
Chapter 9

Conditional expectation

9.1 Inner product spaces

There are several ways to introduce the notion of conditional expectation. We begin by

introducing inner-product spaces and motivate a definition of conditional expectation by

using the Projection Theorem.

Definition 9.1. A real vector space X is called an inner-product space if for all x, y 2 X,

there exists a function hx, yi, called an inner-product, such that for all x, y, z 2 X and a 2 R1

1. hx, yi = hy, xi

2. hx+ y, zi = hx, zi+ hy, zi

3. hax, yi = ahx, yi, a 2 R

4. hx, xi � 0, for all x

5. hx, xi = 0 () x = ✓, where ✓ is the null vector in X.

The following theorem shows that a general version of the Cauchy-Schwarz Inequality

holds for inner-product spaces.
1
If the vector space X is associated with a complex field, property 1 becomes hx, yi = hy, xi, where for

x 2 C, x̄ is the complex conjugate of x, and in property 3 a 2 C.
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Theorem 9.1. Let X be an inner-product space and x, y 2 X. Then,

|hx, yi|  hx, xi1/2hy, yi1/2.

Proof. Let y 6= ✓ and note that for all a 2 R,

0  hx� ay, x� ayi = hx, xi � 2ahx, yi+ a2hy, yi

 hx, xi � hx, yi2
hy, yi by letting a = hx, yi/hy, yi.

The last inequality is equivalent to hx, yi2  hx, xihy, yi or |hx, yi| = hx, xi1/2hy, yi1/2. Lastly,

if y = ✓ then the inequality holds with equality and hx, ✓i = 0. ⌅

It can be easily shown that the function k · k : X! [0,1) defined as kxk = hx, xi1/2 is a

norm on X. Thus, every inner-product space can be taken to be a normed space with this

induced norm. Another important property in inner-product spaces is the Parallelogram

Law, which is given in the next theorem.

Theorem 9.2. In an inner-product space kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2.

Proof. kx+ yk2 = hx+ y, x+ yi = hx, xi+ hy, yi+ 2hx, yi and kx� yk2 = hx� y, x� yi =

hx, xi+ hy, yi � 2hx, yi. Hence, we obtain

kx+ yk2 + kx� yk2 = 2kxk2 + 2kyk2.

⌅

Example 9.1. Let x, y 2 Rn and define hx, yi =
P

n

i=1 xiyi. It can be easily shown that

hx, yi is an inner-product for Rn and hx, xi1/2 = kxk = (
P

n

i=1 x
2
i
)1/2 is a norm.

Example 9.2. Consider the space L2(⌦,F , P ) of random variables X : (⌦,F , P ) ! (R,B)

such that
R

⌦

X2dP < 1. By Theorem 5.10.1 XY 2 L(⌦,F , P ) and by Theorem 5.10.3
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L2(⌦,F , P ) is a vector space. Now, define hX, Y i = E(XY ) =
R

⌦

XY dP . Using the prop-

erties of integrals, conditions 1-4 in Definition 9.1 are easily verified. However, condition 5

does not hold. Whereas it is true that X(!) = 0 for all !, the null vector in L2(⌦,F , P ),

gives hX,Xi =
R

⌦

X2(!)dP = 0,
R

⌦

X2(!)dP = 0 does not imply X(!) = 0 for all !. This

is true since a random variable Z that takes non-zero values in sets of measure zero and is

equal to 0 elsewhere will be such that
R

⌦

Z2(!)dP = 0. If we treat any two variables X and

Z in L2(⌦,F , P ) as being identical if they differ only in a set of measure zero, that is if

P ({! : X(!) 6= Z(!)}) = 0, then condition 5 is met and L2(⌦,F , P ) is an inner product

space with kXk2 =
✓R

⌦

X2dP

◆1/2

. We know from the Riez-Fisher Theorem that L2(⌦,F , P )

is a Banach space, viz., a complete vector space. Hence, L2(⌦,F , P ) is a Hilbert space.

Theorem 9.3. Let {Xn}n=1,2,··· and {Yn}n=1,2,··· be sequences in a Hilbert space with inner

product h·, ·i and norm k · k = h·, ·i1/2. Let Xn ! X in that kXn �Xk ! 0 as n ! 1 and

Yn ! Y . Then, hXn, Yni ! hX, Y i.

