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PREFACE

I have written this book primarily for serious and talented mathematics scholars
, seniors or first-year graduate students, who by the time they finish their schooling
should have had the opportunity to study in some detail the great discoveries of our
subject. What did we know and how and when did we know it? I hope this book
is useful toward that goal, especially when it comes to the great achievements of
that part of mathematics known as analysis. I have tried to write a complete and
thorough account of the elementary theories of functions of a single real variable
and functions of a single complex variable. Separating these two subjects does not
at all jive with their development historically, and to me it seems unnecessary and
potentially confusing to do so. On the other hand, functions of several variables
seems to me to be a very different kettle of fish, so I have decided to limit this book
by concentrating on one variable at a time.

Everyone is taught (told) in school that the area of a circle is given by the
formula A = πr2. We are also told that the product of two negatives is a positive,
that you cant trisect an angle, and that the square root of 2 is irrational. Students of
natural sciences learn that eiπ = −1 and that sin2 + cos2 = 1. More sophisticated
students are taught the Fundamental Theorem of calculus and the Fundamental
Theorem of Algebra. Some are also told that it is impossible to solve a general
fifth degree polynomial equation by radicals. On the other hand, very few people
indeed have the opportunity to find out precisely why these things are really true,
and at the same time to realize just how intellectually deep and profound these
“facts” are. Indeed, we mathematicians believe that these facts are among the
most marvelous accomplishments of the human mind. Engineers and scientists
can and do commit such mathematical facts to memory, and quite often combine
them to useful purposes. However, it is left to us mathematicians to share the
basic knowledge of why and how, and happily to us this is more a privilege than
a chore. A large part of what makes the verification of such simple sounding and
elementary truths so difficult is that we of necessity must spend quite a lot of energy
determining what the relevant words themselves really mean. That is, to be quite
careful about studying mathematics, we need to ask very basic questions: What
is a circle? What are numbers? What is the definition of the area of a set in the
Euclidean plane? What is the precise definition of numbers like π, i, and e? We
surely cannot prove that eiπ = −1 without a clear definition of these particular
numbers. The mathematical analysis story is a long one, beginning with the early
civilizations, and in some sense only coming to a satisfactory completion in the late
nineteenth century. It is a story of ideas, well worth learning.

There are many many fantastic mathematical truths (facts), and it seems to
me that some of them are so beautiful and fundamental to human intellectual
development, that a student who wants to be called a mathematician, ought to
know how to explain them, or at the very least should have known how to explain
them at some point. Each professor might make up a slightly different list of such
truths. Here is mine:

(1) The square root of 2 is a real number but is not a rational number.
(2) The formula for the area of a circle of radius r is A = πr2.
(3) The formula for the circumference of a circle of radius r is C = 2πr.
(4) eiπ = −1.
(5) The Fundamental Theorem of Calculus,

∫ b
a
f(t) dt = F (b)− F (a).
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(6) The Fundamental Theorem of Algebra, every nonconstant polynomial has
at least one root in the complex numbers.

(7) It is impossible to trisect an arbitrary angle using only a compass and
straight edge.

Other mathematical marvels, such as the fact that there are more real numbers
than there are rationals, the set of all sets is not a set, an arbitrary fifth degree
polynomial equation can not be solved in terms of radicals, a simple closed curve
divides the plain into exactly two components, there are an infinite number of
primes, etc., are clearly wonderful results, but the seven in the list above are really
of a more primary nature to me, an analyst, for they stem from the work of ancient
mathematicians and except for number 7, which continues to this day to evoke
so-called disproofs, have been accepted as true by most people even in the absence
of precise “arguments” for hundreds if not thousands of years. Perhaps one should
ruminate on why it took so long for us to formulate precise definitions of things like
numbers and areas?

Only with the advent of calculus in the seventeenth century, together with the
contributions of people like Euler, Cauchy, and Weierstrass during the next two
hundred years, were the first six items above really proved, and only with the
contributions of Galois in the early nineteenth century was the last one truly un-
derstood.

This text, while including a traditional treatment of introductory analysis, specif-
ically addresses, as kinds of milestones, the first six of these truths and gives careful
derivations of them. The seventh, which looks like an assertion from geometry, turns
out to be an algebraic result that is not appropriate for this course in analysis, but
in my opinion it should definitely be presented in an undergraduate algebra course.
As for the first six, I insist here on developing precise mathematical definitions of
all the relevant notions, and moving step by step through their derivations. Specif-
ically, what are the definitions of

√
2, A, π, r, r2, C, 2, e, i, , and −1? My feeling

is that mathematicians should understand exactly where these concepts come from
in precise mathematical terms, why it took so long to discover these definitions,
and why the various relations among them hold.

The numbers −1, 2, and i can be disposed of fairly quickly by a discussion of
what exactly is meant by the real and complex number systems. Of course, this
is in fact no trivial matter, having had to wait until the end of the nineteenth
century for a clear explanation, and in fact I leave the actual proof of the existence
of the real numbers to an appendix. However, a complete mathematics education
ought to include a study of this proof, and if one finds the time in this analysis
course, it really should be included here. Having a definition of the real numbers
to work with, i.e., having introduced the notion of least upper bound, one can
relatively easily prove that there is a real number whose square is 2, and that this
number can not be a rational number, thereby disposing of the first of our goals. All
this is done in Chapter I. Maintaining the attitude that we should not distinguish
between functions of a real variable and functions of a complex variable, at least at
the beginning of the development, Chapter I concludes with a careful introduction
of the basic properties of the field of complex numbers.

unlike the elementary numbers −1, 2, and i, the definitions of the real numbers
e and π are quite a different story. In fact, one cannot make sense of either e
or π until a substantial amount of analysis has been developed, for they both are
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necessarily defined somehow in terms of a limit process. I have chosen to define e
here as the limit of the rather intriguing sequence {(1+ 1

n )n}, in some ways the first
nontrivial example of a convergent sequence, and this is presented in Chapter II. Its
relation to logarithms and exponentials, whatever they are, has to be postponed
to Chapter IV. Chapter II also contains a section on the elementary topological
properties (compactness, limit points, etc.) of the real and complex numbers as
well as a thorough development of infinite series.

To define π as the ratio of the circumference of a circle to its diameter is attrac-
tive, indeed was quite acceptable to Euclid, but is dangerously imprecise unless we
have at the outset a clear definition of what is meant by the length of a curve, e.g.,
the circumference of a circle. That notion is by no means trivial, and in fact it
only can be carefully treated in a development of analysis well after other concepts.
Rather, I have chosen to define π here as the smallest positive zero of the sine
function. Of course, I have to define the sine function first, and this is itself quite
deep. I do it using power series functions, choosing to avoid the common definition
of the trigonometric functions in terms of “ wrapping” the real line around a circle,
for that notion again requires a precise definition of arc length before it would make
sense. I get to arc length eventually, but not until Chapter VI.

In Chapter III I introduce power series functions as generalizations of polyno-
mials, specifically the three power series functions that turn out to be the expo-
nential, sine, and cosine functions. From these definitions it follows directly that
exp iz = cos z + i sin z for every complex number z. Here is a place where allowing
the variable to be complex is critical, and it has cost us nothing. However, even
after establishing that there is in fact a smallest positive zero of the sine function
(which we decide to call π, since we know how we want things to work out), one
cannot at this point deduce that cosπ = −1, so that the equality eiπ = −1 also
has to wait for its derivation until Chapter IV. In fact, more serious, we have no
knowledge at all at this point of the function ez for a complex exponent z. What
does it mean to raise a real number, or even an integer, to a complex exponent?
The very definition of such a function has to wait.

Chapter III also contains all the standard theorems about continuous functions,
culminating with a lengthy section on uniform convergence, and finally Abel’s fan-
tastic theorem on the continuity of a power series function on the boundary of its
disk of convergence.

The fourth chapter begins with all the usual theorems from calculus, Mean Value
Theorem, Chain Rule, First Derivative Test, and so on. Power series functions are
shown to be differentiable, from which the law of exponents emerges for the power
series function exp. Immediately then, all of the trigonometric and exponential
identities are also derived. We observe that er = exp(r) for every rational number
r, and we at last can define consistently ez to be the value of the power series
function exp(z) for any complex number z. From that, we establish the equation
eiπ = −1. Careful proofs of Taylor’s Remainder Theorem and L’Hopital’s Rule are
given, as well as an initial approach to the general Binomial Theorem for non-integer
exponents.

It is in Chapter IV that the first glimpse of a difference between functions of
a real variable and functions of a complex variable emerges. For example, one
of the results in this chapter is that every differentiable, real-valued function of a
complex variable must be a constant function, something that is certainly not true
for functions of a real variable. At the end of this chapter, I briefly slip into the
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realm of real-valued functions of two real variables. I introduce the definition of
differentiability of such a function of two real variables, and then derive the initial
relationships among the partial derivatives of such a function and the derivative of
that function thought of as a function of a complex variable. This is obviously done
in preparation for Chapter VII where holomorphic functions are central.

Perhaps most well-understood by math majors is that computing the area under
a curve requires Newton’s calculus, i.e., integration theory. What is often overlooked
by students is that the very definition of the concept of area is intimately tied up
with this integration theory. My treatment here of integration differs from most
others in that the class of functions defined as integrable are those that are uniform
limits of step functions. This is a smaller collection of functions than those that are
Riemann-integrable, but they suffice for my purposes, and this approach serves to
emphasize the importance of uniform convergence. In particular, I include careful
proofs of the Fundamental Theorem of Calculus, the integration by substitution
theorem, the integral form of Taylor’s Remainder Theorem, and the complete proof
of the general Binomial Theorem.

Not wishing to delve into the set-theoretic complications of measure theory, I
have chosen only to define the area for certain “geometric” subsets of the plane.
These are those subsets bounded above and below by graphs of continuous func-
tions. Of course these suffice for most purposes, and in particular circles are exam-
ples of such geometric sets, so that the formula A = πr2 can be established for the
area of a circle of radius r. Chapter V concludes with a development of integration
over geometric subsets of the plane. Once again, anticipating later needs, we have
again strayed into some investigations of functions of two real variables.

Having developed the notions of arc length in the early part of Chapter VI,
including the derivation of the formula for the circumference of a circle, I introduce
the idea of a contour integral, i.e., integrating a function around a curve in the
complex plane. The Fundamental Theorem of Calculus has generalizations to higher
dimensions, and it becomes Green’s Theorem in 2 dimensions. I give a careful proof
in Chapter VI, just over geometric sets, of this rather complicated theorem.

Perhaps the main application of Green’s Theorem is the Cauchy Integral Theo-
rem, a result about complex-valued functions of a complex variable, that is often
called the Fundamental Theorem of Analysis. I prove this theorem in Chapter VII.
From this Cauchy theorem one can deduce the usual marvelous theorems of a first
course in complex variables, e.g., the Identity Theorem, Liouville’s Theorem, the
Maximum Modulus Principle, the Open Mapping Theorem, the Residue Theorem,
and last but not least our mathematical truth number 6, the Fundamental Theorem
of Algebra. That so much mathematical analysis is used to prove the fundamental
theorem of algebra does make me smile. I will leave it to my algebraist colleagues
to point out how some of the fundamental results in analysis require substantial
algebraic arguments.

The overriding philosophical point of this book is that many analytic assertions
in mathematics are intellectually very deep; they require years of study for most
people to understand; they demonstrate how intricate mathematical thought is and
how far it has come over the years. Graduates in mathematics should be proud
of the degree they have earned, and they should be proud of the depth of their
understanding and the extremes to which they have pushed their own intellect. I
love teaching these students, that is to say, I love sharing this marvelous material
with them.
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I. THE REAL AND COMPLEX NUMBERS 1

CHAPTER I
THE REAL AND COMPLEX NUMBERS

DEFINITION OF THE NUMBERS 1, i, AND
√

2

In order to make precise sense out of the concepts we study in mathematical anal-
ysis, we must first come to terms with what the “real numbers” are. Everything
in mathematical analysis is based on these numbers, and their very definition and
existence is quite deep. We will, in fact, not attempt to demonstrate (prove) the
existence of the real numbers in the body of this text, but will content ourselves
with a careful delineation of their properties, referring the interested reader to an
appendix for the existence and uniqueness proofs.
Although people may always have had an intuitive idea of what these real numbers
were, it was not until the nineteenth century that mathematically precise definitions
were given. The history of how mathematicians came to realize the necessity for
such precision in their definitions is fascinating from a philosophical point of view
as much as from a mathematical one. However, we will not pursue the philosophical
aspects of the subject in this book, but will be content to concentrate our attention
just on the mathematical facts. These precise definitions are quite complicated,
but the powerful possibilities within mathematical analysis rely heavily on this
precision, so we must pursue them. Toward our primary goals, we will in this
chapter give definitions of the symbols (numbers) −1, i, and

√
2.

The main points of this chapter are the following:

(1) The notions of least upper bound (supremum) and greatest lower
bound (infimum) of a set of numbers,

(2) The definition of the real numbers R,
(3) the formula for the sum of a geometric progression (Theorem 1.9),
(4) the Binomial Theorem (Theorem 1.10), and
(5) the triangle inequality for complex numbers (Theorem 1.15).

THE NATURAL NUMBERS AND THE INTEGERS

We will take for granted that we understand the existence of what we call the natural
numbers, i.e., the set N whose elements are the numbers 1, 2, 3, 4, . . . . Indeed, the
two salient properties of this set are that (a) there is a frist element (the natural
number 1), and (b) for each element n of this set there is a “very next” one, i.e., an
immediate successor. We assume that the algebraic notions of sum and product of
natural numbers is well-defined and familiar. These operations satisfy three basic
relations:

BASIC ALGEBRAIC RELATIONS.

(1) (Commutativity) n+m = m+ n and n×m = m× n for all n,m ∈ N.
(2) (Associativity) n+ (m+ k) = (n+m) + k and n× (m× k) = (n×m)× k

for all n,m, k ∈ N.
(3) (Distributivity) n× (m+ k) = n×m+ n× k for all n,m, k ∈ N.

We also take as given the notion of one natural number being larger than another
one. 2 > 1, 5 > 3, n + 1 > n, etc. We will accept as true the axiom of mathe-
matical induction, that is, the following statement:
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AXIOM OF MATHEMATICAL INDUCTION. Let S be a subset of the set
N of natural numbers. Suppose that

(1) 1 ∈ S.
(2) If a natural number k is in S, then the natural number k + 1 also is in S.

Then S = N. That is, every natural number n belongs to S.

REMARK. The axiom of mathematical induction is for our purposes frequently
employed as a method of proof. That is, if we wish to show that a certain proposition
holds for all natural numbers, then we let S denote the set of numbers for which
the proposition is true, and then, using the axiom of mathematical induction, we
verify that S is all of N by showing that S satisfies both of the above conditions.
Mathematical induction can also be used as a method of definition. That is, using it,
we can define an infinite number of objects {On} that are indexed by the natural
numbers. Think of S as the set of natural numbers for which the object On is
defined. We check first to see that the object O1 is defined. We check next that, if
the object Ok is defined for a natural number k, then there is a prescribed procedure
for defining the object Ok+1. So, by the axiom of mathematical induction, the object
is defined for all natural numbers. This method of defining an infinite set of objects
is often referred to as sl recursive definition, or definition by recursion.
As an example of recursive definition, let us carefully define exponentiation.

DEFINITION. Let a be a natural number. We define inductively natural num-
bers an as follows: a1 = a, and, whenever ak is defined, then ak+1 is defined to be
a× ak.

. The set S of all natural numbers for which an is defined is therefore all of N.
For, a1 is defined, and if ak is defined there is a prescription for defining ak+1. This
“careful” definition of an may seem unnecessarily detailed. Why not simply define
an as a× a× a× a . . .× a n times? The answer is that the . . . , though suggestive
enough, is just not mathematically precise. After all, how would you explain what
. . . means? The answer to that is that you invent a recursive definition to make
the intuitive meaning of the . . . mathematically precise. We will of course use the
symbol . . . to simplify and shorten our notation, but keep in mind that, if pressed,
we should be able to provide a careful definition.
Exercise 1.1. (a) Derive the three laws of exponents for the natural numbers:
an+m = an × am.
HINT: Fix a and m and use the axiom of mathematical induction.
an×m = (am)n.
HINT: Fix a and m and use the axiom of mathematical induction.
(a× b)n = an × bn.
HINT: Fix a and b and use the axiom of mathematical induction.
(b) Define inductively numbers {Si} as follows: S1 = 1, and if Sk is defined, then
Sk+1 is defined to be Sk + k + 1. Prove, by induction, that Sn = n(n+ 1)/2. Note
that we could have defined Sn using the . . . notation by Sn = 1 + 2 + 3 + . . .+ n.
(c) Prove that

1 + 4 + 9 + 16 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

(d) Make a recursive definition of n! = 1× 2× 3× . . .× n. n! is called n factorial.
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There is a slightly more general statement of the axiom of mathematical induction,
which is sometimes of use.

GENERAL AXIOM OF MATHEMATICAL INDUCTION. Let S be a
subset of the set N of natural numbers, and suppose that S satisfies the following
conditions

(1) There exists a natural number k0 such that k0 ∈ S.
(2) If S contains a natural number k, then S contains the natural number k+1.

Then S contains every natural number n that is larger than or equal to k0.

From the fundamental set N of natural numbers, we construct the set Z of all
integers. First, we simply create an additional number called 0 that satisfies the
equations 0 +n = n for all n ∈ N and 0×n = 0 for all n ∈ N. The word “create” is,
for some mathematicians, a little unsettling. In fact, the idea of zero did not appear
in mathematics until around the year 900. It is easy to see how the so-called natural
numbers came by their name. Fingers, toes, trees, fish, etc., can all be counted,
and the very concept of counting is what the natural numbers are about. On the
other hand, one never needed to count zero fingers or fish, so that the notion of
zero as a number easily could have only come into mathematics at a later time,
a time when arithmetic was becoming more sophisticated. In any case, from our
twenty-first century viewpoint, 0 seems very understandable, and we won’t belabor
the fundamental question of its existence any further here.
Next, we introduce the so-called negative numbers. This is again quite reasonable
from our point of view. For every natural number n, we let −n be a number which,
when added to n, give 0. Again, the question of whether or not such negative
numbers exist will not concern us here. We simply create them.
In short, we will take as given the existence of a set Z, called the integers, which
comprises the set N of natural numbers, the additional number 0, and the set −N of
all negative numbers. We assume that addition and multiplication of integers satisfy
the three basic algebraic relations of commutativity, associativity, and distributivity
stated above. We also assume that the following additional relations hold:

(−n)× (−k) = n× k, and (−n)× k = n× (−k) = −(n× k)

for all natural numbers n and k.

THE RATIONAL NUMBERS

Next, we discuss the set Q of rational numbers, which we ordinarily think of as
quotients k/n of integers. Of course, we do not allow the “second” element n of the
quotient k/n to be 0. Also, we must remember that there isn’t a 1-1 correspondence
between the set Q of all rational numbers and the set of all such quotients k/n.
Indeed, the two distinct quotients 2/3 and 6/9 represent the same rational number.
To be precise, the set Q is a collection of equivalence classes of ordered pairs (k, n)
of integers, for which the second component of the pair is not 0. The equivalence
relation among these ordered pairs is this:

(k, n) ≡ (k′, n′) if k × n′ = n× k′.

We will not dwell on this possibly subtle definition, but will rather accept the
usual understanding of the rational numbers and their arithmetic properties. In
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particular, we will represent them as quotients rather than as ordered pairs, and, if
r is a rational number, we will write r = k/n, instead of writing r as the equivalence
class containing the ordered pair (k, n). As usual, we refer to the first integer in the
quotient k/n as the numerator and the second (nonzero) integer in the quotient k/n
as the denominator of the quotient. The familiar definitions of sum and product
for rational numbers are these:

k

n
+
k′

n′
=
kn′ + nk′

nn′

and
k

n
× k′

n′
=
kk′

nn′
.

