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Chapter 1

Exercises

1. Let f: INxIN — R be a double sequence with typical value given by f(m,n). Assume
that

(a) for every n € N, f(my,n) < f(mg,n) whenever m; < ms,

(b) for every m € N, f(m,ny) < f(m,ny) whenever n; < ns.

Show that lim ( lim f(m, n)) = lim (hm f(m,n)) = nh_}rgof(n,n)

n—oo \m—oo m—0o0 \nN—oo

As a corollary, show that if f(m,n) >0 then > > f(m,n)= > > f(m,n).

nelN melN meN nelN

Answer: From conditions (a) and (b), f(1,1) < f(1,2) < f(2,2) < f(2,3) <
f(3,3) < --- Hence, f(m,m) < f(n,n) whenever m < n. The sequence {f(n,n)}nen
is monotonically increasing, hence it has a limit, which is either finite, if the sequence is
bounded above, or infinity, if it is not. Let this limit be denoted by F'. By the same rea-
soning, there exist limits F,, = lim f(m,n) for each m € IN. Since f(m,n) < f(n,n),
we have that F,,, < F when m %_)72,0 Note that F,,, < F,,, whenever m; < mg, hence
lim F,, = F’ exists, and F' < F.

m—0o0

To complete the proof, we need to show that F’ = F. If F' is finite, for every ¢ > 0
there exists N(e) such that for all n > N(e¢), FF' — € < f(n,n) < F. Put m := N(e),
and note that

F,, = lim f(m,n) > f(m,m) := f(N(e), N(e)) > F —e.

n—o0

Hence, lim F,, = F > F —e¢, which implies that F' < F’. Combining the last inequality

n—00

with F’ < F' from the previous paragraph gives F' = F’. If I is infinite, for any C > 0
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there exists N(C) such that if n > N(C), f(n,n) > C. If m = N(C) < n then
F(m,m) < f(m, n) and

C < f(m,m) < lim f(m,n) = Fp,
n—oo
hence it follows that F' must be infinite.

m
— 00 m—00
interchanging the indexes m and n due to the symmetry of the equation.

The proof that lim ( lim f(m, n)) = lim f(n,n) follows in exactly the same way by
n n—oo

Corollary. Let g(p,q) =>" _>>7 | f(m,n) for p,q € IN. Since, f(m,n) >0, g(p,q)

satisfies conditions (a) and (b), establishing the result.

. Let X be an arbitrary set and consider the collection of all subsets of X that are
countable or have countable complements. Show that this collection is a o-algebra.
Use this fact to obtain the o-algebra generated by C = {{z} : x € R}.

Answer: Let F = {A C X : #A < #IN or #A° < #IN}, where # indicates cardi-
nality. First, note that X € F since X¢ = (), which is countable. Second, if A € F
then either A = (A°)¢ or A are countable. That is, A° € F. Third, if A, € F for
n € IN we have two possible cases - A,, are all countable, or at least one of these sets
is uncountable, say A,,,. For the first case, nLEJ]NAn is the countable union of countable
sets, hence it is countable and consequently in F. For the second case, since A,, is

uncountable and in F, it must be that Aj is countable. Also,
C
_ c c
(ng]NAn> N nQ]NAn < Ay

C
Since subsets of countable sets are countable, ( U]NAn) is countable, and consequently
ne

U A, eF.

nelN
Now, let F be the o-algebra defined above. Since C C F, o(C) C F. Also, if A € F
either A or A° is countable. Without loss of generality, suppose A is countable. Then,

A= Uc{x} where C' is a countable collection of real numbers. Hence, A € o(C).
S

Hence, F C ¢(C). Combining the two set containments we have o(C) = F.
. Denote by B(x,r) an open ball in R™ centered at x and with radius 7. Show that the
Borel sets are generated by the collection B = {B,(z) : x € R", r > 0}.

Answer: Let B’ = {B,(z) : x € Q",r € QT}. Then, B C B C Og» and o(B’) C
o(B) C d(Ogn).



Now, let S = U B. By construction x € S = x € O. Now, suppose x € O.
BeB’,BCO

Then, since O is open, there exists B(z, €) such that B(x,e) C O where € is a rational
number. Since Q" is a dense subset of R", we can find ¢ € Q™ such that ||z — ¢ < €/2.

Consequently,
B(q,€¢/2) C B(x,¢e) C O.
Hence, O C S. Thus, every open O can be written as O = U B. Since B’ is a

BeB’, BCO
collection of balls with rational radius and rational centers, B’ is countable. Thus,

Orn C 0(B') = o(Orn) C o(B').
Combining this set containment with o(B’) C (B) C 0(Ogrr) completes the proof.

. Let (2, F) be a measurable space. Show that: a) if u; and po are measures on (2, F),
then p.(F) := cypn(F) + coue(F) for F' € F and all ¢;,co > 0 is a measure; b) if
{1i}iew are measures on (2, F) and {«;}ien is a sequence of positive numbers, then
Poo(F) = D e ipti(F) for F € F is a measure.

Answer: a) First, note that . : F — [0,00] since ¢y, ¢, 1 (F'), u2(F) > 0 for all
F € F. Second, p.(0) = cpu1(0) + cou2(0) = 0 since py and po are measures. Third, if

{F;}iew € F is a pairwise disjoint collection of sets,

pe (Uiew Fi) = cipn (Uien Fy) + coptp(U z‘elNF‘)
= Z w1 (EF;) + ¢ Z p2(F;), since py and pgp are measures

€N €N
= E (c1p01 (F3) + copa(F; E pe(F,
i€IN 1€IN

b) The verification that jie, : F — [0, 00] and .. () = 0 follows the same arguments as
in item a) when examining y.. For o-additivity, note that if {F}},ew € F is a pairwise

disjoint collection of sets,

,uoo ]GJNF Zazﬂz ]GJNF Zazzuz (Fj) = Zzazﬂz (P})
i=1  j=1 i=1 j=1

If we are able to interchange the sums in the last term, then we can write

Moo jEINF Z Zaz,uz j Z/loo i)

=1 =1
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completing the proof. Now, note that

n m

> i (Fy) = lim Tim » 3 o (Fy) =supsup > > gy (Fy) = sup sup Sy

i—1 j—1 i—1 j—1 nelN melN i=1 j=1 nelN melN

since the partial sums are increasing. Now, if 5,,, € R, then

sup sup Sy, = sup sup Spm.
neElN melN meN nelN

Hence, to finish the proof, we require p;(F};) < oo.

. Let (Q, F, 1) be a measure space and G C F be a o-algebra. In this case, we call G a
sub-o-algebra of F. Let v := u|g be the restriction of x to G. That is, v(G) = u(QG)
for all G € G. Is v a measure? If y is finite, is v finite? If p is a probability, is v a
probability?

Answer: Since ) € G C F, v(0) = pu(@) = 0. If {A;}iew € G is a pairwise disjoint
sequence, we have that {A;}iew € F. Hence, v(UienA;) = p(UienAi) = D e 1(4i) =
> iew Y(Ai). Now, p finite means that p(€2) < oo. Since Q € G, v(Q) = u(Q) < oco.
The same holds for () = 1.

. Show that a measure space (2, F, i) is o-finite if, and only if, there exists { ), }new € F
such that U,enFy, = Q and p(F,) < oo for all n.

Answer: (=) By definition, (2, F, 1) is o-finite if there exists and increasing sequence
Ay C Ay C Ajz- -+ such that Upen A, = Q with u(A,) < oo for all n. Hence, it suffices
to let F,, = A,,.

(«=) Let A, = Uj_ Fj. Then, Ay C Ay C -+ and UpenA, = UjenF; = Q. Also,
1(An) = p(Ul_, Fy) < 377, u(F}) < oo since the sum is finite and p(Fj) < oc.

. Let (Q, F, P) be a probability space and { E,, },ew C F. Show thatif Y | P(E,) < oo
then P (limsupEn> = 0.

n—o0

Answer:

P (limsupEn> = P (1im Upsn E;)

n—o0 n—00

= lim P (U;>,E;) by continuity
n— 00 -

< limsup Z P(Ej;) by subadditivity and definition of limsup.
j=n

n—oo
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Since ) 7| P(E,) < oo it must be that > 72 P(E;) — 0 as n — 0. Consequently,

P (limsupEn> =0.

n—o0

. Let {E;};es be a collection of pairwise disjoint events. Show that if P(E;) > 0 for
each j € J, then J is countable.

Answer: Let C,, = {E; : P(E;) > + and j € J}. By assumption the elements of C,,

are disjoint events and

P(U;,E;,) = > P(E;,) = oo,
m=1
where the last equality follows from the fact that P(E;,) > 0. So, it must be that C,,
has finitely many elements. Also, {E;};e; = U;2,C,,, which is countable since it is a

countable union of finite sets.