Proof. By the Cauchy-Schwarz inequality (Theorem 9.1), |hX, Y i|  kXkkY k. Therefore,

|hX, Y i � hXn, Yni| = |hX, Yni � hXn, Yni+ hX, Y i � hX, Yni � hXn, Y i+ hXn, Yni

+ hXn, Y i � hXn, Yni|

= |hX �Xn, Yni+ hX �Xn, Y � Yni+ hXn, Y � Yni|

 |hX �Xn, Yni|+ |hX �Xn, Y � Yni|+ |hXn, Y � Yni|

 kX �XnkkYnk+ kX �XnkkY � Ynk+ kXnkkY � Ynk.

By convergence, kX � Xnk, kY � Ynk ! 0 and since kXnk, kYnk < 1 for all n, |hX, Y i �

hXn, Yni| ! 0, as n ! 1. ⌅

Definition 9.2. Let S be a closed subset of a Hilbert space H. The distance from Y 2 H to

S is denoted by

d(Y, S) = inf{kY �Xk : X 2 S}.
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If Y 2 S, d(Y, S) = 0.

Theorem 9.4. (Projection Theorem): Let S be a closed subspace of a Hilbert space H and

Y 2 H. There exists a unique X 2 S such that kY � Xk := inf{kY � X 0k : X 0 2 S}.

Furthermore, hY �X, si = 0, for all s 2 S.

Proof. First, consider existence of X. If Y 2 S, put X = Y . If Y /2 S, we would like to

obtain X 2 S such that kY �Xk = inf
X02S

{kY �X 0k} = � > 0.

Let {Xi}i2N 2 S such that kXi � Y k ! �. Now, if Xi and Y are in a Hilbert space, we

have by the Parallelogram Law

k(Xj � Y ) + (Y �Xi)k2 + k(Xj � Y )� (Y �Xi)k2 = 2kXj � Y k2 + 2kY �Xik2

and

kXj �Xik2 = 2kXj � Y k2 + 2kY �Xik2 � 4kY � Xi +Xj

2
k2.

For all i, j the vector Xi+Xj

2 2 S (since S is a subspace). Therefore, by definition of �,

kY � Xi+Xj

2 k � � and we obtain kXj � Xik2  2kXj � Y k2 + 2kY � Xik2 � 4�2. Since

kXi�Y k2 ! �2 by continuity of inner product (Theorem 9.3), kXj �Xik2 ! 0 as i, j ! 1.

Hence, {Xi} is a Cauchy sequence. Since S is closed, {Xi} converges to X̃ 2 S. Furthermore,

�  kY � X̃k  kY �Xik+kXi� X̃k  �. Hence, X̃ = X which we wanted to show existed.

Now, consider the proof of hY �X, si = 0 for all s 2 S. Suppose there exists s 2 S such

that hY �X, si 6= 0. Without loss of generality assume that ksk = 1 and that hY �X, si =

� 6= 0 and define s1 2 S such that s1 = X + �s. Then,

kY � s1k2 = kY �X � �sk2by definition of s1

= kY �Xk2 � hY �X, �si � h�s, Y �Xi+ �2ksk2

= kY �Xk2 � �2 � �2 + �2

= kY �Xk2 � �2 < kY �Xk2
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Hence, if hY �X, si 6= 0, then X is not the minimizing element of S and it must be that for

all s 2 S, hY �X, si = 0.

Lastly, let’s prove uniqueness. For all s 2 S, the theorem of Pythagoras says that

kY � sk2 = kY �X +X � sk2 = kY �Xk2 + kX � sk2. (Note that hY �X,X � si = 0 due

to the fact that hY �X, si = 0, 8s 2 S). Hence, kY � sk > kY �Xk for s 6= X. ⌅

As a matter of terminology, we call any two elements X and Y of a Hilbert space orthog-

onal if hX, Y i = 0.

9.2 Conditional expectation for random variables in
L2(⌦,F , P )

Now consider the Hilbert space L2 composed of all random variables defined on (⌦,F , P ) and

for precision denote this space by L2(⌦,F , P ). Let X be a random vector taking values in Rn

defined in the same probability space with �(X) ⇢ F . Then, L2(⌦, �(X), P ) ⇢ L2(⌦,F , P )

is a Hilbert space with the same inner product. Furthermore, L2(⌦, �(X), P ) is a closed

subspace of L2(⌦,F , P ). We now define conditional expectation.