Addition and multiplication of rational numbers satisfy the three basic algebraic
relations of commutativity, associativity and distributivity stated earlier.
We note that the integers Z can be identified in an obvious way as a subset of the
rational numbers Q. Indeed, we identify the integer k with the quotient k/1. In this
way, we note that Q contains the two numbers 0 ≡ 0/1 and 1 ≡ 1/1. Notice that
any other quotient k/n that is equivalent to 0/1 must satisfy k = 0, and any other
quotient k/n that is equivalent to 1/1 must satisfy k = n. Remember, k/n ≡ k′/n′
if and only if kn′ = k′n.
The set Q has an additional property not shared by the set of integers Z. It is this:
For each nonzero element r ∈ Q, there exists an element r′ ∈ Q for which r×r′ = 1.
Indeed, if r = k/n 6= 0, then k 6= 0, and we may define r′ = n/k. Consequently, the
set Q of all rational numbers is what is known in mathematics as a field.

DEFINITION. A field is a nonempty set F on which there are defined two binary
operations, addition (+) and multiplication (×), such that the following six axioms
hold:

(1) Both addition and multiplication are commutative and associative.
(2) Multiplication is distributive over addition; i.e.,

x× (y + z) = x× y + x× z
for all x, y, z ∈ F.

(3) There exists an element in F, which we will denote by 0, that is an identity
for addition; i.e., x+ 0 = x for all x ∈ F.

(4) There exists a nonzero element in F, which we will denote by 1, that is an
identity for multiplication; i.e., x× 1 = x for all x ∈ F.

(5) If x ∈ F, then there exists a unique element y ∈ F such that x+y = 0. This
element y is called the additive inverse of x and is denoted by −x.

(6) If x ∈ F and x 6= 0, then there exists a unique element y ∈ F such that
x × y = 1. This element y is called the multiplicative inverse of x and is
denoted by x−1.

REMARK. There are many examples of fields. (See the exercise below.) They all
share certain arithmetic properties, which can be derived from the axioms above.
If x is an element of a field F, then according to one of the axioms above, we have
that 1 × x = x. (Note that this “1” is the multiplicative identity of the field F
and not the natural number 1.) However, it is tempting to write x + x = 2 × x
in the field F. The “2” here is not à priori an element of F, so that the equation
x + x = 2 × x is not really justified. This is an example of a situation where a
careful recursive definition can be useful.
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DEFINITION. If x is an element of a field F, define inductively elements n ·x ≡
nx of F by 1 · x = x, and, if k · x is defined, set (k + 1) · x = x + k · x. The set
S of all natural numbers n for which n · x is defined is therefore, by the axiom of
mathematical induction, all of N.

Usually we will write nx instead of n · x. Of course, nx is just the element of F
obtained by adding x to itself n times: nx = x+ x+ x+ . . .+ x.

Exercise 1.2. (a) Justify for yourself that the set Q of all rational numbers is a
field. That is, carefully verify that all six of the axioms hold.
(b) Let F7 denote the seven elements {0, 1, 2, 3, 4, 5, 6}. Define addition and multi-
plication on F7 as ordinary addition and multiplication mod 7. Prove that F7 is
a field. (You may assume that axioms (1) and (2) hold. Check only conditions
(3)–(6).) Show in addition that 7x = 0 for every x ∈ F7.
(c) Let F9 denote the set consisting of the nine elements {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Define addition and multiplication on F9 to be ordinary addition and multiplication
mod 9. Show that F9 is not a field. Which of the axioms fail to hold?
(d) Show that the set N of natural numbers is not a field. Which of the field axioms
fail to hold? Show that the set Z of all integers is not a field. Which of the field
axioms fail to hold?
Exercise 1.3. Let F be any field. Verify that the following arithmetic properties
hold in F.
(a) 0× x = 0 for all x ∈ F.
HINT: Use the distributive law and the fact that 0 = 0 + 0.
(b) If x and y are nonzero elements of F, then x × y is nonzero. And, the multi-
plicative inverse of x× y satisfies (x× y)−1 = x−1 × y−1.
(c) (−1)× x = (−x) for all x ∈ F.
(d) (−x)× (−y) = x× y for all x, y ∈ F.
(e) x× x− y × y = (x− y)× (x+ y).
(f) (x+ y)× (x+ y) = x× x+ 2 · x× y + y × y.

DEFINITION. Let F be a field, and let x be a nonzero element of F.
For each natural number n, we define inductively an element xn in F as follows:
x1 = x, and, if xk is defined, set xk+1 = x × xk. Of course, xn is just the product
of n x’s.
Define x0 to be 1.
For each natural number n, define x−n to be the multiplicative inverse (xn)−1 of
the element xn.
Finally, we define 0m to be 0 for every positive integer m, and we leave 0−n and 00

undefined.

We have therefore defined xm for every nonzero x and every integer m ∈ Z.
Exercise 1.4. Let F be a field. Derive the following laws of exponents:
(a) xn+m = xn × xm for all nonzero elements x ∈ F and all integers n and m.
HINT: Fix x ∈ F and m ∈ Z and use induction to derive this law for all natural
numbers n. Then use the fact that in any field (x× y)−1 = x−1 × y−1.
(b) xn×m = (xm)n for all nonzero x ∈ F and all n,m ∈ Z.
(c) (x× y)n = xn × yn for all nonzero x, y ∈ F and all n ∈ Z.

From now on, we will indicate multiplication in a field by juxtaposition; i.e., x× y
will be denoted simply as xy. Also, we will use the standard fractional notation to
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indicate multiplicative inverses. For instance,

xy−1 = x
1
y

=
x

y
.

THE REAL NUMBERS

What are the real numbers? From a geometric point of view (and a historical one
as well) real numbers are quantities, i.e., lengths of segments, areas of surfaces,
volumes of solids, etc. For example, once we have settled on a unit of length,
i.e., a segment whose length we call 1, we can, using a compass and straightedge,
construct segments of any rational length k/n. In some obvious sense then, the
rational numbers are real numbers. Apparently it was an intellectual shock to
the Pythagoreans to discover that there are some other real numbers, the so-called
irrational ones. Indeed, the square root of 2 is a real number, since we can construct
a segment the square of whose length is 2 by making a right triangle each of whose
legs has length 1. (By the Pythagorean Theorem of plane geometry, the square of
the hypotenuse of this triangle must equal 2.) And, Pythagoras proved that there
is no rational number whose square is 2, thereby establishing that there are real
numbers tha are not rational. See part (c) of Exercise 1.9.
Similarly, the area of a circle of radius 1 should be a real number; i.e., π should
be a real number. It wasn’t until the late 1800’s that Hermite showed that π is
not a rational number. One difficulty is that to define π as the area of a circle of
radius 1 we must first define what is meant by the “ area” of a circle, and this turns
out to be no easy task. In fact, this naive, geometric approach to the definition of
the real numbers turns out to be unsatisfactory in the sense that we are not able
to prove or derive from these first principles certain intuitively obvious arithmetic
results. For instance, how can we multiply or divide an area by a volume? How can
we construct a segment of length the cube root of 2? And, what about negative
numbers?
Let us begin by presenting two properties we expect any set that we call the real
numbers ought to possess.

Algebraic Properties
We should be able to add, multiply, divide, etc., real numbers. In short, we require
the set of real numbers to be a field.

Positivity Properties
The second aspect of any set we think of as the real numbers is that it has some
notion of direction, some notion of positivity. It is this aspect that will allow us to
“compare” numbers, e.g., one number is larger than another. The mathematically
precise way to discuss this notion is the following.

DEFINITION. A field F is called an ordered field if there exists a subset P ⊆ F
that satisfies the following two properties:

(1) If x, y ∈ P, then x+ y and xy are in P.
(2) If x ∈ F, then one and only one of the following three statements is true.

(i) x ∈ P, (ii) −x ∈ P, and (iii) x = 0. (This property is known as the law
of tricotomy .)
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The elements of the set P are called positive elements of F, and the elements x for
which −x belong to P are called negative elements of F.

As a consequence of these properties of P, we may introduce in F a notion of order.

DEFINITION. If F is an ordered field, and x and y are elements of F, we say
that x < y if y − x ∈ P. We say that x ≤ y if either x < y or x = y.
We say that x > y if y < x, and x ≥ y if y ≤ x.
An ordered field satisfies the familiar laws of inequalities. They are consequences
of the two properties of the set P.
Exercise 1.5. Using the positivity properties above for an ordered field F, together
with the axioms for a field, derive the familiar laws of inequalities:
(a) (Transitivity) If x < y and y < z, then x < z.
(b) (Adding like inequalities) If x < y and z < w, then x+ z < y + w.
(c) If x < y and a > 0, then ax < ay.
(d) If x < y and a < 0, then ay < ax.
(e) If 0 < a < b and 0 < c < d, then ac < bd.
(f) Verify parts (a) through (e) with < replaced by ≤ .
(g) If x and y are elements of F, show that one and only one of the following three
relations can hold: (i) x < y, (ii) x > y, (iii) x = y.
(h) Suppose x and y are elements of F, and assume that x ≤ y and y ≤ x. Prove
that x = y.

Exercise 1.6. (a) If F is an ordered field, show that 1 ∈ P ; i.e., that 0 < 1.
HINT: By the law of tricotomy, only one of the three possibilities holds for 1. Rule
out the last two.
(b) Show that F7 of Exercise 1.2 is not an ordered field; i.e., there is no subset
P ⊆ F7 such that the two positivity properties can hold.
HINT: Use part (a) and positivity property (1).
(c) Prove that Q is an ordered field, where the set P is taken to be the usual set
of positive rational numbers. That is, P consists of those rational numbers a/b for
which both a and b are natural numbers.
(d) Suppose F is an ordered field and that x is a nonzero element of F. Show that
for all natural numbers n nx 6= 0.
(e) Show that, in an ordered field, every nonzero square is positive; i.e., if x 6= 0,
then x2 ∈ P.
We remarked earlier that there are many different examples of fields, and many of
these are also ordered fields. Some fields, though technically different from each
other, are really indistinguishable from the algebraic point of view, and we make
this mathematically precise with the following definition.

DEFINITION. Let F1 and F2 be two ordered fields, and write P1 and P2 for the
set of positive elements in F1 and F2 respectively. A 1-1 correspondence J between
F1 and F2 is called an isomorphism if

(1) J(x+ y) = J(x) + J(y) for all x, y ∈ F1.
(2) J(xy) = J(x)J(y) for all x, y ∈ F1.
(3) x ∈ P1 if and only if J(x) ∈ P2.

REMARK. In general, if A1 and A2 are two algebraic systems, then a 1-1 corre-
spondence between A1 and A2 is called an isomorphism if it converts the algebraic
structure on A1 into the corresponding algebraic structure on A2.
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Exercise 1.7. (a) Let F be an ordered field. Define a function J : N → F by
J(n) = n·1. Prove that J is an isomorphism of N onto a subset Ñ of F. That is, show
that this correspondence is one-to-one and converts addition and multiplication in
N into addition and multiplication in F. Give an example to show that this result
is not true if F is merely a field and not an ordered field.
(b) Let F be an ordered field. Define a function J : Q → F by J(k/n) = k · 1 ×
(n · 1)−1. Prove that J is an isomorphism of the ordered field Q onto a subset Q̃ of
the ordered field F. Conclude that every ordered field F contains a subset that is
isomorphic to the ordered field Q.

REMARK. Part (b) of the preceding exercise shows that the ordered field Q is the
smallest possible ordered field, in the sense that every other ordered field contains
an isomorphic copy of Q. However, as mentioned earlier, the ordered field Q cannot
suffice as the set of real numbers. There is no rational number whose square is 2,
and we want the square root of 2 to be a real number. See Exercise 1.9 below.
What extra property is there about an ordered field F that will allow us to prove
that numbers like

√
2, π, and so on are elements of F? It turns out that the extra

property we need is related to a quite subtle point concerning upper and lower
bounds of sets. It gives us some initial indication that the known-to-be subtle
concept of a limit may be fundamental to our very notion of what the real numbers
are.

DEFINITION. If S is a subset of an ordered field F, then an element x ∈ F is
called an upper bound for S if x ≥ y for every y ∈ S. An element z is called a lower
bound for S if z ≤ y for every y ∈ S.
A subset S of an ordered field F is called bounded above if it has an upper bound;
it is called bounded below if it has a lower bound; and it is called bounded if it has
both an upper bound and a lower bound.
An element M is called the least upper bound or supremum of a set S if it is an
upper bound for S and if M ≤ x for every other upper bound x of S. That is, M
is less than or equal to any other upper bound of S.
Similarly, an element m is called the greatest lower bound or infimum of S if it is
a lower bound for S and if z ≤ m for every other lower bound z of S. That is, m is
greater than or equal to any other lower bound of S.

Clearly, the supremum and infimum of a set S are unique. For instance, if M and
M ′ are both least upper bounds of a set S, then they are both upper bounds of S.
We would then have M ≤M ′ and M ′ ≤M. Therefore, by part (h) of Exercise 1.5,
M = M ′.
It is important to keep in mind that an upper bound of a set S need not be an
element of S, and in particular, the least upper bound of S may or may not
actually belong to S.
If M is the supremum of a set S, we denote M by supS. If m is the infimum of a
set S, we denote it by inf S.
Exercise 1.8. (a) Suppose S is a nonempty subset of an ordered field F and that
x is an element of F. What does it mean to say that “x is not an upper bound for
S?′′

(b) Let F be an ordered field, and let S be the empty set, thought of as a subset of
F. Prove that every element x ∈ F is an upper bound for S and that every element
y ∈ F is a lower bound for S.
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HINT: If not, then what?
(c) If S = ∅, show that S has no least upper bound and no greatest lower bound.

REMARK. The preceding exercise shows that peculiar things about upper and
lower bounds happen when S is the empty set. One point is that just because a
set has an upper bound does not mean it has to have a least upper bound. That
is, no matter which upper bound we choose, there is always another one that is
strictly smaller. This is a very subtle point, and it is in fact quite difficult to give
a simple concrete example of this phenomenon. See the remark following Theorem
1.6. However, part (d) of the next exercise contains the seed of an example.

Exercise 1.9. A natural number a is called even if there exists a natural number
c such that a = 2c, and a is called odd if there exists a natural number c such that
a = 2c+ 1.
(a) Prove by induction that every natural number is either odd or even.
(b) Prove that a natural number a is even if and only if a2 = a× a is even.
(c) Prove that there is no element x of Q whose square is 2. That is, the square
root of 2 is not a rational number.
HINT: Argue by contradiction. Suppose there is a rational number k/n for which
k2/n2 = 2, and assume, as we may, that the natural numbers k and n have no
common factor. Observe that k must be even, and then observe that n also must
be even.
(d) Let S be the set of all positive rational numbers x for which x2 = x × x < 2.
Prove that S has an upper bound and a lower bound. Can you determine whether
or not S has a least upper bound?

The existence of least upper bounds and greatest lower bounds of bounded sets
turns out to be the critical idea in defining the real numbers. It is precisely the
existence of such suprema and infimas that enables us to define as real numbers
quantities such as

√
2, π, e, and so on.

DEFINITION. An ordered field F is called complete if every nonempty subset
S of F that has an upper bound has a least upper bound.

REMARK. Although Q is an ordered field, we will see that it is not a complete
ordered field. In fact, the answer to part (d)( of Exercise 1.9 is no. The set
described there, though bounded above, has no least upper bound. In fact, it
was one of nineteenth century mathematicians’ major achievements to prove the
following theorem.

THEOREM 1.1. There exists a complete ordered field.

We leave the proof of this theorem to the appendix.
Perhaps the most reassuring result along these lines is the following companion
theorem, whose proof we also leave to the appendix.

THEOREM 1.2. If F1 and F2 are two complete ordered fields, then they are
isomorphic.

Taken together, the content of the two preceding theorems is that, up to isomor-
phism, there exists one and only one complete ordered field. For no other reason
that that, this special field should be an important object in mathematics. Our
definition of the real numbers is then the following:
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DEFINITION. By the set R of real numbers we mean the (unique) complete
ordered field.

PROPERTIES OF THE REAL NUMBERS

THEOREM 1.3. The set R contains a subset that is isomorphic to the ordered
field Q of rational numbers, and hence subsets that are isomorphic to N and Z.

REMARK. The proof of Theorem 1.3 is immediate from part (b) of Exercise 1.7.
In view of this theorem, we will simply think of the natural numbers, the integers,
and the rational numbers as subsets of the real numbers.
Having made a definition of the set of real numbers, it is incumbent upon us now
to verify that this set R satisfies our intuitive notions about the reals. Indeed, we
will show that

√
2 is an element of R and hence is a real number (as plane geometry

indicates it should be), and we will show in later chapters that there are elements
of R that agree with our intuition about e and π. Before we can proceed to these
tasks, we must establish some special properties of the field R. The first, the next
theorem, is simply an analog for lower bounds of the least upper bound condition
that comes from the completeness property.

THEOREM 1.4. If S is a nonempty subset of R that is bounded below, then there
exists a greatest lower bound for S.

PROOF. Define T to be the set of all real numbers x for which −x ∈ S. That is,
T is the set −S. We claim first that T is bounded above. Thus, let m be a lower
bound for the set S, and let us show that the number −m is an upper bound for
T. If x ∈ T, then −x ∈ S. So, m ≤ −x, implying that −m ≥ x. Since this is true
for all x ∈ T, the number −m is an upper bound for T.
Now, by the completeness assumption, T has a least upper bound M0. We claim
that the number −M0 is the greatest lower bound for S. To prove this, we must
check two things. First, we must show that −M0 is a lower bound for S. Thus, let
y be an element of S. Then −y ∈ T, and therefore −y ≤ M0. Hence, −M0 ≤ y,
showing that −M0 is a lower bound for S.
Finally, we must show that −M0 is the greatest lower bound for S. Thus, let m be
a lower bound for S. We saw above that this implies that −m is an upper bound
for T. Hence, because M0 is the least upper bound for T, we have that −m ≥M0,
implying that m ≤ −M0, and this proves that −M0 is the infimum of the set S.

The following is the most basic and frequently used property of least upper bounds.
It is our first glimpse of “ limits.” Though the argument is remarkably short and
sweet, it will provide the mechanism for many of our later proofs, so master this
one.

THEOREM 1.5. Let S be a nonempty subset of R that is bounded above, and Let
M0 denote the least upper bound of S; i.e., M0 = supS. Then, for any positive real
number ε there exists an element t of S such that t > M0 − ε.

PROOF. Let ε > 0 be given. Since M0 − ε < M0, it must be that M0 − ε is not an
upper bound for S. (M0 is necessarily less than or equal to any other upper bound
of S.) Therefore, there exists an element t ∈ S for which t > M0− ε. This is exactly
what the theorem asserts.
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Exercise 1.10. (a) Let S be a nonempty subset of R which is bounded below, and
let m0 denote the infimum of S. Prove that, for every positive δ, there exists an
element s of S such that s < m0 + δ. Mimic the proof to Theorem 1.5.
(b) Let S be any bounded subset of R, and write −S for the set of negatives of the
elements of S. Prove that sup(−S) = − inf S.
(c) Use part (b) to give an alternate proof of part (a) by using Theorem 1.5 and a
minus sign.
Exercise 1.11. (a) Let S be the set of all real numbers x for which x < 1. Give
an example of an upper bound for S. What is the least upper bound of S? Is supS
an element of S?
(b) Let S be the set of all x ∈ R for which x2 ≤ 4. Give an example of an upper
bound for S. What is the least upper bound of S? Does supS belong to S?