. Consider the extended real line, i.e., R := RU {—o00} U {o0}. Let B := B(R) be
defined as the collection of sets B such that B = BU S where B € B(R) and S €
{0, {—o0}, {oo}, {—00,00}}. Show that B is a o-algebra and that it is generated by a

collection of sets of the form [a, co] where a € R.

Answer: Let’s first show that B is a o-algebra. Since B = BU S with B € B(R), we
can choose B = R and use S = {—00,00} to conclude that R = R U {—00,00} € B.
Next, note that if B = BUS we have that B¢ = B°N.S¢. But the complement of a set S
is an element of {R, RU{oo}, RU{—c}, R}. Hence, either 1) B = B°‘NR = B°U) € B
or, 2) B¢ = B°N (RU{x}) = (B°NR) U {o0} where B°N R € B and consequently
B¢ e Bor 3) B =B°N(RU{-00}) = (B NR) U {—cc} where B°NR € B and
consequently B¢ € B or, 4) B= B°NR € B.

Lastly, letting A; = B; U S for B; € B we have that UjenA; = Uien(B; U S) =
(UsewB;) U S. Since Ujen B; € B we have that U;enA; € B.

If B is a o-algebra and C = {[a, 0] : a € R}, we need to show that (C) = B,

First, note that [a, oo] = [a, 00) U{o0} and we know that [a, 00) € B. Thus, [a, 00| € B
for all a € R. Then, ¢(C) C B.
Second, observe that for —oo < a < b < oo we have [a,b) = [a,00] — [b,00] =

la,00] N [b,00]¢ € ¢(C) since ¢(C) contains [a, 00| and [b, 0o]® by virtue of being a
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10.

11.

o-algebra. Hence,
BCo(C) CB.
Now,
{OO} = mielN[ia 00]7 {_OO} = mieﬂ\l[_ooa _Z) = mielN[_i? oo]c
which allows us to conclude that {oo}, {—oo} € ¢(C). Hence, if B € B all sets of the
form
B,BU{o0}, BU{—0}, BU {0} U {—0o0}
are in o(C). Hence, B C ¢(C). Combining this set. containment with o(C) C B gives
the result.

If £y, Es,--- | E, are independent events, show that the probability that none of them
occur is less than or equal to exp (— Y1, P(E;)).

Answer: Let f(x) = exp(—=z) and note that for A € (0,1), by Taylor’s Theorem

exp(—z) = f(x) = f(0) + f(0)z + %f@’(m)ac2 =l—a+ % oxp(—Az)a?

Consequently, 1 — 2 < exp(—x). Now, we are interested in the event £ = (U E;)" =

N, E¢. But since the Ey, Es, - - -, E,, are independent, so is the collection EY, ES, - - - | Ef.

Hence, P(E) = [[}_, P(EF) = [[;,(1=P(E;)) < [[L, exp(—P(E:)) = exp (— 20, P(E))).

Let {A,}nen and {B,}.en be events (measurable sets) in a probability space with
measure P with limA,, = A, limB,, = B, P(B,),P(B) > 0 for all n. Show that
P(A,|B) — P(A|B), P(A|B,) — P(A|B), P(A,|B,) — P(A|B) as n — oc.

Answer: Since P(:|B) is a probability measure (proved in the class notes), we have
by continuity of probability measures that P(A,|B) — P(A|B) if lim B,, = B.

Now, since lim B,, = B we have that AN B, — AN B. To see this, note that if
AN B, = C, then D; = U2.C,, = AN (U;2B,). Then, limsupC,, = N2, D; =
N2, (ANUpL,B,) = AN B. Defining liminf for C,, we can in similar fashion that
liminf C,, = ANB. Hence, by continuity of probability measures P(ANB,) — P(ANB)
and P(B,) — P(B). Consequently,

P(ANB,) R P(ANB)
P(B) P(B)
Lastly, since A, N B, — AU B, using the same arguments
P(A,NB,) R P(ANB)
P(Bn) P(B)

P(A|B,) =

— P(A|B).

P(A,|B,) = — P(A|B).
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12. Let (X,.F,ji) be the measure space defined in Theorem 1.15 and C = {G € X :
JA, Be F>ACGC Band u(B— A) =0}. Show that F =C.

Answer: Ge F = G=AUM where Ac Fand M eS. MeS = 3N e
N,> M C N. Then,

ACG=AUMCAUN :=B¢eF.
Now, u(B — A) = u(BU A°) = u((AUN) — A) < u(N) = 0. Thus, G € C.
GeC = JA, BeF>3ACGCBand u(B—A)=0. Since A C G C B we have

that G—A C B— A, and since B— Aisa p-null set G—A € S. Now, G = AU(G—A),
and since A € F, G € F.






Chapter 2

Exercises

1. Let p be a measure on (R, B(R)) such that u([—n,n)) < oo for all n € IN. Define,

u([0, z)) ifx >0,
():=¢ 0 if =0,
—u([xz,0)) ifx <0.

F

I

Show that F), : R — R is monotonically increasing and left continuous.

Answer: Given that p([—n,n)) < oo, F), takes values in R. First, we show that all
x <a, F,(x) < F,(«'). There are three cases to be considered

(a) (0 <z <) if0 <z <, F () — Fu(z) = p([0,2")) — p([0,x)). Since
[0,2") = [0,2) U [z, 2"), o-additivity of u gives u([0,2")) = p([0,z)) + p([z,2")) or
Fu(2') = FL(0) =

pllz, o)) = p((0,27)) = u((0, 2)) = Fu(a') = Fu(x) = 0. Itz = 0,
)

(b) (z <0 <) If 2’ >0, F,(2') — Fu(x) = p([0,2")) + p([z,0)) > 0. If 2/ =0,
F(0) — Fy(x) = p([2,0)) > 0.

(c) (z <2’ <0): F(2")—F,(x) = —p([z',0))+p([z,0)). Since [z,0) = [z, 2")U[2’,0),
o-additivity of u gives p([x,0)) = u([z,2")) + p([’,0)) or p(lz,0)) — p([’,0)) =
Fu(#!) — Fy(a) = (i, 7)) > 0.

Second, we must show that lim F,(z — h,) = F,(z) for all x € R. Let n € N,

n—00

hy > hy > hg > --- with h, | 0 as n — oo, and hy > 0. There are three cases to

consider.



(a) (z > 0): Choose hy € (0,z) and define A,, = [0,z — h,,). Then, A} C Ay C ---

and lim A, = |J A, = [0,2). By continuity of measure from below,

lim F,(z — hy,) = lm p([0,2 — hy,)) = p([0,2)) = F,(x).

n—o0 n—oo

(b) (x =0): Define A, = [—h,,0). Then, A; D Ay D --- and lim A, = () A, =0.

By continuity of measures from above, and given that u([—hy,0)) < oo,

lim F,(—h,) = lim p([—h,,0)) = u(@) = 0= F,(0).

n—oo n—o0

(¢) (z <0): Define A,, =[x — hy,,0). Then, A; D Ay D --- and lim A, =N, A, =

n—oo
[x,0). By continuity of measures from above and given that u([z — hq,0)) < oo,

lim F,(x — h,) = lim — p([zr — hy,0)) = —p([z,0)) = F,.(z).

n—oo n—oo

2. Let F}, be defined as in question 1 and let v, (([a,b)) = F,(b) — F,.(a) for all a < b,

a,b € R. Show that v, extends uniquely to a measure on B(R) and vg, = p.

Answer: Recall that S = {[a,b) : a < b, a,b € R} is a semi-ring (if a = b, [a,a) = ().
Given F),, we define v, : S — [0, 00) as vg,([a,b)) = F,(b) — F,,(a) for all @ < b. Since
F), is monotonically increasing, F,(b)—F,(a) > 0 and vg,([a,a) = 0) = F,(a)—F,.(a) =
0. Also, vp, is finitely additive since for a < ¢ < b, we have that [a,b) = [a, c)U[c, b) and
i, ([0,5)) = Fu(b) — Fu(@) = Fue) — Fula) + Fu(b) — Fule) = v ([a,)) + v, ([e,).
We now show that vp, is o-additive, i.e., for [a,,b,), n € IN a disjoint collection such
that [a,b) = ngm[a"’ bn), we have vp, ([a,b)) = Z Vg, ([an, by)). Fix €,, € > 0 and note

that (a, — €,,bn) D [an, by). Hence, U]N(an en,bn) D U]N[an,bn) = [a,b) D [a,b— €.
ne ne

Since U]N( — €, by,) 1s an open cover for the compact set [a, b— €], by the Heine-Borel

Theorem, there exists N € IN such that

UM [an — €n,bn) D UN_ (an — €,,b0) D [a,b— €] D [a,b—e). (2.1)

Now, since Upen|an, b,) = [a,b) we have UY_,[a,,b,) C [a,b) and

vr,([a,0)) > vr, (U [an, by) ZVFH ([an,b,)) by finite additivity.
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Hence, we have

Mz

0<wvp,( v, ([an, bn)

n=1

N

= VF;L<[aab_€))+VF b_€ b Z VFH €mbn)) _VFM([an_eman)))
n=1

=vp,([a,b—¢) Z vp,([an — €,,0y,)) this term < 0 by (2.1)

+ vr, ([ Z vr,([an — €n, an))

N

< v, ([b—eb) + Z Vi, ([an = €0 @0) = Fu(b) = Fu(b— ) + > (Fyu(an) — Fy(an —

n=1

By left-continuity of F),, we can choose € such that F},(b) — F,(b—¢€) < n/2 and ¢, such
that F),(a,) — F(a, — €,) <27"n/2. Hence,

0<VFM ([a, b)) ZVFN an, b)) g<1+22 >

Letting N — oo we have that vp, ([a,0)) = > 07 vg, ([an, bn))-

Since vp, is a pre-measure on a semi-ring, by Carathéodory’s Theorem, it has an exten-
sion to o(S) = B(R). Furthermore, since for n € N, [-n,n) T R and vg, ([-n,n)) =

F,(n) — F,(—n) = p([0,n)) + p([—n,0))) < oo, this extension is unique.