Definition 9.3. Let Y 2 L2(⌦,F , P ). The conditional expectation of Y given X is the

unique element Ŷ 2 L2(⌦, �(X), P ) such that

E((Y � Ŷ )s) = 0, for all s 2 L2(⌦, �(X), P ).

We write Ŷ = E(Y |X) or Ŷ = E(Y |�(X)).

Recall that if X : (⌦,F , P ) ! (Rn,Bn) is a random vector, then X�1(Bn) ⇢ F is a �-

algebra and we wrote X�1(Bn) = �(X), the �-algebra generated by X. Consider a random

variable Y : (⌦,F , P ) ! (R,B). It is legitimate to ask when Y is measurable (a random

variable) with respect to �(X).2 The following theorem provides a useful characterization.
2
More generally, for G ⇢ F a �-algebra, we say that X is G-measurable if for all B 2 B, X�1(B) 2 G.

There may be many of these G’s. The intersection of all of them, i.e. �(X) := \i2IGi is called the �-algebra

generated by X.
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Theorem 9.5. Let X : (⌦,F , P ) ! (Rn,Bn) be a random vector and Y : (⌦,F , P ) ! (R,B)

be a random variable. Y is �(X)-measurable if, and only if, there exists f : (Rn,Bn) ! (R,B)

such that Y = f(X) and f is Bn-measurable.

Proof. ( (= ) We want to show that for every B 2 B we have Y �1(B) 2 �(X). But

Y �1(B) = X�1(f�1(B)) and by measurability of f , f�1(B) 2 Bn and since X is a random

vector X�1(f�1(B)) 2 �(X). Thus, Y is �(X)-measurable.

( =) ) Suppose Y �1(B) 2 �(X) for all B 2 B. First, assume that Y is simple. Then,

for k 2 N we have Y =
P

k

i=1 aiIAi for ai distinct and Ai pairwise-disjoint. In this case,

Y �1({ai}) = Ai and by assumption Ai 2 �(X). Hence there exists Bi 2 Bn such that

X�1(Bi) = Ai (definition of �(X)). Let f(x) =
P

k

i=1 aiIBi(x), then Y = f(X), f Bn-

measurable. Thus, the implication is proved for every Y simple that is �(X)-measurable.

If Y : (⌦,F , P ) ! [0,1) then, by Theorem 4.4, there exist Yn(!) simple such that

Y (!) = lim
n!1

Yn(!), 0  Yn(!)  Yn+1(!).

Each Yn is �(X)-measurable and Yn = fn(X) from the first part of the proof. Now, set

f(x) = lim sup
n!1

fn(x) and note Y = limn!1 Yn = limn!1 fn(X).

Given that (lim sup
n!1

fn)(X) = lim sup
n!1

fn(X), by Theorem 3.6, f(x) is Bn-measurable.

For general Y , write Y = Y + � Y � which reduces to the preceding case. ⌅

Remark 9.1. 1. An equivalent way to think of Definition 9.3 using the previous theorem

is to write

E(Y |X) = arg inf
s2L2(⌦,�(X),P )

kY � sk = arg inf
f2F

kY � f(X)k.

where F is the set of Borel measurable functions from Rn to R.

2. Since Ŷ = E(Y |X) is �(X)-measurable, by Theorem 9.5, there exists f : Rn ! R

which is Borel measurable such that E(Y |X) = f(X) and f is unique. Hence, we
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can write E[(Y � f(X))g(X)] = 0, for all g : Rn ! R Borel measurable such that
R
g2dP < 1.

We can free the concept of conditional expectation from a particular set of random

variables (or element) that produces �(X) and speak more generally of conditioning on a

�-algebra G ⇢ F , that is a sub-�-algebra of F .

Definition 9.4. Y : (⌦,F , P ) ! (R,B) be a random variable with
R
Y 2dP < 1. Let G be

a sub-�-algebra of F . Then E(Y |G) is the unique Ŷ 2 L2(⌦,G, P ) such that

E((Y � Ŷ )s) = E([Y � E(Y |G)]s) = 0,

for all measurable s 2 L2(⌦,G, P ).

