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Chapter 1

Exercises

1. Let f : N×N→ R be a double sequence with typical value given by f(m,n). Assume
that

(a) for every n ∈ N, f(m1, n) ≤ f(m2, n) whenever m1 ≤ m2,

(b) for every m ∈ N, f(m,n1) ≤ f(m,n2) whenever n1 ≤ n2.

Show that lim
n→∞

(
lim
m→∞

f(m,n)
)

= lim
m→∞

(
lim
n→∞

f(m,n)
)

= lim
n→∞

f(n, n).

As a corollary, show that if f(m,n) ≥ 0 then
∑
n∈N

∑
m∈N

f(m,n) =
∑
m∈N

∑
n∈N

f(m,n).

Answer: From conditions (a) and (b), f(1, 1) ≤ f(1, 2) ≤ f(2, 2) ≤ f(2, 3) ≤
f(3, 3) ≤ · · · Hence, f(m,m) ≤ f(n, n) whenever m ≤ n. The sequence {f(n, n)}n∈N
is monotonically increasing, hence it has a limit, which is either finite, if the sequence is
bounded above, or infinity, if it is not. Let this limit be denoted by F . By the same rea-
soning, there exist limits Fm = lim

n→∞
f(m,n) for each m ∈ N. Since f(m,n) ≤ f(n, n),

we have that Fm ≤ F when m ≤ n. Note that Fm1 ≤ Fm2 whenever m1 ≤ m2, hence
lim
m→∞

Fm = F ′ exists, and F ′ ≤ F .

To complete the proof, we need to show that F ′ = F . If F is finite, for every ε > 0

there exists N(ε) such that for all n ≥ N(ε), F − ε ≤ f(n, n) ≤ F . Put m := N(ε),
and note that

Fm = lim
n→∞

f(m,n) ≥ f(m,m) := f(N(ε), N(ε)) ≥ F − ε.

Hence, lim
n→∞

Fm = F ≥ F−ε, which implies that F ≤ F ′. Combining the last inequality
with F ′ ≤ F from the previous paragraph gives F = F ′. If F is infinite, for any C > 0
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there exists N(C) such that if n ≥ N(C), f(n, n) ≥ C. If m = N(C) ≤ n then
f(m,m) ≤ f(m,n) and

C ≤ f(m,m) ≤ lim
n→∞

f(m,n) = Fm,

hence it follows that F ′ must be infinite.

The proof that lim
n→∞

(
lim
m→∞

f(m,n)
)

= lim
n→∞

f(n, n) follows in exactly the same way by
interchanging the indexes m and n due to the symmetry of the equation.

Corollary. Let g(p, q) =
∑p

m=1

∑q
n=1 f(m,n) for p, q ∈ N. Since, f(m,n) ≥ 0, g(p, q)

satisfies conditions (a) and (b), establishing the result.

2. Let X be an arbitrary set and consider the collection of all subsets of X that are
countable or have countable complements. Show that this collection is a σ-algebra.
Use this fact to obtain the σ-algebra generated by C = {{x} : x ∈ R}.

Answer: Let F = {A ⊆ X : #A ≤ #N or #Ac ≤ #N}, where # indicates cardi-
nality. First, note that X ∈ F since Xc = ∅, which is countable. Second, if A ∈ F
then either A = (Ac)c or Ac are countable. That is, Ac ∈ F . Third, if An ∈ F for
n ∈ N we have two possible cases - An are all countable, or at least one of these sets
is uncountable, say An0 . For the first case, ∪

n∈N
An is the countable union of countable

sets, hence it is countable and consequently in F . For the second case, since An0 is
uncountable and in F , it must be that Acn0

is countable. Also,(
∪
n∈N

An

)c
= ∩

n∈N
Acn ⊂ Acn0

.

Since subsets of countable sets are countable,
(
∪
n∈N

An

)c
is countable, and consequently

∪
n∈N

An ∈ F .

Now, let F be the σ-algebra defined above. Since C ⊆ F , σ(C) ⊆ F . Also, if A ∈ F
either A or Ac is countable. Without loss of generality, suppose A is countable. Then,
A = ∪

x∈C
{x} where C is a countable collection of real numbers. Hence, A ∈ σ(C).

Hence, F ⊆ σ(C). Combining the two set containments we have σ(C) = F .

3. Denote by B(x, r) an open ball in Rn centered at x and with radius r. Show that the
Borel sets are generated by the collection B = {Br(x) : x ∈ Rn, r > 0}.

Answer: Let B′ = {Br(x) : x ∈ Qn, r ∈ Q+}. Then, B′ ⊂ B ⊂ ORn and σ(B′) ⊂
σ(B) ⊂ σ(ORn).
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Now, let S =
⋃

B∈B′, B⊂O
B. By construction x ∈ S =⇒ x ∈ O. Now, suppose x ∈ O.

Then, since O is open, there exists B(x, ε) such that B(x, ε) ⊂ O where ε is a rational
number. Since Qn is a dense subset of Rn, we can find q ∈ Qn such that ‖x− q‖ ≤ ε/2.
Consequently,

B(q, ε/2) ⊂ B(x, ε) ⊂ O.

Hence, O ⊂ S. Thus, every open O can be written as O =
⋃

B∈B′, B⊂O
B. Since B′ is a

collection of balls with rational radius and rational centers, B′ is countable. Thus,

ORn ⊂ σ(B′) =⇒ σ(ORn) ⊂ σ(B′).

Combining this set containment with σ(B′) ⊂ σ(B) ⊂ σ(ORn) completes the proof.

4. Let (Ω,F) be a measurable space. Show that: a) if µ1 and µ2 are measures on (Ω,F),
then µc(F ) := c1µ1(F ) + c2µ2(F ) for F ∈ F and all c1, c2 ≥ 0 is a measure; b) if
{µi}i∈N are measures on (Ω,F) and {αi}i∈N is a sequence of positive numbers, then
µ∞(F ) =

∑
i∈N αiµi(F ) for F ∈ F is a measure.

Answer: a) First, note that µc : F → [0,∞] since c1, c2, µ1(F ), µ2(F ) ≥ 0 for all
F ∈ F . Second, µc(∅) = c1µ1(∅) + c2µ2(∅) = 0 since µ1 and µ2 are measures. Third, if
{Fi}i∈N ∈ F is a pairwise disjoint collection of sets,

µc (∪i∈NFi) = c1µ1(∪i∈NFi) + c2µ2(∪i∈NFi)

= c1

∑
i∈N

µ1(Fi) + c2

∑
i∈N

µ2(Fi), since µ1 and µ2 are measures

=
∑
i∈N

(c1µ1(Fi) + c2µ2(Fi)) =
∑
i∈N

µc(Fi).

b) The verification that µ∞ : F → [0,∞] and µ∞(∅) = 0 follows the same arguments as
in item a) when examining µc. For σ-additivity, note that if {Fj}j∈N ∈ F is a pairwise
disjoint collection of sets,

µ∞ (∪j∈NFj) =
∞∑
i=1

αiµi (∪j∈NFj) =
∞∑
i=1

αi

∞∑
j=1

µi (Fj) =
∞∑
i=1

∞∑
j=1

αiµi (Fj) .

If we are able to interchange the sums in the last term, then we can write

µ∞ (∪j∈NFj) =
∞∑
j=1

∞∑
i=1

αiµi (Fj) =
∞∑
j=1

µ∞ (Fj) ,

3



completing the proof. Now, note that
∞∑
i=1

∞∑
j=1

αiµi (Fj) = lim
n→∞

lim
m→∞

n∑
i=1

m∑
j=1

αiµi (Fj) = sup
n∈N

sup
m∈N

n∑
i=1

m∑
j=1

αiµi (Fj) = sup
n∈N

sup
m∈N

Snm

since the partial sums are increasing. Now, if Snm ∈ R, then

sup
n∈N

sup
m∈N

Snm = sup
m∈N

sup
n∈N

Snm.

Hence, to finish the proof, we require µi(Fj) <∞.

5. Let (Ω,F , µ) be a measure space and G ⊂ F be a σ-algebra. In this case, we call G a
sub-σ-algebra of F . Let ν := µ|G be the restriction of µ to G. That is, ν(G) = µ(G)

for all G ∈ G. Is ν a measure? If µ is finite, is ν finite? If µ is a probability, is ν a
probability?

Answer: Since ∅ ∈ G ⊂ F , ν(∅) = µ(∅) = 0. If {Ai}i∈N ∈ G is a pairwise disjoint
sequence, we have that {Ai}i∈N ∈ F . Hence, ν(∪i∈NAi) = µ(∪i∈NAi) =

∑
i∈N µ(Ai) =∑

i∈N ν(Ai). Now, µ finite means that µ(Ω) < ∞. Since Ω ∈ G, ν(Ω) = µ(Ω) < ∞.
The same holds for µ(Ω) = 1.

6. Show that a measure space (Ω,F , µ) is σ-finite if, and only if, there exists {Fn}n∈N ∈ F
such that ∪n∈NFn = Ω and µ(Fn) <∞ for all n.

Answer: (⇒) By definition, (Ω,F , µ) is σ-finite if there exists and increasing sequence
A1 ⊂ A2 ⊂ A3 · · · such that ∪n∈NAn = Ω with µ(An) <∞ for all n. Hence, it suffices
to let Fn = An.

(⇐) Let An = ∪nj=1Fj. Then, A1 ⊂ A2 ⊂ · · · and ∪n∈NAn = ∪j∈NFj = Ω. Also,
µ(An) = µ(∪nj=1Fj) ≤

∑n
j=1 µ(Fj) <∞ since the sum is finite and µ(Fj) <∞.

7. Let (Ω,F , P ) be a probability space and {En}n∈N ⊂ F . Show that if
∑∞

n=1 P (En) <∞

then P
(
limsup
n→∞

En

)
= 0.

Answer:

P

(
limsup
n→∞

En

)
= P

(
lim
n→∞

∪j≥n Ej
)

= lim
n→∞

P (∪j≥nEj) by continuity

≤ limsup
n→∞

∞∑
j=n

P (Ej) by subadditivity and definition of limsup.
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Since
∑∞

n=1 P (En) < ∞ it must be that
∑∞

j=n P (Ej) → 0 as n → 0. Consequently,

P

(
limsup
n→∞

En

)
= 0.

8. Let {Ej}j∈J be a collection of pairwise disjoint events. Show that if P (Ej) > 0 for
each j ∈ J , then J is countable.

Answer: Let Cn = {Ej : P (Ej) >
1
n
and j ∈ J}. By assumption the elements of Cn

are disjoint events and

P (∪jmEjm) =
∞∑
m=1

P (Ejm) =∞,

where the last equality follows from the fact that P (Ejm) > 0. So, it must be that Cn
has finitely many elements. Also, {Ej}j∈J = ∪∞n=1Cn, which is countable since it is a
countable union of finite sets.