To verify that vp, = p, it suffices to verify that vp, = p on S, since vy, extends

uniquely to B(R). There are three cases:

Case 1 (0 < a < b): vp,([a,b)) = Fu(b) = Fu(a) = u([0,0)) = p([0,a)) = u([0,a)) +
pu(la, b)) = p([0, a)) = p(la, b)), since [0,b) = [0,a) U a, b),

Case 2 (a < 0 <b): vp,([a,b)) = F,(b) — Fu(a) = u([0,0)) + u([a, 0)) = p(la, b)), since
[a,b) = [a,0) U[0,b),

Case 3 (a < b < 0): v ([a,8)) = Fyu(b) — Fu(a) = —u([6,0)) + u([a,0)) = pa([a, ),
since [a,b) = [a,0) — [b,0), which completes the proof.

. If F' is a distribution function, show that it can have an infinite number of jump

discontinuities, but at most countably many.
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Answer: A jump of F, denoted by Jr(z) exists if Jp(z) = F(z) — }ILIL%F([E —h)>0
for h > 0. This happens if and only if P({z}) > 0. Now, the collection of events
E, = {{z} : P({z}) > 0} is disjoint and all have positive probability. We now show
that this collection is countable. Let C,, = {E, : P(E,) > 1 and € R}. The elements

of (), are disjoint events and

P (Ua:mExm) = i P(Exm) = o0,

m=1
where the last equality follows from the fact that P(E,, ) > 0. So, it must be that C,,
has finitely many elements. Also, {F, }zer = U2 ,C,,, which is countable since it is a
countable union of finite sets.

4. Show that A!'((a,b)) =b—a for all a,b € R, a < b. State and prove the same for \".
Answer: Let a < b and note that [a + 1,b) 1 (a,b) as k — co. Thus, by continuity of
measures,

A(a,b)) = lim A([a+1/k,b) = im (b—a —1/k) =b — a.
k—o0 k—o0
Since A([a,b)) = b — a, this proves that A\({a}) = 0.

5. Consider the measure space (R", B(R"), \"). Show that for every B € B(R™) and = €

R™, x+ B € B(R") and that A"(z+B) = \"(B). Note: x+B :={z:2z=2xz+b, b € B}.

Answer: First, we need to show that x + B € B(R"™) for all x € R" and for all
B € B(R"). Let A, = {B € B(R") : « + B € B(R")} and note that A, C B(R").

Also, A, is a g-algebra associated with R", since:

(a) R™ € A, given that x +b € R" for all b € R” and R" € B(R"),

(b) Be A, = z+B e B(R") = (z+B)° € B(R"). Butsince (zr+B)° = 2+ B°
and B¢ € B(R"), B € A,.

(c) {Autnen € Ay = 2+ A, € B(R") for all n € N. Since B(R") is a o-
algebra | J,cn( + An) = 2 + U,enw An € B(R™). But since J, .y An € B(R"),
Unen 4An € A,

Now, let R™" = xI[l;,u;) € Z%" C B(R") and note that z + R™" € %" C B(R").
Hence, R*" € A, = x + R™" € A,. Hence,

B(R") = o(T"") c A, C B(R"),

12



which implies that x + B € B(R") for all z € R™ and for all B € B(R").

Now, set v(B) = A"(z+B). If B=10, v(0) = \*(x+0) = A"(D) = 0. Also, for a pairwise
disjoint sequence {A, }nen, v (Une]N An) = \" (:1: + Unen An) = \" (UnE]N(x + An)) =
Yonen A(@ 4+ Ay) =30y v(A,). Hence, v is a measure and

v(R) = XMz + R = [+ 2 — (i + 20) = [ J(w — 1) = A"(R™).
i=1 i=1
Hence, v(R™") = \"(R™") for every R™" € I™". Since Z™" is a 7-system, generates
B(R™) and admits an exhausting sequence [—k, k) T R™ with A"([—k, k)") = (2k)" <
00, we have by Carathéodory Theorem that A" = v on B(R").
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Chapter 3

Exercises

1. Suppose (€2, F) and (Y,G) are measure spaces and f : Q@ — Y. Show that: a)
It-1a)(w) = (Ia o f)(w) for all w; b) f is measurable if, and only if, o({f~'(4) :
AegG}) CF.

Answer: a) For any subset A C Y, we have f~1(A) = {w: f(w) € A}. Then,
-1y (W) = Isppeny (W) = La(f(w)) = (Ia o f)(w).

b) Since f is measurable, f~1(G) C F. By monotonicity of o-algebras, o(f~*(G)) =
o{fYA): A€ G}) C F. Now, o(f1G)) = fHo(G)) = f1(G) C F. The last set

containment implies measurability.

2. Show that for any function f : X — Y and any collection of subsets G of Y,
fHo(G)) = o(f71(9))
Answer: f~!'(0(G)) is a o-algebra associated with X. Since G C o(G), f~1(G) C
f~Yo(G)) and consequently o(f~1(G)) C f~(c(G)).
Now, as in Theorem 3.1, U = {U € 2Y : f~YU) € o(f~1(G))} is a o-algebra. By
definition of U
) co(f719)).
Also, G C U since f~HG) C f~U) C o(f~1(G)). Since U is a o-algebra we have that
o(G) CU. So,
fHe(@) C 1 U) Ca(f7(C)).
The last set containment combined with the reverse obtained on the last paragraph

completes the proof.
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3. Let i € I where [ is an arbitrary index set. Consider f; : (X, F) — (X;, F;).

(a) Show that for all i, the smallest o-algebra associated with X that makes f; mea-

surable is given by f; !(F).

(b) Show that o (U fi_l(]-})> is the smallest o-algebra associated with X that makes
iel
all f; simultaneously measurable.

Answer: a) f; is measurable if f;'(F;) C F. But by monotonicity of o(-) we have
o(fi1(F)) = f71(F) C F since f;'(F;) is a o-algebra. b) f;1(F) C F foralli € I

7 2 2

because f; is measurable. But any sub-c-algebra of F that makes all f; measurable

functions must contain all f;*(F;), i.e., Jf; '(Fi). However, unions of o-algebras are
i€l
not necessarily o-algebras. Hence, we consider o (U fi_l(]-})), the smallest o-algebra
iel
that makes all f; simultaneously measurable.

4. Let X : (0, F,P) — (S,Bs) where S C R* and Bs = {BN S : B € B*} be a random
vector with k € N, and g : (S, Bg) — (T, Br) be measurable where 7' C R? with p € IN.
If Y = g(X), show that

(a) o(Y): =Y YBr) C o(X) := X 1(Byg),
(b) if £ = p and g is bijective, o(Y) = o(X).
Answer: (a) E € Y Y(Br) = E =Y !(Byr) for some Br € Br. Now,
E={w:Y(w) € Br}={w:g(X(w)) € Br}={w: X(w) € g (Br)}
= X" (g~"(Br)).

Since g is measurable, g~ !(Br) € Bg and since X is a random vector X ~*(¢~*(Br)) €
o(X) := X1 (Bs). Hence, o(Y) C o(X).

(b) First, observe that since g is bijective, it must be that k = p and S = T. For any
BT S BT7

g Y(Br) = g '(g(B)) for some B C S

= B € Bg since ¢! is an inverse function and g is measurable.

Hence, any Br € By is such that Br = g(B) where B € Bg. Similarly, due to the
existence of the inverse ¢!, for any Bs € Bg, Bs = g~ '(B) where B € Br. Hence, if

16



C:={¢gY(B): B € By} then Bs C C. But measurability of g assures that C C Bg
Hence, X '(Bs) :=0(X)=X"1(C) ={X"Y¢g'(B)): Be Br} =o(Y).