Remark 9.2. 1. The definition gives E(Y s) = E(sE(Y |G)).

2. Since s = 1 2 L2(⌦,G, P ), E(Y ) = E(E(Y |G)).

3. If U, V 2 L2(⌦,F , P ), then E(U+↵V |G) satisfies E((U+↵V )s) = E(E(U+↵V |G)s).

But,

E((U + ↵V )s) = E(Us) + ↵E(V s)

= E(E(U |G)s) + ↵E(E(V |G)s)

= E([E(U |G) + ↵E(V |G)]s).

Hence, E(U + ↵V |G) = E(U |G) + ↵E(V |G). That is E(·|G) is a linear function.

Theorem 9.6. Assume that Z :=

✓
Y
X

◆
is a random vector defined on (⌦,F , P ) taking

values in R2 and having density f .

1. Y and X have densities on (R,B) given by fY (y) =
R
R
f(y, x)d�(x) and fX(x) =

R
R
f(y, x)d�(y).
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2. For every x 2 R such that fX(x) 6= 0 we have that fY |X=x(y) =
f(y,x)
fX(x) is a density on

R.

3. E(Y |X) = h(X) where h(x) =
R
R
yfY |X=x(y)d�(y).

Proof. 1. Let E 2 B. Then,

P (Y 2 E) = P (Z 2 E ⇥R) =
Z

E⇥R

f(y, x)d�2(y, x)

=

Z

E

Z

R

f(y, x)d�(y)d�(x) =

Z

E

fY (y)d�(y)

with fY (y) =
R
R
f(y, x)d�(x). Therefore, P (Y 2 E) =

R
R
IEfY (y)d�(y) and fY is a density

for Y .

2.
R
R
fY |X=x(y)d�(y) =

R
R

f(y,x)
fX(x)d�(y) = 1.

3. Let h(x) =
R
R
yfY |X=x(y)d�(y) and consider any bounded Borel measurable function

g : (R,B) ! (R,B). Then,

E(h(X)g(X)) =

Z

R

h(x)g(x)fX(x)d�(x) =

Z

R

Z

R

yfY |X=x(y)d�(y)g(x)fX(x)d�(x)

=

Z

R

Z

R

y
f(y, x)

fX(x)
d�(y)g(x)fX(x)d�(x) =

Z

R

Z

R

yf(y, x)d�(y)g(x)d�(x)

= E(Y g(X))

Consequently,

E(h(X)g(X))� E(Y g(X)) = E((Y � h(X))g(X)) = 0

which gives E(Y |X) = h(X). ⌅

Theorem 9.7. Let Y be a random variable in L2(⌦,F , P ) and S be a closed subspace of

L2(⌦,F , P ). Then,

1. there exists a unique function PS : L2(⌦,F , P ) ! S such that (I�PS) : L2(⌦,F , P ) !

S? where S? is the orthogonal complement of S,3

3
The orthogonal complement of a subset S of an inner-product space is the set of all vectors in the space

that are orthogonal to S.
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2. kY k2 = kPS(Y )k2 + k(I � PS)(Y )k2,

3. PS(Yn) ! PS(Y ) if kYn � Y k ! 0 as n ! 1,

4. if S1, S2 are closed subspaces of L2(⌦,F , P ) such that S1 ⇢ S2 =) PS1(PS2(Y )) =

PS1(Y ).

Proof. 1. By the Projection Theorem, for each Y 2 L2(⌦,F , P ) there exists a unique Ŷ 2 S.

Thus, we write the function PS(Y ) = Ŷ . In addition E{(Y � PS(Y ))s} = 0 for all s 2 S.

That is, Y � PS(Y ) is orthogonal to the subspace S. Any Y 2 L2(⌦,F , P ) can be written

as Y � PS(Y ) + PS(Y ) = Y or Y = (I � PS)(Y ) + PS(Y ) where I is the identity operator

in L2(⌦,F , P ) and I � PS projects Y onto the orthogonal complement of S.

2. Note that

kY k2 = kY � PSY + PSY k2

= kY � PS(Y )k2 + kPS(Y )k2 by Pythagoras’ theorem

= k(I � PS)(Y )k2 + kPS(Y )k2.

