Homework 7 ECON 4818 Professor Martins

- 1. From your textbook answer questions 1, 2, 5 and 8 from Appendix E in your textbook. For questions 5 and 8, note that what your textbook labels "The Gauss-Markov" assumptions, are precisely the assumptions we made in class. That is, for the multivariate regression model $Y = X\beta + U$ we have that
 - (a) $X^T X$ is invertible
 - (b) E(U|X) = 0
 - (c) $V(U|X) = \sigma^2 I_n$
- 2. Use the MATLAB code OLSwage2.m and data set WAGE1.mat available from the class website to estimate the the following regression models:
 - (a) $\log(wage) = \beta_0 + \beta_1 educ + u$
 - (b) $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + u$
 - (c) $\log(wage) = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 exper^2 + u$

For each of these models obtain the least squares estimators for β_k and construct a 95 percent confidence interval. For model (c), estimate the impact on wages of another year of experience.

- 3. Chapter 4: problems 2 and 8.
- 4. Chapter 6: problems 2 and 4.
- 5. Use the MATLAB code MOLSwage2.m and data set WAGE1.mat available from the class website to estimate the the following regression model:

$$\log(wage)_i = \beta_0 + \beta_1 educ_i + \beta_2 exper_i + \beta_3 exper_i^2 + u_i,$$

where $i = 1, \dots, n$. Under the assumption that the assumption that $u_i \sim N(0, \sigma^2)$ for all *i*, that $\{u_i\}_{i=1}^n$ forms an independent sequence, test the following hypotheses at the 5 percent level:

- (a) $H_0: \beta_1 = \beta_2 = 0$
- (b) $H_0: \beta_3 = 0$
- (c) $H_0: \beta_1 = \beta_2 + \beta_3.$

6. Consider the following linear regression model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + U_i$$

where $i = 1, \dots, n$ and $U_i \sim N(0, \sigma^2)$ for all i and $\{U_i\}_{i=1,\dots,n}$ forms an independent sequence of random variables. In class we have shown that if we want to test that $H_0: \beta_1 = \beta_2 = \beta_3 = 0$ against the alternative hypothesis that some $\beta_j \neq 0$ for some j = 1, 2, 3 we can do so by using the statistic

$$f = \frac{m^{-1}(R\hat{\beta} - r)^T (R(X^T X)^{-1} R^T)^{-1} (R\hat{\beta} - r)}{\hat{\sigma}^2} \sim F_{m,n-4}$$

where $R = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$, m = 3, $r = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ and $\hat{\sigma}^2 = \frac{1}{n-4}\hat{U}^T\hat{U}$ (refer to your notes

for the definition of X, \hat{U}). Provide all assumptions needed to obtain that under the null hypothesis H_0 we have that $f \sim F_{m,n-4}$. For each assumption explain why and where it is needed in the proof of the distribution of f. Use mathematical arguments.