17
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Chapter 4

Exercises

1. Prove Theorem 4.2.

Answer: Let f = ZLO yila, and f = Z}]:O yjIp, be standard representations of f
and ¢g. Then,

(yi + Zj)[AmBj

-
I

o
<
Il

o

B
M-

ftg=

and

Fﬂ“

I
=0 j
with (A; N B;j) N (Ay N By) = 0 whenever (i, j) # (7, j'). After relabeling and merging

the double sums into single sums we have the result. The case for cf is obvious. f

yzZ] [A NB;

Il
o

simple implies f™ and f~ are simple by definition, and since |f| = f*+ f~, |f] is

simple.

2. Show that if f is a non-negative measurable simple function, its integral, as defined in
Definition 4.3 is equal to I,(f).
Answer: Since f is simple and f < f, f is one of the simple functions (denoted by
¢) appearing in Definition 21 of the class notes. Hence, [ fdu > I,(f). Also, if ¢ is a
simple function such that ¢ < f, by monotonicity of the integral of simple functions
we have I,,(¢) < I,(f), hence

%ph@%z/f@nihﬁl

Combining the two inequalities we have [ fdu = I,(f).
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3. Let (X, F) be a measurable space and {, }new be a sequence of measures defined on
it. Noting that p = > _x ttn is also a measure on (X, F) (you don’t have to prove
this), show that

/deﬂzgl%/xfdun

for f non-negative and measurable.

Answer: First, let f = Irp > 0 for F' € F. Then, f is measurable and

[ sn= [ tedn=pE) =Py = 3 [ tedin =3 [ s

nelN nelN nelN

Hence, the result holds for indicator functions. Now, consider a simple non-negative
function f = Z;.”:O a;l; where a; > 0 and A; € F. Then,

fdp = / Z%IA dp Zaj/ La;dp Zaj/j’(A]) = Zag fn(A;)
X X =0 =0 X j=0 j=0 nelN
nelN j=0 nelN

Hence, the result holds for simple non-negative functions. Lastly, let f be non-negative
and measurable. By Theorem 3.3 in the class notes, there exists a sequence {¢;, }nen

of non-negative, non-decreasing, measurable simple function such that sup¢, = f. By
n€lN
Beppo-Levi’s Theorem

/fduzsup/ Pndji.
X nelN JX
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Hence,

/fdu—sup/ Pndp = SupZ/ Pnd,

nelN nelN

= sup sup Z/ Ondpt; since fx ¢ndyt; is nondecreasing.

nelN melN

= sup SupZ/ ¢ndp; = sup lim Z/ OndjL;
— Jx

meN nelN meIN V00
= sup E lim ¢nduj
meN n—>oo

= sup Z / lim ¢, dju; by Beppo-Levi’s Theorem
X n—oo

— sup Z / fFin =3 | s,

meN jEN

. Let (X, F, 1) be a measure space and f : (X, F, u) — (R, B) be measurable and non-
negative. For every F' € F consider [ Ipfdu. Is this a measure?

Answer: Let v(F) = [Ipfdp. Then v is a [0, 00]-valued set function defined for
F e F. Then,

(a) Iy =0 and clearly v(0) = 0.

(b) Let F' = UjenF; be a union of pairwise disjoint sets in F. Then, > ° Ir = Ip

:/<21F> fduZ/(ngif) ’

=3 [ dnfdn= 3" v(E)

and

. Let (Q, F, P) be a probability space and {F,, },enw C F.

(a) Prove that i intp, = liminf I, and limsup r, = limsup Ix,.

n—oo n—oo n— oo n—ro0

(b) Prove that P <lim inf Fn> < liminf P(F,).

n—oo n—o0
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n—oo n—oQ

(c) Prove that limsup P(F,) < P (lim sup Fn>.

Answer: Part (a) is straightforward by noting that Ing, = inf I, and I g,

sup I4,. (b) Part (a) combined with Fatou’s Lemma gives,

P(liminf F,,) = /[limianndP = /liminf Irp dP < liminf/fpndP.

(c) Again, by Fatou’s Lemma (the reverse) we have,

P(limsup F,) = /I]imsupFndP = /lim sup I, dP > lim sup/IFndP.
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Chapter 5

Exercises

1. Prove Theorem 4.2.

Answer: Let f = Zfzo yila, and f = Zj:o y;Ip; be standard representations of f

and g. Then,
1 J
FEg=) Witz)lans
i=0 7=0
and
1 J
F9= 2 (wiz)lans,

j
with (A; N B;) N (Ay N By) = 0 whenever (i, j) # (7, j'). After relabeling and merging
the double sums into single sums we have the result. The case for cf is obvious. f
simple implies f* and f~ are simple by definition, and since |f| = f* + f~, |f| is
simple.

2. Prove Theorem 4.10.

Answer: Since f = f — f~ and f* and f~ are nonnegative, use Theorems 4.6 and

4.8 in your notes.

3. Use Markov’s inequality to prove the following for @ > 0 and g : (0,00) — (0, 00) that

is increasing;:

Answer: Since g is increasing, {w : | X (w

since g is positive
9(a) wx(w)zar = 9(@) L {wg(x (@) 20} < 9(| X (W)])-
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Integrating both sides we have g(a)P({w : |X(w)] > a}) < [g(|X(w)|)dP. This
completes the proof as g(a) > 0.

. Let X be arandom variable defined in the probability space (2, F, P) with E(X?) < oco.
Consider a function f : R — R. What restrictions are needed on f to guarantee that
f(X) is a random variable with E(f(X)?) < oc?

Answer: Recall that if X : (2, F, P) — (R, Br), we say that X is a random variable
(measurable real valued function) if, and only if, for all B € Bg we have X~(B) € F.
Hence, if h(w) := f(X(w)) = (f o X)(w) : (?, F, P) = (R, Br) we require that for all
B € Br we have h™}(B) = (f o X)"Y(B) = X~}(f~Y(B)) € F. That is, f~}(B) € Bg.
Since X is a random variable (measurable) and given that f~(B) € By for all B € Bg,
f(X) is arandom variable (measurable). Since the f? is a continuous function of f, f?is
also a random variable (measurable). Hence, we can consider the integrability (or not)
of f(X)?, i.e., whether or not E(f(X)?) < co. We give two general restrictions on f
that give E(f(X)?) < oco. First, suppose that sup,,cq |h(w)| = sup,cq |(foX)(w)| < C.

Then,
/f2dP’ < /h"‘dPg CQ/dP:CZ.

Second, suppose that h? < X2 for all w € Q. Then, [h?dP < [ X?dP < cc.

Note that, in general, it is not true that E(f(X)?) < oo even if F(X?) < oco. For
example, suppose that X ~ UJ[0,1]. Then, F(X?) = 1/3. Now, let Y := f(X) =
tan (7(X — 1)) and we can easily obtain that the probability density of Y is

d

fr(y) = @

d (1 1 1 1
-1 — | — —_ j— = —-—
f (y)‘ =% (2 + - arctan(y))‘ 5,y € R.

But this is the Cauchy density and [ y*fy (y)dy does not exist.
. Let X : (Q, F, P) — (R, B) be a random variable. Show that if V(X) := E (X — E(X)))* =
0 then X is a constant with probability 1.

Answer: From your notes, if fQ X2%dP = 0 then X? = 0 almost everywhere. If N
is a null set [, X?dP = [, X*dP + [, X?dP = [, X?dP + [,,.0dP = 0. Thus,
P(X?=1x)=0for x # 0 and P(X? =0) = 1. But this is equivalent to P(X = 0) = 1.
Hence, V(X) = E (X — E(X)))? = 0 implies P(X —E(X) = 0) = P(X = E(X)) = 1.
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6. Consider the following statement: f is continuous almost everywhere if, and only if, it
is almost everywhere equal to an everywhere continuous function. Is this true or false?

Explain, with precise mathematical arguments.

Answer: False. Consider the function Ig(x), where # € R. This function is nowhere
continuous in R, but it is equal to 0 almost everywhere, an everywhere continuous
function. Alternatively, the function /| «)(z) is continuous everywhere except at {0},
a set of measure zero. So, it is continuous almost everywhere. However, there is no

everywhere continuous function in R that is equal Jjg «)(z) almost everywhere.