We show now that R contains elements other than the rational numbers in Q. Of
course this holds for any complete ordered field. The next theorem makes this quite
explicit.

THEOREM 1.6. If x is a positive real number, then there exists a positive real
number y such that y2 = x. That is, every positive real number x has a positive
square root in R. Moreover, there is only one positive square root of x.

PROOF. Let S be the set of positive real numbers t for which t2 ≤ x. Then S is
nonempty Indeed, If x > 1, then 1 is in S because 12 = 1× 1 < 1× x = x. And, if
x ≤ 1, then x itself is in S, because x2 = x× x ≤ 1× x = x.
Also, S is bounded above. In fact, the number 1 + x/2 is an upper bound of S.
Indeed, arguing by contradiction, suppose there were a t in S such that t > 1+x/2.
Then

x ≥ t2 > (1 + x/2)2 = 1 + x+ x2/4 > x,

which is a contradiction. Therefore, 1 + x/2 is an upper bound of S, and so S is
bounded above.
Now let y = supS. We wish to show that y2 = x. We show first that y2 ≤ x, and
then we will show that y2 ≥ x. It will then follow from the tricotomy law that
y2 = x. We prove both these inequalities by contradiction.
So, assume first that y2 > x, and write α for the positive number y2 − x. Let ε
be the positive number α/(2y), and, using Theorem 1.5, choose a t ∈ S such that
t > y − ε. Then y + t ≤ (2y), and y − t < ε = α/2y. So,

α = y2 − x
= y2 − t2 + t2 − x
≤ y2 − t2

= (y + t)(y − t)
≤ 2y(y − t)
< 2yε

< 2y × α

2y
= α,

which is a contradiction. Therefore y2 is not greater than x.
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Now we show that y2 is not less than x. Again, arguing by contradiction, suppose
it is, and let ε be the positive number x − y2. Choose a positive number δ that is
less than y and also less than ε/(3y). Let s = y + δ. Then s is not in S, whence
s2 > x, so that we must have

ε = x− y2

= x− s2 + s2 − y2

≤ s2 − y2

= (s+ y)(s− y)

= (2y + δ)δ

< 3yδ

< ε,

which again is a contradiction.
This completes the proof that y2 = x; i.e., that x has a positive square root.
Finally, if y′ were another positive number for which y′

2 = x, we show that y = y′

by ruling out the other two cases: y < y′ and y > y′. For instance, if y < y′, then
we would have that y2 < y′

2
, giving that

x = y2 < y′
2 = x,

implying that x < x, and this is a contradiction.

DEFINITION. If x is a positive real number, then the symbol
√
x will denote

the unique positive number y for which y2 = x. Of course,
√

0 denotes the number
0.

REMARK. Part (c) of Exercise 1.9 shows that the field Q contains no number
whose square is 2, and Theorem 1.6 shows that the field R does contain a number
whose square is 2. We have therefore “proved” that the real numbers is a larger set
than the rational numbers. It may come as a surprise to learn that we only now
have been able to prove that. Look back through the chapter to be sure. It follows
also that Q itself is not a complete ordered field. If it were, it would be isomorphic
to R, by Theorem 1.2, so that it would have to contain a square root of 2, which it
does not.

DEFINITION. A real number x that is not a rational number, i.e., is not an
element of the subset Q of R, is called an irrational number.

Exercise 1.12. (a) Prove that every positive real number has exactly 2 square
roots, one positive (

√
x) and the other negative (−

√
x).

(b) Prove that if x is a negative real number, then there is no real number y such
that y2 = x.
(c) Prove that the product of a nonzero rational number and an arbitrary irrational
number must be irrational. Show by example that the sum and product of irrational
numbers can be rational.

INTERVALS AND APPROXIMATION

We introduce next into the set of real numbers some geometric concepts, namely,
a notion of distance between numbers. Of course this had to happen, for geometry
is the very basis of mathematics.
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DEFINITION. The absolute value of a real number x is denoted by |x| and is
defined as follows:
(i) |0| = 0.
(ii) If x > 0 then |x| = x.
(iii) If x < 0 (−x > 0) then |x| = −x.
We define the distance d(x, y) between two real numbers x and y by d(x, y) = |x−y|.
Obviously, such definitions of absolute value and distance can be made in any
ordered field.
Exercise 1.13. Let x and y be real numbers.
(a) Show that |x| ≥ 0, and that x ≤ |x|.
(b) Prove the Triangle Inequality for absolute values.

|x+ y| ≤ |x|+ |y|.

HINT: Check the three cases x+ y > 0, x+ y < 0, and x+ y = 0.
(c) Prove the so-called ‘ ‘ backward” triangle inequality.

|x− y| ≥ ||x| − |y||.

HINT: Write |x| = |(x− y) + y|, and use part (b).
(d) Prove that |xy| = |x||y|.
(e) Prove that |x| =

√
x2 for all real numbers x.

(f) Prove the Triangle Inequality for the distance function. That is, show that

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ R.
Exercise 1.14. (a) Prove that x = y if |x− y| < ε for every positive number ε.
HINT: Argue by contradiction. Suppose x 6= y, and take ε = |x− y|/2.
(b) Prove that x = y if and only if x− y ≤ ε and y − x ≤ ε for every positive ε.

DEFINITION. Let a and b be real numbers for which a < b. By the open interval
(a,b) we mean the set of all real numbers x for which a < x < b, and by the closed
interval [a,b] we mean the set of all real numbers x for which a ≤ x ≤ b.
By (a,∞) we mean the set of all real numbers x for which a < x, and by [a,∞) we
mean the set of all real numbers x for which a ≤ x.
Analogously, we define (−∞, b) and (−∞, b] to be respectively the set of all real
numbers x for which x < b and the set of all real numbers x for which x ≤ b.

Exercise 1.15. (a) Show that the intersection of two open intervals either is the
empty set or it is again an open interval.
(b) Show that (a, b) = (−∞, b) ∩ (a,∞).
(c) Let y be a fixed real number, and let ε be a positive number. Show that the
inequality |x− y| < ε is equivalent to the pair of inequalities

y − ε < x andx < y + ε;

i.e., show that x satisfies the first inequality if and only if it satisfies the two latter
ones. Deduce that |x− y| < ε if and only if x is in the open interval (y − ε, y + ε).

Here is one of those assertions that seems like an obvious fact. However, it requires
a proof which we only now can give, for it depends on the completeness axiom, and
in fact is false in some ordered fields.
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THEOREM 1.7. Let N denote the set of natural Numbers, thought of as a subset
of R. Then N is not bounded above.

PROOF. Suppose false. Let M be an upper bound for the nonempty set N, and
let M0 be the least upper bound for N. Taking ε to be the positive number 1/2,
and applying Theorem 1.5, we have that there exists an element k of N such that
M0−1/2 < k. But then M0−1/2+1 < k+1, or, M0 +1/2 < k+1. So M0 < k+1.
But M0 ≥ k + 1 because M0 is an upper bound for N. We have thus arrived at a
contradiction, and the theorem is proved.

REMARK. As mentioned above, there do exist ordered fields F in which the subset
N is bounded above. Such fields give rise to what is called “nonstandard analysis,”
and they were first introduced by Abraham Robinson in 1966. The fact that R is
a complete ordered field is apparently crucial to be able to conclude the intuitively
clear fact that the natural numbers have no upper bound.
The next exercise presents another intuitively obvious fact, and this one is in some
real sense the basis for many of our upcoming arguments about limits. It relies on
the preceding theorem, is in fact just a corollary, so it has to be considered as a
rather deep property of the real numbers; it is not something that works in every
ordered field.
Exercise 1.16. Prove that if ε is a positive real number, then there exists a natural
number N such that 1/N < ε.

The next theorem and exercise show that the set Q of rational numbers is “ev-
erywhere dense” in the field R. That is, every real number can be approximated
arbitrarily closely by rational numbers. Again, we point out that this result holds
in any complete ordered field, and it is the completeness that is critical.

THEOREM 1.8. Let a < b be two real numbers. Then there exists a rational
number r = p/q in the open interval (a, b). In fact, there exist infinitely many
rational numbers in the interval (a, b).

PROOF. If a < 0 and b > 0, then taking r = 0 satisfies the first statement of the
theorem. Assume first that a ≥ 0 and b > a. Let n be a natural number for which
1/n is less than the positive number b− a. (Here, we are using the completeness of
the field, because we are referring to Theorem 1.7, where completeness was vital.)
If a = 0, then b = b− a. Setting r = 1/n, we would have that a < r < b. So, again,
the first part of the theorem would be proved in that case.
Suppose then that a > 0, and choose the natural number q to be such that 1/q
is less than the minimum of the two positive numbers a and b − a. Now, because
the number aq is not an upper bound for the set N, we may let p be the smallest
natural number that is larger than aq. Set r = p/q.
We have first that aq < p, implying that a < p/q = r. Also, because p is the
smallest natural number larger than aq, we must have that p− 1 ≤ aq. Therefore,
(p−1)/q < a, or (p/q)−(1/q) < a, implying that r = p/q ≤ a+1/q < a+(b−a) = b.
Hence, a < r and r < b, and the first statement of the theorem is proved when both
a and b are nonnegative.
If both a and b are nonpositive, then both −b and −a are nonnegative, and, using
the first part of the proof, we can find a rational number r such that −b < r < −a.
So, a < −r < b, and the first part of the theorem is proved in this case as well.
Clearly, we may replace b by r and repeat the argument to obtain another rational
r1 such that a < r1 < r < b. Then, replacing b by r1 and repeating the argument,
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we get a third rational r2 such that a < r2 < r1 < r < b. Continuing this procedure
would lead to an infinite number of rationals, all between a and b. This proves the
second statement of the theorem.

Exercise 1.17. (a) Let ε > 0 be given, and let k be a nonnegative integer. Prove
that there exists a rational number p/q such that

kε < p/q < (k + 1)ε.

(b) Let x be a positive real number and let ε be a positive real number. Prove that
there exists a rational number p/q such that x − ε < p/q < x. State and prove an
analogous result for negative numbers x.
Exercise 1.18. (a) If a and b are real numbers with a < b, show that there is an
irrational number x (not a rational number) between a and b, i.e., with a < x < b.

HINT: Apply Theorem 1.8 to the numbers a
√

2 and b
√

2.
(b) Conclude that within every open interval (a, b) there is a rational number and
an irrational number. Are there necessarily infinitely many rationals and irrationals
in (a, b)?

The preceding exercise shows the “denseness” of the rationals and the irrationals
in the reals. It is essentially clear from this that every real number is arbitrarily
close to a rational number and an irrational one.

THE GEOMETRIC PROGRESSION AND THE BINOMIAL THEOREM

There are two special algebraic identities that hold in R (in fact in any field F
whatsoever) that we emphasize. They are both proved by mathematical induction.
The first is the formula for the sum of a geometric progression.

THEOREM 1.9. (Geometric Progression) Let x be a real number, and let n be
a natural number. Then,

(1) If x 6= 1, then
n∑
j=0

xj =
1− xn+1

1− x
.

(2) If x = 1, then
n∑
j=0

xj = n+ 1.

PROOF. The second claim is clear, since there are n + 1 summands and each is
equal to 1.
We prove the first claim by induction. Thus, if n = 1, then the assertion is true,
since

1∑
j=0

xj = x0 + x1 = 1 + x = (1 + x)
1− x
1− x

=
1− x2

1− x
.

Now, supposing that the assertion is true for the natural number k, i.e., that

k∑
j=0

xj =
1− xk+1

1− x
,
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let us show that the assertion holds for the natural number k + 1. Thus

k+1∑
j=0

xj =
k∑
j=0

xj + xk+1

=
1− xk+1

1− x
+ xk+1

=
1− xk+1 + xk+1 − xk+2

1− x

=
1− xk+1+1

1− x
,

which completes the proof.

The second algebraic formula we wish to emphasize is the Binomial Theorem. Be-
fore stating it, we must introduce some useful notation.

DEFINITION. Let n be a natural number. As earlier in this chapter, we define
n! as follows:

n! = n× (n− 1)× (n− 2)× . . .× 2× 1.

For later notational convenience, we also define 0! to be 1.
If k is any integer for which 0 ≤ k ≤ n, we define the binomial coefficient

(
n
k

)
by(

n

k

)
=

n!
k!(n− k)!

=
n× (n− 1)× (n− 2)× . . .× (n− k + 1)

k!
.

Exercise 1.19. (a) Prove that
(
n
0

)
= 1,

(
n
1

)
= n and

(
n
n

)
= 1.

(b) Prove that (
n

k

)
≤ 2nk

2k

for all natural numbers n and all integers 0 ≤ k ≤ n.
(c) Prove that (

n+ 1
k

)
=
(
n

k

)
+
(

n

k − 1

)
for all natural numbers n and all integers 1 ≤ k ≤ n.

THEOREM 1.10. (Binomial Theorem) If x, y ∈ R and n is a natural number,
then

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

PROOF. We shall prove this theorem by induction. If n = 1, then the assertion is
true, for (x+ y)1 = x+ y and

1∑
k=0

(
1
k

)
xky1−k =

(
1
0

)
x0y1 +

(
1
1

)
x1y0 = x+ y.
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Now, assume that the assertion holds for the natural number j; i.e.,

(x+ y)j =
j∑

k=0

(
j

k

)
xkyj−k,

and let us prove that the assertion holds for the natural number j+1. We will make
use of part (c) of Exercise 1.19. We have that

(x+ y)j+1 = (x+ y)(x+ y)j

= (x+ y)
j∑

k=0

(
j

k

)
xkyj−k

= x

j∑
k=0

(
j

k

)
xkyj−k + y

j∑
k=0

(
j

k

)
xkyj−k

=
j∑

k=0

(
j

k

)
xk+1yj−k +

j∑
k=0

(
j

k

)
xkyj+1−k

=
j−1∑
k=0

(
j

k

)
xk+1yj−k +

(
j

j

)
xj+1y0

+
j∑

k=1

(
j

k

)
xkyj+1−k +

(
j

0

)
x0yj+1

= xj+1 +
j∑

k=1

(
j

k − 1

)
xkyj+1−k

+
j∑

k=1

(
j

k

)
xkyj+1−k + yj+1

= xj+1 +
j∑

k=1

(
(

j

k − 1

)
+
(
j

k

)
)xkyj+1−k + yj+1

= xj+1 +
j∑

k=1

(
j + 1
k

)
xkyj+1−k + yj+1

=
(
j + 1
j + 1

)
xj+1y0 +

j∑
k=1

(
j + 1
k

)
xkyj+1−k +

(
j + 1

0

)
x0yj+1

=
j+1∑
k=0

(
j + 1
k

)
xkyj+1−k,

which shows that the assertion of the theorem holds for the natural number j + 1.
This completes the proof.

The next exercise is valid in any ordered field, but, since we are mainly interested
in the order field R, we state everything in terms of that field.
Exercise 1.20. (a) If x and y are positive real numbers, and if n and k are natural
numbers with k ≤ n, show that (x+ y)n ≥

(
n
k

)
xkyn−k.
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(b) For any positive real number x and natural number n, show that (1 + x)n ≥
1 + nx.
(c) For any real number x > −1 and natural number n, prove that (1+x)n ≥ 1+nx.
HINT: Do not try to use the binomial theorem as in part (b); it won’t work because
the terms are not all positive; prove this directly by induction.

There is one more important algebraic identity, which again can be proved by
induction. It is actually just a corollary of the geometric progression formula.

THEOREM 1.11. If x, y ∈ R and n is a natural number, then

xn − yn = (x− y)(
n−1∑
j=0

xjyn−1−j .

PROOF. If n = 1 the theorem is clear. Suppose it holds for a natural number k,
and let us prove the identity for the natural number k + 1. We have

xk+1 − yk+1 = xk+1 − xky + xky − yk+1

= (x− y)xk + y(xk − yk)

= (x− y)xk + y(x− y)(
k−1∑
j=0

xjyk−1−j)

= (x− y)xk + (x− y)(
k−1∑
j=0

xjyk−j

= (x− y)(xkyk−k +
k−1∑
j=0

xjyk−j)

= (x− y)(
k∑
j=0

xjyk−j),

which shows that the assertion holds for the natural number k+1. So, by induction,
the theorem is proved.

Exercise 1.21. Let x and y be real numbers.
(a) Let n be an odd natural number; i.e., n = 2k + 1 for some natural number k.
Show that

xn + yn = (x+ y)(
n−1∑
j=0

(−1)jxjyn−1−j .

HINT: Write xn + yn = xn − (−y)n.
(b) Show that x2+y2 can not be factored into a product of the form (ax+by)(cx+dy)
for any choices of real numbers a, b, c, and d.

Using the Binomial Theorem together with the preceding theorem, we may now in-
vestigate the existence of nth roots of real numbers. This next theorem is definitely
not valid in any ordered field, for it again depends on the completeness property.
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THEOREM 1.12. Let n be a natural number and let x be a positive real number.
Then there exists a unique positive real number y such that yn = x; i.e., x has a
unique positive nth root.

PROOF. Note first that if 0 ≤ t < s, then tn < sn. (To see this, argue by induction,
and use part (e) of Exercise 1.5.) Using this, we mimic the proof of Theorem 1.6.
Thus, let S be the set of all positive real numbers t for which tn ≤ x. Then S is
nonempty and bounded above. Indeed, if x ≥ 1, then 1 ∈ S, while if x < 1, then
x itself is in S. Therefore, S is nonempty. Also, using part (b) of Exercise 1.20, we
see that 1 + (x/n) is an upper bound for S. For, if t > 1 + x/n, then

tn > (1 + (x/n))n ≥ 1 + n(x/n) > x.

Now let y = supS, and let us show that yn = x. We rule out the other two
possibilities. First, if yn > x, let ε be the positive number yn − x, and define ε′ to
be the positive number ε/(nyn−1). Then, using Theorem 1.5, choose t ∈ S so that
y − ε′ < t ≤ y. (Theorem 1.5 is where the completeness of the ordered field R is
crucial.) We have

ε = yn − x
= yn − tn + tn − x
≤ yn − tn

= (y − t)(
n−1∑
j=0

yjtn−1−j)

≤ (y − t)(
n−1∑
j=0

yjyn−1−j)

= (y − t)(
n−1∑
j=0

yn−1

< ε′nyn−1

= ε,

and this is a contradiction. Therefore, yn is not greater than x.

Now, if yn < x, let ε be the positive number x− yn, and choose a δ > 0 such that
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δ < 1 and δ < ε/(y + 1)n. Then, using the Binomial Theorem, we have that

(y + δ)n =
n∑
k=0

(
n

k

)
ykδn−k

= yn +
n−1∑
k=0

(
n

k

)
ykδn−k

= yn + δ
n−1∑
k=0

(
n

k

)
ykδn−1−k

< yn + δ
n∑
k=0

(
n

k

)
yk1n−k

= yn + δ(y + 1)n

= x− ε+ δ(y + 1)n

< x− ε+ ε

= x,

implying that y+ δ ∈ S. But this is a contradiction, since y = supS. Therefore, yn

is not less than x, and so yn = x.
We have shown the existence of a positive nth root of x. To see the uniqueness,
suppose y and y′ are two positive nth roots of x. Then

0 = yn − y′n

= (y − y′)(
n−1∑
j=0

yjy′
n−j−1

,

which implies that either y − y′ = 0 or
∑n−1
j=0 y

jy′
n−j−1 = 0. Since this latter sum

consists of positive terms, it cannot be 0, whence y = y′. This shows that there is
but one positive nth root of x, and the theorem is proved.