3. Note that kPS(Yn)� PS(Y )k2 = kPS(Yn � Y )k2. By the last equality in part 2.,

kYn � Y k2 = k(I � PS)(Yn � Y )k2 + kPS(Yn � Y )k2

= k(I � PS)(Yn � Y )k2 + kPS(Yn)� PS(Y )k2.

Consequently,

kPS(Yn)� PS(Y )k2 = kYn � Y k2 � k(I � PS)(Yn � Y )k2  kYn � Y k2.

Hence, if kYn � Y k ! 0 as n ! 1, then kPS(Yn)� PS(Y )k2 ! 0 as n ! 1.

4. Y = PS2(Y ) + (I � PS2)(Y ) and PS1(Y ) = PS1(PS2(Y )) + PS1((I � PS2)(Y )). In the last

term, the argument of PS1 is an element of the orthogonal complement of S2. That is < (I�

PS2)(Y ), s >= 0 for every s 2 S2. But since S1 ⇢ S2, it must be that < (I�PS2)(Y ), s1 >= 0

for all s1 2 S1. Thus, (I � PS2)(Y ) 2 S?

1 and consequently PS1((I � PS2)(Y )) = 0. ⌅
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In Theorem 9.7, if we take the closed subspace of L2(⌦,F , P ) to be L2(⌦,G, P ) for G a

sub �-algebra of F , we write E(Y |G) for PS(Y ). In particular, we have:

1. kY k2 = kE(Y |G)k2 + kY � E(Y |G)k2,

2. E(Yn|G) ! E(Y |G) if Yn

L
2

! Y ,

3. if H ⇢ G then E(E(Y |G)|H) = E(Y |H).

9.3 Conditional expectation for random variables in
L(⌦,F , P )

It is desirable to extend the concept of conditional expectation to random variables Y :

(⌦,F , P ) ! (R,B) such that Y 2 L. The word extend is justified, since by the Cauchy-

Schwarz Inequality (or Rogers-Hölder Inequality with p = q = 2)

E(|XY |)  kXk2kY k2.

Taking Y = 1 almost everywhere, we have E(|X|)2  E(X2). Hence, if E(X2) < C then

E|X| < C. Consequently, L2 ⇢ L.

For this purpose, recall that Y 2 L(⌦,F , P ) if Y + = max{Y (!), 0} and Y � = �min{Y (!), 0}

are such that E(Y +), E(Y �) < 1 and, in this case, we define E(Y ) = E(Y +)� E(Y �). If

Y � 0, then Y � = 0 and Y = Y +. We first consider Y 2 L+(⌦,F , P ). As in Definition 4.4

we allow Y (!) = 1. The next theorem provides the basis for extending our definition of

conditional expectation to random variables in L.

Theorem 9.8. i) Let Y 2 L+(⌦,F , P ) and let G be a sub-�-algebra of F . There exists

a unique element E(Y |G) of L+(⌦,G, P ) such that E([Y � E(Y |G)]X) = 0 for all

X 2 L+(⌦,G, P ).

ii) If Y 2 L2(⌦,F , P ) then the conditional expectation E(Y |G) in i) is the same as E(Y |G)

in Definition 9.3 with �(X) = G.
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iii) If Y  Y 0 then E(Y |G)  E(Y 0|G).

Proof. i) We first consider the existence E(Y |G). Let Y 2 L2(⌦,F , P ) and Y � 0. In this

case, define E(Y |G) as in Definition 9.3. Now, for X 2 L+(⌦,G, P ) let

Xn(!) = min{X(!), n} =

(
X(!), if X(!)  n,

n, if X(!) > n,

and note that

X2
n
(!) =

(
X2(!), if X(!)  n

n2, if X(!) > n
.

Hence, Z

⌦

X2
n
dP =

(R
⌦ X2dP  n2

R
⌦ dP = n2 < 1, if X(!)  n

n2
R
⌦ dP = n2 < 1, if X(!) > n

so that Xn 2 L2.

Now, 0  X1(!)  X2(!)  · · ·  X(!) and Xn(!) ! X(!) almost everywhere as

n ! 1. Then, by Beppo-Levi’s Theorem, we have that

E
⇣
lim
n!1

Y Xn

⌘
= E(Y X) = lim

n!1

E(Y Xn) = lim
n!1

E(E(Y |G)Xn).