9. Consider the extended real line, i.e., R̄ := R ∪ {−∞} ∪ {∞}. Let B̄ := B(R̄) be
defined as the collection of sets B̄ such that B̄ = B ∪ S where B ∈ B(R) and S ∈
{∅, {−∞}, {∞}, {−∞,∞}}. Show that B̄ is a σ-algebra and that it is generated by a
collection of sets of the form [a,∞] where a ∈ R.

Answer: Let’s first show that B̄ is a σ-algebra. Since B̄ = B ∪ S with B ∈ B(R), we
can choose B = R and use S = {−∞,∞} to conclude that R̄ = R ∪ {−∞,∞} ∈ B̄.
Next, note that if B̄ = B∪S we have that B̄c = Bc∩Sc. But the complement of a set S
is an element of {R̄,R∪{∞},R∪{−∞},R}. Hence, either 1) B̄c = Bc∩R̄ = Bc∪∅ ∈ B̄
or, 2) B̄c = Bc ∩ (R ∪ {∞}) = (Bc ∩ R) ∪ {∞} where Bc ∩ R ∈ B and consequently
B̄c ∈ B̄ or, 3) B̄c = Bc ∩ (R ∪ {−∞}) = (Bc ∩ R) ∪ {−∞} where Bc ∩ R ∈ B and
consequently B̄c ∈ B̄ or, 4) B̄c = Bc ∩R ∈ B̄.

Lastly, letting Ai = Bi ∪ S for Bi ∈ B we have that ∪i∈NAi = ∪i∈N(Bi ∪ S) =

(∪i∈NBi) ∪ S. Since ∪i∈NBi ∈ B we have that ∪i∈NAi ∈ B̄.

If B̄ is a σ-algebra and C = {[a,∞] : a ∈ R}, we need to show that σ(C) = B̄.

First, note that [a,∞] = [a,∞)∪{∞} and we know that [a,∞) ∈ B. Thus, [a,∞] ∈ B̄
for all a ∈ R. Then, σ(C) ⊆ B̄.

Second, observe that for −∞ < a ≤ b < ∞ we have [a, b) = [a,∞] − [b,∞] =

[a,∞] ∩ [b,∞]c ∈ σ(C) since σ(C) contains [a,∞] and [b,∞]c by virtue of being a
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σ-algebra. Hence,
B ⊆ σ(C) ⊆ B̄.

Now,
{∞} = ∩i∈N[i,∞], {−∞} = ∩i∈N[−∞,−i) = ∩i∈N[−i,∞]c

which allows us to conclude that {∞}, {−∞} ∈ σ(C). Hence, if B ∈ B all sets of the
form

B,B ∪ {∞}, B ∪ {−∞}, B ∪ {∞} ∪ {−∞}

are in σ(C). Hence, B̄ ⊆ σ(C). Combining this set. containment with σ(C) ⊆ B̄ gives
the result.

10. If E1, E2, · · · , En are independent events, show that the probability that none of them
occur is less than or equal to exp (−

∑n
i=1 P (Ei)).

Answer: Let f(x) = exp(−x) and note that for λ ∈ (0, 1), by Taylor’s Theorem

exp(−x) = f(x) = f(0) + f (1)(0)x+
1

2
f (2)(λx)x2 = 1− x+

1

2
exp(−λx)x2

Consequently, 1− x ≤ exp(−x). Now, we are interested in the event E = (∪ni=1Ei)
c =

∩ni=1E
c
i . But since the E1, E2, · · · , En are independent, so is the collectionEc

1, E
c
2, · · · , Ec

n.
Hence, P (E) =

∏n
i=1 P (Ec

i ) =
∏n

i=1(1−P (Ei)) ≤
∏n

i=1 exp(−P (Ei)) = exp (−
∑n

i=1 P (Ei)).

11. Let {An}n∈N and {Bn}n∈N be events (measurable sets) in a probability space with
measure P with limAn = A, limBn = B, P (Bn), P (B) > 0 for all n. Show that
P (An|B)→ P (A|B), P (A|Bn)→ P (A|B), P (An|Bn)→ P (A|B) as n→∞.

Answer: Since P (·|B) is a probability measure (proved in the class notes), we have
by continuity of probability measures that P (An|B)→ P (A|B) if limBn = B.

Now, since limBn = B we have that A ∩ Bn → A ∩ B. To see this, note that if
A ∩ Bn := Cn then Dj = ∪∞n=jCn = A ∩ (∪∞n=1Bn). Then, lim supCn = ∩∞j=1Dj =

∩∞j=1 (A ∩ ∪∞n=1Bn) = A ∩ B. Defining lim inf for Cn we can in similar fashion that
lim inf Cn = A∩B. Hence, by continuity of probability measures P (A∩Bn)→ P (A∩B)

and P (Bn)→ P (B). Consequently,

P (A|Bn) =
P (A ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).

Lastly, since An ∩Bn → A ∪B, using the same arguments

P (An|Bn) =
P (An ∩Bn)

P (Bn)
→ P (A ∩B)

P (B)
= P (A|B).
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12. Let (X, F̄ , µ̄) be the measure space defined in Theorem 1.15 and C = {G ∈ X :

∃A, B ∈ F 3 A ⊂ G ⊂ B and µ(B − A) = 0}. Show that F̄ = C.

Answer: G ∈ F̄ =⇒ G = A ∪M where A ∈ F and M ∈ S. M ∈ S =⇒ ∃N ∈
Nµ 3M ⊂ N . Then,

A ⊂ G = A ∪M ⊂ A ∪N := B ∈ F .

Now, µ(B − A) = µ(B ∪ Ac) = µ((A ∪N)− A) ≤ µ(N) = 0. Thus, G ∈ C.

G ∈ C =⇒ ∃A, B ∈ F 3 A ⊂ G ⊂ B and µ(B − A) = 0. Since A ⊂ G ⊂ B we have
that G−A ⊂ B−A, and since B−A is a µ-null set G−A ∈ S. Now, G = A∪(G−A),
and since A ∈ F , G ∈ F̄ .
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Chapter 2

Exercises

1. Let µ be a measure on (R,B(R)) such that µ([−n, n)) <∞ for all n ∈ N. Define,

Fµ(x) :=


µ([0, x)) if x > 0,
0 if x = 0,
−µ([x, 0)) if x < 0.

Show that Fµ : R→ R is monotonically increasing and left continuous.

Answer: Given that µ([−n, n)) < ∞, Fµ takes values in R. First, we show that all
x < x′, Fµ(x) ≤ Fµ(x′). There are three cases to be considered

(a) (0 ≤ x < x′): if 0 < x < x′, Fµ(x′) − Fµ(x) = µ([0, x′)) − µ([0, x)). Since
[0, x′) = [0, x) ∪ [x, x′), σ-additivity of µ gives µ([0, x′)) = µ([0, x)) + µ([x, x′)) or
µ([x, x′)) = µ([0, x′))−µ([0, x)) = Fµ(x′)−Fµ(x) ≥ 0. If x = 0, Fµ(x′)−Fµ(0) =

µ([0, x′)) ≥ 0.

(b) (x < 0 ≤ x′): If x′ > 0, Fµ(x′) − Fµ(x) = µ([0, x′)) + µ([x, 0)) ≥ 0. If x′ = 0,
Fµ(0)− Fµ(x) = µ([x, 0)) ≥ 0.

(c) (x < x′ < 0): Fµ(x′)−Fµ(x) = −µ([x′, 0))+µ([x, 0)). Since [x, 0) = [x, x′)∪[x′, 0),
σ-additivity of µ gives µ([x, 0)) = µ([x, x′)) + µ([x′, 0)) or µ([x, 0))− µ([x′, 0)) =

Fµ(x′)− Fµ(x) = µ([x, x′)) ≥ 0.

Second, we must show that lim
n→∞

Fµ(x − hn) = Fµ(x) for all x ∈ R. Let n ∈ N,
h1 ≥ h2 ≥ h3 ≥ · · · with hn ↓ 0 as n → ∞, and h1 > 0. There are three cases to
consider.
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(a) (x > 0): Choose h1 ∈ (0, x) and define An = [0, x − hn). Then, A1 ⊂ A2 ⊂ · · ·
and lim

n→∞
An =

⋃
n∈N

An = [0, x). By continuity of measure from below,

lim
n→∞

Fµ(x− hn) = lim
n→∞

µ([0, x− hn)) = µ([0, x)) = Fµ(x).

(b) (x = 0): Define An = [−hn, 0). Then, A1 ⊃ A2 ⊃ · · · and lim
n→∞

An =
⋂
n∈N

An = ∅.

By continuity of measures from above, and given that µ([−h1, 0)) <∞,

lim
n→∞

Fµ(−hn) = lim
n→∞

µ([−hn, 0)) = µ(∅) = 0 = Fµ(0).

(c) (x < 0): Define An = [x− hn, 0). Then, A1 ⊃ A2 ⊃ · · · and lim
n→∞

An = ∩∞n=1An =

[x, 0). By continuity of measures from above and given that µ([x− h1, 0)) <∞,

lim
n→∞

Fµ(x− hn) = lim
n→∞

− µ([x− hn, 0)) = −µ([x, 0)) = Fµ(x).

2. Let Fµ be defined as in question 1 and let νFµ (([a, b)) = Fµ(b) − Fµ(a) for all a ≤ b,
a, b ∈ R. Show that νFµ extends uniquely to a measure on B(R) and νFµ = µ.

Answer: Recall that S = {[a, b) : a ≤ b, a, b ∈ R} is a semi-ring (if a = b, [a, a) = ∅).
Given Fµ, we define νFµ : S → [0,∞) as νFµ([a, b)) = Fµ(b)−Fµ(a) for all a ≤ b. Since
Fµ is monotonically increasing, Fµ(b)−Fµ(a) ≥ 0 and νFµ([a, a) = ∅) = Fµ(a)−Fµ(a) =

0. Also, νFµ is finitely additive since for a < c < b, we have that [a, b) = [a, c)∪[c, b) and
νFµ([a, b)) = Fµ(b)− Fµ(a) = Fµ(c)− Fµ(a) + Fµ(b)− Fµ(c) = νFµ([a, c)) + νFµ([c, b)).
We now show that νFµ is σ-additive, i.e., for [an, bn), n ∈ N a disjoint collection such
that [a, b) = ∪

n∈N
[an, bn), we have νFµ([a, b)) =

∑
n∈N

νFµ([an, bn)). Fix εn, ε > 0 and note

that (an − εn, bn) ⊃ [an, bn). Hence, ∪
n∈N

(an − εn, bn) ⊃ ∪
n∈N

[an, bn) = [a, b) ⊃ [a, b− ε].
Since ∪

n∈N
(an− εn, bn) is an open cover for the compact set [a, b− ε], by the Heine-Borel

Theorem, there exists N ∈ N such that

∪Nn=1 [an − εn, bn) ⊃ ∪Nn=1(an − εn, bn) ⊃ [a, b− ε] ⊃ [a, b− ε). (2.1)

Now, since ∪n∈N[an, bn) = [a, b) we have ∪Nn=1[an, bn) ⊂ [a, b) and

νFµ([a, b)) ≥ νFµ
(
∪Nn=1[an, bn)

)
=

N∑
n=1

νFµ ([an, bn)) by finite additivity.
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Hence, we have

0 ≤ νFµ([a, b))−
N∑
n=1

νFµ ([an, bn))

= νFµ([a, b− ε)) + νFµ([b− ε, b))−
N∑
n=1

(
νFµ([an − εn, bn))− νFµ([an − εn, an))

)
= νFµ([a, b− ε))−

N∑
n=1

νFµ([an − εn, bn)) this term < 0 by (2.1)

+ νFµ([b− ε, b)) +
N∑
n=1

νFµ([an − εn, an))

≤ νFµ([b− ε, b)) +
N∑
n=1

νFµ([an − εn, an)) = Fµ(b)− Fµ(b− ε) +
N∑
n=1

(Fµ(an)− Fµ(an − εn)).