Exercise 1.22. (a) Show that if n = 2k is an even natural number, then every
positive real number has exactly two distinct nth roots.
(b) If n = 2k+1 is an odd natural number, show that every real number has exactly
one nth root.
(c) If n is a natural number greater than 1, prove that there is no rational number
whose nth power equals 2, i.e., the nth root of 2 is not a rational number.

THE COMPLEX NUMBERS

It is useful to build from the real numbers another number system called the com-
plex numbers. Although the real numbers R have many of the properties we expect,
i.e., every positive number has a positive square root, every number has a cube root,
and so on, there are somewhat less prominent properties that R fails to possess. For
instance, negative numbers do not have square roots. This is actually a property
that is missing in any ordered field, since every square is positive in an ordered
field. See part (e) of Exercise 1.6. One way of describing this shortcoming on the
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part of the real numbers is to note that the equation 1 + x2 = 0 has no solution
in the real numbers. Any solution would have to be a number whose square is −1,
and no real number has that property. As an initial extension of the set of real
numbers, why not build a number system in which this equation has a solution?
We faced a similar kind of problem earlier on. In the set N there is no element
j such that j + n = n for all n ∈ N. That is, there was no element like 0 in
the natural numbers. The solution to the problem in that case was simply to
“create” something called zero, and just adjoin it to our set N. The same kind of
solution exists for us now. Let us invent an additional number, this time denoted
by i, which has the property that its square i2 is −1. Because the square of any
nonzero real number is positive, this new number i was traditionally referred to as
an “imaginary” number. We simply adjoin this number to the set R, and we will
then have a number whose square is negative, i.e., −1. Of course, we will require
that our new number system should still be a field; we don’t want to give up our
basic algebraic operations. There are several implications of this requirement: First
of all, if y is any real number, then we must also adjoin to R the number y× i ≡ yi,
for our new number system should be closed under multiplication. Of course the
square of iy will equal i2y2 = −y2, and therefore this new number iy must also be
imaginary, i.e., not a real number. Secondly, if x and y are any two real numbers,
we must have in our new system a number called x + yi, because our new system
should be closed under addition.

DEFINITION. Let i denote an object whose square i2 = −1. Let C be the set
of all objects that can be represented in the form z = x + yi, where both x and y
are real numbers.
Define two operations + and × on C as follows:

(x+ yi) + (x′ + y′i) = x+ x′ + (y + y′)i,

and

(x+ iy)(x′ + iy′) = xx′ + xiy′ + iyx′ + iyiy′ = xx′ − yy′ + (xy′ + yx′)i.

THEOREM 1.13.

(1) The two operations + and × defined above are commutative and associative,
and multiplication is distributive over addition.

(2) Each operation has an identity: (0 + 0i) is the identity for addition, and
(1 + 0i) is the identity for multiplication.

(3) The set C with these operations is a field.

PROOF. We leave the proofs of Parts (1) and (2) to the following exercise. To see
that C is a field, we need to verify one final condition, and that is to show that if
z = x+yi 6= 0 = 0+0i, then there exists a w = u+vi such that z×w = 1 = 1+0i.
Thus, suppose z = x + yi 6= 0. Then at least one of the two real numbers x and y
must be nonzero, so that x2 + y2 > 0. Define a complex number w by

w =
x

x2 + y2
+

−y
x2 + y2

i.



22 I. THE REAL AND COMPLEX NUMBERS

We then have

z × w = (x+ yi)× (
x

x2 + y2
+

−y
x2 + y2

i

=
x2

x2 + y2
− −y2

x2 + y2
+ (x

−y
x2 + y2

+ y
x

x2 + y2
)i

=
x2 + y2

x2 + y2
+

0
x2 + y2

i

= 1 + 0i

= 1,

as desired.

Exercise 1.23. Prove parts (1) and (2) of Theorem 1.13.

One might think that these kinds of improvements of the real numbers will go on
and on. For instance, we might next have to create and adjoin another object j
so that the number i has a square root; i.e., so that the equation i − z2 = 0 has
a solution. Fortunately and surprisingly, this is not necessary, as we will see when
we finally come to the Fundamental Theorem of Algebra in Chapter VII.
The subset of C consisting of the pairs x+ 0i is a perfect (isomorphic) copy of the
real number system R. We are justified then in saying that the complex number
system extends the real number system, and we will say that a real number x is
the same as the complex number x + 0i. That is, real numbers are special kinds
of complex numbers. The complex numbers of the form 0 + yi are called purely
imaginary numbers. Obviously, the only complex number that is both real and
purely imaginary is the number 0 = 0 + 0i. The set C can also be regarded as
a 2-dimensional space, a plane, and it is also helpful to realize that the complex
numbers form a 2-dimensional vector space over the field of real numbers.

DEFINITION. If z = x+ yi, we say that the real number x is the real part of z
and write x = <(z). We say that the real number y is the imaginary part of z and
write y = =(z).
If z = x+yi is a complex number, define the complex conjugate z̄ of z by z̄ = x−yi.

The complex number i satisfies i2 = −1, showing that the negative number −1 has
a square root in C, or equivalently that the equation 1 + z2 = 0 has a solution in
C. We have thus satisfied our initial goal of extending the real numbers. But what
about other complex numbers? Do they have square roots, cube roots, nth roots?
What about solutions to other kinds of equations than 1 + z2?

Exercise 1.24. (a) Prove that every complex number has a square root.
HINT: Let z = a+ bi. Assume w = x+ yi satisfies w2 = z, and just solve the two
equations in two unknowns that arise.
(b) Prove that every quadratic equation az2 + bz + c = 0, for a, b, and c complex
numbers, has a solution in C.
HINT: If a = 0, it is easy to find a solution. If a 6= 0, we need only find a solution
to the equivalent equation

z2 +
b

a
z +

c

a
= 0.
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Justify the following algebraic manipulations, and then solve the equation.

z2 +
b

a
z +

c

a
= z2 +

b

a
z +

b2

4a2
− b2

4a2
+
c

a

= (z +
b

2a
)2 − b2

4a2
+
c

a
.

What about this new field C? Does every complex number have a cube root, a
fourth root, does every equation have a solution in C? A natural instinct would
be to suspect that C takes care of square roots, but that it probably does not
necessarily have higher order roots. However, the content of the Fundamental
Theorem of Algebra, to be proved in Chapter VII, is that every equation of the
form P (z) = 0, where P is a nonconstant polynomial, has a solution in C. This
immediately implies that every complex number c has an nth root, for any solution
of the equation zn − c = 0 would be an nth root of c.
The fact that the Fundamental Theorem of Algebra is true is a good indication
that the field C is a “good” field. But it’s not perfect.

THEOREM 1.14. In no way can the field C be made into an ordered field. That
is, there exists no subset P of C that satisfies the two positivity axioms.

PROOF. Suppose C were an ordered field, and write P for its set of positive el-
ements. Then, since every square in an ordered field must be in P (part (e) of
Exercise 1.6), we must have that −1 = i2 must be in P. But, by part (a) of Exercise
1.6, we also must have that 1 is in P, and this leads to a contradiction of the law of
tricotomy. We can’t have both 1 and −1 in P. Therefore, C is not an ordered field.

Although we may not define when one complex number is smaller than another, we
can define the absolute value of a complex number and the distance between two
of them.

DEFINITION. If z = x+ yi is in C, we define the absolute value of z by

|z| =
√
x2 + y2.

We define the distance d(z, w) between two complex numbers z and w by
d(z, w) = |z − w|.
If c ∈ C and r > 0, we define the open disk of radius r around c, and denote it by
Br(c), by

Br(c) = {z ∈ C : |z − c| < r}.

The closed disk of radius r around c is denoted by Br(c) and is defined by

Br(c) = {z ∈ C : |z − c| ≤ r}.

We also define open and closed punctured disks B′r(c) and B
′
r(c) around c by

B′r(c) = {z : 0 < |z − c| < r}

and
B
′
r(c) = {z : 0 < |z − c ≤ r}.
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These punctured disks are just like the regular disks, except that they do not contain
the central point c.
More generally, if S is any subset of C, we define the open neighborhood of radius
r around S, denoted by Nr(S), to be the set of all z such that there exists a w ∈ S
for which |z − w| < r. That is, Nr(S) is the set of all complex numbers that are
within a distance of r of the set S. We define the closed neighborhood of radius r
around S, and denote it by Nr(S), to be the set of all z ∈ C for which there exists
a w ∈ S such that |z − w| ≤ r.

Exercise 1.25. (a) Prove that the absolute value of a complex number z is a
nonnegative real number. Show in addition that |z|2 = zz̄.
(b) Let x be a real number. Show that the absolute value of x is the same whether
we think of x as a real number or as a complex number.
(c) Prove that max(|<(z)|, |=(z)|) ≤ |z| ≤ |<(z)| + |=(z)|. Note that this just
amounts to verifying that

max(|x|, |y|) ≤
√
x2 + y2 ≤ |x|+ |y|

for any two real numbers x and y.
(d) For any complex numbers z and w, show that z + w = z̄ + w̄, and that z = z.
(e) Show that z + z̄ = 2<(z) and z − z̄ = 2i=(z).
(f) If z = a+ bi and w = a′ + b′i, prove that |zw| = |z||w|.
HINT: Just compute |(a+ bi)(a′ + b′i)|2.

The next theorem is in a true sense the most often used inequality of mathematical
analysis. We have already proved the triangle inequality for the absolute value
of real numbers, and the proof was not very difficult in that case. For complex
numbers, it is not at all simple, and this should be taken as a good indication that
it is a deep result.

THEOREM 1.15. (Triangle Inequality) If z and z′ are two complex numbers,
then

|z + z′| ≤ |z|+ |z′|

and
|z − z′| ≥ ||z| − |z′||.

PROOF. We use the results contained in Exercise 1.25.

|z + z′|2 = (z + z′)(z + z′)

= (z + z′)(z̄ + z̄′)

= zz̄ + z′z̄ + zz̄′ + z′z̄′

= |z|2 + z′z̄ + z′z̄ + |z′|2

= |z|2 + 2<(z′z̄) + |z′|2

≤ |z|2 + 2|<(z′z̄)|+ |z′|2

≤ |z|2 + 2|z′z̄|+ |z′|2

= |z|2 + 2|z′||z|+ |z′|2

= (|z|+ |z′|)2.
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The Triangle Inequality follows now by taking square roots.

REMARK. The Triangle Inequality is often used in conjunction with what’s called
the “add and subtract trick.” Frequently we want to estimate the size of a quantity
like |z−w|, and we can often accomplish this estimation by adding and subtracting
the same thing within the absolute value bars:

|z − w| = |z − v + v − w| ≤ |z − v|+ |v − w|.

The point is that we have replaced the estimation problem of the possibly unknown
quantity |z − w| by the estimation problems of two other quantities |z − v| and
|v − w|. It is often easier to estimate these latter two quantities, usually by an
ingenious choice of v of course.
Exercise 1.26. (a) Prove the second assertion of the preceding theorem.
(b) Prove the Triangle Inequality for the distance function. That is, prove that

d(z, w) ≤ d(z, v) + d(v, w)

for all z, w, v ∈ C.
(c) Use mathematical induction to prove that

|
n∑
i=1

ai| ≤
n∑
i=1

|ai|.

It may not be necessary to point out that part (b) of the preceding exercise provides
a justification for the name “triangle inequality.” Indeed, part (b) of that exercise
is just the assertion that the length of one side of a triangle in the plane is less than
or equal to the sum of the lengths of the other two sides. Plot the three points z, w,
and v, and see that this interpretation is correct.

DEFINITION. A subset S of C is called Bounded if there exists a real number
M such that |z| ≤M for every z in S.

Exercise 1.27. Let S be a subset of C. Let S1 be the subset of R consisting of the
real parts of the complex numbers in S, and let S2 be the subset of R consisting of
the imaginary parts of the elements of S. Prove that S is bounded if and only if S1

and S2 are both bounded.
HINT: Use Part (c) of Exercise 1.25.
(b) Let S be the unit circle in the plane, i.e., the set of all complex numbers
z = x+ iy for which |z| = 1. Compute the sets S1 and S2 of part (a).
Exercise 1.28. (a) Verify that the formulas for the sum of a geometric progression
and the binomial theorem (Theorems 1.9 and 1.10) are valid for complex numbers
z and z′.
HINT: Check that, as claimed, the proofs of those theorems work in any field.
(b) Prove Theorem 1.11 for complex numbers z and z′.
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CHAPTER II
THE LIMIT OF A SEQUENCE OF NUMBERS

DEFINITION OF THE NUMBER e.

This chapter contains the beginnings of the most important, and probably the
most subtle, notion in mathematical analysis, i.e., the concept of a limit. Though
Newton and Leibniz discovered the calculus with its tangent lines described as limits
of secant lines, and though the Greeks were already estimating areas of regions by
a kind of limiting process, the precise notion of limit that we use today was not
formulated until the 19th century by Cauchy and Weierstrass.
The main results of this chapter are the following:

(1) The definition of the limit of a sequence,
(2) The definition of the real number e (Theorem 2.3),
(3) The Squeeze Theorem (Theorem 2.5),
(4) the Bolzano Weierstrass Theorem (Theorems 2.8 and 2.10),
(5) The Cauchy Criterion (Theorem 2.9),
(6) the definition of an infinite series,
(7) the Comparison Test (Theorem 2.17), and
(8) the Alternating Series Test (Theorem 2.18).

These are powerful basic results about limits that will serve us well in later chapters.

SEQUENCES AND LIMITS

DEFINITION. A sequence of real or complex numbers is defined to be a function
from the set N of natural numbers into the setR or C. Instead of referring to such a
function as an assignment n→ f(n), we ordinarily use the notation {an}, {an}∞1 ,
or {a1, a2, a3, . . . }. Here, of course, an denotes the number f(n).

REMARK. We expand this definition slightly on occasion to make some of our
notation more indicative. That is, we sometimes index the terms of a sequence
beginning with an integer other than 1. For example, we write {an}∞0 , {a0, a1, . . . },
or even {an}∞−3.
We give next what is the most significant definition in the whole of mathematical
analysis, i.e., what it means for a sequence to converge or to have a limit.

DEFINITION. Let {an} be a sequence of real numbers and let L be a real
number. The sequence {an} is said to converge to L, or that L is the limit of {an},
if the following condition is satisfied. For every positive number ε, there exists a
natural number N such that if n ≥ N, then |an − L| < ε.
In symbols, we say L = lim an or

L = lim
n→∞

an.

We also may write an 7→ L.
If a sequence {an} of real or complex numbers converges to a number L, we say
that the sequence {an} is convergent.
We say that a sequence {an} of real numbers diverges to +∞ if for every positive
number M, there exists a natural number N such that if n ≥ N, then an ≥ M.
Note that we do not say that such a sequence is convergent.
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Similarly, we say that a sequence {an} of real numbers diverges to −∞ if for every
real number M, there exists a natural number N such that if n ≥ N, then an ≤M.

The definition of convergence for a sequence {zn} of complex numbers is exactly the
same as for a sequence of real numbers. Thus, let {zn} be a sequence of complex
numbers and let L be a complex number. The sequence {zn} is said to converge
to L, or that L is the limit of {zn}, if the following condition is satisfied. For
every positive number ε, there exists a natural number N such that if n ≥ N, then
|zn − L| < ε.

REMARKS. The natural number N of the preceding definition surely depends on
the positive number ε. If ε′ is a smaller positive number than ε, then the corre-
sponding N ′ very likely will need to be larger than N. Sometimes we will indicate
this dependence by writing N(ε) instead of simply N. It is always wise to remember
that N depends on ε. On the other hand, the N or N(ε) in this definition is not
unique. It should be clear that if a natural number N satisfies this definition, then
any larger natural number M will also satisfy the definition. So, in fact, if there
exists one natural number that works, then there exist infinitely many such natural
numbers.
It is clear, too, from the definition that whether or not a sequence is convergent
only depends on the “tail” of the sequence. Specifically, for any positive integer K,
the numbers a1, a2, . . . , aK can take on any value whatsoever without affecting the
convergence of the entire sequence. We are only concerned with an’s for n ≥ N,
and as soon as N is chosen to be greater than K, the first part of the sequence is
irrelevant.
The definition of convergence is given as a fairly complicated sentence, and there
are several other ways of saying the same thing. Here are two: For every ε > 0,
there exists a N such that, whenever n ≥ N, |an − L| < ε. And, given an ε > 0,
there exists a N such that |an−L| < ε for all n for which n ≥ N. It’s a good idea to
think about these two sentences and convince yourself that they really do “mean”
the same thing as the one defining convergence.
It is clear from this definition that we can’t check whether a sequence converges or
not unless we know the limit value L. The whole thrust of this definition has to do
with estimating the quantity |an − L|. We will see later that there are ways to tell
in advance that a sequence converges without knowing the value of the limit.

EXAMPLE 2.1. Let an = 1/n, and let us show that lim an = 0. Given an ε > 0,
let us choose a N such that 1/N < ε. (How do we know we can find such a N?)
Now, if n ≥ N, then we have

|an − 0| = | 1
n
| = 1

n
≤ 1
N

< ε,

which is exactly what we needed to show to conclude that 0 = lim an.

EXAMPLE 2.2. Let an = (2n+ 1)/(1− 3n), and let L = −2/3. Let us show
that L = lim an. Indeed, if ε > 0 is given, we must find a N, such that if n ≥ N
then |an + (2/3)| < ε. Let us examine the quantity |an + 2/3|. Maybe we can make
some estimates on it, in such a way that it becomes clear how to find the natural
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number N.
|an + (2/3)| = |2n+ 1

1− 3n
+

2
3
|

= |6n+ 3 + 2− 6n
3− 9n

|

= | 5
3− 9n

|

=
5

9n− 3

=
5

6n+ 3n− 3

≤ 5
6n

<
1
n
,

for all n ≥ 1. Therefore, if N is an integer for which N > 1/ε, then

|an + 2/3| < 1/n ≤ 1/N < ε,

whenever n ≥ N, as desired. (How do we know that there exists a N which is larger
than the number 1/ε?)

EXAMPLE 2.3. Let an = 1/
√
n, and let us show that lim an = 0. Given an

ε > 0, we must find an integer N that satisfies the requirements of the definition.
It’s a little trickier this time to choose this N. Consider the positive number ε2. We
know, from Exercise 1.16, that there exists a natural number N such that 1/N < ε2.
Now, if n ≥ N, then

|an − 0| = 1√
n
≤ 1√

N
=

√
1
N

<
√
ε2 = ε,

which shows that 0 = lim 1/
√
n.

REMARK. A good way to attack a limit problem is to immediately examine the
quantity |an−L|, which is what we did in Example 2.2 above. This is the quantity
we eventually wish to show is less than ε when n ≥ N, and determining which N
to use is always the hard part. Ordinarily, some algebraic manipulations can be
performed on the expression |an − L| that can help us figure out exactly how to
choose N. Just know that this process takes some getting used to, so practice!

Exercise 2.1. (a) Using the basic definition, prove that lim 3/(2n+ 7) = 0.
(b) Using the basic definition, prove that lim 1/n2 = 0.
(c) Using the basic definition, prove that lim(n2 + 1)/(n2 + 100n) = 1.
HINT: Use the idea from the remark above; i.e., examine the quantity |an − L|.
(d) Again, using the basic definition, prove that

lim
n+ n2i

n− n2i
= −1.

Remember the definition of the absolute value of a complex number.



30 II. THE LIMIT OF A SEQUENCE OF NUMBERS

(e) Using the basic definition, prove that

lim
n3 + n2i

1− n3i
= i.