7. Adapt the proof of Lebesgue’s Dominated Convergence Theorem in your notes to show
that any sequence {f,},en of measurable functions such that lim, . fu(x) = f(2)

and |f,| < g for some g with ¢g” nonnegative and integrable satisfies
lim /|fn — f|Pdp = 0.
n—oo

Answer: (3 points) First, note that |f, — f|P < (|fa| + |f])?. Since |f, — f| = 0 we
have that |f,| — |f|. Consequently, for all € > 0 there exists N, € IN such that for

n > N, we have

\fal —e<|f| <|ful +e<g+e

since |f,| < g. Consequently, |f| < g, |f|? < ¢P and |f, — f|P < 2PgP where ¢P is
nonnegative and integrable. Now, letting ¢,, = |f,, — f|? we have that lim ¢, = 0 and
n—oo

by Lebesgue’s dominated convergence theorem in the class notes

n—o0

lim [ ¢,du= / lim ¢, dp = 0.
X X n—oo

8. Let A be the one-dimensional Lebesgue measure for the Borel sets of R. Show that for

every integrable function f, the function

g(x) = f(t)d\, for x >0
(0,2)

1s continuous.
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Answer: Consider a sequence {y, }new with 0 < x < y,, such that lim y, = z. Then,
n—oo

o) — glz) = / fr— / Fx = / Lo fdA — / Loy fiA
(0,yn) (0,z) (0,00) (0,00)

= /(0 )(I<o,yn>—f<o,x))fdA=/ L ) f AN

(0,00)

9(yn) — 9(@)| < /( RIS

Now, Ijzy|f] < |f| and f(o 00) | fld\ < oo since f is integrable. Also, lim Ij, . f =0
) n—oo

almost everywhere (ae). Thus, by dominated convergence in the class notes

lim [g(ya) = g(«)] < lim La )| 1A

n—o0 (0700)

= lim I, . |f|ldX = 0.
/(o,oo)”ﬁoo( Yn)

By repeating the argument for ¥, T x we obtain continuity of ¢g at x.

9. Show that if X is a random variable with E(|X|P) < oo then | X]| is almost everywhere

real valued.
Answer: Let N = {w : [X(w)| = oo} = {w : | X (w)[P = c0}. Then N = Nyen{w :
| X (w)[? > n}. Then,
P(N) =P (Mnenfw : [X(w)[" = n})
= lim P ({w : | X(w)[? > n}) by continuity of probability measures
n—oo

n—oo

1
< lim Z | X |PdP by Markov’s Inequality
Q
= 0 since [, |X[PdP is finite.
10. Suppose X : (2, F, P) — (R, B) is a random variable with E(|X|) < co. Let N € F
be such that P(N) = 0 and define

=Y

where ¢ € R. Is Y integrable? Is E(X) = E(Y)?

Answer: Yes, for both questions. We can change an integrable random variables at

any set of measure zero without changing the integral.
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Chapter 6

Exercises

1. Let Xl,XQ € £2 and define COV(Xl,XQ) = E([Xl — E(Xl)”XQ — E(XQ)]) Show
that Cov(X1, Xs) = E(X1Xs) — E(X1)E(X2) and that if X; and X, are independent
COV(Xl,XQ) = 0.

Answer: From the definition of Cov(X7y, X5) and linearity of expectations
COV(Xl,XQ) = E(XlXQ_XlE(XQ)_XQE(X1)+E<X1)E(X2)) = E(XlXQ)—E<X1)E(X2)

Independence of X; and X, implies that £(X,X5) = F(X;)E(X3). Hence, Cov(Xy, Xs) =
0.

2. Let {X, },en be a sequence of random variables that are independent and share the
same continuous distribution. Let p be a permutation of {1,--- ,n} for n € IN. Show
that (X, --,X,) and (X,a), -, Xpm)) have the same distribution.

Answer: Since the random variables are independent and have the same distribution,

say F,

P<X1 th”' 7Xn an) :HF<:C’L)

i=1
for all z; € R. If {p(¢)}~, is a permutation of {1,--- ,n}, then

n

P<Xp(1) S AT 7Xp(n) S :L‘n) - HF('IZ)

=1

Hence, (X, -+, X,) and X1, -+, Xpm) have the same distribution.
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3. Let I be a finite index set and consider the collection of o-algebras {B;}ic;. Show
that this collection is independent if, and only if, for every choice of non-negative
B;-measurable random variable X;, we have E ([];c; Xi) = [L;c; E(X)).

Answer: If £/ (Hlel ) [Lic; E(X;) whenever X; € B;, then for any A; € B;, take
X; =14, and

E <H Xi> =P (ﬂAZ) =[P =] Ex
icl iel il icl
and consequently {A;};c; are independent and {B, };c; are independent o-algebras.
Now, suppose {B,; }ics are independent o-algebras. For A; € B; and X; = I, we have
E (H Xi> =[[Ex
icl icl

Now, if {X;}ics are simple, then write X; = Zj w414, for A;; € B;. Then, we have

E(H?@) [ w0t | =2 | E Tosolg

iel i€l j(i) (¢)geliel
- 3 o (Z@IAZJ ) z [P
j(i)ieliel (i),ieliel
=1 o Pt =[P
i€l j(i i€l

If X; is a non-negative B;-measurable function, there exists Xi(n) such that Xi(n) is
simple and 0 < X 1 X;. Then, it follows that TT,c; X™ 1t [T,e; Xi and by the

monotone convergence theorem FE (H ) T FE (HZE 1 X ) and from the previous

el
argument , the left side is Hie[E( ; ) T [Le; E (X;) again using the monotone

convergence theorem.
4. If E is an event that is independent of the m-system P and E € o(P), then P(FE) is
either 0 or 1.

Answer: Set C; = E and Co = P and it follows that C; is independent of Cy. This
implies that o(C;) is independent of ¢(Cy). Therefore, £ is independent of E and
P(E)=0or 1.
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5. Let {A;}!, be independent events. Show that P (U, A;) =1 — [[\_, P(AS).
Answer: By De Morgan’s Law (U}, A;)° = (i, A¢. Hence,

((Ge))-r-r(94) -0

o (04) 1o (1) -y

where the last equality follows from the fact that if {A4;}" , are independent events, so
are {AS}P ;.

which implies

6. We have proved that if X and Y are independent, then f(X) and ¢g(Y") are independent
if f and g are measurable. Is it possible to have X and Y be dependent and f(X) and

g(Y) be independent? If so, give an example, if not, prove.

Answer: Yes, it is possible. Consider two independent random variables X; and X,
and another random variable W that is independent of X; and X, and takes on the
values 1 and —1 with probability 1/2 each. Now, define two new random variables
X = WX, and Y = WX, X and Y are functionally connected and cannot be
independent. However, X2 = X2 and Y? = X2, which are independent since X; and

X, are independent.
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Chapter 7

Exercises

1. Let {X, }nenw C LP for p € [1,00) be a sequence of non-negative functions. Show that
1> Xl < D 1Kl
n=1 n=1

Answer: Let S, = 25:1 X,. Since X,, > 0foralln, 0 < S; <8y < ---. Given
that [Sy[? < 223N | [X,|P. we have [, |Sy[PdP <203 [ |X,[?dP < oo. Conse-
quently, Sy € LP. By Minkowski’s inequality

N %s)
1Snllp < D 11Xl < D 11Xl (7.1)
n=1 n=1

which implies [|Sy|? < (3°07, [ Xallp)”. By Beppo-Levi’s Theorem

supHSzvﬂg—Sup/SﬁfdP—/supSﬁ,dP—/sup <ZX> dP
nelN nelN Q nelN Q nelN
:/ <supZX> P = |3 X, (7.2)
n=1

nelN

Hence, by inequality (7.1)) and ([7.2)) we have

o) ') p
SEHQHSN\ P=1) Xl < (Z HXan>
n n=1 n=1

Consequently, || 32,2 Xullp < 3202 [ Xallp-
2. Show that if ) 2, converges absolutely, then it converges.
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Answer: Suppose N1, Ny € N, N; < Ny and > x, converges absolutely. Note that
nelN

ZnNil |Tn| — 25;1 |zn| = ZnNiN1+1 |z,|. If N — oo, then Zg; [T | — 25;1 |[zn| — 0,

as every convergent sequence is Cauchy. Also, since

Na
N1+ TN | <Dl
n=N1+1
N2 N1 No
|an - an| = |'rN1+1 +xN2+1 + - 'IN2| < Z |xn| — 0.
n=1 n=1 n=N1+1

. . . N
Since R is complete, Nhgéo Y neq Tn CONVErges.

. Prove Theorem 7.9.

Answer: Just X, £y X on item 2. For e > 0 let A, ={|X,, — X| > €}

Ean - X| = E(|Xn - X|I\anX\<e + |Xn - X|I\anX|26)
<e+ E(|Xn|la,) + E(|X|14,)-

P(A,) — 0asn — oo, hence E(|X,,|14,) — 0 by Theorem 7.6. Similarly, F(|X|14,) —
0, which gives the result.

. Let {gn}n=12,. be a sequence of real valued functions that converge uniformly to g on
an open set S, containing x, and ¢ is continuous at xz. Show that if {X, },=12.. is a

sequence of random variables taking values in S such that X,, = X, then
gn(Xn) = g(X).

Note: Recall that a sequence of real valued functions {g, },—12,.. converges uniformly
to g on a set S if, for every € > 0 there exists N, € IN (depending only on €) such that
for all n > N, |gn(z) — g(z)| < € for every z € S.