The last equality follows from the fact that EY 2 < 1, EX2
n
< 1 and Definition 9.3. Now,

again by Beppo-Levi’s Theorem, we have

E(Y X) = lim
n!1

E(E(Y |G)Xn) = E(E(Y |G)X), for all X 2 L+(⌦,G, P ).

If Y 2 L+(⌦,F , P ) then let Ym(!) = min{Y (!),m} and from the argument above Ym 2 L2.

Hence,

lim
n!1

E(YmXn) = lim
n!1

E(E(Ym|G)Xn) = E(E(Ym|G) lim
n!1

Xn)

= E(E(Ym|G)X).

Now, since Ym � 0, then E(Ym|G) as defined in Definition 9.3 is such that E(Ym|G) � 0.

To see this, consider Z = I{E(Ym|G)<0} and note that E(Z2) = P (E(Ym|G) < 0), E(YmZ) =
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E(E(Ym|G)Z) = E(E(Ym|G)I{E(Ym|G)<0}). Now, since Ym � 0 and Z = 1 or Z = 0 we have

that E(YmZ) � 0. But the right-hand side of the last equality is less than 0 if E(Ym|G) < 0,

so it must be that E(Ym|G) � 0 if Ym � 0. Hence, E(Ym|G) is increasing with m, and by

Beppo-Levi’s Theorem we have

lim
m!1

lim
n!1

E(YmXn) = E(Y X) = lim
m!1

E (E(Ym|G)X) = E
⇣
lim

m!1

E(Ym|G)X
⌘
.

Now, since E(Y X) = E
⇣⇣

lim
m!1

E(Ym|G)
⌘
X
⌘

or E
⇣⇣

Y � lim
m!1

E(Ym|G)
⌘
X
⌘

= 0 for all

X 2 L+(⌦,G, P ), we define

E(Y |G) = lim
m!1

E(Ym|G) (9.1)

for Y 2 L+(⌦,F , P ).

We now consider uniqueness of E(Y |G). Let U and V be two versions of E(Y |G) and let

^n = {! : U < V  n}. Since U and V are versions of E(Y |G) we know that U and V are

G-measurable. Consequently, {! : U  n} 2 G, {! : V  n} 2 G and ^n = {! : U < V 

n} 2 G.

Note that E(Y I^n) = E(UI^n) = E(V I^n) since U = V = E(Y |G). Furthermore,

0  UI^n  V I^n  n and if P (^n) > 0 (^n 6= ;), UI^n < V I^n which implies that

E(UI^n) < E(V I^n), which contradicts E(UI^n) = E(V I^n). Therefore, P (^n) = 0 for

all n. Now, note that ^1 ⇢ ^2 ⇢ ^3 ⇢ · · · ⇢ {U < V }. Now lim
n!1

[n

i=1 ^i = {U < V }

and P
⇣
lim
n!1

[n

i=1 ^i

⌘
= lim

n!1

P ([n

i=1^i)  limn!1

P
n

i=1 P (^i). Thus, P ({U < V }) = 0.

Repeating the argument for �n = {! : V < U  n} we conclude that P ({V < U}) = 0.

Hence, it must be that U and V coincide with probability 1.

ii) The proof follows from the first part of the argument in item i).

iii) If Y  Y 0 then Ym  Y 0

m
for all m and E(Ym|G)  E(Y 0

m
|G) and consequently

lim
m!1

E(Ym|G)  lim
m!1

E(Y 0

m
|G) () E(Y |G)  E(Y 0|G).

⌅
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We now consider conditional expectations for random variables in L(⌦,F , P ).

Theorem 9.9. Let Y 2 L(⌦,F , P ) and let G be a sub-�-algebra of F . There exists a unique

element E(Y |G) in L(⌦,G, P ) such that

E ((Y � E(Y |G))X) = 0, for all bounded G-measurable X.

E(Y |G) coincides with those in Definition 9.3 and Theorem 9.8 when Y 2 L2 and Y 2 L+.

In addition, (i) if Y � 0, then E(Y |G) � 0 and (ii) E(Y |G) is a linear in Y .