By left-continuity of Fµ, we can choose ε such that Fµ(b)−Fµ(b− ε) < η/2 and εn such
that Fµ(an)− Fµ(an − εn) < 2−n η/2. Hence,

0 ≤ νFµ([a, b))−
N∑
n=1

νFµ ([an, bn)) ≤ η

2

(
1 +

N∑
n=1

2−n

)
.

Letting N →∞ we have that νFµ([a, b)) =
∑∞

n=1 νFµ ([an, bn)).

Since νFµ is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has an exten-
sion to σ(S) = B(R). Furthermore, since for n ∈ N, [−n, n) ↑ R and νFµ([−n, n)) =

Fµ(n)− Fµ(−n) = µ([0, n)) + µ([−n, 0))) <∞, this extension is unique.

To verify that νFµ = µ, it suffices to verify that νFµ = µ on S, since νFµ extends
uniquely to B(R). There are three cases:

Case 1 (0 ≤ a < b): νFµ([a, b)) = Fµ(b) − Fµ(a) = µ([0, b)) − µ([0, a)) = µ([0, a)) +

µ([a, b))− µ([0, a)) = µ([a, b)), since [0, b) = [0, a) ∪ [a, b),

Case 2 (a < 0 < b): νFµ([a, b)) = Fµ(b)− Fµ(a) = µ([0, b)) + µ([a, 0)) = µ([a, b)), since
[a, b) = [a, 0) ∪ [0, b),

Case 3 (a < b ≤ 0): νFµ([a, b)) = Fµ(b) − Fµ(a) = −µ([b, 0)) + µ([a, 0)) = µ([a, b)),
since [a, b) = [a, 0)− [b, 0), which completes the proof.

3. If F is a distribution function, show that it can have an infinite number of jump
discontinuities, but at most countably many.
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Answer: A jump of F , denoted by JF (x) exists if JF (x) = F (x) − lim
h→0

F (x − h) > 0

for h > 0. This happens if and only if P ({x}) > 0. Now, the collection of events
Ex := {{x} : P ({x}) > 0} is disjoint and all have positive probability. We now show
that this collection is countable. Let Cn = {Ex : P (Ex) >

1
n
and x ∈ R}. The elements

of Cn are disjoint events and

P (∪xmExm) =
∞∑
m=1

P (Exm) =∞,

where the last equality follows from the fact that P (Exm) > 0. So, it must be that Cn
has finitely many elements. Also, {Ex}x∈R = ∪∞n=1Cn, which is countable since it is a
countable union of finite sets.

4. Show that λ1((a, b)) = b− a for all a, b ∈ R, a ≤ b. State and prove the same for λn.

Answer: Let a < b and note that [a+ 1
k
, b) ↑ (a, b) as k →∞. Thus, by continuity of

measures,

λ((a, b)) = lim
k→∞

λ([a+ 1/k, b) = lim
k→∞

(b− a− 1/k) = b− a.

Since λ([a, b)) = b− a, this proves that λ({a}) = 0.

5. Consider the measure space (Rn,B(Rn), λn). Show that for every B ∈ B(Rn) and x ∈
Rn, x+B ∈ B(Rn) and that λn(x+B) = λn(B). Note: x+B := {z : z = x+b, b ∈ B}.

Answer: First, we need to show that x + B ∈ B(Rn) for all x ∈ Rn and for all
B ∈ B(Rn). Let Ax = {B ∈ B(Rn) : x + B ∈ B(Rn)} and note that Ax ⊂ B(Rn).
Also, Ax is a σ-algebra associated with Rn, since:

(a) Rn ∈ Ax given that x+ b ∈ Rn for all b ∈ Rn and Rn ∈ B(Rn),

(b) B ∈ Ax =⇒ x+B ∈ B(Rn) =⇒ (x+B)c ∈ B(Rn). But since (x+B)c = x+Bc

and Bc ∈ B(Rn), Bc ∈ Ax.

(c) {An}n∈N ⊂ Ax =⇒ x + An ∈ B(Rn) for all n ∈ N. Since B(Rn) is a σ-
algebra

⋃
n∈N(x + An) = x +

⋃
n∈NAn ∈ B(Rn). But since

⋃
n∈NAn ∈ B(Rn),⋃

n∈NAn ∈ Ax.

Now, let Rn,h = ×ni=1[li, ui) ∈ In,h ⊂ B(Rn) and note that x + Rn,h ∈ In,h ⊂ B(Rn).
Hence, Rn,h ∈ Ax =⇒ x+Rn,h ∈ Ax. Hence,

B(Rn) = σ(In,h) ⊂ Ax ⊂ B(Rn),
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which implies that x+B ∈ B(Rn) for all x ∈ Rn and for all B ∈ B(Rn).

Now, set v(B) = λn(x+B). If B = ∅, v(∅) = λn(x+∅) = λn(∅) = 0. Also, for a pairwise
disjoint sequence {An}n∈N, v

(⋃
n∈NAn

)
= λn

(
x+

⋃
n∈NAn

)
= λn

(⋃
n∈N(x+ An)

)
=∑

n∈N λ
n(x+ An) =

∑
n∈N v(An). Hence, v is a measure and

v(Rn,h) = λn(x+Rn,h) =
n∏
i=1

(ui + xi − (li + xi)) =
n∏
i=1

(ui − li) = λn(Rn,h).

Hence, v(Rn,h) = λn(Rn,h) for every Rn,h ∈ In,h. Since In,h is a π-system, generates
B(Rn) and admits an exhausting sequence [−k, k) ↑ Rn with λn([−k, k)n) = (2k)n <

∞, we have by Carathéodory Theorem that λn = v on B(Rn).
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Chapter 3

Exercises

1. Suppose (Ω,F) and (Y,G) are measure spaces and f : Ω → Y. Show that: a)
If−1(A)(ω) = (IA ◦ f)(ω) for all ω; b) f is measurable if, and only if, σ({f−1(A) :

A ∈ G}) ⊂ F .

Answer: a) For any subset A ⊂ Y , we have f−1(A) = {ω : f(ω) ∈ A}. Then,

If−1(A)(ω) = I{ω:f(ω)∈A}(ω) = IA(f(ω)) = (IA ◦ f)(ω).

b) Since f is measurable, f−1(G) ⊂ F . By monotonicity of σ-algebras, σ(f−1(G)) =

σ({f−1(A) : A ∈ G}) ⊂ F . Now, σ(f−1(G)) = f−1(σ(G)) = f−1(G) ⊂ F . The last set
containment implies measurability.

2. Show that for any function f : X → Y and any collection of subsets G of Y,
f−1(σ(G)) = σ(f−1(G))

Answer: f−1(σ(G)) is a σ-algebra associated with X. Since G ⊂ σ(G), f−1(G) ⊂
f−1(σ(G)) and consequently σ(f−1(G)) ⊂ f−1(σ(G)).

Now, as in Theorem 3.1, U = {U ∈ 2Y : f−1(U) ∈ σ(f−1(G))} is a σ-algebra. By
definition of U

f−1(U) ⊂ σ(f−1(G)).

Also, G ⊂ U since f−1(G) ⊂ f−1(U) ⊂ σ(f−1(G)). Since U is a σ-algebra we have that
σ(G) ⊂ U . So,

f−1(σ(G)) ⊂ f−1(U) ⊂ σ(f−1(C)).

The last set containment combined with the reverse obtained on the last paragraph
completes the proof.
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3. Let i ∈ I where I is an arbitrary index set. Consider fi : (X,F)→ (Xi,Fi).

(a) Show that for all i, the smallest σ-algebra associated with X that makes fi mea-
surable is given by f−1

i (Fi).

(b) Show that σ
(⋃
i∈I
f−1
i (Fi)

)
is the smallest σ-algebra associated with X that makes

all fi simultaneously measurable.

Answer: a) fi is measurable if f−1
i (Fi) ⊂ F . But by monotonicity of σ(·) we have

σ(f−1
i (Fi)) = f−1

i (Fi) ⊂ F since f−1
i (Fi) is a σ-algebra. b) f−1

i (Fi) ⊂ F for all i ∈ I
because fi is measurable. But any sub-σ-algebra of F that makes all fi measurable
functions must contain all f−1

i (Fi), i.e.,
⋃
i∈I
f−1
i (Fi). However, unions of σ-algebras are

not necessarily σ-algebras. Hence, we consider σ
(⋃
i∈I
f−1
i (Fi)

)
, the smallest σ-algebra

that makes all fi simultaneously measurable.

4. Let X : (Ω,F , P ) → (S,BS) where S ⊂ Rk and BS = {B ∩ S : B ∈ Bk} be a random
vector with k ∈ N, and g : (S,BS)→ (T,BT ) be measurable where T ⊂ Rp with p ∈ N.
If Y = g(X), show that

(a) σ(Y ) := Y −1(BT ) ⊂ σ(X) := X−1(BS),

(b) if k = p and g is bijective, σ(Y ) = σ(X).

Answer: (a) E ∈ Y −1(BT ) =⇒ E = Y −1(BT ) for some BT ∈ BT . Now,

E = {ω : Y (ω) ∈ BT} = {ω : g(X(ω)) ∈ BT} = {ω : X(ω) ∈ g−1(BT )}

= X−1(g−1(BT )).

Since g is measurable, g−1(BT ) ∈ BS and since X is a random vector X−1(g−1(BT )) ∈
σ(X) := X−1(BS). Hence, σ(Y ) ⊂ σ(X).

(b) First, observe that since g is bijective, it must be that k = p and S = T . For any
BT ∈ BT ,

g−1(BT ) = g−1(g(B)) for some B ⊂ S

= B ∈ BS since g−1 is an inverse function and g is measurable.

