xi � yi|
= lim

n!1

nX

j=1

1

2j
uj({xi}ji=1, {yi}

j

i=1)

= lim
n!1

Sn.

As in the case of m1, 0  S1  S2  · · · and |Sn|  1. Hence, 0  µ1  1 and

µ1 = 0 if, and only if, xi = yi for all i. Now, write S1(x1, y1) = 1
2m(x1, y1) and since

m(x1, y1)  m(x1, z1) + m(z1, y1) we have that S1(x1, y1)  S1(x1, z1) + S1(z1, y1). Now,

suppose

Sn ({xi}ni=1 , {yi}
n

i=1)  Sn({xi}ni=1 , {zi}
n

i=1) + Sn({zi}ni=1 , {yi}
n

i=1).
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Then,

Sn+1

�
{xi}n+1

i=1 , {yi}n+1
i=1

�
=

n+1X

j=1

1

2j
uj({xi}ji=1, {yi}

j

i=1) = Sn ({xi}ni=1 , {yi}
n

i=1)

+
1

2n+1
un+1({xi}n+1

i=1 , {yi}n+1
i=1 )

 Sn ({xi}ni=1 , {zi}
n

i=1) + Sn ({zi}ni=1 , {yi}
n

i=1)

+
1

2n+1
un+1({xi}n+1

i=1 , {yi}n+1
i=1 )

Following the same arguments used for m, we have

1

2n+1
un+1({xi}n+1

i=1 , {yi}n+1
i=1 ) 

1

2n+1
un+1({xi}n+1

i=1 , {zi}n+1
i=1 ) +

1

2n+1
un+1({zi}n+1

i=1 , {yi}n+1
i=1 )

=
1

2n+1

P
n+1
i=1 |xi � zi|

1 +
P

n+1
i=1 |xi � zi|

+
1

2n+1

P
n+1
i=1 |zi � yi|

1 +
P

n+1
i=1 |zi � yi|

.

Hence,

Sn+1

�
{xi}n+1

i=1 , {yi}n+1
i=1

�
 Sn ({xi}ni=1 , {zi}

n

i=1) + Sn ({zi}ni=1 , {yi}
n

i=1)

+
1

2n+1

P
n+1
i=1 |xi � zi|

1 +
P

n+1
i=1 |xi � zi|

+
1

2n+1

P
n+1
i=1 |zi � yi|

1 +
P

n+1
i=1 |zi � yi|

= Sn+1({xi}n+1
i=1 , {zi}n+1

i=1 ) + Sn+1({zi}n+1
i=1 , {yi}n+1

i=1 ).

Hence, by induction, and taking limits we have µ1 ({xi}i2N, {yi}i2N)  µ1 ({xi}i2N, {zi}i2N)+

µ1 ({zi}i2N, {yi}i2N).

Example 6.4. Let X : (⌦,F , P ) ! (R1,B(R1)) where R1 = ⇥1

n=1R and B(R1) = �(C)

with C = {C : C = ✓�1
i
(B), B 2 Bi, ✓i(x) = (X1, · · · , Xi) : R1 ! Ri, i 2 N}. Then X

is a random sequence if X�1(B) 2 F for all B 2 B(R1) and d : R1 ⇥ R1 ! [0,1) is

d(x, y) =
P

1

i=1
1
2i

⇣ Pi
j=1 |xj�yj |

1+
Pi

j=1 |xj�yj |

⌘1/2
is the metric on R1.

Remark 6.3. 1. Let X 2 Rk be a random vector and f : Rk ! R be measurable. Then,

h : (⌦,F , P ) ! (R,B) with h(!) = f(X(!)) = (f �X)(!) is a random variable since

compositions of measurable functions are measurable by Theorem 3.3. In particular the
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result follows if f is continuous. That is, real valued continuous functions of random

vectors are random variables.

2. In 1, if f(X) = ⇡i(X) = Xi and X is random vector then Xi is a random variable for

i = 1, · · · , k.

Theorem 6.5. X 2 Rk is a random vector () Xi is a random variable, where Xi is the

ith component of X.

Proof. ( (= ) Suppose Xi is a random variable for i = 1, · · · , k. Let Rk = I1 ⇥ · · · ⇥ Ik,

where Ii = [ai, bi) are intervals in R. Then,

X�1(Rk) = {! : Xi(!) 2 [ai, bi) 8 i}

= {! : X�1
i

([ai, bi)) 8 i} = \k

i=1X
�1
i

(Ii).