Answer: Let ¢, > 0 and define the following subsets of the sample space: S} = {w :
90(X0) = g(X)] < €}, S5 = w0+ lgn(X,) — g(X)| < €/2}, S = fw : |g(X,,) — g(X)]| <
¢/2}, S} = {w: X,, € S}. By the triangle inequality, S} 2 S¥ N S§. By continuity
of g at X and openness of S, there exists v, such that whenever | X, — X| < 7.,
l9(X,) — 9(X)] < €/2 and X,, € S. Letting, S?' = {w : |X,, — X| < 7}, we
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see that SP C S¥ N Sy Since X, © X and uniform convergence of g,, there ex-
ists Ns. such that whenever n > Ns., [g.(X) — g(X)| < €/2 for all X € S and
P(S?) > 1—9. Thus, n > N;, implies S} C S7. Consequently, n > N;. implies
SrDSrNSE D SN Sy D SE. Thus, P(SYE) > P(S2) >1—4.

5. Show that X,, = X is equivalent to P ({w : sup;s,, | X; — X[ > €}) — 0 for all € > 0 as n — oo.

Answer: For any € > 0 and k£ € IN let Ag(e) = {w : | Xi(w) — X(w)| > €}. If for all
n € IN we have that P (Ugs,Ag(€)) > 0 then it must be that X,, % X. Consequently,

X, B8 X & 1lim P (UyepArle) =0

n—oo

& P({w:sup]Xj—X\>e}> — 0 as n — oo.

jzn

6. Prove item 1 of Remark 7.1.

Answer: For € > 0 we have that
{w: | Xp+Y,—X-Y|>e} C{w: | X, — X|>¢/2} U{w: |Y, - Y] >¢€/2}

The probability of the events on the union on right-hand side go to zero as n — oc.

By monotonicity of probability measures we have the results.

7. Let n € N and h,, > 0 such that h, — 0 as n — oo. Show that if } ° P{w :
| X, — X| > hy,}) < oo then X,, & X.

Answer: From question 5,

X, B8 X < lim P (U Ap(hy,)) = 0.

n—oo

But P (Un<pAr(hn)) < 3 is, P(Ar(e)) and if Y707 P({w : [Xn — X| > hy}) < o0
then it must be that lim Y, . P(Ax(e)) = 0. Since convergence almost surely implies
n—00 =

convergence in probability, the proof is complete.

8. Show that if ¥, < Y then Y, = O,(1).
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10.

Answer: Without loss of generality let @ > 0. Provided that a and —a are continuity
points of Fy, we can write that,P(|Y,| > a) — P(|Y| > a) as n — oco. Hence, for every
€ > 0 there exists N, such that,

|P(|Y,| >a) — P(]Y| > a)| <eforalln> N,
or
P(lY|>a)—e< P(|Y,| >a) < P(JY|>a)+e.

We can choose a such that P(|Y| > a) < § for any § > 0. Thus, P(|Y,] > a) <d+¢€
for all n > N..

Let g : S C R be continuous on S, and X; and X, be random variables defined on
(Q, F, P) taking values in S. Show that: a) if X; is independent of Xj, then g(X;)
is independent of g(X;); b) if X; and X, are identically distributed, then ¢g(X;) and
g(X;) are identically distributed.

Answer: Let Y; = g(X;) and Y; = g(X;). g continuous assures that both Y; and Yj

are random variables.

a) Fy,v,(a,b) = P(S ={w:Y; <aand Y; <b}). Let S; = {X;(w) : Yi(w) < a},Ss =
{Xs(w) @ Ys(w) < b}. Since, S = S; N Sg and by independence P(S) = P(S:)P(Ss)
which implies Fy, y,(a,b) = Fy,(a)Fy,(b).

b) Fy,(a) = P(5) = P({Xs(w) : Y(w) < a}) = Fy,(a).

Let { X, } be a sequence of independent random variables that converges in probability

to a limit X. Show that X is almost surely a constant.

Answer: Recall that if X is almost surely a constant, say ¢, P({w : X(w) # ¢}) = 0.
Then, the distribution function F' associated with X is given by

Fla) = {0, ifxr<c

1, ifx>c
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11.

12.

If X is not a constant, there exists a ¢ and 0 < € < 1/2 such that P(X < ¢) > 2¢
and P(X < c+¢€) < 1—2¢or P(X >c+¢) > 2. Since X, > X than X, 5 X.

Consequently, for n sufficiently large and ¢ a point of continuity of F' we have
F(c)—e< F,(c) < F(c)+e¢

which implies that € < F,(c). Also, 1 — F,(c+¢€) > 1 — F(c + €) — € which implies
P(X, >c+e) > P(X >c+e)—e>e Since X, > X, for n sufficiently large
PHw:|X, — Xi| > €}) <€ Since {w: | X, — X, >e}={w: X, — X, > e} U{w:
X, — X5 < —€¢} we note that if X, < cand X > ¢+ € then X, — X, > € is equivalent
to X, — X < —e. Consequently,

P{w: |X, — Xs| >€}) < P{w: X, <cand X > c+e€}).

But since X, and X, are independent P({w : X, < cand X, > c+¢€}) = P{w: X, <
cHP({w: X > c+€}) > €% Hence,

&> Pl{w:|X, — X,| >€}) > €,
a contradiction.

4 d .
Suppose Xfﬁ — Z where the non-random sequence o,, — 0 as n — oo, and ¢ is a

9(Xn)—g(p) d

function which is differentiable at p. Then, show that Do Z.

Answer: From question 2, if 7, % 7 then Z, = O,(1). Let Z, = XZ—;“ and write
X, =p+ 0,2, = p+ Opy(0y,). By Taylor’s Theorem

(Xn - U)

1

—g(X,) — g(p) = gV ()

o + 0p(1).

Since X;ﬁ—;“ 4z , we have the result.
Show that if {X,},ew and X are random variables defined on the same probability
space and » > s > 1 and X, i> X, then X, £—> X.

Answer: For arbitrary W let Z = |[W|*, Y = 1 and p = r/s. Then, by Holder’s
Inequality
EIZY [ < | Z1p[1Y [lp/p-1)-

35



Substituting Z and Y gives E(|W|*) < E(|W|*?)Y/? = E(|W|*5)*/". Raising both sides
to 1/s gives
E(W[)Ys < B(W|)'".

Setting W = X,, — X and taking limits as n — oo gives the result.
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Chapter 8

Exercises

1. Let U and V be two points in an n-dimensional unit cube, i.e., [0,1]" and X,, be the

Euclidean distance between these two points which are chosen independently and uni-

X, P 1
formly. Show that N ARV
Answer: LetU' = (U --- U, JandV'=(V; --- V, ). Then, X, = (X1, (U; — V;)2)/?

and we can write

ZE U; — V;)? // u—v)*dudv = 1/6

where the last equality follows from routine integration. Then, since E(|(U — V)?|) =

E((U —V)?) < oo, by Kolmogorov’s Law of Large Numbers

1 1 —
ZX2== U, —V)? 5 1/6.
n nZ( ): =1/

n 5
=1
Since, f(z) = z'/? is a continuous function [0, 00), by Slutsky Theorem if 1 X2 = 1/6
then f (% n) f(1/6). Consequently,
1
—X
vn

2. Show that if { X} jew be a sequence of random variables with £(X;) = 0and > 7 SE(|X;lP) <

oo for some p > 1 and a sequence of positive constants {a;},;en. Then,

2 1/V6.

ZP|X|>a] < oo and Z |EX]{w\X\<a]})|<OO
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Furthermore, for any r > p,

<1
27 (X" T x5 1<a51) <
7=1 J

Use this result to prove Theorem 8.4 in your class notes with convergence in probability.