(f) Let an = (−1)n. Prove that 1 is not the limit of the sequence {an}.
HINT: Suppose the sequence {an} does converge to 1. Use ε = 1, let N be the
corresponding integer that exists in the definition, satisfying |an − 1| < 1 for all
n ≥ N, and then examine the quantity |an−1| for various n’s to get a contradiction.
Exercise 2.2. (a) Let {an} be a sequence of (real or complex) numbers, and let L
be a number. Prove that L = lim an if and only if for every positive integer k there
exists an integer N, such that if n ≥ N then |an − L| < 1/k.
(b) Let {cn} be a sequence of complex numbers, and suppose that cn 7→ L. If
cn = an + bni and L = a + bi, show that a = lim an and b = lim bn. Conversely, if
a = lim an and b = lim bn, show that a + bi = lim(an + bni). That is, a sequence
{cn = an + bni} of complex numbers converges if and only if the sequence {an} of
the real parts converges and the sequence {bn} of the imaginary parts converges.
HINT: You need to show that, given some hypotheses, certain quantities are less
than ε. Part (c) of Exercise 1.25 should be of help.
Exercise 2.3. (a) Prove that a constant sequence (an ≡ c) converges to c.
(b) Prove that the sequence { 2n2+1

1−3n } diverges to −∞.
(c) Prove that the sequence {(−1)n} does not converge to any number L.
HINT: Argue by contradiction. Suppose it does converge to a number L. Use
ε = 1/2, let N be the corresponding integer that exists in the definition, and then
examine |an − an+1| for n ≥ N. Use the following useful add and subtract trick:

|an − an+1| = |an − L+ L− an+1| ≤ |an − L|+ |L− an+1|.

EXISTENCE OF CERTAIN FUNDAMENTAL LIMITS

We have, in the preceding exercises, seen that certain specific sequences converge.
It’s time to develop some general theory, something that will apply to lots of se-
quences, and something that will help us actually evaluate limits of certain se-
quences.

DEFINITION. A sequence {an} of real numbers is called nondecreasing if an ≤
an+1 for all n, and it is called nonincreasing if an ≥ an+1 for all n. It is called
strictly increasing if an < an+1 for all n, and strictly decreasing if an > an+1 for
all n.
A sequence {an} of real numbers is called eventually nondecreasing if there exists
a natural number N such that an ≤ an+1 for all n ≥ N, and it is called eventually
nonincreasing if there exists a natural number N such that an ≥ an+1 for all n ≥ N.
We make analogous definitions of “eventually strictly increasing” and “eventually
strictly decreasing.”

It is ordinarily very difficult to tell whether a given sequence converges or not; and
even if we know in theory that a sequence converges, it is still frequently difficult
to tell what the limit is. The next theorem is therefore very useful. It is also very
fundamental, for it makes explicit use of the existence of a least upper bound.
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THEOREM 2.1. Let {an} be a nondecreasing sequence of real numbers. Suppose
that the set S of elements of the sequence {an} is bounded above. Then the sequence
{an} is convergent, and the limit L is given byL = supS = sup an.
Analogously, if {an} is a nonincreasing sequence that is bounded below, then {an}
converges to inf an.

PROOF. We prove the first statement. The second is done analogously, and we
leave it to an exercise. Write L for the supremum sup an. Let ε be a positive number.
By Theorem 1.5, there exists an integer N such that aN > L − ε, which implies
that L− aN < ε. Since {an} is nondecreasing, we then have that an ≥ aN > L− ε
for all n ≥ N. Since L is an upper bound for the entire sequence, we know that
L ≥ an for every n, and so we have that

|L− an| = L− an ≤ L− aN < ε

for all n ≥ N. This completes the proof of the first assertion.

Exercise 2.4. (a) Prove the second assertion of the preceding theorem.
(b) Show that Theorem 2.1 holds for sequences that are eventually nondecreasing
or eventually nonincreasing. (Re-read the remark following the definition of the
limit of a sequence.)

The next exercise again demonstrates the “denseness” of the rational and irrational
numbers in the set R of all real numbers.

Exercise 2.5. (a) Let x be a real number. Prove that there exists a sequence {rn}
of rational numbers such that x = lim rn. In fact, show that the sequence {rn} can
be chosen to be nondecreasing.
HINT: For example, for each n, use Theorem 1.8 to choose a rational number rn
between x− 1/n and x.
(b) Let x be a real number. Prove that there exists a sequence {r′n} of irrational
numbers such that x = lim r′n.
(c) Let z = x + iy be a complex number. Prove that there exists a sequence
{αn} = {βn + iγn} of complex numbers that converges to z, such that each βn and
each γn is a rational number.

Exercise 2.6. Suppose {an} and {bn} are two convergent sequences, and suppose
that lim an = a and lim bn = b. Prove that the sequence {an + bn} is convergent
and that

lim(an + bn) = a+ b.

HINT: Use an ε/2 argument. That is, choose a natural number N1 so that |an−a| <
ε/2 for all n ≥ N1, and choose a natural number N2 so that |bn − b| < ε/2 for all
n ≥ N2. Then let N be the larger of the two numbers N1 and N2.

The next theorem establishes the existence of four nontrivial and important limits.
This time, the proofs are more tricky. Some clever idea will have to be used before
we can tell how to choose the N.

THEOREM 2.2.

(1) Let z ∈ C satisfy |z| < 1, and define an = zn. then the sequence {an}
converges to 0. We write lim zn = 0.
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(2) Let b be a fixed positive number greater than 1, and define an = b1/n. See
Theorem 1.11. Then lim an = 1. Again, we write lim b1/n = 1.

(3) Let b be a positive number less than 1. Then lim b1/n = 1.
(4) If an = n1/n, then lim an = limn1/n = 1.

PROOF. We prove parts (1) and (2) and leave the rest of the proof to the exercise
that follows. If z = 0, claim (1) is obvious. Assume then that z 6= 0, and let ε > 0
be given. Let w = 1/|z|, and observe that w > 1. So, we may write w = 1 + h for
some positive h. (That step is the clever idea for this argument.) Then, using the
Binomial Theorem, wn > nh, and so 1/wn < 1/(nh). See part (a) of Exercise 1.20.
But then

|zn − 0| = |zn| = |z|n = (1/w)n = 1/wn < 1/(nh).

So, if N is any natural number larger than 1/(εh), then

|zn − 0| = |zn| = |z|n < 1
nh
≤ 1
Nh

< ε

for all n ≥ N. This completes the proof of the first assertion of the theorem.
To see part (2), write an = b1/n = 1 +xn, i.e., xn = b1/n− 1, and observe first that
xn > 0. Indeed, since b > 1, it must be that the nth root b1/n is also > 1. (Why?)
Therefore, xn = b1/n − 1 > 0. (Again, writing b1/n as 1 + xn is the clever idea.)
Now, b = b1/n

n
= (1 + xn)n, which, again by the Binomial Theorem, implies that

b > 1 + nxn. So, xn < (b− 1)/n, and therefore

|b1/n − 1| = b1/n − 1 = xn <
b− 1
n

< ε

whenever n > ε/(b− 1), and this proves part (2).

Exercise 2.7. (a) Prove part (3) of the preceding theorem.
HINT: For b ≤ 1, use the following algebraic calculation:

|b1/n − 1| = b1/n|1− (1/b)1/n| ≤ |1− (1/b)1/n|,

and then use part (2) as applied to the positive number 1/b.
(b) Prove part (4) of the preceding theorem. Explain why it does not follow directly
from part (2).
HINT: Write n1/n = 1 + hn. Observe that hn > 0. Then use the third term of the
binomial theorem in the expansion n = (1 + hn)n.
(c) Construct an alternate proof to part (2) of the preceding theorem as follows:
Show that the sequence {b1/n} is nonincreasing and bounded below by 1. Deduce,
from Theorem 2.1, that the sequence converges to a number L. Now prove that L
must be 1.

DEFINITION OF e

Part (4) of Theorem 2.2 raises an interesting point. Suppose we have a sequence
{an}, like {n}, that is diverging to infinity, and suppose we have another sequence
{bn}, like {1/n}, that is converging to 0. What can be said about the sequence
{abnn }? The base an is blowing up, while the exponent bn is going to 0. In other
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words, there are two competing processes going on. If an is blowing up, then its
powers ought to be blowing up as well. On the other hand, anything to the 0 power
should be 1, so that, as the exponents of the elements of a sequence converge to 0,
the sequence ought to converge to 1. This competition between the convergence of
the base to infinity and the convergence of the exponent to 0 makes it subtle, if not
impossibly difficult, to tell what the combination does. For the special case of part
(4) of Theorem 2.2, the answer was 1, indicating that, in that case at least, the
exponents going to 0 seem to be more important than the base going to infinity.
One can think up all kinds of such examples: {(2n)1/n}, {(n!)1/n}, {(n!)1/n2}, and
so on. We will see later that all sorts of things can happen.
Of course there is the reverse situation. Suppose {an} is a sequence of numbers
that decreases to 1, and suppose {bn} is a sequence of numbers that diverges to
infinity. What can we say about the sequence {anbn}? The base is tending to 1,
so that one might expect that the whole sequence also would be converging to 1.
On the other hand the exponents are blowing up, so that one might think that the
whole sequence should blow up as well. Again, there are lots of examples, and they
don’t all work the same way. Here is perhaps the most famous such example.

THEOREM 2.3. (Definition of e.) For n ≥ 1, define an = (1 + 1/n)n. Then the
sequence {an} is nondecreasing and bounded above, whence it is convergent. (We
will denote the limit of this special sequence by the letter e.)

PROOF. To see that {an} is nondecreasing, it will suffice to prove that an+1/an ≥ 1
for all n. In the computation below, we will use the fact (part (c)of Exercise 1.20)
that if x > −1 then (1 + x)n ≥ 1 + nx. So,

an+1

an
=

(1 + 1
n+1 )n+1

(1 + 1
n )n

=
(n+2
n+1 )n+1

(n+1
n )n

=
n+ 1
n

n+2
n+1 )n+1

(n+1
n )n+1

=
n+ 1
n

(
n2 + 2n

n2 + 2n+ 1
)n+1

=
n+ 1
n

(1− 1
(n+ 1)2

)n+1

≥ n+ 1
n

(1− (n+ 1)(
1

n+ 1
)2)

=
n+ 1
n

(1− 1
n+ 1

)

=
n+ 1
n

n

n+ 1
= 1,

as desired.
We show next that {an} is bounded above. This time, we use the binomial theorem,
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the geometric progression, and Exercise 1.19.

an = (1 +
1
n

)n

=
n∑
k=0

(
n

k

)
(

1
n

)k

<
n∑
k=0

2
nk

2k
(

1
n

)k

= 2
n∑
k=0

(
1
2

)k

= 2
1− ( 1

2 )n+1

1− 1
2

< 4,

as desired.
That the sequence {an} converges is now a consequence of Theorem 2.1.

REMARK. We have now defined the real number e. Its central role in mathematics
is not at all evident yet; at this point we have no definition of exponential function,
logarithm, or trigonometric functions. It does follow from the proof above that e is
between 2 and 4, and with a little more careful estimates we can show that actually
e ≤ 3. For the moment, we will omit any further discussion of its precise value.
Later, in Exercise 4.19, we will show that it is an irrational number.

PROPERTIES OF CONVERGENT SEQUENCES

Often, our goal is to show that a given sequence is convergent. However, as we
study convergent sequences, we would like to establish various properties that they
have in common. The first theorem of this section is just such a result.

THEOREM 2.4. Suppose {an} is a convergent sequence of real or complex num-
bers. Then the sequence {an} forms a bounded set.

PROOF. Write L = lim an. Let ε be the positive number 1. Then, there exists a
natural number N such that |an − L| < 1 for all n ≥ N. By the backward triangle
inequality, this implies that ||an| − |L|| < 1 for all n ≥ N, which implies that
|an| ≤ |L| + 1 for all n ≥ N. This shows that at least the tail of the sequence is
bounded by the constant |L|+ 1.
Next, let K be a number larger than the finitely many numbers |a1|, . . . , |aN−1|.
Then, for any n, |an| is either less than K or |L| + 1. Let M be the larger of the
two numbers K and |L|+ 1. Then |an| < M for all n. Hence, the sequence {an} is
bounded.

Note that the preceding theorem is a partial converse to Theorem 2.1; i.e., a con-
vergent sequence is necessarily bounded. Of course, not every convergent sequence
must be either nondecreasing or nonincreasing, so that a full converse to theorem
2.1 is not true. For instance, take z = −1/2 in part (1) of Theorem 2.2. It converges
to 0 all right, but it is neither nondecreasing nor nonincreasing.
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Exercise 2.8. (a) Suppose {an} is a sequence of real numbers that converges to a
number a, and assume that an ≥ c for all n. Prove that a ≥ c.
HINT: Suppose not, and let ε be the positive number c − a. Let N be a natural
number corresponding to this choice of ε, and derive a contradiction.
(b) If {an} is a sequence of real numbers for which lim an = a, and if a 6= 0, then
prove that an 6= 0 for all large enough n. Show in fact that there exists an N such
that |an| > |a|/2 for all n ≥ N.
HINT: Make use of the positive number ε = |a|/2.
Exercise 2.9. (a) If {an} is a sequence of positive real numbers for which lim an =
a > 0, prove that lim

√
an =

√
a.

HINT: Multiply the expression
√
an −

√
a above and below by

√
an +

√
a.

(b) If {an} is a sequence of complex numbers, and lim an = a, prove that lim |an| =
|a|.
HINT: Use the backward triangle inequality.
Exercise 2.10. Suppose {an} is a sequence of real numbers and that L = lim an.
Let M1 and M2 be real numbers such that M1 ≤ an ≤ M2 for all n. Prove that
M1 ≤ L ≤M2.
HINT: Suppose, for instance, that L > M2. Make use of the positive number L−M2

to derive a contradiction.

We are often able to show that a sequence converges by comparing it to another
sequence that we already know converges. The following exercise demonstrates
some of these techniques.
Exercise 2.11. Let {an} be a sequence of complex numbers.
(a) Suppose that, for each n, |an| < 1/n. Prove that 0 = lim an.
(b) Suppose {bn} is a sequence that converges to 0, and suppose that, for each n,
|an| < |bn|. Prove that 0 = lim an.

The next result is perhaps the most powerful technique we have for showing that a
given sequence converges to a given number.

THEOREM 2.5. {Squeeze Theorem) Suppose that {an} is a sequence of real
numbers and that {bn} and {cn} are two sequences of real numbers for which
bn ≤ an ≤ cn for all n. Suppose further that lim bn = lim cn = L. Then the
sequence {an} also converges to L.

PROOF. We examine the quantity |an−L, | employ some add and subtract tricks,
and make the following computations:

|an − L| ≤ |an − bn + bn − L|
≤ |an − bn|+ |bn − L|
= an − bn + |bn − L|
≤ cn − bn + |bn − L|
= |cn − bn|+ |bn − L|
≤ |cn − L|+ |L− bn|+ |bn − L|.

So, we can make |an − L| < ε by making |cn − L| < ε/3 and |bn − L| < ε/3. So,
let N1 be a positive integer such that |cn − L| < ε/3 if n ≥ N1, and let N2 be
a positive integer so that |bn − L| < ε/3 if n ≥ N2. Then set N = max(N1, N2).
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Clearly, if n ≥ N, then both inequalities |cn − L| < ε/3 and |bn − L| < ε/3, and
hence |an − L| < ε. This finishes the proof.

The next result establishes what are frequently called the “ limit theorems.” Basi-
cally, these results show how convergence interacts with algebraic operations.

THEOREM 2.6. Let {an} and {bn} be two sequences of complex numbers with
a = lim an and b = lim bn. Then

(1) The sequence {an + bn} converges, and

lim(an + bn) = lim an + lim bn = a+ b.

(2) The sequence {anbn} is convergent, and

lim(anbn) = lim an lim bn = ab.

(3) If all the bn’s as well as b are nonzero, then the sequence {an/bn} is con-
vergent, and

lim(
an
bn

=
lim an
lim bn

=
a

b
.

PROOF. Part (1) is exactly the same as Exercise 2.6. Let us prove part (2).
By Theorem 2.4, both sequences {an} and {bn} are bounded. Therefore, let M be
a number such that |an| ≤ M and |bn| ≤ M for all n. Now, let ε > 0 be given.
There exists an N1 such that |an−a| < ε/(2M) whenever n ≥ N1, and there exists
an N2 such that |bn − b| < ε/(2M) whenever n ≥ N2. Let N be the maximum of
N1 and N2. Here comes the add and subtract trick again.

|anbn − ab| = |anbn − abn + abn − ab|
≤ |anbn − abn|+ |abn − ab|
= |an − a||bn|+ |a||b− bn|
≤ |an − a|M +M |bn − b|
< ε

if n ≥ N, which shows that lim(anbn) = ab.
To prove part (3), let M be as in the previous paragraph, and let ε > 0 be given.
There exists an N1 such that |an − a| < (ε|b|2)/(4M) whenever n ≥ N1; there also
exists an N2 such that |bn − b| < (ε|b|2)/(4M) whenever n ≥ N2; and there exists
an N3 such that |bn| > |b|/2 whenever n ≥ N3. (See Exercise 2.8.) Let N be the
maximum of the three numbers N1, N2 and N3. Then:

|an
bn
− a

b
| = |anb− bna

bnb
|

= |anb− bna|
1
|bnb|

< |anb− bna|
1
|b|2/2

≤ (|an − a||b|+ |a||bn − b|)
2
|b|2

< (M |an − a|+M |bn − b|)
2
|b|2

< ε
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if n ≥ N. This completes the proof.

REMARK. The proof of part (3) of the preceding theorem may look mysterious.
Where, for instance, does this number ε|b|2/4M come from? The answer is that
one begins such a proof by examining the quantity |an/bn − a/b| to see if by some
algebraic manipulation one can discover how to control its size by using the quan-
tities |an − a| and |bn − b|. The assumption that a = lim an and b = lim bn mean
exactly that the quantities |an− a| and |bn− b| can be controlled by requiring n to
be large enough. The algebraic computation in the proof above shows that

|an
bn
− a

b
| ≤ (M |an − a|+M |bn − b|)

2
|b|2

,

and one can then see exactly how small to make |an − a| and |bn − b| so that
|an/bn − a/b| < ε. Indeed, this is the way most limit proofs work.

Exercise 2.12. If possible, determine the limits of the following sequences by using
Theorems 2.2, 2.3, 2.6, and the squeeze theorem 2.5.
(a) {n1/n2}.
(b) {(n2)1/n}.
(c) {(1 + n)1/n}.
(d) {(1 + n2)1/n3}.
(e) {(1 + 1/n)2/n}.
(f) {(1 + 1/n)2n}.
(g) {(1 + 1/n)n

2}.
(h) {(1− 1/n)n}.
HINT: Note that

1− 1/n =
n− 1
n

=
1
n
n−1

=
1

n−1+1
n−1

=
1

1 + 1
n−1

.

(i) {(1− 1/(2n))3n}.
(j) {(n!)1/n}.

SUBSEQUENCES AND CLUSTER POINTS

DEFINITION. Let {an} be a sequence of real or complex numbers. A subse-
quence of {an} is a sequence {bk} that is determined by the sequence {an} together
with a strictly increasing sequence {nk} of natural numbers. The sequence {bk} is
defined by bk = ank . That is, the kth term of the sequence {bk} is the nkth term
of the original sequence {an}.

Exercise 2.13. Prove that a subsequence of a subsequence of {an} is itself a
subsequence of {an}. Thus, let {an} be a sequence of numbers, and let {bk} = {ank}
be a subsequence of {an}. Suppose {cj} = {bkj} is a subsequence of the sequence
{bk}. Prove that {cj} is a subsequence of {an}. What is the strictly increasing
sequence {mj} of natural numbers for which cj = amj?