Proof. We first consider existence of the conditional expectation. Since Y 2 L, we can write

Y = Y + � Y � and Y +, Y � 2 L. Now, Y + and Y � are such that

E
�
(Y + � E(Y +|G))X

�
= 0, for all X 2 L+(⌦,G, P ) and

E
�
(Y � � E(Y �|G))X

�
= 0, for all X 2 L+(⌦,G, P ).

Define E(Y |G) = E(Y +|G)� E(Y �|G) and note that for X 2 L+(⌦,G, P )

E(Y X) = E((Y + � Y �)X) = E(Y +X)� E(Y �X)

= E(E(Y +|G)X)� E(E(Y �|G)X) by Theorem 9.8

= E((E(Y +|G)� E(Y �|G)))X) = E(E(Y |G)X).

We now establish uniqueness of E(Y |G). Suppose U and V are two versions of E(Y |G) and

let ^ = {U < V }. Then, since U and V are G-measurable, then ^ 2 G. Therefore I^ is

G-measurable.

E(Y I^) = E(E(Y |G)I^) = E(UI^) = E(V I^).

But, if P (^) > 0, then E(UI^) < E(V I^), a contradiction. Thus, P (^) = 0. A similar

reverse argument gives P (V < U) = 0.
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Now, for any X that is bounded and G-measurable consider

E(Y X) = E(Y (X+ �X�)) = E(Y X+)� E(Y X�)

= E(X+E(Y |G))� E(X�E(Y |G))

using the definition of conditional expectation in this proof.

= E((X+ �X�)E(Y |G)) = E(XE(Y |G)).

The proofs of items (i) and (ii) are left as exercises. ⌅

Remark 9.3. Note that if X and Y are independent random variables defined on the same

probability space, then by Theorem 6.6, if f is a bounded measurable function E(Y f(X)) =

E(Y )E(f(X)). Now, E(Y f(X)) = E(E(Y |�(X))f(X)) and consequently

E(Y )E(f(X)) = E(E(Y |�(X))f(X)),

taking f(X) = E(Y ) gives E(Y ) = E(Y |�(X)).

Lebesgue’s monotone and dominated convergence theorems hold for conditional expec-

tations.

Theorem 9.10. Yn(!) : (⌦,F , P ) ! (R,B) and let G be a sub-�-algebra of F .

a) If Yn � 0, Y1  Y2  Y3  · · · with Yn

as! Y as n ! 1, then limn!1 E(Yn|G) =

E(Y |G) a.s.

b) If Yn

as! Y and |Yn|  Z for some Z 2 L(⌦,F , P ), then limn!1 E(Yn|G) = E(Y |G)

a.s.

Proof. Left as an exercise. ⌅

We now give an example where conditional expectation is taken to belong to a specific

class of measurable functions.
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Example 9.3. Let Y 2 L2(⌦,F , P ) and let X be a random vector defined on the same

probability space. Assume that for every component of Xk, for k = 1, · · · , K of X we have

Xk 2 L2(⌦,F , P ). Now, consider the following class of functions

F = {f : f(x) =
KX

k=1

akxk where f is �(X)-measurable and ak 2 R}.

Using Definition 9.3 or item 1 in Remark 30

E(Y |X) = argmin
a1,··· ,aK

Z  
Y �

kX

k=1

akXk

!2

dP = argmin
a1,··· ,aK

O(a1, · · · , aK).

Now,

O(a1, · · · , aK) =
Z

(Y 2 � 2Y
KX

k=1

akXk + (
KX

i=1

akXk)
2)dP

=

Z
Y 2dP � 2

KX

k=1

ak

Z
XkY dP +

KX

k=1

a2
k

Z
X2

k
dP

+
KX

k=1

X

k 6=l

akal

Z
XkXldP

= �2 � 2
KX

k=1

akE(XkY ) +
KX

k=1

a2
k

Z
X2

k
dP +

KX

k=1

X

jk 6=l

akalE(XkXl).

Now, taking derivatives with respect to ak we have @

@ak
O(a1, · · · , aK) = �2E(XkY )+2akE(X2

k
)+

2
P

k 6=l
alE(XkXl) for k = 1, · · · , K. Alternatively, using matrices

@

@a
O(a1, · · · , aK) = �2

2

64
E(X1Y )

...
E(XKY )

3

75+ 2

2

6664

E(X2
1 ) E(X1X2) · · · E(X1XK)

E(X2X1) E(X2
2 ) · · · E(X2XK)

...
...