Answer: Note that
P({w:|Xj] >a;}) =1 - P({{w: |Xj] <a;}) = /Q (1 = Iwixy)<ayy) AP,

Ifwe {w:|X;] <a;}, then P({w:|X)| > a;}) = 0. If |[X;| > aj, then |X;[P > o and
| X;|P/a% > 1. Hence,

1
P 11> a)) < [ IXP/aip = (X
J

and
o0 o0 1
D PUw: X > a}) < D SE(IXI) <
=1 =1
Now,
1 1 )
;\E(Xjf{w:|xj|§aj})| = ;|E(Xj) — E(Xjl{ux;|<a;3)]; since E(X;) = 0.
J J
1
< —F (|Xt|(1 - [{M\Xﬂéaa’})
a;
1 p .
<= (|X P(1— It 1X,|<a; }) since l)ijpl > ? if p>1.
aj j i
1 P
< P B (|1X5]7).
j
Hence,
o0 1 [e.e] 1 p
Za— (X L1 x;1<a, )| Z—p (1X;17)
j=1 j=1 J

Lastly, if |X;| < a; we have that aij\Xj| < 1. Then, forr >p>1

1, 1 1
Xl Twixizen S 51X wixg e S X wix 12053
J 7 J

1. 1
E <7|Xj| f{wz|xj|3aj}) <FE <—p|Xj|pf{w:|Xj|Saj}) :
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Hence,
Z ( |1 L, |<aj}>

In Theorem 8.4, the sequence of random variables {X,};en is independent and has
expectation p;. Hence, if W; := X; — p;, we have E(W;) = 0. Furthermore, in
Theorem 8.4 it is assumed that for some § > 0

> E(IW.|1+o

A

7146
=1 )

1+5) 146
Now, note that for any n € IN we have Z I:ﬁlg < Z] 1 |Ij/‘1/+‘§ ) and

B(wi'*) _ = B(WM)
T}E{}oz i+o ) < Jim > =S5 < oo
j=1
Now, in the first part of this answer, take a; = n for all j and for any r > 1+4. Then,

we have

ZP|W|>n <ooandz E(W;|" Lww;1<ny) <

Hence, taking r = 2 the conditions on Theorem 8.2 are met and we have

n

1 & 1 & 1 AN
- Z Wj_ﬁ Z E (Wilww, <ny) = - Z(Xj_/v‘j)_ﬁ Z E (Wjlwiw;i<ny) = 0p(1).
j=1 i=1 j=1 i=1

But since E(W;) = 0, we have E (W;lw,<n}) — 0 as n — oo. Thus, %Z?ZI(XJ- -
i) = op(1).
. Let {X;}i—23,... be a sequence of independent random variables such that

1 1
- P 1-
2ilog i

1log1
Show that 237" ) X; 5 0.
Answer: Let S, =", X; and note that E(X;) = 0. Hence, by independence

2

U’ n
ZE :;bgiglogn'

Hence, V(S,/n) = 5V(S,) = 5E(S?) < 5 = — 0 asn — oo. Consequently,

logn 1og n

%Sn % 0 by Chebyshev’s mequahty.

39



40



Chapter 9

Exercises

1. Assess the veracity of the following statement: “Since knowledge of X implies knowl-
edge of f(X), conditioning on X is the same as conditioning on f(X). Hence, E(Y|f(X)) =

E(Y|X).” Explain using mathematical arguments.

Answer: The statement is false. Recall that conditioning on a random variable
X means conditioning on the sub-o-algebra generated by X, i.e., X *(B). Hence,
conditioning on f(X) means conditioning on the sub-c-algebra generated by f(X),
ie., X1 f~Y(B)) which is generally different from X ~!(B). Take, for example, the
following random vector: (Y, X) : 2 — R? with (Y (w), X(w)) = (1,-1) if w € F; and
(Y(w), X(w)) =(2,-1)ifw € Ey, (Y(w),X(w)) =(1,1)ifw € B3 and (Y(w), X (w)) =
(2,1) if w € Ey, with P(E;) = 1/6 for j = 1,2, P(E3) = 3/6, P(E,;) = 1/6 and
Q=U_ E; and E; U E; = () for i # j. Now, let f(X) = X?. Then,

(15 X =-1 ~
E(Y|X) _{ s fx—1 ond BYIX?)=8/6

2. Let X and Y be independent random variables defined in the same probability space.
Show that if E(|Y|) < oo then

P(E(Y|X)=E(Y)) =1.

Answer: Let Fx be the o-algebra generated by X. Let £ € Fx and note that there
exists B such that £ = {w: X(w) € B}.

/ YdP = / YI.dP = / YixepdP = BE(YIxep) = E(Y)E(Ixen)
A Q Q
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where the last equality follows by independence. Now,
BE(Y)E(Ixen) = E(Y) / IvepdP = E(Y) / [adP = / B(Y)dP.
Q Q A

Consequently, since A is arbitrary in Fyx

/AYdP = /AE(Y)dP or /A(Y — E(Y))dP =0

By definition of conditional expectation we have that F(Y|X) = E(Y) since A is ar-
bitrary in Fx.

. Let (92, F, P) be a probability space. The set of random variables X : Q — R such
that [, X2dP < oo is denoted by L2(€, F,P). On this set |X|| = (J, X2dP)"?
is a norm and < X,Y >= fQ XYdP is an inner product. If G is a o-algebra and
G C F, the conditional expectation of X with respect to G, denoted by E(X|G) is the
orthogonal projection of X onto the closed subspace L%(Q, G, P) of L?(Q2, F, P). Prove
the following results:
(a) For X|Y € L*(Q, F, P) wehave < E(X|G),Y >=< E(Y|G)), X >=< E(X|G), E(Y|G) >.
(b) If X =Y almost everywhere then E(X|G) = E(Y|G) almost everywhere.
(c) For X € L*(Q,G, P) we have E(X|G) = X.
(d) If H C G is a o-algebra, then E(E(X|G)|H) = BE(X|H).
(e) If Y € L*(Q,G, P) and there exists a constant C' > 0 such that P(|Y| > C) = 0,
we have that E(Y X|G) = Y E(X|G).
(f) If {Y,}new, X € L*(Q, F, P) and ||Y, — X|| — 0 as n — oo, then E(Y,|G) &
E(X|G) as n — 0.

Answer: (a) By definition of conditional expectation, for all measurable s € L*(, G, P),
E([X — E(X|G)]s) =0 < E(Xs)=FE(E(X]|9)s). (9.1)

Since E(Y|G) € L*(Q,G, P), we have E(XE(Y|G)) = E(E(X|G)E(Y|G)). But by def-
inition of the inner product the last equality is < E(Y|G)), X >=< E(X|G), E(Y|G) >.
Similarly, changing X for Y in equation (9.1)) we obtain E(Ys) = E(E(Y|G)s). Let-
ting, s = E(X|G) we get E(YE(X|G)) = E(E(Y|G)E(X|G)) and E(YE(X|G)) =
E(XE(Y|G)), which is equivalent to < E(X|G),Y >=< E(YG)), X >.
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(b) Let y = E(Y|G) and z = E(X|G). Then,

(y—z)? = Wy-Y+Y—-2)y—2)=wy-Y)y—2)+ Y —2)(y — )
= -Y)y—-2)+ Y -X)y—2)+ (X —2)(y —z)

But from item 1, E(y —2)? = ||ly — 2| = EY - X)(y —2) < E|(Y = X)(y —2)| <
IIY — X||||ly — x||, which gives ||y —z|| < ||Y — X||. Lastly, if X =Y almost everywhere,
then ||Y — X|| = 0 and z = y almost everywhere.

(c) Since X € L*(Q2,G, P), it follows from the projection theorem that E(X|G) = X.

(d) From item (a), we have < E(E(X|G)|H),Y >=< E(X|G9), E(Y|H) >=< X, E(E(Y|H)|G) >.
Since E(Y|H) € L*(Q,G,P), we have that by item (c¢) < X, E(E(Y|H)|G) >=<
X,E(Y|H) >=< E(X|H),Y >. Hence, E(E(X|G)|H) = E(X|H) almost everywhere.

(e) Since L*(2,G, P) is a closed linear subspace of L*(Q, F, P) and E(:|G) is a linear
projector, any X € L?(2, F, P) can be written as
X = B(X|g) + (X — B(X|9)) 92)
where (X — E(X|G)) is orthogonal to any element of L?(Q, G, P). Hence, gives
XY = E(X|G)Y + (X — BE(X|G))Y. (9.3)

Now, note that for any s € L*(©,G,P) and Y € L*(,G, P) bounded almost ev-
erywhere, as assumed in the question, we have sY € L*(Q,G, P). Hence, E((X —
E(X|G))sY) = 0 and using (9.3) we have

E(sXY) = E(sE(X|G)Y) < E([XY — E(X|G)Y]s) =0,

and the conclusion that E(XY|G) = E(X|G)Y.
(f) From item (b)
IE(Ya|G) — E(Z|G) < [[Yn = Z].
Taking limits on both sides as n — oo we obtain ||E(Y,|G) — E(Z|G)| — 0, since
IIY,,—Z|| — 0 by assumption. That is, £(Y,|G) converges in quadratic mean to E(Z|G).

But by Chebyshev’s inequality, convergence in quadratic mean implies convergence in
probability. Hence, E(Y,|G) 2 E(Z|G).
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4. Let X,Y € L£*(Q, F, P) be random variables and assume that F(Y|X) = aX where
a € R.

(a) Show that if E(X?) >0, a= E(XY)/E(X?).
(b) If {(V; X;)T}, is a sequence of independent random vectors with components

having the same distribution as (Y X)T, show that

—ZXQ E(X?) and — ZYX E(XY).

(c) Let a, = (£ 3770, XZ?)_1 L5 YiX;. Does a, > a? Can a, be defined for all n?
Explain.