Here is an interesting generalization of the notion of the limit of a sequence.
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DEFINITION. Let {an} be a sequence of real or complex numbers. A number
x is called a cluster point of the sequence {an} if there exists a subsequence {bk} of
{an} such that x = lim bk. The set of all cluster points of a sequence {an} is called
the cluster set of the sequence.

Exercise 2.14. (a) Give an example of a sequence whose cluster set contains two
points. Give an example of a sequence whose cluster set contains exactly n points.
Can you think of a sequence whose cluster set is infinite?
(b) Let {an} be a sequence with cluster set S. What is the cluster set for the
sequence {−an}? What is the cluster set for the sequence {a2

n}?
(c) If {bn} is a sequence for which b = lim bn, and {an} is another sequence, what
is the cluster set of the sequence {anbn}?
(d) Give an example of a sequence whose cluster set is empty.
(e) Show that if the sequence {an} is bounded above, then the cluster set S is
bounded above. Show also that if {an} is bounded below, then S is bounded
below.
(f) Give an example of a sequence whose cluster set S is bounded above but not
bounded below.
(g) Give an example of a sequence that is not bounded, and which has exactly one
cluster point.

THEOREM 2.7. Suppose {an} is a sequence of real or complex numbers.
(1) (Uniqueness of limits) Suppose lim an = L, and lim an = M. Then L = M.

That is, if the limit of a sequence exists, it is unique.
(2) If L = lim an, and if {bk} is a subsequence of {an}, then the sequence {bk}

is convergent, and lim bk = L. That is, if a sequence has a limit, then every
subsequence is convergent and converges to that same limit.

PROOF. Suppose lim an = Land lim an = M. Let ε be a positive number, and
choose N1 so that |an −L| < ε/2 if n ≥ N1, and choose N2 so that |an −M | < ε/2
if n ≥ N2. Choose an n larger than both N1andN2. Then

|L−M | = |L− an + an −M | ≤ |L− an|+ |an −M | < ε.

Therefore, since |L −M | < ε for every positive ε, it follows that L −M = 0 or
L = M. This proves part (1).
Next, suppose lim an = L and let {bk} be a subsequence of {an}. We wish to show
that lim bk = L. Let ε > 0 be given, and choose an N such that |an−L| < ε if n ≥ N.
Choose a K so that nK ≥ N . (How?) Then, if k ≥ K, we have nk ≥ nK ≥ N,
whence |bk−L| = |ank −L| < ε, which shows that lim bk = L. This proves part (2).

REMARK. The preceding theorem has the following interpretation. It says that if
a sequence converges to a number L, then the cluster set of the sequence contains
only one number, and that number is L. Indeed, if x is a cluster point of the
sequence, then there must be some subsequence that converges to x. But, by part
(2), everysubsequence converges to L. Then, by part (1), x = L. Part (g) of Exercise
2.14 shows that the converse of this theorem is not valid. that is, the cluster set
may contain only one point, and yet the sequence is not convergent.
We give next what is probably the most useful fundamental result about sequences,
the Bolzano-Weierstrass Theorem. It is this theorem that will enable us to derive
many of the important properties of continuity, differentiability, and integrability.
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THEOREM 2.8. (Bolzano-Weierstrass) Every bounded sequence {an} of real or
complex numbers has a cluster point. In other words, every bounded sequence has
a convergent subsequence.

The Bolzano-Weierstrass Theorem is, perhaps not surprisingly, a very difficult the-
orem to prove. We begin with a technical, but very helpful, lemma.

LEMMA. Let {an} be a bounded sequence of real numbers; i.e., assume that there
exists an M such that |an| ≤ M for all n. For each n ≥ 1, let Sn be the set whose
elements are {an, an+1, an+2, . . . }. That is, Sn is just the elements of the tail of the
sequence from n on. Define xn = supSn = supk≥n ak. Then

(1) The sequence {xn} is bounded (above and below).
(2) The sequence {xn} is non-increasing.
(3) The sequence {xn} converges to a number x.
(4) The limit x of the sequence {xn} is a cluster point of the sequence {an}.

That is, there exists a subsequence {bk} of the sequence {an} that converges
to x.

(5) If y is any cluster point of the sequence {an}, then y ≤ x, where x is the
cluster point of part (4). That is, x is the maximum of all cluster points of
the sequence {an}.

PROOF OF THE LEMMA. Since xn is the supremum of the set Sn, and since
each element of that set is bounded between −M and M, part (1) is immediate.
Since Sn+1 ⊆ Sn, it is clear that

xn+1 = supSn+1 ≤ supSn = xn,

showing part (2).
The fact that the sequence {xn} converges to a number x is then a consequence of
Theorem 2.1.
We have to show that the limit x of the sequence {xn} is a cluster point of {an}.
Notice that {xn} may not itself be a subsequence of {an}, each xn may or may
not be one of the numbers ak, so that there really is something to prove. In fact,
this is the hard part of this lemma. To finish the proof of part (4), we must
define an increasing sequence {nk} of natural numbers for which the corresponding
subsequence {bk} = {ank} of {an} converges to x. We will choose these natural
numbers {nk} so that |x − ank | < 1/k. Once we have accomplished this, the fact
that the corresponding subsequence {ank} converges to x will be clear. We choose
the nk’s inductively. First, using the fact that x = limxn, choose an n so that
|xn − x| = xn − x < 1/1. Then, because xn = supSn, we may choose by Theorem
1.5 some m ≥ n such that xn ≥ am > xn − 1/1. But then |am − x| < 1/1. (Why?)
This m we call n1. We have that |an1 − x| < 1/1.
Next, again using the fact that x = limxn, choose another n so that n > n1 and
so that |xn − x| = xn − x < 1/2. Then, since this xn = supSn, we may choose
another m ≥ n such that xn ≥ am > xn − 1/2. This m we call n2. Note that we
have |an2 − x| < 1/2.
Arguing by induction, if we have found an increasing set n1 < n2 < ... < nj ,
for which |ani − x| < 1/i for 1 ≤ i ≤ j, choose an n larger than nj such that
|xn−x| < 1/(j+ 1). Then, since xn = supSn, choose an m ≥ n so that xn ≥ am >
xn − 1/(j + 1). Then |am − x| < 1/(j + 1), and we let nj+1 be this m. It follows
that |anj+1 − x| < 1/(j + 1).
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So, by recursive definition, we have constructed a subsequence of {an} that con-
verges to x, and this completes the proof of part (4) of the lemma.
Finally, if y is any cluster point of {an}, and if y = lim ank , then nk ≥ k, and
so ank ≤ xk, implying that xk − ank ≥ 0. Hence, taking limits on k, we see that
x− y ≥ 0, and this proves part (5).

Now, using the lemma, we can give the proof of the Bolzano-Weierstrass Theorem.

PROOF OF THEOREM 2.8. If {an} is a sequence of real numbers, this theorem
is an immediate consequence of part (4) of the preceding lemma.
If an = bn + cni is a sequence of complex numbers, and if {an} is bounded, then
{bn} and {cn} are both bounded sequences of real numbers. See Exercise 1.27. So,
by the preceding paragraph, there exists a subsequence {bnk} of {bn} that converges
to a real number b. Now, the subsequence {cnk} is itself a bounded sequence of real
numbers, so there is a subsequence {cnkj } that converges to a real number c. By
part (2) of Theorem 2.7, we also have that the subsequence {bnkj } converges to
b. So the subsequence {ankj } = {bnkj + cnkj i} of {an} converges to the complex
number b+ ci; i.e., {an} has a cluster point. This completes the proof.

There is an important result that is analogous to the Lemma above, and its proof
is easily adapted from the proof of that lemma.
Exercise 2.15. Let {an} be a bounded sequence of real numbers. Define a sequence
{yn} by yn = infk≥nak. Prove that:
(a) {yn} is nondecreasing and bounded above.
(b) y = lim yn is a cluster point of {an}.
(c) If z is any cluster point of {an}, then y ≤ z. That is, y is the minimum of all
the cluster points of the sequence {an}.
HINT: Let {αn} = {−an}, and apply the preceding lemma to {αn}. This exercise
will then follow from that.

The Bolzano-Wierstrass Theorem shows that the cluster set of a bounded sequence
{an} is nonempty. It is also a bounded set itself.
The following definition is only for sequences of real numbers. However, like the
Bolzano-Weierstrass Theorem, it is of very basic importance and will be used several
times in the sequel.

DEFINITION. Let {an} be a sequence of real numbers and let S denote its
cluster set.
If S is nonempty and bounded above, we define lim sup an to be the supremum
supS of S.
If S is nonempty and bounded below, we define lim inf an to be the infimum infS
of S.
If the sequence {an} of real numbers is not bounded above, we define lim sup an to
be ∞, and if {an} is not bounded below, we define lim inf an to be −∞.
If {an} diverges to ∞, then we define lim sup an and lim inf an both to be ∞. And,
if {an} diverges to −∞, we define lim sup an and lim inf an both to be −∞.
We call lim sup an the limit superior of the sequence {an}, and lim inf an the limit
inferior of {an}.

Exercise 2.16. (a) Suppose {an} is a bounded sequence of real numbers. Prove
that the sequence {xn} of the lemma following Theorem 2.8 converges to lim sup an.
Show also that the sequence {yn} of Exercise 2.15 converges to lim inf an.
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(b) Let {an} be a not necessarily bounded sequence of real numbers. Prove that

lim sup an = inf
n

sup
k≥n

ak = lim
n

sup
k≥n

ak.

and
lim inf an = sup

n
inf
k≥n

ak = lim
n

inf k ≥ nak.

HINT: Check all cases, and use the lemma following Theorem 2.8 and Exercise 2.15.
(c) Let {an} be a sequence of real numbers. Prove that

lim sup an = − lim inf(−an).

(d) Give examples to show that all four of the following possibilities can happen.
(1) lim sup an is finite, and lim inf an = −∞.
(2) lim sup an =∞ and lim inf an is finite.
(3) lim sup an =∞ and lim inf an = −∞.
(4) both lim sup an and lim inf an are finite.

The notions of limsup and liminf are perhaps mysterious, and they are in fact
difficult to grasp. The previous exercise describes them as the resultof a kind of
two-level process, and there are occasions when this description is a great help.
However, the limsup and liminf can also be characterized in other ways that are
more reminiscent of the definition of a limit. These other ways are indicated in the
next exercise.
Exercise 2.17. Let {an} be a bounded sequence of real numbers with
lim sup an = L and lim inf an = l. Prove that L and l satisfy the following properties.
(a) For each ε > 0, there exists an N such that an < L+ ε for all n ≥ N.
HINT: Use the fact that lim sup an = L is the number x of the lemma following
Theorem 2.8, and that x is the limit of a specific sequence {xn}.
(b) For each ε > 0, and any natural number k, there exists a natural number j ≥ k
such that aj > L− ε. Same hint as for part (a).
(c) For each ε > 0, there exists an N such that an > l − ε for all n ≥ N.
(d) For each ε > 0, and any natural number k, there exists a natural number j > k
such that aj < l + ε.
(e) Suppose L′ is a number that satisfies parts (a) and (b). Prove that L′ is the
limsup of {an}.
HINT: Use part (a) to show that L′ is greater than or equal to every cluster point
of {an}. Then use part (b) to show that L′ is less than or equal to some cluster
point.
(f) If l′ is any number that satisfies parts (c) and (d), show that l′ is the liminf of
the sequence {an}.
Exercise 2.18. (a) Let {an} and {bn} be two bounded sequences of real numbers,
and write L = lim sup an and M = lim sup bn. Prove that lim sup(an + bn) ≤
lim sup an + lim sup bn.
HINT: Using part (a) of the preceding exercise, show that for every ε > 0 there
exists a N such that an + bn < L + M + ε for all n ≥ N, and conclude from this
that every cluster point y of the sequence {an + bn} is less than or equal to L+M.
This will finish the proof, since lim sup(an + bn) is a cluster point of that sequence.



42 II. THE LIMIT OF A SEQUENCE OF NUMBERS

(b) Again, let {an} and {bn} be two bounded sequences of real numbers, and write
l = lim inf an and m = lim inf bn. Prove that lim inf(an+bn) ≥ lim inf an+lim inf bn.
HINT: Use part (c) of the previous exercise.
(c) Find examples of sequences {an} and {bn} for which lim sup an = lim sup bn = 1,
but lim sup(an + bn) = 0.

We introduce next another property that a sequence can possess. It looks very like
the definition of a convergent sequence, but it differs in a crucial way, and that is
that this definition only concerns the elements of the sequence {an} and not the
limit L.

DEFINITION. A sequence {an} of real or complex numbers is a Cauchy sequence
if for every ε > 0, there exists a natural number N such that if n ≥ N and m ≥ N
then |an − am| < ε.

REMARK. No doubt, this definition has something to do with limits. Any time
there is a positive ε and an N, we must be near some kind of limit notion. The
point of the definition of a Cauchy sequence is that there is no explicit mention
of what the limit is. It isn’t that the terms of the sequence are getting closer and
closer to some number L, it’s that the terms of the sequence are getting closer and
closer to each other. This subtle difference is worth some thought.
Exercise 2.19. Prove that a Cauchy sequence is bounded. (Try to adjust the
proof of Theorem 2.4 to work for this situation.)

The next theorem, like the Bolzano-Weierstrass Theorem, seems to be quite ab-
stract, but it also turns out to be a very useful tool for proving theorems about
continity, differentiability, etc. In the proof, the completeness of the set of real
numbers will be crucial. This theorem is not true in ordered fields that are not
complete.

THEOREM 2.9. (Cauchy Criterion) A sequence {an} of real or complex numbers
is convergent if and only if it is a Cauchy sequence.

PROOF. If liman = a then given ε > 0, choose N so that |ak − a| < ε/2 if k ≥ N.
From the triangle inequality, and by adding and subtracting a, we obtain that
|an − am| < ε if n ≥ N and m ≥ N. Hence, if {an} is convergent, then {an} is a
Cauchy sequence.
Conversely, if {an} is a cauchy sequence, then {an} is bounded by the previous
exercise. Now we use the fact that {an} is a sequence of real or complex numbers.
Let x be a cluster point of {an}.We know that one exists by the Bolzano-Weierstrass
Theorem. Let us show that in fact this number x not only is a cluster point but that
it is in fact the limit of the sequence {an}. Given ε > 0, choose Nso that |an−am| <
ε/2 whenever both n and m ≥ N. Let {ank} be a subsequence of {an} that converges
to x. Because {nk} is strictly increasing, we may choose a k so that nk > N and
also so that |ank − x| < ε/2. Then, if n ≥ N, then both n and this particular nk
are larger than or equal to N. Therefore, |an − x| ≤ |an − ank |+ |ank − x| < ε. this
completes the proof that x = lim an.

A LITTLE TOPOLOGY

We now investigate some properties that subsets of R and C may possess. We will
define “closed sets,” “open sets,” and “limit points” of sets. These notions are
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the rudimentary notions of what is called topology. As in earlier definitions, these
topological ones will be enlightening when we come to continuity.

DEFINITION. Let S be a subset of C. A complex number x is called a limit
point of S if there exists a sequence {xn} of elements of S such that x = limxn.

A set S ⊆ C is called closed if every limit point of S belongs to S.

Every limit point of a set of real numbers is a real number. Closed intervals [a, b]
are examples of closed sets in R, while open intervals and half-open intervals may
not be closed sets. Similarly, closed disks Br(c) of radius r around a point c in C,
and closed neighborhoods Nr(S) of radius r around a set S ⊆ C, are closed sets,
while the open disks or open neighborhoods are not closed sets. As a first example
of a limit point of a set, we give the following exercise.

Exercise 2.20. Let S be a nonempty bounded set of real numbers, and let M =
supS. Prove that there exists a sequence {an} of elements of S such that M =
lim an. That is, prove that the supremum of a bounded set of real numbers is a
limit point of that set. State and prove an analogous result for infs.
HINT: Use Theorem 1.5, and let ε run through the numbers 1/n.

Exercise 2.21. (a) Suppose S is a set of real numbers, and that z = a + bi ∈ C
with b 6= 0. Show that z is not a limit point of S. That is, every limit point of a set
of real numbers is a real number.
HINT: Suppose false; write a + bi = limxn, and make use of the positive number
|b|.
(b) Let c be a complex number, and let S = Br(c) be the set of all z ∈ C for which
|z − c| ≤ r. Show that S is a closed subset of C.
HINT: Use part (b) of Exercise 2.9.
(c) Show that the open disk Br(0) is not a closed set in C by finding a limit point
of Br(0) that is not in Br(0).
(d) State and prove results analogous to parts b and c for intervals in R.
(e) Show that every element x of a set S is a limit point of S.
(f) Let S be a subset of C, and let x be a complex number. Show that x is not a
limit point of S if and only if there exists a positive number ε such that if |y−x| < ε,
then y is not in S. That is, S ∩Bε(x) = ∅.
HINT: To prove the “ only if” part, argue by contradiction, and use the sequence
{1/n} as ε’s.
(g) Let {an} be a sequence of complex numbers, and let S be the set of all the an’s.
What is the difference between a cluster point of the sequence {an} and a limit
point of the set S?
(h) Prove that the cluster set of a sequence is a closed set.
HINT: Use parts (e) and (f).

Exercise 2.22. (a) Show that the set Q of all rational numbers is not a closed set.
Show also that the set of all irrational numbers is not a closed set.
(b) Show that if S is a closed subset of R that contains Q, then S must equal all of
R.

Here is another version of the Bolzano-Weierstrass Theorem, this time stated in
terms of closed sets rather than bounded sequences.
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THEOREM 2.10. Let S be a bounded and closed subset of C. Then every se-
quence {xn} of elements of S has a subsequence that converges to an element of
S.

PROOF. Let {xn} be a sequence in S. Since S is bounded, we know by Theorem
2.8 that there exists a subsequence {xnk} of {xn} that converges to some number x.
Since each xnk belongs to S, it follows that x is a limit point of S. Finally, because
S is a closed subset of C, it then follows that x ∈ S.

We have defined the concept of a closed set. Now let’s give the definition of an
open set.

DEFINITION. Let S be a subset of C. A point x ∈ S is called an interior point
of S if there exists an ε > 0 such that the open disk Bε(x) of radius ε around x is
entirely contained in S. The set of all interior points of S is denoted by S0 and we
call S0 the interior of S.
A subset S of C is called an open subset of C if every point of S is an interior point
of S; i.e., if S = S0.
Analogously, let S be a subset of R. A point x ∈ S is called an interior point of S if
there exists an ε > 0 such that the open interval (x− ε, x+ ε) is entirely contained
in S. Again, we denote the set of all interior points of S by S0 and call S0 the
interior of S.
A subset S of R is called an open subset of R if every point of S is an interior point
of S; i.e., if S = S0.

Exercise 2.23. (a) Prove that an open interval (a, b) in R is an open subset of R;
i.e., show that every point of (a, b) is an interior point of (a, b).
(b) Prove that any disk Br(c) is an open subset of C. Show also that the punctured
disk B′r(c) is an open set, where B′r(c) = {z : 0 < |z− c| < r}, i.e., evrything in the
disk Br(c) except the central point c.
(c) Prove that the neighborhood Nr(S) of radius r around a set S is an open subset
of C.
(d) Prove that no nonempty subset of R is an open subset of C.
(e) Prove that the set Q of all rational numbers is not an open subset of R. We have
seen in part (a) of Exercise 2.22 that Q is not a closed set. Consequently it is an
example of a set that is neither open nor closed. Show that the set of all irrational
numbers is neither open nor closed.