E(XKX1) E(XKX2) · · · E(X2
K
)

3

7775

2

64
a1
...
aK

3

75

= �2b+ 2Aa

Choosing a := â such that @

@a
O(â1, · · · , âK) = 0 we have â = A�1b if A is invertible.

Invertibility of A follows positive definiteness of A, which also assures that f̂(x) =
P

K

k=1 âkxk

corresponds to a minimum.
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9.4 Exercises

1. Assess the veracity of the following statement: “Since knowledge of X implies knowl-

edge of f(X), conditioning on X is the same as conditioning on f(X). Hence, E(Y |f(X)) =

E(Y |X).” Explain using mathematical arguments.

2. Let X and Y be independent random variables defined in the same probability space.

Show that if E(|Y |) < 1 then

P (E(Y |X) = E(Y )) = 1.

3. Let (⌦,F , P ) be a probability space. The set of random variables X : ⌦ ! R such

that
R
⌦ X2dP < 1 is denoted by L2(⌦,F , P ). On this set kXk =

�R
⌦ X2dP

�1/2

is a norm and < X, Y >=
R
⌦ XY dP is an inner product. If G is a �-algebra and

G ⇢ F , the conditional expectation of X with respect to G, denoted by E(X|G) is the

orthogonal projection of X onto the closed subspace L2(⌦,G, P ) of L2(⌦,F , P ). Prove

the following results:

(a) For X, Y 2 L2(⌦,F , P ) we have < E(X|G), Y >=< E(Y |G)), X >=< E(X|G), E(Y |G) >.

(b) If X = Y almost everywhere then E(X|G) = E(Y |G) almost everywhere.

(c) For X 2 L2(⌦,G, P ) we have E(X|G) = X.

(d) If H ⇢ G is a �-algebra, then E(E(X|G)|H) = E(X|H).

(e) If Y 2 L2(⌦,G, P ) and there exists a constant C > 0 such that P (|Y | � C) = 0,

we have that E(Y X|G) = Y E(X|G).

(f) If {Yn}n2N, X 2 L2(⌦,F , P ) and kYn � Xk ! 0 as n ! 1, then E(Yn|G)
p!

E(X|G) as n ! 1.

4. Let X, Y 2 L2(⌦,F , P ) be random variables and assume that E(Y |X) = aX where

a 2 R.
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(a) Show that if E(X2) > 0, a = E(XY )/E(X2).

(b) If {(Yi Xi)T}ni=1 is a sequence of independent random vectors with components

having the same distribution as (Y X)T , show that

1

n

nX

i=1

X2
i

p! E(X2) and
1

n

nX

i=1

YiXi

p! E(XY ).

(c) Let an =
�
1
n

P
n

i=1 X
2
i

��1 1
n

P
n

i=1 YiXi. Does an
p! a? Can an be defined for all n?

Explain.

5. Prove the following:

(a) If Y 2 L(⌦,F , P ) and G ⇢ F is a �-algebra, show that |E(Y |G)|  E(|Y ||G).

(b) Let c be a scalar constant and suppose X = c almost surely. Show that E(X|G) =

c almost surely.

(c) If Y 2 L(⌦,F , P ) and G ⇢ F is a �-algebra, show that for a > 0

P ({! : |Y (!)| � a}|G)  1

a
E(|Y (!)||G).

What is the definition of P ({! : |Y (!)| � a}|G)? Is this a legitimate probability

measure?

6. Let Y and X be random variables such that Y,X 2 L2(⌦,F , P ) and define " =

Y � E(Y |X).

(a) Show that E("|X) = 0 and E(") = 0.

(b) Let V (Y |X) = E(Y 2|X) � E(Y |X)2. Show that V (Y |X) = V ("|X), V (") =

E(V (Y |X));

(c) Cov(", h(X)) = 0 for any function of X whose expectation exists.
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(d) Assume that E(Y |X) = ↵ + �X where ↵, � 2 R. Let E(Y ) = µY , E(X) = µX ,

V (Y ) = �2
Y
, V (X) = �2

X
and ⇢ = Cov(X,Y )

�X�Y
. Show that,

E(Y |X) = µY + ⇢�Y

X � µX

�X

and E(V (Y |X)) = (1� ⇢2)�2
Y
.
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