Answer: (a) Note that E(Y|X) = argmin [,(Y — aX)?dP. Now,

/ (Y — aX)*dP = / Y2dP + a? / X2dP — 2a / XYdP,
Q Q Q Q

d 2

da
Hence, setting the first derivative equal to zero gives, E(Y|X) [, X?dP = [, XYdP <=

B(Y|x) = 250,

(b) Since X7 = ( 0 1)( )(

they are measurable function of

quences. Since, E(X?) = E(X

for IID random variables

(Y aX)?dP = 2a / X2dP—2 / XYdP and — [ (Y—aX)*dP =2 / X?2dP > 0.
Q

aQ Q

Xxkx

) Hence, {X?}iew and {X;Y;}ien are 11D se-

7

)T Tand X;Y; = (1 0)<§i)(§i)T(o1
dE

(X; E(XY) by the law of large numbers

—ZX2—>E ) >0 and — ZYX—>E(XY)

=1

(¢) To define a,, we need = > | X2 > 0 which is not assured from the assumptions.
What can be said is that £ 37 | X2 % E(X?) > 0. Hence, a, exists in probability as

n — oQ.

5. Prove the following:
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(a)

IfY € L(Q,F,P) and G C F is a o-algebra, show that |[E(Y|G)| < E(|Y]|9).
Answer: |Y|=Y" —Y~ where Y Y~ > 0. By linearity of conditional expec-
tation

E([Y]|G) = E(YT|G) + E(Y7|9)
and from Theorem 7.9 E(Y"|G) > 0, E(Y~|G) > 0. Hence,

[EYIG)| = [E(YT|G) — E(Y™|G)] < [E(YTIG)| + [E(YT|G)]
= E(Y'|G) + E(Y™1G) = E(]Y]|9)

Let ¢ be a scalar constant and suppose X = ¢ almost surely. Show that E(X|G) =

¢ almost surely.

Answer: It suffices to show that [, |c — E(X]|G)|dP = 0. Now,

/|c—E(X|g)|dP _ / (c—E(X|g))dP+/ (E(X|G) — c)aP.
Q c>E(X|G)

c<E(X|G)

Now, [opixio(c — E(X[G)dP = [y(c — B(X|G))(>p(xigydP. Now, since
E(X|G) € L(Q,G,P), I{e>px|g)) is G-measurable. Hence, by the definition of

conditional expectation

/ (c — E(X|G))dP = 0.
c>E(X|G)
Similarly, |

C<E(X|g)(E(X|Q) —¢)dP = 0. Hence, ¢ = E(X|G) almost surely.
IfY € L(Q,F,P) and G C F is a o-algebra, show that for a > 0
1
P({w: [Y(w)] 2 a}]G) < —E(Y (w)|IG)-
What is the definition of P ({w : |Y(w)| > a}|G)? Is this a legitimate probability

measure?

Answer: Note that alg,.y(w)>e < |Y(w)] and

0 (v iz10) < BIY@)IG) = E (Tupzald) < -B(Y()0)

If we define £ (I{me)‘za}\g) = P({w:|Y(w)| > a}|G) we have

—_

P({w: V()] 2 a}[G) < —E(|Y (w)||G)-
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Now, to verify that P(-|G) is a legitimate probability measure note that, E (Ig|G) =
E(11G) =1 = P (Q|G) almost surely. Also, if {E;};cn is a countable collection of

disjoint events Iy, yr, = Z]E]N I, and

P (UjewEj|G) = E (1u,en,1G) = (Z I, \g) =Y E(I5|G) =>_P(E)G).

jEN jEN jEN
6. Let Y and X be random variables such that Y, X € £%(Q,F,P) and define ¢ =
Y — B(Y]X).
(a) Show that F(e|X) =0 and E(e) = 0.
(b) Let V(Y|X) = E(Y?X) — E(Y|X)? Show that V(Y|X) = V(¢|X), V(e) =
B(V(Y|X)):
(¢) Cov(e, h(X)) =0 for any function of X whose expectation exists.
(d) Assume that E(Y|X) = a + X where a, 5 € R. Let E(Y) = py, E(X) = px,
V(Y) =02, V(X) = 0% and p = XY Show that,

oOxXoy

X and E(V(Y|X)) = (1 — p*)o?.

E(Y|X) = iy + poy>—
Answers:

(a) E(|X)=E(Y —E(YI|X)|X)=EY|X)— E(Y|X)=0. By the law on iterated
expectations E(e) = E(E(e|X)) = 0.

(b) V(Y|X) = E(Y — E(Y|X))*|X) = E(£?|X) = V(]| X) since E(¢|X) = 0. Also,
since E(e) = 0 we have that V(e) = E(e?) = E(E(e}X)) = E(V(e]X)) =
E(V(Y|X)).

(c¢) Cov(e,h(X)) = E(eh(X)) — E(e)E(h(X)) = E(eh(X)) since E(e) = 0. But by
definition of conditional expectation

E(eh(X)) = E(h(X)E(]X)) = 0 since E(¢]X) = 0.
(d) First note that
py = B(E(Y|X)) = E(a + 8X) = a + Bux. (9.4)
Now, by definition of conditional expectation

E(XY) = B(X(a+ BX)) = apix + BE(X?) = apx + B(0% + 13).
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Also, E(XY) = Cov(X,Y) + uxpy = poxoy + pxiy. Then, we have

apx + B0k + 1%) = poxoy + px iy (9.5)

Equations (9.4) and (9.5 form a system with two unknowns («, £). The solution

is given by,
POY
ﬁ_—anda—,uy—ux—
0x 0x

Substituting o and § into E(Y|X) = a + X gives the desired result.
Lastly,

oy =V(Y)=E(Y - E(Y))'=E(Y ~ E(Y|X) + E(Y|X) ~ E(Y))’
E((Y - E(Y]X))*) + E ((E(Y]X) - E(Y))")

+2E((Y - E(Y[X)(E (Y\X) EY))))

= E((Y - E(Y[X))") + V(E(Y|X)) + 2E ((E(Y|X) — E(Y)))

= E(V(Y]X)) + (E(Y|X))-

Consequently,
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Chapter 10

Exercises

1. Suppose {X;}iz12.. is a sequence of independent and identically distributed random
variables and Y;(x) = Ij..x,<s}, Where I is the indicator function of the set A. Now

define
1 n
Fo@) == 3 Yila)
i=1

for fixed x. Obtain the asymptotic distribution of y/n(F,(z) — F(x)). You can use a

Central Limit Theorem, but otherwise show all your work.

Answer: (3 points) First, note that E(Y;(z)) = P{w : X; < z}) = F(x) and
V(Yi(x)) = Fx) - F(x)* = F(z)(1 - F(x)).

i=1

Now, since the sequence is {Y;(x)} is IID, this is so because 4 is measurable, by Lévy’s
CLT

LS (o) - B _ _

F(2)(1-F(z)) VF()(1—F(z)) VF()(1 - F(x))

n

i (Yi() =~ BYi(2)) _ vn(Fa(@) = F@) o, N(0, 1)

2. Let {X, }ne12.. and {Y, },—12.. be sequences of random variables defined on the same
probability space. Suppose X, 4 X and Y, % Y and assume X, and Y,, are indepen-
dent for all n and X and Y are independent. Show that X,, + Y, 4 x + Y. Hint: use

the characteristic function for a sum of independent random variables.

Answer: The characteristic function of X,, 4+ Y, is given by
Px,+v, (1) = Elexpit(Xy +Yy)) = E(expit(Xy) expit(Yy)) = Eexp it(Xy)) E(expit(Yy)) = ¢x, (£)dy,
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where the next to last equality follows by independence of X,, and Y,,. Since, X, A x
and Y, % Y, it must be that ox, (t) = ¢x(t) and ¢y, (t) — ¢y (t). So,

Oxntv (1) = 0x, (D) y, (1) = dx )¢y () = Px v (1),

where the last equality follows from independence of X and Y. Thus, X,+Y,, A X1y,

. Let {X;}iz12... be a sequence of independent and identically random variables with
E(X;) =1 and 0%, = 0® < co. Show that if S, =Y | X;

; (S12 —n¥?) 4 Z ~ N(0,1).

Answer: Note that,

2 2 a2 1/2 1/2 1/2

;(Sn—n):;(Sn —n'?) (Sy/? 4+ n'?)

= 2 (SY2 = ') 2 ((Su/m) 4 1)
So that,
2V ((Sufn) 1) = 2 (S = n') ((Sw/m)'? + 1)

and

((Su/m)"? + 1) g\/ﬁ((sn/m )= ; (SY2 — ).

Since, {X;}iz12.. is a sequence of independent and identically random variables with
E(X;) =1, by Slutsky Theorem ((S,/n)"/? + 1)71 % 271 and since 0%, = 0% < o0, by
Lévy’s CLT 1/n((S,/n) — 1) % N(0,1). Hence, 2 (S,yg — n1/2> % 7 ~ N(0,1).

50



	Exercises
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises
	Exercises