Hence, any BT ∈ BT is such that BT = g(B) where B ∈ BS. Similarly, due to the
existence of the inverse g−1, for any BS ∈ BS, BS = g−1(B) where B ∈ BT . Hence, if

16



C := {g−1(B) : B ∈ BT} then BS ⊂ C. But measurability of g assures that C ⊂ BS
Hence, X−1(BS) := σ(X) = X−1(C) = {X−1(g−1(B)) : B ∈ BT} = σ(Y ).
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Chapter 4

Exercises

1. Prove Theorem 4.2.

Answer: Let f =
∑I

i=0 yiIAi and f =
∑J

j=0 yjIBj be standard representations of f
and g. Then,

f ± g =
I∑
i=0

J∑
j=0

(yi ± zj)IAi∩Bj

and

fg =
I∑
i=0

J∑
j=0

(yizj)IAi∩Bj

with (Ai ∩Bj)∩ (Ai′ ∩Bj′) = ∅ whenever (i, j) 6= (i′, j′). After relabeling and merging
the double sums into single sums we have the result. The case for cf is obvious. f
simple implies f+ and f− are simple by definition, and since |f | = f+ + f−, |f | is
simple.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in
Definition 4.3 is equal to Iµ(f).
Answer: Since f is simple and f ≤ f , f is one of the simple functions (denoted by
φ) appearing in Definition 21 of the class notes. Hence,

∫
fdµ ≥ Iµ(f). Also, if φ is a

simple function such that φ ≤ f , by monotonicity of the integral of simple functions
we have Iµ(φ) ≤ Iµ(f), hence

sup
φ
Iµ(φ) :=

∫
fdµ ≤ Iµ(f).

Combining the two inequalities we have
∫
fdµ = Iµ(f).
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3. Let (X,F) be a measurable space and {µn}n∈N be a sequence of measures defined on
it. Noting that µ =

∑
n∈N µn is also a measure on (X,F) (you don’t have to prove

this), show that

∫
X

fdµ =
∑
n∈N

∫
X

fdµn

for f non-negative and measurable.

Answer: First, let f = IF ≥ 0 for F ∈ F . Then, f is measurable and

∫
X

fdµ =

∫
X

IFdµ = µ(F ) =
∑
n∈N

µn(F ) =
∑
n∈N

∫
X

IFdµn =
∑
n∈N

∫
X

fdµn.

Hence, the result holds for indicator functions. Now, consider a simple non-negative
function f =

∑m
j=0 ajIAj where aj ≥ 0 and Aj ∈ F . Then,

∫
X

fdµ =

∫
X

m∑
j=0

ajIAjdµ =
m∑
j=0

aj

∫
X

IAjdµ =
m∑
j=0

ajµ(Aj) =
m∑
j=0

aj
∑
n∈N

µn(Aj)

=
∑
n∈N

m∑
j=0

ajµn(Aj) =
∑
n∈N

∫
X

fdµn.

Hence, the result holds for simple non-negative functions. Lastly, let f be non-negative
and measurable. By Theorem 3.3 in the class notes, there exists a sequence {φn}n∈N
of non-negative, non-decreasing, measurable simple function such that sup

n∈N
φn = f . By

Beppo-Levi’s Theorem

∫
X

fdµ = sup
n∈N

∫
X

φndµ.
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Hence, ∫
X

fdµ = sup
n∈N

∫
X

φndµ = sup
n∈N

∞∑
j=1

∫
X

φndµj

= sup
n∈N

sup
m∈N

m∑
j=1

∫
X

φndµj since
∫
X
φndµj is nondecreasing.

= sup
m∈N

sup
n∈N

m∑
j=1

∫
X

φndµj = sup
m∈N

lim
n→∞

m∑
j=1

∫
X

φndµj

= sup
m∈N

m∑
j=1

lim
n→∞

∫
X

φndµj

= sup
m∈N

m∑
j=1

∫
X

lim
n→∞

φndµj by Beppo-Levi’s Theorem

= sup
m∈N

m∑
j=1

∫
X

fdµj =
∑
j∈N

∫
X

fdµj.

4. Let (X,F , µ) be a measure space and f : (X,F , µ)→ (R,B) be measurable and non-
negative. For every F ∈ F consider

∫
IFfdµ. Is this a measure?

Answer: Let v(F ) =
∫
IFfdµ. Then v is a [0,∞]-valued set function defined for

F ∈ F . Then,

(a) I∅ = 0 and clearly v(∅) = 0.

(b) Let F = ∪i∈NFi be a union of pairwise disjoint sets in F . Then,
∑∞

i=1 IFi = IF

and

v(F ) =

∫ ( ∞∑
i=1

IFi

)
fdµ =

∫ ( ∞∑
i=1

IFif

)
dµ

=
∞∑
i=1

∫
IFifdµ =

∞∑
i=1

v(Fi)

.

5. Let (Ω,F , P ) be a probability space and {Fn}n∈N ⊂ F .

(a) Prove that Ilim inf
n→∞

Fn = lim inf
n→∞

IFn and Ilim sup
n→∞

Fn = lim sup
n→∞

IFn .

(b) Prove that P
(

lim inf
n→∞

Fn

)
≤ lim inf

n→∞
P (Fn).
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(c) Prove that lim sup
n→∞

P (Fn) ≤ P

(
lim sup
n→∞

Fn

)
.

Answer: Part (a) is straightforward by noting that I∩Fn = inf IFn and I∪Fn =

sup IAn . (b) Part (a) combined with Fatou’s Lemma gives,

P (lim inf Fn) =

∫
Ilim inf FndP =

∫
lim inf IFndP ≤ lim inf

∫
IFndP.

(c) Again, by Fatou’s Lemma (the reverse) we have,

P (lim supFn) =

∫
Ilim supFndP =

∫
lim sup IFndP ≥ lim sup

∫
IFndP.
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Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let f =
∑I

i=0 yiIAi and f =
∑J

j=0 yjIBj be standard representations of f
and g. Then,

f ± g =
I∑
i=0

J∑
j=0

(yi ± zj)IAi∩Bj

and

fg =
I∑
i=0

J∑
j=0

(yizj)IAi∩Bj

with (Ai ∩Bj)∩ (Ai′ ∩Bj′) = ∅ whenever (i, j) 6= (i′, j′). After relabeling and merging
the double sums into single sums we have the result. The case for cf is obvious. f
simple implies f+ and f− are simple by definition, and since |f | = f+ + f−, |f | is
simple.

2. Prove Theorem 4.10.

Answer: Since f = f+ − f− and f+ and f− are nonnegative, use Theorems 4.6 and
4.8 in your notes.

3. Use Markov’s inequality to prove the following for a > 0 and g : (0,∞)→ (0,∞) that
is increasing:

P (|X(ω)| ≥ a) ≤ 1

g(a)

∫
g(|X|)dP

Answer: Since g is increasing, {ω : |X(ω)| ≥ a} = {ω : g(|X(ω)|) ≥ g(a)}. Hence,
since g is positive

g(a)I{ω:|X(ω)|≥a} = g(a)I{ω:g(|X(ω)|)≥g(a)} ≤ g(|X(ω)|).
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Integrating both sides we have g(a)P ({ω : |X(ω)| ≥ a}) ≤
∫
g(|X(ω)|)dP . This

completes the proof as g(a) > 0.

4. LetX be a random variable defined in the probability space (Ω,F , P ) with E(X2) <∞.
Consider a function f : R → R. What restrictions are needed on f to guarantee that
f(X) is a random variable with E(f(X)2) <∞?

Answer: Recall that if X : (Ω,F , P )→ (R,BR), we say that X is a random variable
(measurable real valued function) if, and only if, for all B ∈ BR we have X−1(B) ∈ F .
Hence, if h(ω) := f(X(ω)) = (f ◦X)(ω) : (Ω,F , P )→ (R,BR) we require that for all
B ∈ BR we have h−1(B) = (f ◦X)−1(B) = X−1(f−1(B)) ∈ F . That is, f−1(B) ∈ BR.

Since X is a random variable (measurable) and given that f−1(B) ∈ BR for all B ∈ BR,
f(X) is a random variable (measurable). Since the f 2 is a continuous function of f , f 2 is
also a random variable (measurable). Hence, we can consider the integrability (or not)
of f(X)2, i.e., whether or not E(f(X)2) < ∞. We give two general restrictions on f
that give E(f(X)2) <∞. First, suppose that supω∈Ω |h(ω)| = supω∈Ω |(f ◦X)(ω)| < C.
Then, ∣∣∣∣∫ f 2dP

∣∣∣∣ ≤ ∫ h2dP ≤ C2

∫
dP = C2.

Second, suppose that h2 ≤ X2 for all ω ∈ Ω. Then,
∫
h2dP ≤

∫
X2dP <∞.

Note that, in general, it is not true that E(f(X)2) < ∞ even if E(X2) < ∞. For
example, suppose that X ∼ U [0, 1]. Then, E(X2) = 1/3. Now, let Y := f(X) =

tan
(
π(X − 1

2

)
) and we can easily obtain that the probability density of Y is

fY (y) =

∣∣∣∣ ddyf−1(y)

∣∣∣∣ =

∣∣∣∣ ddy
(

1

2
+

1

π
arctan(y)

)∣∣∣∣ =
1

π

1

1 + y2
, y ∈ R.

But this is the Cauchy density and
∫
y2fY (y)dy does not exist.

5. LetX : (Ω,F , P )→ (R,B) be a random variable. Show that if V (X) := E ((X − E(X)))2 =

0 then X is a constant with probability 1.

Answer: From your notes, if
∫

Ω
X2dP = 0 then X2 = 0 almost everywhere. If N

is a null set
∫

Ω
X2dP =

∫
N
X2dP +

∫
Nc X

2dP =
∫
N
X2dP +

∫
Nc 0dP = 0. Thus,

P (X2 = x) = 0 for x 6= 0 and P (X2 = 0) = 1. But this is equivalent to P (X = 0) = 1.
Hence, V (X) = E ((X − E(X)))2 = 0 implies P (X−E(X) = 0) = P (X = E(X)) = 1.
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6. Consider the following statement:f is continuous almost everywhere if, and only if, it
is almost everywhere equal to an everywhere continuous function. Is this true or false?
Explain, with precise mathematical arguments.

Answer: False. Consider the function IQ(x), where x ∈ R. This function is nowhere
continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous
function. Alternatively, the function I[0,∞)(x) is continuous everywhere except at {0},
a set of measure zero. So, it is continuous almost everywhere. However, there is no
everywhere continuous function in R that is equal I[0,∞)(x) almost everywhere.

7. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show
that any sequence {fn}n∈N of measurable functions such that limn→∞ fn(x) = f(x)

and |fn| ≤ g for some g with gp nonnegative and integrable satisfies

lim
n→∞

∫
|fn − f |pdµ = 0.

Answer: (3 points) First, note that |fn − f |p ≤ (|fn| + |f |)p. Since |fn − f | → 0 we
have that |fn| → |f |. Consequently, for all ε > 0 there exists Nε ∈ N such that for
n ≥ Nε we have

|fn| − ε ≤ |f | ≤ |fn|+ ε ≤ g + ε

since |fn| < g. Consequently, |f | ≤ g, |f |p ≤ gp and |fn − f |p ≤ 2pgp where gp is
nonnegative and integrable. Now, letting φn = |fn − f |p we have that lim

n→∞
φn = 0 and

by Lebesgue’s dominated convergence theorem in the class notes

lim
n→∞

∫
X

φndµ =

∫
X

lim
n→∞

φndµ = 0.