Since Xi is a random variable, X�1
i

(Ii) 2 F . Furthermore, since F is a �-algebra, it is closed

under intersections, and X�1(Rk) 2 F . The other direction of the equivalence follows from

the previous remark. ⌅

Remark 6.4. 1. Theorem 6.5 extends to X = {X1, X2, · · · }. That is, X is a random

sequence if, and only if, each Xi is a random variable. Furthermore, X is a random sequence

if, and only if, (X1 · · ·Xk) is random vector for any k.

2. X�1((�1, a1]⇥ · · ·⇥ (�1, ak]) 2 F and we write P (X�1((�1, a1]⇥ · · ·⇥ (�1, ak])) =

P �X�1(⇥k

i=1(�1, ai]) = PX(⇥k

i=1(�1, ai]).

Also, if there exists a non-negative Borel measurable function fX : Rk ! R that satisfies

PX(⇥k

i=1(�1, ai]) =

Z

C(a)

fXd�
k,

where C(a) = ⇥k

i=1(�1, ai] and a = (a1 · · · ak)T , we call fX the “joint density” of X. Natu-

rally, the joint distribution function associated with X is

FX(a) : R
k ! [0, 1],
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where FX(a) = P (C(a)) for a 2 Rk. We can write C(a) = \k

i=1{! : Xi(!)  ai}. That

{! : Xi(!)  ai} is an element of F follows from Theorem 6.5.

Theorem 6.6. Consider two random variables X1, X2 : (⌦,F , P ) ! (R,B). X1 and X2 are

independent if, and only if, one of the following holds:

a) P ({X1 2 A1} \ {X2 2 A2}) := P (X 2 A1, X 2 A2) = P (X1 2 A1)P (X2 2 A2), for all

A1, A2 2 B,

b) P (X1 2 A1, X2 2 A2) = P (X1 2 A1)P (X2 2 A2), for all A1 2 A1, A2 2 A2, where

A1,A2 are ⇡ systems which generate B,

c) f(X1) and g(X2) are independent for each pair (f, g) of measurable functions,

d) E(f(X1), g(X2)) = E(f(X1))E(g(X2)) for each pair of (f, g) of bounded measurable

(or non-negative measurable) functions.

Proof. First, note that X1 and X2 independent means that �(X1) = X�1
1 (B) and �(X2) =

X�1
2 (B) are independent. That is, for all A1, A2 2 B,

P (X�1
1 (A1) \X�1

2 (A2)) = P (X�1
1 (A1))P (X�1

2 (A2))

() P (X1 2 A1, X2 2 A2) = P (X1 2 A1)P (X2 2 A2).

[a) =) b)] Since A1 generates B and A2 generates B, A1 ⇢ B and A2 ⇢ B, and if a) is true

for all A1 2 B, A2 2 B, then b) is true.

[b) =) a)] Let C1 = {A 2 B : P (X1 2 A,X2 2 A2) = P (X1 2 A)P (X2 2 A2) for a

given A2 2 A2}. From the proof of Theorem 6.2, C1 is a Dynkin system. A1 ⇢ C1 and

�(A1) = �(A1) = B ⇢ C1. Analogously, C2 = {A 2 B2 : P (X1 2 A1, X2 2 A) = P (X1 2

A1)P (X2 2 A) for a given A1 2 A1} is such that �(A2) = �(A2) = B ⇢ C2. Consequently,

b) =) a).
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[c) =) a)] The identity function is measurable, therefore take f(x) = g(x) = x

[a) =) c)] For concreteness, let f : (R,B) ! (Mf ,Mf ) and g : (R,B) ! (Mg,Mg).

f measurable implies that for all M 2 Mf , f�1(M) 2 B. But X1 a random variable

implies that X�1
1 (f�1(M)) 2 F which we can write as (X�1

1 � f�1)(M) 2 F . In addition,

X�1
1 (f�1(M)) := (X�1

1 �f�1)(M) 2 X�1
1 (B). Analogously, X�1

2 (g�1(M 0)) = X�1
2 �g�1(M 0) 2

X�1
2 (B), for all M 0 2 Mg. But by a) X�1

1 (B) and X�1
2 (B) are independent. Therefore f(X1)

and g(X2) are independent.