We give next a useful application of the Bolzano-Weierstrass Theorem, or more
precisely an application of Theorem 2.10. This also provides some insight into the
structure of open sets.

THEOREM 2.11. Let S be a closed and bounded subset of C, and suppose S is
a subset of an open set U. Then there exists an r > 0 such that the neighborhood
Nr(S) is contained in U. That is, every open set containing a closed and bounded
set S actually contains a neighborhood of S.

PROOF. If S is just a singleton {x}, then this theorem is asserting nothing more
than the fact that x is in the interior of U, which it is if U is an open set. However,
when S is an infinite set, then the result is more subtle. We argue by contradiction.
Thus, suppose there is no such r > 0 for which Nr(S) ⊆ U. then for each positive
integer n there must be a point xn that is not in U, and a corresponding point
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yn ∈ S, such that |xn − yn| < 1/n. Otherwise, the number r = 1/n would satisfy
the claim of the theorem. Now, because the yn’s all belong to S, we know from
Theorem 2.10 that a subsequence {ynk} of the sequence {yn} must converge to a
number y ∈ S. Next, we see that

|xnk − y| ≤ |xnk − ynk |+ |ynk − y|, <
1
nk

+ |ynk − y|,

and this quantity tends to 0. Hence, the subsequence {xnk} of the sequence {xn}
also converges to y.
Finally, because y belongs to S and hence to the open set U, we know that there
must exist an ε > 0 such that the entire disk Bε(y) ⊆ U. Then, since the subsequence
{xnk} converges to y, there must exist ank such that |xnk − y| < ε, implying that
xnk ∈ Bε(y), and hence belongs to U. But this is our contradiction, because all of
the xn’s were not in U. So, the theorem is proved.

We give next a result that cliarifies to some extent the connection between open
sets and closed sets. Always remember that there are sets that are neither open
nor closed, and just because a set is not open does not mean that it is closed.

THEOREM 2.12. A subset S of C (R) is open if and only if its complement
S̃ = C \ S (R \ S) is closed.

PROOF. First, assume that S is open, and let us show that S̃ is closed. Suppose
not. We will derive a contradiction. Suppose then that there is a sequence {xn} of
elements of S̃ that converges to a number x that is not in S̃; i.e., x is an element
of S. Since every element of S is an interior point of S, there must exist an ε > 0
such that the entire disk Bε(x) (or interval (x − ε, x + ε)) is a subset of S. Now,
since x = limxn, there must exist anN such that |xn − x| < ε for every n ≥ N. In
particular, |xN − x| < ε; i.e., xN belongs to Bε(x) (or (x− ε, x+ ε)). This implies
that xN ∈ S. But xN ∈ S̃, and this is a contradiction. Hence, if S is open, then S̃
is closed.
Conversely, assume that S̃ is closed, and let us show that S must be open. Again
we argue by contradiction. Thus, assuming that S is not open, there must exist a
point x ∈ S that is not an interior point of S. Hence, for every ε > 0 the disk Bε(x)
(or interval (x− ε, x+ ε)) is not entirely contained in S. So, for each positive integer
n, there must exist a point xn such that |xn−x| < 1/n and xn /∈ S. It follows then
that x = limxn, and that each xn ∈ S̃. Since S̃ is a closed set, we must have that
x ∈ S̃. But x ∈ S, and we have arrived at the desired contradiction. Hence, if S̃ is
closed, then S is open, and the theorem is proved.

The theorem below, the famous Heine-Borel Theorem, gives an equivalent and
different description of closed and bounded sets. This description is in terms of
open sets, whereas the original definitions were interms of limit points. Any time
we can find two very different descriptions of the same phenomenon, we have found
something useful.

DEFINITION. Let S be a subset of C (respectively R). By an open cover of S
we mean a sequence {Un} of open subsets of C (respectively R) such that S ⊆ ∪Un;
i.e., for every x ∈ Sthere exists an n such that x ∈ Un.
A subset S of C (respectively R) is called compact, or is said to satisfy the Heine-
Borel property , if every open cover of S has a finite subcover. That is, if {Un} is
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an open cover of S, then there exists an integer N such that S ⊆ ∪Nn=1Un. In other
words, only a finite number of the open sets are necessary to cover S.

REMARK. The definition we have given here for a set being compact is a little less
general from the one found in books on topology. We have restricted the notion
of an open cover to be a sequence of open sets, while in the general setting an
open cover is just a collection of open sets. The distinction between a sequence of
open sets and a collection of open sets is genuine in general topology, but it can be
disregarded in the case of the topological spaces R and C.

THEOREM 2.13. (Heine-Borel Theorem) A subset S of C (respectively R) is
compact if and only if it is a closed and bounded set.

PROOF. We prove this theorem for subsets S of C, and leave the proof for subsets
of R to the exercises.
Suppose first that S ⊆ C is compact, i.e., satisfies the Heine-Borel property. For
each positive integer n, define Un to be the open set Bn(0). Then S ⊆ ∪Un, because
C = ∪Un. Hence, by the Heine-Borel property, there must exist an N such that
S ⊆ ∪Nn=1Un. But then S ⊆ BN (0), implying that S is bounded. Indeed, |x| ≤ N
for all x ∈ S.
Next, still assuming that S is compact, we will show that S is closed by showing
that S̃ is open. Thus, let x be an element of S̃. For each positive integer n, define
Un to be the complement of the closed set B1/n(x). Then each Un is an open set
by Theorem 2.12, and we claim that {Un} is an open cover of S. Indeed, if y ∈ S,
then y 6= x, and |y− x| > 0. Choose an n so that 1/n < |y− x|. Then y /∈ B1/n(x),
implying that y ∈ Un. This proves our claim that {Un} is an open cover of S. Now,
by the Heine-Borel property, there exists an N such that S ⊆ ∪Nn=1Un. But this
implies that for every z ∈ S we must have |z − x| ≥ 1/N, and this implies that
the disk B1/N (x) is entirely contained in S̃. Therefore, every element x of S̃ is an
interior point of S̃. So, S̃ is open, whence S is closed. This finishes the proof that
compact sets are necessarily closed and bounded.
Conversely, assume that S is both closed and bounded. We must show that S
satisfies the Heine-Borel property. Suppose not. Then, there exists an open cover
{Un} that has no finite subcover. So, for each positive integer n there must exist an
element xn ∈ S for which xn /∈ ∪nk=1Uk. Otherwise, there would be a finite subcover.
By Theorem 2.10, there exists a subsequence {xnj} of {xn} that converges to an
element x of S. Now, because {Un} is an open cover of S, there must exist an N
such that x ∈ UN . Because UN is open, there exists an ε > 0 so that the entire disk
Bε(x) is contained in UN . Since x = limxnj , there exists a J so that |xnj − x| < ε
if j ≥ J. Therefore, if j ≥ J, then xnj ∈ UN . But the sequence {nj} is strictly
increasing, so that there exists a j′ ≥ J such that nj′ > N, and by the choice of
the point xnj′ , we know that xnj′ /∈ ∪

N
k=1Uk. We have arrived at a contradiction,

and so the second half of the theorem is proved.

Exercise 2.24. (a) Prove that the union A ∪ B of two open sets is open and the
intersection A ∩B is also open.
(b) Prove that the union A ∪ B of two closed sets is closed and the intersection
A ∩B is also closed.
HINT: Use Theorem 2.12 and the set equations Ã ∪B = Ã∩B̃, and Ã ∩B = Ã∪B̃.
These set equations are known as Demorgan’s Laws.



II. THE LIMIT OF A SEQUENCE OF NUMBERS 47

(c) Prove that the union A∪B of two bounded sets is bounded and the intersection
A ∩B is also bounded.
(d) Prove that the union A∪B of two compact sets is compact and the intersection
A ∩B is also compact.
(e) Prove that the intersection of a compact set and a closed set is compact.
(f) Suppose S is a compact set in C and r is a positive real number. Prove that
the closed neighborhood Nr(S) of radius r around S is compact.
HINT: To see that this set is closed, show that its coplement is open.

INFINITE SERIES

Probably the most interesting and important examples of sequences are those that
arise as the partial sums of an infinite series. In fact, it will be infinite series that
allow us to explain such things as trigonometric and exponential functions.

DEFINITION. Let {an}∞0 be a sequence of real or complex numbers. By the
infinite series

∑
an we mean the sequence {SN} defined by

SN =
N∑
n=0

an.

The sequence {SN} is called the sequence of partial sums of the infinite series
∑
an,

and the infinite series is said to be summable to a number S, or to be convergent, if
the sequence {SN} of partial sums converges to S. The sum of an infinite series
is the limit of its partial sums.
An infinite series

∑
an is called absolutely summable or absolutely convergent if

the infinite series
∑
|an| is convergent.

If
∑
an is not convergent, it is called divergent. If it is convergent but not absolutely

convergent, it is called conditionally convergent.

A few simple formulas relating the an’s and the SN ’s are useful:

SN = a0 + a1 + a2 + . . .+ aN ,

SN+1 = SN + aN+1,

and

SM − SK =
M∑

n=K+1

an = aK+1 + aK+2 + . . .+AM ,

for M > K.

REMARK. Determining whether or not a given infinite series converges is one of
the most important and subtle parts of analysis. Even the first few elementary the-
orems depend in deep ways on our previous development, particularly the Cauchy
criterion.

THEOREM 2.14. Let {an} be a sequence of nonnegative real numbers. Then the
infinite series

∑
an is summable if and only if the sequence {SN} of partial sums

is bounded.

PROOF. If
∑
an is summable, then {SN} is convergent, whence bounded according

to Theorem 2.4. Conversely, we see from the hypothesis that each an ≥ 0 that
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{SN} is nondecreasing (SN+1 = SN + aN+1 ≥ SN ). So, if {SN} is bounded, then
it automatically converges by Theorem 2.1, and hence the infinite series

∑
an is

summable.

The next theorem is the first one most calculus students learn about infinite series.
Unfortunately, it is often misinterpreted, so be careful! Both of the proofs to the
next two theorems use Theorem 2.9, which again is a serious and fundamental
result about the real numbers. Therefore, these two theorems must be deep results
themselves.

THEOREM 2.15. Let
∑
an be a convergent infinite series. Then the sequence

{an} is convergent, and lim an = 0.

PROOF. Because
∑
an is summable, the sequence {SN} is convergent and so is a

Cauchy sequence. Therefore, given an ε > 0, there exists an N0 so that |Sn−Sm| < ε
whenever both n and m ≥ N0. If n > N0, let m = n − 1. We have then that
|an| = |Sn − Sm| < ε, which completes the proof.

REMARK. Note that this theorem is not an “if and only if” theorem. The har-
monic series (part (b) of Exercise 2.26 below) is the standard counterexample. The
theorem above is mainly used to show that an infinite series is not summable. If
we can prove that the sequence {an} does not converge to 0, then the infinite series∑
an does not converge. The misinterpretation of this result referred to above is

exactly in trying to apply the (false) converse of this theorem.

THEOREM 2.16. If
∑
an is an absolutely convergent infinite series of complex

numbers, then it is a convergent infinite series. (Absolute convergence implies con-
vergence.)

PROOF. If {SN} denotes the sequence of partial sums for
∑
an, and if {TN}

denotes the sequence of partial sums for
∑
|an|, then

|SM − SN | = |
M∑

n=N+1

an| ≤
M∑

n=N+1

|an| = |TM − TN |

for all N and M. We are given that {TN} is convergent and hence it is a Cauchy
sequence. So, by the inequality above, {SN} must also be a Cauchy sequence. (If
|TN − TM | < ε, then |SN −SM | < ε as well.) This implies that

∑
an is convergent.

Exercise 2.25. (The Infinite Geometric Series) Let z be a complex number, and
define a sequence {an} by an = zn. Consider the infinite series

∑
an. Show that∑∞

n=0 an converges to a number S if and only if |z| < 1. Show in fact that S =
1/(1− z), when |z| < 1.
HINT: Evaluate explicitly the partial sums SN , and then take their limit. Show
that SN = 1−zN+1

1−z .

Exercise 2.26. (a) Show that
∑∞
n=1

1
n(n+1) converges to 1, by computing explicit

formulas for the partial sums.
HINT: Use a partial fraction decomposition for the an’s.
(b) (The Harmonic Series.) Show that

∑∞
n=1 1/n diverges by verifying that S2k >

k/2.
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HINT: Group the terms in the sum as follows,

1 +
1
2

+ (
1
3

+
1
4

) + (
1
5

+
1
6

+
1
7

+
1
8

) + (
1
9

+
1
10

+ . . .+
1
16

) + . . . ,

and then estimate the sum of each group. Remember this example as an infinite
series that diverges, despite the fact that is terms tend to 0.

The next theorem is the most important one we have concerning infinite series of
numbers.

THEOREM 2.17. (Comparison Test) Suppose {an} and {bn} are two sequences
of nonnegative real numbers for which there exists a positive integer M and a
constant C such that bn ≤ Can for all n ≥M. If the infinite series

∑
an converges,

so must the infinite series
∑
bn.

PROOF. We will show that the sequence {TN} of partial sums of the infinite series∑
bn is a bounded sequence. Then, by Theorem 2.14, the infinite series

∑
bn must

be summable.
Write SN for the Nth partial sum of the convergent infinite series

∑
an. Because

this series is summable, its sequence of partial sums is a bounded sequence. Let B
be a number such that SN ≤ B for all N. We have for all N > M that

TN =
N∑
n=1

bn

=
M∑
n=1

bn +
N∑

n=M+1

bn

≤
M∑
n=1

bn +
N∑

n=M+1

Can

=
M∑
n=1

bn + C
N∑

n=M+1

an

≤
M∑
n=1

bn + C

N∑
n=1

an

≤
M∑
n=1

bn + CSN

≤
M∑
n=1

bn + CB,

which completes the proof, since this final quantity is a fixed constant.

Exercise 2.27. (a) Let {an} and {bn} be as in the preceding theorem. Show that
if
∑
bn diverges, then

∑
an also must diverge.

(b) Show by example that the hypothesis that the an’s and bn’s of the Comparison
Test are nonnegative can not be dropped.
Exercise 2.28. (The Ratio Test) Let {an} be a sequence of positive numbers.
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(a) If lim sup an+1/an < 1, show that
∑
an converges.

HINT: If lim sup an+1/an = α < 1, let β be a number for which α < β < 1. Using
part (a) of Exercise 2.17, show that there exists an N such that for all n > N we
must have an+1/an < β, or equivalently an+1 < βan, and therefore aN+k < βkaN .
Now use the comparison test with the geometric series

∑
βk.

(b) If lim inf an+1/an > 1, show that
∑
an diverges.

(c) As special cases of parts (a) and (b), show that {an} converges if
limn an+1/an < 1, and diverges if limn an+1/an > 1.
(d) Find two examples of infinite series’

∑
an of positive numbers, such that

lim an+1/an = 1 for both examples, and such that one infinite series converges
and the other diverges.

Exercise 2.29. (a) Derive the Root Test: If {an} is a sequence of positive numbers
for which lim sup a1/n

n < 1, then
∑
an converges. And, if lim inf a1/n

n > 1, then
∑
an

diverges.
(b) Let r be a positive integer. Show that

∑
1/nr converges if and only if r ≥ 2.

HINT: Use Exercise 2.26 and the Comparison Test for r = 2.
(c) Show that the following infinite series are summable.∑

1/(n2 + 1),
∑

n/2n,
∑

an/n!,

for a any complex number.

Exercise 2.30. Let {an} and {bn} be sequences of complex numbers, and let
{SN} denote the sequence of partial sums of the infinite series

∑
an. Derive the

Abel Summation Formula:

N∑
n=1

anbn = SNbN +
N−1∑
n=1

Sn(bn − bn+1).

The Comparison Test is the most powerful theorem we have about infinite series
of positive terms. Of course, most series do not consist entirely of positive terms,
so that the Comparison Test is not enough. The next theorem is therefore of much
importance.

THEOREM 2.18. (Alternating Series Test) Suppose {a1, a2, a3, . . . } is an alter-
nating sequence of real numbers; i.e., their signs alternate. Assume further that the
sequence {|an|} is nonincreasing with 0 = lim |an|. Then the infinite series

∑
an

converges.

PROOF. Assume, without loss of generality, that the odd terms a2n+1 of the se-
quence {an} are positive and the even terms a2n are negative. We collect some
facts about the partial sums SN = a1 + a2 + . . .+ aN of the infinite series

∑
an.

1. Every even partial sum S2N is less than the following odd partial sum S2N+1 =
S2N + a2N+1, And every odd partial sum S2N+1 is greater than the following even
partial sum S2N+2 = S2N+1 + a2N+2.
2. Every even partial sum S2N is less than or equal to the next even partial sum
S2N+2 = S2N + a2N+1 + a2N+2, implying that the sequence of even partial sums
{S2N} is nondecreasing.
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3. Every odd partial sum S2N+1 is greater than or equal to the next odd partial
sum S2N+3 = S2N+1 + a2N+2 + a2N+3, implying that the sequence of odd partial
sums {S2N+1} is nonincreasing.
4. Every odd partial sum S2N+1 is bounded below by S2. For, S2N+1 > S2N ≥ S2.
And, every even partial sum S2N is bounded above by S1. For, S2N < S2N+1 ≤ S1.
5. Therefore, the sequence {S2N} of even partial sums is nondecreasing and
bounded above. That sequence must then have a limit, which we denote by Se.
Similarly, the sequence {S2N+1} of odd partial sums is nonincreasing and bounded
below. This sequence of partial sums also must have a limit, which we denote by
So.
Now

So − Se = limS2N+1 − limS2N = lim(S2N+1 − S2N ) = lim a2N+1 = 0,

showing that Se = So, and we denote this common limit by S. Finally, given an
ε > 0, there exists an N1 so that |S2N − S| < ε if 2N ≥ N1, and there exists an
N2 so that |S2N+1 − S| < ε if 2N + 1 ≥ N2. Therefore, if N ≥ max(N1, N2), then
|SN − S| < ε, and this proves that the infinite series converges.

Exercise 2.31. (a) (The Alternating Harmonic Series) Show that
∑∞
n=1(−1)n/n

converges, but that it is not absolutely convergent.
(b) Let {an} be an alternating series, as in the preceding theorem. Show that the
sum S =

∑
an is trapped between SN and SN+1, and that |S − SN | ≤ |aN |.

(c) State and prove a theorem about “eventually alternating infinite series.”
(d) Show that

∑
zn/n converges if and only if |z| ≤ 1, and z 6= 1.

HINT: Use the Abel Summation Formula to evaluate the partial sums.
Exercise 2.32. Let s = p/q be a positive rational number.
(a) For each x > 0, show that there exists a unique y > 0 such that ys = x; i.e.,
yp = xq.
(b) Prove that

∑
1/ns converges if s > 1 and diverges if s ≤ 1.

HINT: Group the terms as in part (b) of Exercise 2.26.

THEOREM 2.19. (Test for Irrationality) Let x be a real number, and suppose
that {pN/qN} is a sequence of rational numbers for which x = lim pN/qN and
x 6= pN/qN for any N. If lim qN |x− pN/qN | = 0, then x is irrational.

PROOF. We prove the contrapositive statement; i.e., if x = p/q is a rational
number, then lim qN |x− pN/qN | 6= 0. We have

x− pN/qN = p/q − pN/qN =
pqN − qpN

qqN
.

Now the numerator pqN − qpN is not 0 for any N. For, if it were, then x = p/q =
pN/qN , which we have assumed not to be the case. Therefore, since pqN − qpN is
an integer, we have that

|x− pN/qN | = |
pqN − qpN

qqN
| ≥ 1
|qqN |

.