8. Let λ be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for
every integrable function f , the function

g(x) =

∫
(0,x)

f(t)dλ, for x > 0

is continuous.
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Answer: Consider a sequence {yn}n∈N with 0 < x < yn such that lim
n→∞

yn = x. Then,

g(yn)− g(x) =

∫
(0,yn)

fdλ−
∫

(0,x)

fdλ =

∫
(0,∞)

I(0,yn)fdλ−
∫

(0,∞)

I(0,x)fdλ

=

∫
(0,∞)

(I(0,yn) − I(0,x))fdλ =

∫
(0,∞)

I(x,yn)fdλ

|g(yn)− g(x)| ≤
∫

(0,∞)

I[x,yn)|f |dλ.

Now, I[x,yn)|f | ≤ |f | and
∫

(0,∞)
|f |dλ < ∞ since f is integrable. Also, lim

n→∞
I[x,yn)f = 0

almost everywhere (ae). Thus, by dominated convergence in the class notes

lim
n→∞
|g(yn)− g(x)| ≤ lim

n→∞

∫
(0,∞)

I(x,yn)|f |dλ

=

∫
(0,∞)

lim
n→∞

I(x,yn)|f |dλ = 0.

By repeating the argument for yn ↑ x we obtain continuity of g at x.

9. Show that if X is a random variable with E(|X|p) <∞ then |X| is almost everywhere
real valued.

Answer: Let N = {ω : |X(ω)| = ∞} = {ω : |X(ω)|p = ∞}. Then N = ∩n∈N{ω :

|X(ω)|p ≥ n}. Then,

P (N) = P (∩n∈N{ω : |X(ω)|p ≥ n})

= lim
n→∞

P ({ω : |X(ω)|p ≥ n}) by continuity of probability measures

≤ lim
n→∞

1

k

∫
Ω

|X|pdP by Markov’s Inequality

= 0 since
∫

Ω
|X|pdP is finite.

10. Suppose X : (Ω,F , P ) → (R,B) is a random variable with E(|X|) < ∞. Let N ∈ F
be such that P (N) = 0 and define

Y (ω) =

{
X(ω) if ω /∈ N
c if ω ∈ N ,

where c ∈ R. Is Y integrable? Is E(X) = E(Y )?

Answer: Yes, for both questions. We can change an integrable random variables at
any set of measure zero without changing the integral.

26



Chapter 6

Exercises

1. Let X1, X2 ∈ L2 and define Cov(X1, X2) = E([X1 − E(X1)][X2 − E(X2)]). Show
that Cov(X1, X2) = E(X1X2)− E(X1)E(X2) and that if X1 and X2 are independent
Cov(X1, X2) = 0.

Answer: From the definition of Cov(X1, X2) and linearity of expectations

Cov(X1, X2) = E(X1X2−X1E(X2)−X2E(X1)+E(X1)E(X2)) = E(X1X2)−E(X1)E(X2).

Independence ofX1 andX2 implies thatE(X1X2) = E(X1)E(X2). Hence, Cov(X1, X2) =

0.

2. Let {Xn}n∈N be a sequence of random variables that are independent and share the
same continuous distribution. Let p be a permutation of {1, · · · , n} for n ∈ N. Show
that (X1, · · · , Xn) and (Xp(1), · · · , Xp(n)) have the same distribution.

Answer: Since the random variables are independent and have the same distribution,
say F ,

P (X1 ≤ x1, · · · , Xn ≤ xn) =
n∏
i=1

F (xi)

for all xi ∈ R. If {p(i)}ni=1 is a permutation of {1, · · · , n}, then

P (Xp(1) ≤ x1, · · · , Xp(n) ≤ xn) =
n∏
i=1

F (xi).

Hence, (X1, · · · , Xn) and Xp(1), · · · , Xp(n) have the same distribution.
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3. Let I be a finite index set and consider the collection of σ-algebras {Bi}i∈I . Show
that this collection is independent if, and only if, for every choice of non-negative
Bi-measurable random variable Xi, we have E

(∏
i∈I Xi

)
=
∏

i∈I E(Xi).

Answer: If E
(∏

i∈I Xi

)
=
∏

i∈I E(Xi) whenever Xi ∈ Bi, then for any Ai ∈ Bi, take
Xi = IAi and

E

(∏
i∈I

Xi

)
= P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai) =
∏
i∈I

E(Xi)

and consequently {Ai}i∈I are independent and {Bi}i∈I are independent σ-algebras.

Now, suppose {Bi}i∈I are independent σ-algebras. For Ai ∈ Bi and Xi = IAi we have

E

(∏
i∈I

Xi

)
=
∏
i∈I

E(Xi).

Now, if {Xi}i∈I are simple, then write Xi =
∑

j xijIAij for Aij ∈ Bi. Then, we have

E

(∏
i∈I

Xi

)
= E

∏
i∈I

∑
j(i)

xij(i)IAij(i)

 = E

 ∑
j(i),i∈I

∏
i∈I

xij(i)I ∩
i∈I

Aij(i)


=
∑

j(i),i∈I

∏
i∈I

xij(i)P

(
∩
i∈I
Aij(i)

)
=
∑

j(i),i∈I

∏
i∈I

xij(i)P (Aij(i))

=
∏
i∈I

∑
j(i)

xij(i)P (Aij(i)) =
∏
i∈I

E(Xi).

If Xi is a non-negative Bi-measurable function, there exists X(n)
i such that X(n)

i is
simple and 0 < X

(n)
i ↑ Xi. Then, it follows that

∏
i∈I X

(n)
i ↑

∏
i∈I Xi and by the

monotone convergence theorem E
(∏

i∈I X
(n)
i

)
↑ E

(∏
i∈I Xi

)
and from the previous

argument , the left side is
∏

i∈I E
(
X

(n)
i

)
↑
∏

i∈I E (Xi) again using the monotone
convergence theorem.

4. If E is an event that is independent of the π-system P and E ∈ σ(P ), then P (E) is
either 0 or 1.

Answer: Set C1 = E and C2 = P and it follows that C1 is independent of C2. This
implies that σ(C1) is independent of σ(C2). Therefore, E is independent of E and
P (E) = 0 or 1.
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5. Let {Ai}ni=1 be independent events. Show that P (∪ni=1Ai) = 1−
∏n

i=1 P (Aci).

Answer: By De Morgan’s Law (
⋃n
i=1 Ai)

c
=
⋂n
i=1A

c
i . Hence,

P

((
n⋃
i=1

Ai

)c)
= 1− P

(
n⋃
i=1

Ai

)
= P

(
n⋂
i=1

Aci

)

which implies

P

(
n⋃
i=1

Ai

)
= 1− P

(
n⋂
i=1

Aci

)
= 1−

n⋂
i=1

P (Aci)

where the last equality follows from the fact that if {Ai}ni=1 are independent events, so
are {Aci}ni=1.

6. We have proved that if X and Y are independent, then f(X) and g(Y ) are independent
if f and g are measurable. Is it possible to have X and Y be dependent and f(X) and
g(Y ) be independent? If so, give an example, if not, prove.

Answer: Yes, it is possible. Consider two independent random variables X1 and X2

and another random variable W that is independent of X1 and X2 and takes on the
values 1 and −1 with probability 1/2 each. Now, define two new random variables
X = WX1 and Y = WX2. X and Y are functionally connected and cannot be
independent. However, X2 = X2

1 and Y 2 = X2
2 , which are independent since X1 and

X2 are independent.
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Chapter 7

Exercises

1. Let {Xn}n∈N ⊂ Lp for p ∈ [1,∞) be a sequence of non-negative functions. Show that

‖
∞∑
n=1

Xn‖p ≤
∞∑
n=1

‖Xn‖p.

Answer: Let Sn =
∑N

n=1Xn. Since Xn ≥ 0 for all n, 0 ≤ S1 ≤ S2 ≤ · · · . Given
that |SN |p ≤ 2p

∑N
n=1 |Xn|p. we have

∫
Ω
|SN |pdP ≤ 2p

∑N
n=1

∫
Ω
|Xn|pdP < ∞. Conse-

quently, SN ∈ Lp. By Minkowski’s inequality

‖SN‖p ≤
N∑
n=1

‖Xn‖p ≤
∞∑
n=1

‖Xn‖p, (7.1)

which implies ‖SN‖pp ≤ (
∑∞

n=1 ‖Xn‖p)p. By Beppo-Levi’s Theorem

sup
n∈N
‖SN‖pp = sup

n∈N

∫
Ω

SpNdP =

∫
Ω

sup
n∈N

SpNdP =

∫
Ω

sup
n∈N

(
N∑
n=1

Xn

)p

dP

=

∫
Ω

(
sup
n∈N

N∑
n=1

Xn

)p

dP = ‖
∞∑
n=1

Xn‖pp. (7.2)

Hence, by inequality (7.1) and (7.2) we have

sup
n∈N
‖SN‖pp = ‖

∞∑
n=1

Xn‖pp ≤

(
∞∑
n=1

‖Xn‖p

)p

.

Consequently, ‖
∑∞

n=1Xn‖p ≤
∑∞

n=1 ‖Xn‖p.

2. Show that if
∑

n∈N xn converges absolutely, then it converges.
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Answer: Suppose N1, N2 ∈ N, N1 < N2 and
∑
n∈N

xn converges absolutely. Note that∑N2

n=1 |xn| −
∑N1

n=1 |xn| =
∑N2

n=N1+1 |xn|. If N1 →∞, then
∑N2

n=1 |xn| −
∑N1

n=1 |xn| → 0,
as every convergent sequence is Cauchy. Also, since

|xN1+1 + xN2+1 + · · ·xN2| ≤
N2∑

n=N1+1

|xn|,

|
N2∑
n=1

xn −
N1∑
n=1

xn| = |xN1+1 + xN2+1 + · · ·xN2 | ≤
N2∑

n=N1+1

|xn| → 0.

Since R is complete, lim
N→∞

∑N
n=1 xn converges.

3. Prove Theorem 7.9.

Answer: Just Xn
L1→ X on item 2. For ε > 0 let An = {|Xn −X| > ε}

E|Xn −X| = E(|Xn −X|I|Xn−X|<ε + |Xn −X|I|Xn−X|≥ε)

≤ ε+ E(|Xn|IAn) + E(|X|IAn).

P (An)→ 0 as n→∞, hence E(|Xn|IAn)→ 0 by Theorem 7.6. Similarly, E(|X|IAn)→
0, which gives the result.