[d) =) a)] Let f = IA1 and g = IA2 . Then,

f(X1) =

(
1 if X1 2 A1

0 if X1 62 A1

and g(X2) =

(
1 if X2 2 A2

0 if X2 62 A2.

with E(f(X1)) = P (X1 2 A1) and E(g(X2)) = P (X2 2 A2). By d)

E(f(X1)g(X2)) = P ({X1 2 A1} \ {X2 2 A2}) = P (X1 2 A1)P (X2 2 A2).

Hence, d) =) a).

[a) =) d)] From the implication [d) =) a)] we see that if f, g are indicator functions

in d) E(f(X1)g(X2)) = P ({X1 2 A1} \ {X2 2 A2}), which by independence a) is P (X1 2

A1)P (X2 2 A2) = E(f(X1))E(g(X2)).

Now, suppose f and g are simple functions of X1 and X2. Then,

f(X1) =

kfX

i=0

af
i
I
{X12A

f
i )}

and E(f(X1)) =

kfX

i=0

af
i
P (X1 2 Af

i
),

g(X2) =

kgX

i=0

ag
i
I{X22A

g
i )}

and E(g(X2)) =

kgX

i=0

ag
i
P (X2 2 Ag

i
)

Consequently,

E(f(X1)g(X2)) = E

0

@
kfX

i=0

kgX

j=0

af
i
ag
j
I
{X12A

f
i }\{X22A

g
j }

1

A

=

kfX

i=0

kgX

j=0

af
i
ag
j
P (X1 2 Af

i
)P (X2 2 Ag

j
) by independence

= E(f(X1))E(g(X2)) (6.6)
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Now, let f be a measurable non-negative function such that {fn}n2N are simple functions

increasing to f and g is non-negative and simple. Then,

E(f(X1)g(X2)) = E
⇣
lim
n!1

fn(X1)g(X2)
⌘

= lim
n!1

E(fn(X1)g(X2)) by Lebesgue’s Monotone Convergence Theorem

= lim
n!1

E(fn(X1))E(g(X2)) by equation (6.6)

= E(f(X1))E(g(X2)) by Lebesgue’s Monotone Convergence Theorem
(6.7)

Now, let f be non-negative and let {gn}n2N be non-negative simple functions increasing to

g measurable and non-negative. Then,

E(f(X1)g(X2)) = E
⇣
f(X1) lim

n!1

gn(X2)
⌘

= lim
n!1

E(f(X1)gn(X2))

= lim
n!1

E(f(X1))E(gn(X2)) by equation (6.7)

= E(f(X1))E(g(X2))

Finally, let f = f+ � f� be bounded and measurable and g bounded and non-negative.

E(f(X1)g(X2)) = E([f+(X1)� f�(X1)]g(X2))

= E(f+(X1)g(X2))� E(f�(X1)g(X2))

= E(f+(X1))E(g(X2))� E(f�(X1))E(g(X2))

= E(f(X1))E(g(X2)).

To complete the proof, repeat the last argument for g = g+ � g�. ⌅

6.2 Exercises

1. Let X1, X2 2 L2 and define Cov(X1, X2) = E([X1 � E(X1)][X2 � E(X2)]). Show

that Cov(X1, X2) = E(X1X2)� E(X1)E(X2) and that if X1 and X2 are independent

Cov(X1, X2) = 0.
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2. Let {Xn}n2N be a sequence of random variables that are independent and share the

same continuous distribution. Let p be a permutation of {1, · · · , n} for n 2 N. Show

that (X1, · · · , Xn) and (Xp(1), · · · , Xp(n)) have the same distribution.

3. Let I be a finite index set and consider the collection of �-algebras {Bi}i2I . Show

that this collection is independent if, and only if, for every choice of non-negative

Bi-measurable random variable Xi, we have E
�Q

i2I
Xi

�
=
Q

i2I
E(Xi).

4. If E is an event that is independent of the ⇡-system P and E 2 �(P ), then P (E) is

either 0 or 1.

5. Let {Ai}ni=1 be independent events. Show that P ([n

i=1Ai) = 1�
Q

n

i=1 P (Ac

i
).

6. We have proved that if X and Y are independent, then f(X) and g(Y ) are independent

if f and g are measurable. Is it possible to have X and Y are dependent and f(X)

and g(Y ) are independent? If so, give an example, if not, prove.
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