4. Let {gn}n=1,2,··· be a sequence of real valued functions that converge uniformly to g on
an open set S, containing x, and g is continuous at x. Show that if {Xn}n=1,2,··· is a
sequence of random variables taking values in S such that Xn

p→ X, then

gn(Xn)
p→ g(X).

Note: Recall that a sequence of real valued functions {gn}n=1,2,··· converges uniformly
to g on a set S if, for every ε > 0 there exists Nε ∈ N (depending only on ε) such that
for all n > Nε, |gn(x)− g(x)| < ε for every x ∈ S.

Answer: Let ε, δ > 0 and define the following subsets of the sample space: Sn1 = {ω :

|gn(Xn)− g(X)| < ε}, Sn2 = {ω : |gn(Xn)− g(Xn)| < ε/2}, Sn3 = {ω : |g(Xn)− g(X)| <
ε/2}, Sn4 = {ω : Xn ∈ S}. By the triangle inequality, Sn1 ⊇ Sn2 ∩ Sn3 . By continuity
of g at X and openness of S, there exists γε such that whenever |Xn − X| < γε,
|g(Xn) − g(X)| < ε/2 and Xn ∈ S. Letting, Sn5 = {ω : |Xn − X| < γε}, we
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see that Sn5 ⊆ Sn3 ∩ Sn4 . Since Xn
p→ X and uniform convergence of gn, there ex-

ists Nδ,ε such that whenever n > Nδ,ε, |gn(X) − g(X)| < ε/2 for all X ∈ S and
P (Sn5 ) > 1 − δ. Thus, n > Nδ,ε implies Sn4 ⊆ Sn2 . Consequently, n > Nδ,ε implies
Sn1 ⊇ Sn2 ∩ Sn3 ⊇ Sn4 ∩ Sn3 ⊇ Sn5 . Thus, P (Sn1 ) ≥ P (Sn5 ) > 1− δ.

5. Show thatXn
as→ X is equivalent to P

(
{ω : supj≥n |Xj −X| ≥ ε}

)
→ 0 for all ε > 0 as n→∞.

Answer: For any ε > 0 and k ∈ N let Ak(ε) = {ω : |Xk(ω) − X(ω)| > ε}. If for all
n ∈ N we have that P (∪k>nAk(ε)) > 0 then it must be that Xn

as9 X. Consequently,

Xn
as→ X ⇔ lim

n→∞
P (∪n<kAk(ε)) = 0

⇔ P

(
{ω : sup

j≥n
|Xj −X| > ε}

)
→ 0 as n→∞.

6. Prove item 1 of Remark 7.1.
Answer: For ε > 0 we have that

{ω : |Xn + Yn −X − Y | > ε} ⊆ {ω : |Xn −X| > ε/2} ∪ {ω : |Yn − Y | > ε/2}

The probability of the events on the union on right-hand side go to zero as n → ∞.
By monotonicity of probability measures we have the results.

7. Let n ∈ N and hn > 0 such that hn → 0 as n → ∞. Show that if
∑∞

n=1 P ({ω :

|Xn −X| ≥ hn}) <∞ then Xn
p→ X.

Answer: From question 5,

Xn
as→ X ⇔ lim

n→∞
P (∪n<kAk(hn)) = 0.

But P (∪n<kAk(hn)) ≤
∑

k≥n P (Ak(ε)) and if
∑∞

n=1 P ({ω : |Xn − X| ≥ hn}) < ∞
then it must be that lim

n→∞

∑
k≥n P (Ak(ε)) = 0. Since convergence almost surely implies

convergence in probability, the proof is complete.

8. Show that if Yn
d→ Y then Yn = Op(1).
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Answer: Without loss of generality let a > 0. Provided that a and −a are continuity
points of FY , we can write that,P (|Yn| > a)→ P (|Y | > a) as n→∞. Hence, for every
ε > 0 there exists Nε such that,

|P (|Yn| > a)− P (|Y | > a)| < ε for all n ≥ Nε

or
P (|Y | > a)− ε < P (|Yn| > a) < P (|Y | > a) + ε.

We can choose a such that P (|Y | > a) < δ for any δ > 0. Thus, P (|Yn| > a) < δ + ε

for all n ≥ Nε.

9. Let g : S ⊆ R be continuous on S, and Xt and Xs be random variables defined on
(Ω,F , P ) taking values in S. Show that: a) if Xt is independent of Xs, then g(Xt)

is independent of g(Xs); b) if Xt and Xs are identically distributed, then g(Xt) and
g(Xs) are identically distributed.

Answer: Let Yt = g(Xt) and Ys = g(Xs). g continuous assures that both Yt and Ys
are random variables.

a) FYt,Ys(a, b) = P (S = {ω : Yt ≤ a and Ys ≤ b}). Let St = {Xt(ω) : Yt(ω) ≤ a}, Ss =

{Xs(ω) : Ys(ω) ≤ b}. Since, S = St ∩ Ss and by independence P (S) = P (St)P (Ss)

which implies FYt,Ys(a, b) = FYt(a)FYs(b).

b) FYt(a) = P (St) = P ({Xs(ω) : Ys(ω) ≤ a}) = FYs(a).

10. Let {Xn} be a sequence of independent random variables that converges in probability
to a limit X. Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say c, P ({ω : X(ω) 6= c}) = 0.

Then, the distribution function F associated with X is given by

F (x) =

{
0, if x < c

1, if x ≥ c
.
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If X is not a constant, there exists a c and 0 < ε < 1/2 such that P (X < c) > 2ε

and P (X ≤ c + ε) < 1 − 2ε or P (X > c + ε) > 2ε. Since Xn
p→ X than Xn

d→ X.
Consequently, for n sufficiently large and c a point of continuity of F we have

F (c)− ε < Fn(c) < F (c) + ε

which implies that ε < Fn(c). Also, 1 − Fn(c + ε) > 1 − F (c + ε) − ε which implies
P (Xn > c + ε) > P (X > c + ε) − ε > ε. Since Xn

p→ X, for n sufficiently large
P ({ω : |Xr −Xs| > ε}) < ε3. Since {ω : |Xr −Xs| > ε} = {ω : Xr −Xs > ε} ∪ {ω :

Xr −Xs < −ε} we note that if Xr < c and Xs > c+ ε then Xr −Xs > ε is equivalent
to Xr −Xs < −ε. Consequently,

P ({ω : |Xr −Xs| > ε}) ≤ P ({ω : Xr < c and Xs > c+ ε}).

But since Xr and Xs are independent P ({ω : Xr < c and Xs > c+ ε}) = P ({ω : Xr <

c})P ({ω : Xs > c+ ε}) > ε2. Hence,

ε3 > P ({ω : |Xr −Xs| > ε}) > ε2,

a contradiction.

11. Suppose Xn−µ
σn

d→ Z where the non-random sequence σn → 0 as n → ∞, and g is a

function which is differentiable at µ. Then, show that g(Xn)−g(µ)

g(1)(µ)σn

d→ Z.

Answer: From question 2, if Zn
d→ Z then Zn = Op(1). Let Zn = Xn−µ

σn
and write

Xn = µ+ σnZn = µ+Op(σn). By Taylor’s Theorem

1

σn
g(Xn)− g(µ) = g(1)(µ)

(Xn − µ)

σn
+ op(1).

Since Xn−µ
σn

d→ Z, we have the result.

12. Show that if {Xn}n∈N and X are random variables defined on the same probability
space and r > s ≥ 1 and Xn

Lr−→ X, then Xn
Ls−→ X.

Answer: For arbitrary W let Z = |W |s, Y = 1 and p = r/s. Then, by Hölder’s
Inequality

E|ZY | ≤ ‖Z‖p‖Y ‖p/(p−1).
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Substituting Z and Y gives E(|W |s) ≤ E(|W |sp)1/p = E(|W |s rs )s/r. Raising both sides
to 1/s gives

E(|W |s)1/s ≤ E(|W |r)1/r.

Setting W = Xn −X and taking limits as n→∞ gives the result.
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Chapter 8

Exercises

1. Let U and V be two points in an n-dimensional unit cube, i.e., [0, 1]n and Xn be the
Euclidean distance between these two points which are chosen independently and uni-
formly. Show that Xn√

n

p→ 1√
6
.

Answer: Let U ′ =
(
U1 · · · Un

)
and V ′ =

(
V1 · · · Vn

)
. Then,Xn = (

∑n
i=1(Ui − Vi)2)

1/2

and we can write

1

n
E(X2

n) =
1

n

n∑
i=1

E((Ui − Vi)2) =

∫ 1

0

∫ 1

0

(u− v)2dudv = 1/6

where the last equality follows from routine integration. Then, since E(|(U − V )2|) =

E((U − V )2) <∞, by Kolmogorov’s Law of Large Numbers

1

n
X2
n =

1

n

n∑
i=1

(Ui − Vi)2 p→ 1/6.

Since, f(x) = x1/2 is a continuous function [0,∞), by Slutsky Theorem if 1
n
X2
n

p→ 1/6

then f
(

1
n
X2
n

) p→ f(1/6). Consequently,

1√
n
Xn

p→ 1/
√

6.

2. Show that if {Xj}j∈N be a sequence of random variables with E(Xj) = 0 and
∑∞

j=1
1
apj
E(|Xj|p) <

∞ for some p ≥ 1 and a sequence of positive constants {aj}j∈N. Then,

∞∑
j=1

P (|Xj| > aj) <∞ and
∞∑
j=1

1

aj
|E(XjI{ω:|Xj |≤aj})| <∞.
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Furthermore, for any r ≥ p,

∞∑
j=1

1

arj
E(|Xj|rI{ω:|Xj |≤aj}) <∞.

Use this result to prove Theorem 8.4 in your class notes with convergence in probability.

Answer: Note that

P ({ω : |Xj| > aj}) = 1− P ({ω : |Xj| ≤ aj}) =

∫
Ω

(
1− I{ω:|Xj |≤aj}

)
dP.

If ω ∈ {ω : |Xj| ≤ aj}, then P ({ω : |Xj| > aj}) = 0. If |Xj| > aj, then |Xj|p > apj and
|Xj|p/apj > 1. Hence,

P ({ω : |Xj| > aj}) <
∫

Ω

|Xj|p/apjdP =
1

apj
E (|Xj|p)

and
∞∑
j=1

P ({ω : |Xj| > aj}) <
∞∑
j=1

1

apj
E (|Xj|p) <∞.

Now,

1

aj
|E(XjI{ω:|Xj |≤aj})| =

1

aj
|E(Xj)− E(XjI{ω:|Xj |≤aj})|, since E(Xj) = 0.

≤ 1

aj
E
(
|Xt|(1− I{ω:|Xj |≤aj}

)
≤ 1

apj
E
(
|Xj|p(1− I{ω:|Xj |≤aj}

)
since |Xj |

p

apj
≥ |Xj |

aj
if p ≥ 1.

≤ 1

apj
E (|Xj|p) .

Hence,
∞∑
j=1

1

aj
|E(XjI{ω:|Xj |≤aj})| <

∞∑
j=1

1

apj
E (|Xj|p) <∞.

Lastly, if |Xj| ≤ aj we have that 1
aj
|Xj| ≤ 1. Then, for r ≥ p ≥ 1

1

arj
|Xj|rI{ω:|Xj |≤aj} ≤

1

apj
|Xj|pI{ω:|Xj |≤aj} ≤

1

aj
|Xj|I{ω:|Xj |≤aj}

and
E

(
1

arj
|Xj|rI{ω:|Xj |≤aj}

)
≤ E

(
1

apj
|Xj|pI{ω:|Xj |≤aj}

)
.

38



Hence,
∞∑
j=1

E

(
1

arj
|Xj|rI{ω:|Xj |≤aj}

)
<∞.

In Theorem 8.4, the sequence of random variables {Xj}j∈N is independent and has
expectation µj. Hence, if Wj := Xj − µj, we have E(Wj) = 0. Furthermore, in
Theorem 8.4 it is assumed that for some δ > 0

∞∑
j=1

E(|Wj|1+δ)

j1+δ
<∞.

Now, note that for any n ∈ N we have
∑n

j=1
E(|Wj |1+δ)

n1+δ ≤
∑n

j=1
E(|Wj |1+δ)

j1+δ
and

lim
n→∞

n∑
j=1

E(|Wj|1+δ)

n1+δ
≤ lim

n→∞

n∑
j=1

E(|Wj|1+δ)

j1+δ
<∞.

Now, in the first part of this answer, take aj = n for all j and for any r > 1 + δ. Then,
we have

∞∑
j=1

P (|Wj| > n) <∞ and
∞∑
j=1

1

nr
E(|Wj|rI{ω:|Wj |≤n}) <∞.

Hence, taking r = 2 the conditions on Theorem 8.2 are met and we have

1

n

n∑
j=1

Wj−
1

n

n∑
i=1

E
(
WjI{ω:|Wj |≤n}

)
=

1

n

n∑
j=1

(Xj−µj)−
1

n

n∑
i=1

E
(
WjI{ω:|Wj |≤n}

)
= op(1).

But since E(Wj) = 0, we have E
(
WjI{ω:|Wj |≤n}

)
→ 0 as n→∞. Thus, 1

n

∑n
j=1(Xj −

µj) = op(1).

3. Let {Xi}i=2,3,··· be a sequence of independent random variables such that

P (Xi = i) = P (Xi = −i) =
1

2i log i
, P (Xi = 0) = 1− 1

i log i

Show that 1
n

∑n
i=2Xi

p→ 0.

Answer: Let Sn =
∑n

i=2Xi and note that E(Xi) = 0. Hence, by independence

E(S2
n) =

n∑
i=2

E(X2
i ) =

n∑
i=2

i

log i
≤ n2

log n
.

Hence, V (Sn/n) = 1
n2V (Sn) = 1

n2E(S2
n) ≤ 1

n2
n2

logn
= 1

logn
→ 0 as n→∞. Consequently,

1
n
Sn

p→ 0 by Chebyshev’s inequality.
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Chapter 9

Exercises

1. Assess the veracity of the following statement: “Since knowledge of X implies knowl-
edge of f(X), conditioning onX is the same as conditioning on f(X). Hence, E(Y |f(X)) =

E(Y |X).” Explain using mathematical arguments.

Answer: The statement is false. Recall that conditioning on a random variable
X means conditioning on the sub-σ-algebra generated by X, i.e., X−1(B). Hence,
conditioning on f(X) means conditioning on the sub-σ-algebra generated by f(X),
i.e., X−1(f−1(B)) which is generally different from X−1(B). Take, for example, the
following random vector: (Y,X) : Ω→ R2 with (Y (ω), X(ω)) = (1,−1) if ω ∈ E1 and
(Y (ω), X(ω)) = (2,−1) if ω ∈ E2, (Y (ω), X(ω)) = (1, 1) if ω ∈ E3 and (Y (ω), X(ω)) =

(2, 1) if ω ∈ E4, with P (Ej) = 1/6 for j = 1, 2, P (E3) = 3/6, P (E4) = 1/6 and
Ω = ∪4

j=1Ej and Ei ∪ Ej = ∅ for i 6= j. Now, let f(X) = X2. Then,

E(Y |X) =

{
1.5 if X = −1
5/4 if X = 1

and E(Y |X2) = 8/6.

2. Let X and Y be independent random variables defined in the same probability space.
Show that if E(|Y |) <∞ then

P (E(Y |X) = E(Y )) = 1.

Answer: Let FX be the σ-algebra generated by X. Let E ∈ FX and note that there
exists B such that E = {ω : X(ω) ∈ B}.∫

A

Y dP =

∫
Ω

Y IAdP =

∫
Ω

Y IX∈BdP = E(Y IX∈B) = E(Y )E(IX∈B)

41



where the last equality follows by independence. Now,

E(Y )E(IX∈B) = E(Y )

∫
Ω

IX∈BdP = E(Y )

∫
Ω

IAdP =

∫
A

E(Y )dP.

Consequently, since A is arbitrary in FX∫
A

Y dP =

∫
A

E(Y )dP or
∫
A

(Y − E(Y ))dP = 0

By definition of conditional expectation we have that E(Y |X) = E(Y ) since A is ar-
bitrary in FX .

3. Let (Ω,F , P ) be a probability space. The set of random variables X : Ω → R such
that

∫
Ω
X2dP < ∞ is denoted by L2(Ω,F , P ). On this set ‖X‖ =

(∫
Ω
X2dP

)1/2

is a norm and < X, Y >=
∫

Ω
XY dP is an inner product. If G is a σ-algebra and

G ⊂ F , the conditional expectation of X with respect to G, denoted by E(X|G) is the
orthogonal projection of X onto the closed subspace L2(Ω,G, P ) of L2(Ω,F , P ). Prove
the following results:

(a) ForX, Y ∈ L2(Ω,F , P ) we have< E(X|G), Y >=< E(Y |G)), X >=< E(X|G), E(Y |G) >.

(b) If X = Y almost everywhere then E(X|G) = E(Y |G) almost everywhere.

(c) For X ∈ L2(Ω,G, P ) we have E(X|G) = X.

(d) If H ⊂ G is a σ-algebra, then E(E(X|G)|H) = E(X|H).

(e) If Y ∈ L2(Ω,G, P ) and there exists a constant C > 0 such that P (|Y | ≥ C) = 0,
we have that E(Y X|G) = Y E(X|G).

(f) If {Yn}n∈N, X ∈ L2(Ω,F , P ) and ‖Yn − X‖ → 0 as n → ∞, then E(Yn|G)
p→

E(X|G) as n→∞.

Answer: (a) By definition of conditional expectation, for all measurable s ∈ L2(Ω,G, P ),

E ([X − E(X|G)]s) = 0 ⇐⇒ E(Xs) = E (E(X|G)s) . (9.1)

Since E(Y |G) ∈ L2(Ω,G, P ), we have E(XE(Y |G)) = E (E(X|G)E(Y |G)). But by def-
inition of the inner product the last equality is < E(Y |G)), X >=< E(X|G), E(Y |G) >.
Similarly, changing X for Y in equation (9.1) we obtain E(Y s) = E (E(Y |G)s). Let-
ting, s = E(X|G) we get E(Y E(X|G)) = E (E(Y |G)E(X|G)) and E(Y E(X|G)) =

E(XE(Y |G)), which is equivalent to < E(X|G), Y >=< E(Y |G)), X >.
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(b) Let y = E(Y |G) and x = E(X|G). Then,

(y − x)2 = (y − Y + Y − x)(y − x) = (y − Y )(y − x) + (Y − x)(y − x)

= (y − Y )(y − x) + (Y −X)(y − x) + (X − x)(y − x)

But from item 1, E(y − x)2 := ‖y − x‖2 = E(Y −X)(y − x) ≤ E|(Y −X)(y − x)| ≤
‖Y −X‖‖y−x‖, which gives ‖y−x‖ ≤ ‖Y −X‖. Lastly, if X = Y almost everywhere,
then ‖Y −X‖ = 0 and x = y almost everywhere.

(c) Since X ∈ L2(Ω,G, P ), it follows from the projection theorem that E(X|G) = X.

(d) From item (a), we have< E(E(X|G)|H), Y >=< E(X|G), E(Y |H) >=< X,E(E(Y |H)|G) >.
Since E(Y |H) ∈ L2(Ω,G, P ), we have that by item (c) < X,E(E(Y |H)|G) >=<

X,E(Y |H) >=< E(X|H), Y >. Hence, E(E(X|G)|H) = E(X|H) almost everywhere.

(e) Since L2(Ω,G, P ) is a closed linear subspace of L2(Ω,F , P ) and E(·|G) is a linear
projector, any X ∈ L2(Ω,F , P ) can be written as

X = E(X|G) + (X − E(X|G)) (9.2)

where (X − E(X|G)) is orthogonal to any element of L2(Ω,G, P ). Hence, (9.2) gives

XY = E(X|G)Y + (X − E(X|G))Y. (9.3)

Now, note that for any s ∈ L2(Ω,G, P ) and Y ∈ L2(Ω,G, P ) bounded almost ev-
erywhere, as assumed in the question, we have sY ∈ L2(Ω,G, P ). Hence, E((X −
E(X|G))sY ) = 0 and using (9.3) we have

E(sXY ) = E(sE(X|G)Y ) ⇐⇒ E([XY − E(X|G)Y ]s) = 0,

and the conclusion that E(XY |G) = E(X|G)Y .

(f) From item (b)
‖E(Yn|G)− E(Z|G)‖ ≤ ‖Yn − Z‖.

Taking limits on both sides as n → ∞ we obtain ‖E(Yn|G) − E(Z|G)‖ → 0, since
‖Yn−Z‖ → 0 by assumption. That is, E(Yn|G) converges in quadratic mean to E(Z|G).
But by Chebyshev’s inequality, convergence in quadratic mean implies convergence in
probability. Hence, E(Yn|G)

p→ E(Z|G).
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4. Let X, Y ∈ L2(Ω,F , P ) be random variables and assume that E(Y |X) = aX where
a ∈ R.

(a) Show that if E(X2) > 0, a = E(XY )/E(X2).

(b) If {(Yi Xi)
T}ni=1 is a sequence of independent random vectors with components

having the same distribution as (Y X)T , show that

1

n

n∑
i=1

X2
i

p→ E(X2) and
1

n

n∑
i=1

YiXi
p→ E(XY ).

(c) Let an =
(

1
n

∑n
i=1X

2
i

)−1 1
n

∑n
i=1 YiXi. Does an

p→ a? Can an be defined for all n?
Explain.

Answer: (a) Note that E(Y |X) = argmin
a

∫
Ω

(Y − aX)2dP . Now,∫
Ω

(Y − aX)2dP =

∫
Ω

Y 2dP + a2

∫
Ω

X2dP − 2a

∫
Ω

XY dP,

d

da

∫
Ω

(Y−aX)2dP = 2a

∫
Ω

X2dP−2

∫
Ω

XY dP and
d2

da2

∫
Ω

(Y−aX)2dP = 2

∫
Ω

X2dP > 0.

Hence, setting the first derivative equal to zero gives, E(Y |X)
∫

Ω
X2dP =

∫
Ω
XY dP ⇐⇒

E(Y |X) = E(XY )
E(X2)

.

(b) SinceX2
i =

(
0 1

)( Yi
Xi

)(
Yi
Xi

)T (
0 1

)T andXiYi =
(

1 0
)( Yi

Xi

)(
Yi
Xi

)T (
0 1

)T ,
they are measurable function of

(
Yi
Xi

)
. Hence, {X2

i }i∈N and {XiYi}i∈N are IID se-

quences. Since, E(X2
i ) = E(X2) and E(XiYi) = E(XY ) by the law of large numbers

for IID random variables

1

n

n∑
i=1

X2
i

p→ E(X2) > 0 and
1

n

n∑
i=1

YiXi
p→ E(XY ).

(c) To define an we need 1
n

∑n
i=1 X

2
i > 0 which is not assured from the assumptions.

What can be said is that 1
n

∑n
i=1 X

2
i

p→ E(X2) > 0. Hence, an exists in probability as
n→∞.

5. Prove the following:
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(a) If Y ∈ L(Ω,F , P ) and G ⊂ F is a σ-algebra, show that |E(Y |G)| ≤ E(|Y ||G).

Answer: |Y | = Y + − Y − where Y +, Y − ≥ 0. By linearity of conditional expec-
tation

E(|Y ||G) = E(Y +|G) + E(Y −|G)

and from Theorem 7.9 E(Y +|G) ≥ 0, E(Y −|G) ≥ 0. Hence,

|E(Y |G)| = |E(Y +|G)− E(Y −|G)| ≤ |E(Y +|G)|+ |E(Y −|G)|

= E(Y +|G) + E(Y −|G) = E(|Y ||G)

(b) Let c be a scalar constant and suppose X = c almost surely. Show that E(X|G) =

c almost surely.

Answer: It suffices to show that
∫

Ω
|c− E(X|G)|dP = 0. Now,∫

Ω

|c− E(X|G)|dP =

∫
c≥E(X|G)

(c− E(X|G))dP +

∫
c<E(X|G)

(E(X|G)− c)dP.

Now,
∫
c≥E(X|G)

(c − E(X|G))dP =
∫

Ω
(c − E(X|G))I{c≥E(X|G)}dP . Now, since

E(X|G) ∈ L(Ω,G, P ), I{c≥E(X|G)} is G-measurable. Hence, by the definition of
conditional expectation ∫

c≥E(X|G)

(c− E(X|G))dP = 0.

Similarly,
∫
c<E(X|G)

(E(X|G)− c)dP = 0. Hence, c = E(X|G) almost surely.

(c) If Y ∈ L(Ω,F , P ) and G ⊂ F is a σ-algebra, show that for a > 0

P ({ω : |Y (ω)| ≥ a}|G) ≤ 1

a
E(|Y (ω)||G).

What is the definition of P ({ω : |Y (ω)| ≥ a}|G)? Is this a legitimate probability
measure?

Answer: Note that aI{ω:|Y (ω)|≥a} ≤ |Y (ω)| and

aE
(
I{ω:|Y (ω)|≥a}|G

)
≤ E(|Y (ω)||G) ⇐⇒ E

(
I{ω:|Y (ω)|≥a}|G

)
≤ 1

a
E(|Y (ω)||G).

If we define E
(
I{ω:|Y (ω)|≥a}|G

)
:= P ({ω : |Y (ω)| ≥ a}|G) we have

P ({ω : |Y (ω)| ≥ a}|G) ≤ 1

a
E(|Y (ω)||G).

45



Now, to verify that P (·|G) is a legitimate probability measure note that, E (IΩ|G) =

E (1|G) = 1 = P (Ω|G) almost surely. Also, if {Ej}j∈N is a countable collection of
disjoint events I∪j∈NEj =

∑
j∈N IEj and

P (∪j∈NEj|G) = E
(
I∪j∈NEj |G

)
= E

(∑
j∈N

IEj |G

)
=
∑
j∈N

E
(
IEj |G

)
=
∑
j∈N

P (Ej|G) .

6. Let Y and X be random variables such that Y,X ∈ L2(Ω,F , P ) and define ε =

Y − E(Y |X).

(a) Show that E(ε|X) = 0 and E(ε) = 0.

(b) Let V (Y |X) = E(Y 2|X) − E(Y |X)2. Show that V (Y |X) = V (ε|X), V (ε) =

E(V (Y |X));

(c) Cov(ε, h(X)) = 0 for any function of X whose expectation exists.

(d) Assume that E(Y |X) = α + βX where α, β ∈ R. Let E(Y ) = µY , E(X) = µX ,
V (Y ) = σ2

Y , V (X) = σ2
X and ρ = Cov(X,Y )

σXσY
. Show that,

E(Y |X) = µY + ρσY
X − µX
σX

and E(V (Y |X)) = (1− ρ2)σ2
Y .

Answers:

(a) E(ε|X) = E(Y − E(Y |X)|X) = E(Y |X)− E(Y |X) = 0. By the law on iterated
expectations E(ε) = E(E(ε|X)) = 0.

(b) V (Y |X) = E((Y − E(Y |X))2|X) = E(ε2|X) = V (ε|X) since E(ε|X) = 0. Also,
since E(ε) = 0 we have that V (ε) = E(ε2) = E(E(ε2|X)) = E(V (ε|X)) =

E(V (Y |X)).

(c) Cov(ε, h(X)) = E(εh(X)) − E(ε)E(h(X)) = E(εh(X)) since E(ε) = 0. But by
definition of conditional expectation

E(εh(X)) = E(h(X)E(ε|X)) = 0 since E(ε|X) = 0.

(d) First note that

µY = E(E(Y |X)) = E(α + βX) = α + βµX . (9.4)

Now, by definition of conditional expectation

E(XY ) = E(X(α + βX)) = αµX + βE(X2) = αµX + β(σ2
X + µ2

X).
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Also, E(XY ) = Cov(X, Y ) + µXµY = ρσXσY + µXµY . Then, we have

αµX + β(σ2
X + µ2

X) = ρσXσY + µXµY . (9.5)

Equations (9.4) and (9.5) form a system with two unknowns (α, β). The solution
is given by,

β =
ρσY
σX

and α = µY − µX
ρσY
σX

.

Substituting α and β into E(Y |X) = α + βX gives the desired result.

Lastly,

σ2
Y := V (Y ) = E (Y − E(Y ))2 = E (Y − E(Y |X) + E(Y |X)− E(Y ))2

= E
(
(Y − E(Y |X))2

)
+ E

(
(E(Y |X)− E(Y ))2)

+ 2E ((Y − E(Y |X))(E(Y |X)− E(Y ))))

= E
(
(Y − E(Y |X))2

)
+ V (E(Y |X)) + 2E (ε(E(Y |X)− E(Y )))

= E(V (Y |X)) + V (E(Y |X)) .

Consequently,

E(V (Y |X)) = σ2
Y − V

(
µY + ρσY

X − µX
σX

)
= σ2

Y − ρ2σ2
Y = σ2

Y (1− ρ2)
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Chapter 10

Exercises

1. Suppose {Xi}i=1,2,··· is a sequence of independent and identically distributed random
variables and Yi(x) = I{ω:Xi≤x}, where IA is the indicator function of the set A. Now
define

Fn(x) =
1

n

n∑
i=1

Yi(x)

for fixed x. Obtain the asymptotic distribution of
√
n(Fn(x) − F (x)). You can use a

Central Limit Theorem, but otherwise show all your work.

Answer: (3 points) First, note that E(Yi(x)) = P ({ω : Xi ≤ x}) = F (x) and
V (Yi(x)) = F (x)− F (x)2 = F (x)(1− F (x)).

√
n(Fn(x)− F (x)) =

√
n

(
1

n

n∑
i=1

(Yi(x)− E(Yi(x)))

)
.

Now, since the sequence is {Yi(x)} is IID, this is so because IA is measurable, by Lévy’s
CLT
1
n

∑n
i=1(Yi(x)− E(Yi(x)))√

F (x)(1−F (x))
n

=
√
n

1
n

∑n
i=1(Yi(x)− E(Yi(x)))√
F (x)(1− F (x))

=

√
n(Fn(x)− F (x))√
F (x)(1− F (x))

d→ Z ∼ N(0, 1)

2. Let {Xn}n=1,2,··· and {Yn}n=1,2,··· be sequences of random variables defined on the same
probability space. Suppose Xn

d→ X and Yn
d→ Y and assume Xn and Yn are indepen-

dent for all n and X and Y are independent. Show that Xn + Yn
d→ X + Y . Hint: use

the characteristic function for a sum of independent random variables.

Answer: The characteristic function of Xn + Yn is given by

φXn+Yn(t) = E(exp it(Xn + Yn)) = E(exp it(Xn) exp it(Yn)) = E(exp it(Xn))E(exp it(Yn)) = φXn(t)φYn(t)
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where the next to last equality follows by independence of Xn and Yn. Since, Xn
d→ X

and Yn
d→ Y , it must be that φXn(t)→ φX(t) and φYn(t)→ φY (t). So,

φXn+Yn(t) = φXn(t)φYn(t)→ φX(t)φY (t) = φX+Y (t),

where the last equality follows from independence ofX and Y . Thus, Xn+Yn
d→ X+Y .

3. Let {Xi}i=1,2,··· be a sequence of independent and identically random variables with
E(Xi) = 1 and σ2

Xi
= σ2 <∞. Show that if Sn =

∑n
i=1Xi

2

σ

(
S1/2
n − n1/2

) d→ Z ∼ N(0, 1).

Answer: Note that,

2

σ
(Sn − n) =

2

σ

(
S1/2
n − n1/2

) (
S1/2
n + n1/2

)
=

2

σ

(
S1/2
n − n1/2

)
n1/2

(
(Sn/n)1/2 + 1

)
So that,

2

σ

√
n ((Sn/n)− 1) =

2

σ

(
S1/2
n − n1/2

) (
(Sn/n)1/2 + 1

)
and (

(Sn/n)1/2 + 1
)−1 2

σ

√
n ((Sn/n)− 1) =

2

σ

(
S1/2
n − n1/2

)
.

Since, {Xi}i=1,2,··· is a sequence of independent and identically random variables with
E(Xi) = 1, by Slutsky Theorem

(
(Sn/n)1/2 + 1

)−1 p→ 2−1 and since σ2
Xi

= σ2 <∞, by

Lévy’s CLT 1
σ

√
n ((Sn/n)− 1)

d→ N(0, 1). Hence, 2
σ

(
S

1/2
n − n1/2

)
d→ Z ∼ N(0, 1).
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