So,

qN |x− pN/qN | ≥
1
|q|
,
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and this clearly does not converge to 0.

Exercise 2.33. (a) Let x =
∑∞
n=0(−1)n/2n. Prove that x is a rational number.

(b) Let y =
∑∞
n=0(−1)n/2n

2
. Prove that y is an irrational number.

HINT: The partial sums of this series are rational numbers. Now use the preceding
theorem and part (b) of Exercise 2.31.
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CHAPTER III
FUNCTIONS AND CONTINUITY

DEFINITION OF THE NUMBER π.

The concept of a function is perhaps the most basic one in mathematical analysis.
The objects of interest in our subject can often be represented as functions, and
the “ unknowns” in our equations are frequently functions. Therefore, we will
spend some time developing and understanding various kinds of functions, including
functions defined by polynomials, by power series, and as limits of other functions.
In particular, we introduce in this chapter the elementary transcendental functions.
We begin with the familiar set theoretical notion of a function, and then move
quickly to their analytical properties, specifically that of continuity.
The main theorems of this chapter include:

(1) The Intermediate Value Theorem (Theorem 3.6),
(2) the theorem that asserts that a continuous real-valued function on a

compact set attains a maximum and minimum value (Theorem 3.8),
(3) A continuous function on a compact set is uniformly continuous

(Theorem 3.9),
(4) The Identity Theorem for Power Series Functions (Theorem 3.14),
(5) The definition of the real number π,
(6) The theorem that asserts that the uniform limit of a sequence of con-

tinuous functions is continuous (Theorem 3.17), and
(7) the Weierstrass M-Test (Theorem 3.18).

FUNCTIONS

DEFINITION. Let S and T be sets. A function from S into T (notation f :
S → T ) is a rule that assigns to each element x in S a unique element denoted by
f(x) in T.
It is useful to think of a function as a mechanism or black box. We use the elements
of S as inputs to the function, and the outputs are elements of the set T.
If f : S → T is a function, then S is called the domain of f, and the set T is
called the codomain of f. The range or image of f is the set of all elements y in the
codomain T for which there exists an x in the domain S such that y = f(x). We
denote the range by f(S). The codomain is the set of all potential outputs, while
the range is the set of actual outputs.
Suppose f is a function from a set S into a set T. If A ⊆ S, we write f(A) for the
subset of T containing all the elements t ∈ T for which there exists an s ∈ A such
that t = f(s). We call f(A) the image of A under f. Similarly, if B ⊆ T, we write
f−1(B) for the subset of S containing all the elements s ∈ S such that f(s) ∈ B,
and we call the set f−1(B) the inverse image or preimage of B. The symbol f−1(B)
is a little confusing, since it could be misinterpreted as the image of the set B under
a function called f−1. We will discuss inverse functions later on, but this notation
is not meant to imply that the function f has an inverse.
If f : S → T, then the graph of f is the subset G of the Cartesian product S × T
consisting of all the pairs of the form (x, f(x)).
If f : S → R is a function, then we call f a real-valued function, and if f : S → C,
then we call f a complex-valued function. If f : S → C is a complex-valued function,
then for each x ∈ S the complex number f(x) can be written as u(x)+ iv(x), where
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u(x) and v(x) are the real and imaginary parts of the complex number f(x). The
two real-valued functions u : S → R and v : S → R are called respectively the real
and imaginary parts of the complex-valued function f.
If f : S → T and S ⊆ R, then f is called a function of a real variable, and if S ⊆ C,
then f is called a function of a complex variable.
If the range of f equals the codomain, then f is called onto.
The function f : S → T is called one-to-one if f(x1) = f(x2) implies that x1 = x2.

The domain of f is the set of x’s for which f(x) is defined. If we are given a function
f : S → T, we are free to regard f as having a smaller domain, i.e., a subset S′

of S. Although this restricted function is in reality a different function, we usually
continue to call it by the same name f. Enlarging the domain of a function, in
some consistent manner, is often impossible, but is nevertheless frequently of great
importance. The codomain of f is distinguished from the range of f, which is
frequently a proper subset of the codomain. For example, since every real number
is a complex number, any real-valued function f : S → R is also a (special kind of)
complex-valued function.
We consider in this book functions either of a real variable or of complex variable.
that is, the domains of functions here will be subsets either of R or of C. Frequently,
we will indicate what kind of variable we are thinking of by denoting real variables
with the letter x and complex variables with the letter z. Be careful about this, for
this distinction is not always made.
Many functions, though not all by any means, are defined by a single equation:

y = 3x− 7,

y = (x2 + x+ 1)2/3,

x2 + y2 = 4,

(How does this last equation define a function?)

(1− x7y11)2/3 = (x/(1− y))8/17.

(How does this equation determine a function?)
There are various types of functions, and they can be combined in a variety of ways
to produce other functions. It is necessary therefore to spend a fair amount of time
at the beginning of this chapter to present these definitions.

DEFINITION. If f and g are two complex-valued functions with the same do-
main S, i.e., f : S → C and g : S → C, and if c is a complex number, we define
f + g, fg, f/g (if g(x) is never 0), and cf by the familiar formulas:

(f + g)(x) = f(x) + g(x),

(fg)(x) = f(x)g(x),

(f/g)(x) = f(x)/g(x),

and
(cf)(x) = cf(x).
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If f and g are real-valued functions, we define functions max(f, g) and min(f, g) by

[max(f, g)](x) = max(f(x), g(x))

(the maximum of the numbers f(x) and g(x)), and

[min(f, g)](x) = min(f(x), g(x)),

(the minimum of the two numbers f(x) and g(x)).
If f is either a real-valued or a complex-valued function on a domain S, then we
say that f is bounded if there exists a positive number M such that |f(x)| ≤ M
for all x ∈ S.

There are two special types of functions of a real or complex variable, the even
functions and the odd functions. In fact, every function that is defined on all of R
or C (or, more generally, any function whose domain S equals −S) can be written
uniquely as a sum of an even part and an odd part. This decomposition of a general
function into simpler parts is frequently helpful.

DEFINITION. A function f whose domain S equals −S, is called an even func-
tion if f(−z) = f(z) for all z in its domain. It is called an odd function if
f(−z) = −f(z) for all z in its domain.

We next give the definition for perhaps the most familiar kinds of functions.

DEFINITION. A nonzero polynomial or polynomial function is a complex-valued
function of a complex variable, p : C→ C, that is defined by a formula of the form

p(z) =
n∑
k=0

akz
k = a0 + a1z + a2z

2 + . . .+ anz
n,

where the ak’s are complex numbers and an 6= 0. The integer n is called the degree
of the polynomial p and is denoted by deg(p). The numbers a0, a1, . . . , an are called
the coefficients of the polynomial. The domain of a polynomial function is all of C;
i.e., p(z) is defined for every complex number z.
For technical reasons of consistency, the identically 0 function is called the zero
polynomial. All of its coefficients are 0 and its degree is defined to be −∞.
A rational function is a function r that is given by an equation of the form r(z) =
p(z)/q(z), where q is a nonzero polynomial and p is a (possibly zero) polynomial.
The domain of a rational function is the set S of all z ∈ C for which q(z) 6= 0, i.e.,
for which r(z) is defined.

Two other kinds of functions that are simple and important are step functions and
polygonal functions.

DEFINITION. Let [a, b] be a closed bounded interval of real numbers. By a
partition of [a, b] we mean a finite set P = {x0 < x1 < . . . < xn} of n + 1 points,
where x0 = a and xn = b.
The n intervals {[xi−1, xi]}, for 1 ≤ i ≤ n, are called the closed subintervals of the
partition P, and the n intervals {(xi−1, xi)} are called the open subintervals of P.
We write ‖P‖ for the maximum of the numbers (lengths of the subintervals) {xi −
xi−1}, and call the number ‖P‖ the mesh size of the partition P.
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A function h : [a, b] → C is called a step function if there exists a partition P =
{x0 < x1 < . . . < xn} of [a, b] and n numbers {a1, a2, . . . , an} such that h(x) = ai
if xi−1 < x < xi. That is, h is a step function if it is a constant function on each of
the (open) subintervals (xi−1, xi) determined by a partition P. Note that the values
of a step function at the points {xi} of the partition are not restricted in any way.
A function l : [a, b]→ R is called a polygonal function, or a piecewise linear function,
if there exists a partition P = {x0 < x1 < . . . < xn} of [a, b] and n + 1 numbers
{y0, y1, . . . , yn} such that for each x ∈ [xi−1, xi], l(x) is given by the linear equation

l(x) = yi−1 +mi(x− xi−1),

where mi = (yi − yi1)/(xi − xi−1). That is, l is a polygonal function if it is a linear
function on each of the closed subintervals [xi−1, xi] determined by a partition P.
Note that the values of a piecewise linear function at the points {xi} of the partition
P are the same, whether we think of xi in the interval [xi−1, xi] or [xi, xi+1]. (Check
the two formulas for l(xi).)
The graph of a piecewise linear function is the polygonal line joining the n + 1
points {(xi, yi)}.

There is a natural generalization of the notion of a step function that works for any
domain S, e.g., a rectangle in the plane C. Thus, if S is a set, we define a partition
of S to be a finite collection {E1, E2, . . . , En} of subsets of S for which

(1) ∪ni=1Ei = S, and
(2) Ei ∩ Ej = ∅ if i 6= j.

Then, a step function on S would be a function h that is constant on each subset
Ei. We will encounter an even more elaborate generalized notion of a step function
in Chapter V, but for now we will restrict our attention to step functions defined
on intervals [a, b].
The set of polynomials and the set of step functions are both closed under addi-
tion and multiplication, and the set of rational functions is closed under addition,
multiplication, and division.
Exercise 3.1. (a) Prove that the sum and product of two polynomials is again a
polynomial. Show that deg(p + q) ≤ max(deg(p),deg(q)) and deg(pq) = deg(p) +
deg(q). Show that a constant function is a polynomial, and that the degree of a
nonzero constant function is 0.
(b) Show that the set of step functions is closed under addition and multiplication.
Show also that the maximum and minimum of two step functions is again a step
function. (Be careful to note that different step functions may be determined by
different partitions. For instance, a partition determining the sum of two step
functions may be different from the partitions determining the two individual step
functions.) Note, in fact, that a step function can be determined by infinitely many
different partitions. Prove that the sum, the maximum, and the minimum of two
piecewise linear functions is again a piecewise linear function. Show by example
that the product of two piecewise linear functions need not be piecewise linear.
(c) Prove that the sum, product, and quotient of two rational functions is again a
rational function.
(d) Prove the Root Theorem: If p(z) =

∑n
k=0 akz

k is a nonzero polynomial of
degree n, and if c is a complex number for which p(c) = 0, then there exists a
nonzero polynomial q(z) =

∑n−1
j=0 bjz

j of degree n− 1 such that p(z) = (z − c)q(z)
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for all z. That is, if c is a “root” of p, then z− c is a factor of p. Show also that the
leading coefficient bn−1 of q equals the leading coefficient an of p.
HINT: Write

p(z) = p(z)− p(c) =
n∑
k=0

ak(zk − ck) = . . . .

(e) Let f be a function whose domain S equals −S. Define functions fe and fo by
the formulas

fe(z) =
f(z) + f(−z)

2
and fo(z) =

f(z)− f(−z)
2

.

Show that fe is an even function, that fo is an odd function, and that f = fe + fo.
Show also that, if f = g+ h, where g is an even function and h is an odd function,
then g = fe and h = fo. That is, there is only one way to write f as the sum of an
even function and an odd function.
(f) Use part (e) to show that a polynomial p is an even function if and only if its
only nonzero coefficients are even ones, i.e., the a2k’s. Show also that a polynomial
is an odd function if and only if its only nonzero coefficients are odd ones, i.e., the
a2k+1’s.
(g) Suppose p(z) =

∑n
k=0 a2kz

2k is a polynomial that is an even function. Show
that

p(iz) =
n∑
k=0

(−1)ka2kz
2k = pa(z),

where pa is the polynomial obtained from p by alternating the signs of its nonzero
coefficients.
(h) If q(z) =

∑n
k=0 a2k+1z

2k+1 is a polynomial that is an odd function, show that

q(iz) = i
n∑
k=0

(−1)ka2k+1z
2k+1 = iqa(z),

where again qa is the polynomial obtained from q by alternating the signs of its
nonzero coefficients.
(i) If p is any polynomial, show that

p(iz) = pe(iz) + po(iz) = pae(z) + ipao(z),

and hence that pe(iz) = pae(z) and po(iz) = ipao(z).

POLYNOMIAL FUNCTIONS

If p(z) =
∑n
k=0 akz

k and q(z) =
∑m
j=0 bjz

j are two polynomials, it certainly seems
clear that they determine the same function only if they have identical coefficients.
This is true, but by no means an obvious fact. Also, it seems clear that, as |z| gets
larger and larger, a polynomial function is more and more comparable to its leading
term anz

n.We collect in the next theorem some elementary properties of polynomial
functions, and in particular we verify the above “uniqueness of coefficients” result
and the “behavior at infinity” result.
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THEOREM 3.1.
(1) Suppose p(z) =

∑n
k=0 akz

k is a nonconstant polynomial of degree n > 0.
Then p(z) = 0 for at most n distinct complex numbers.

(2) If r is a polynomial for which r(z) = 0 for an infinite number of distinct
points, then r is the zero polynomial. That is, all of its coefficients are 0.

(3) Suppose p and q are nonzero polynomials, and assume that p(z) = q(z) for
an infinite number of distinct points. Then p(z) = q(z) for all z, and p and
q have the same coefficients. That is, they are the same polynomial.

(4) Let p(z) =
∑n
j=0 cjz

j be a polynomial of degree n > 0. Then there exist
positive constants m and B such that

|cn|
2
|z|n ≤ |p(z)| ≤M |z|n

for all complex numbers z for which |z| ≥ B. That is, For all complex
numbers z with |z| ≥ B, the numbers |p(z)| and |z|n are “comparable.”

(5) If f : [0,∞) → C is defined by f(x) =
√
x, then there is no polynomial p

for which f(x) = p(x) for all x ≥ 0. That is, the square root function does
not agree with any polynomial function.

PROOF. We prove part (1) using an argument by contradiction. Thus, suppose
there does exist a counterexample to the claim, i.e., a nonzero polynomial p of
degree n and n + 1 distinct points {c1, c2, . . . , cn+1} for which p(cj) = 0 for all
1 ≤ j ≤ n + 1. From the set of all such counterexamples, let p0 be one with
minimum degree n0. That is, the claim in part (1) is true for any polynomial whose
degree is smaller than n0. We write

p0(z) =
n0∑
k=0

akz
k,

and we suppose that p0(cj) = 0 for j = 1 to n0 + 1, where these ck’s are distinct
complex numbers. We use next the Root Theorem (part (d) of Exercise 3.1) to write
p0(z) = (z− cn0+1)q(z), where q(z) =

∑n0−1
k=0 bkz

k. We have that q is a polynomial
of degree n0 − 1 and the leading coefficient an0 of p0 equals the leading coefficient
bn0−1 of q. Note that for 1 ≤ j ≤ n0 we have

0 = p0(cj) = (cj − cn0+1)q(cj),

which implies that q(cj) = 0 for 1 ≤ j ≤ n0, since cj − cn0+1 6= 0. But, since
deg(q) < n0, the nonzero polynomial q can not be a counterexample to part (1),
implying that q(z) = 0 for at most n0 − 1 distinct points. We have arrived at a
contradiction, and part (1) is proved.
Next, let r be a polynomial for which r(z) = 0 for an infinite number of distinct
points. It follows from part (1) that r cannot be a nonzero polynomial, for in that
case it would have a degree n ≥ 0 and could be 0 for at most n distinct points.
Hence, r is the zero polynomial, and part (2) is proved.
Now, to see part (3), set r = p − q. Then r is a polynomial for which r(z) = 0
for infinitely many z’s. By part (2), it follows then that r(z) = 0 for all z, whence
p(z) = q(z) for all z. Moreover, p−q is the zero polynomial, all of whose coefficients
are 0, and this implies that the coefficients for p and q are identical.
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To prove the first inequality in part (4), suppose that |z| > 1, and from the back-
wards triangle inequality, note that

|p(z)| = |
n∑
k=0

ckz
k|

= |z|n|
n∑
k=0

ck
zn−k

|

= |z|n|(
n−1∑
k=0

ck
zn−k

) + cn|

≥ |z|n(|cn| − |
n−1∑
k=0

ck
zn−k

|)

≥ |z|n(|cn| −
n−1∑
k=0

|ck|
|z|n−k

)

≥ |z|n(|cn| −
n−1∑
k=0

|ck|
|z|

)

≥ |z|n(|cn| −
1
|z|

n−1∑
k=0

|ck|).

Set B equal to the constant (2/|cn|)
∑n−1
j=0 |cj |. Then, replacing the 1/|z| in the

preceding calculation by 1/B, we obtain

|p(z)| ≥ m|z|n

for every z for which |z| ≥ B. This proves the first half of part (4).
To get the other half of part (4), suppose again that |z| > 1. We have

|p(z)| ≤
n∑
k=0

|ck||z|k ≤
n∑
k=0

|ck||z|n,

so that we get the other half of part (4) by setting M =
∑n
k=0 |ck|.

Finally, to see part (5), suppose that there does exist a polynomial p of degree n
such that

√
x = p(x) for all x ≥ 0. Then x = (p(x))2 for all x ≥ 0. Now p2 is a

polynomial of degree 2n. By part (2), the two polynomials q(x) = x and (p(x))2

must be the same, implying that they have the same degree. However, the degree
of q is 1, which is odd, and the degree of p2 is 2n, which is even. Hence, we have
arrived at a contradiction.

Exercise 3.2. (a) Let r(z) = p(z)/q(z) and r′(z) = p′(z)/q′(z) be two rational
functions. Suppose r(z) = r′(z) for infinitely many z’s. Prove that r(z) = r′(z) for
all z in the intersection of their domains. Is it true that p = p′ and q = q′?
(b) Let p and q be polynomials of degree n and m respectively, and define a rational
function r by r = p/q. Prove that there exist positive constants C and B such that
|r(z)| < C|z|n−m for all complex numbers z for which |z| > B.
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(c) Define f : [0,∞) → R by f(x) =
√
x. Show that there is no rational function

r such that f(x) = r(x) for all x ≥ 0. That is, the square root function does not
agree with a rational function.
(d) Define the real-valued function r on R by r(x) = 1/(1 + x2). Prove that there
is no polynomial p such that p(x) = r(x) for infinitely many real numbers x.
(e) If f is the real-valued function of a real variable given by f(x) = |x|, show that
f is not a rational function.
HINT: Suppose |x| = p(x)/q(x). Then |x|q(x) = p(x) implying that |x|q(x) is a
polynomial s(x). Now use Theorem 3.1 to conclude that p(x) = xq(x) for all x and
that p(x) = −xq(x) for all x.
(f) Let f be any complex-valued function of a complex variable, and let c1, . . . , cn
be n distinct complex numbers that belong to the domain of f. Show that there
does exist a polynomial p of degree n such that p(cj) = f(cj) for all 1 ≤ j ≤ n.
HINT: Describe p in factored form.
(g) Give examples to show that the maximum and minimum of two polynomials
need not be a polynomial or even a rational function.

Very important is the definition of the composition g ◦ f of two functions f and g.

DEFINITION. Let f : S → T and g : T → U be functions. We define a function
g ◦ f, with domain S and codomain U, by (g ◦ f)(x) = g(f(x)).
If f : S → T, g : T → S, and g ◦ f(x) = x for all x ∈ S, then g is called a left
inverse of f. If f ◦ g(y) = y for all y ∈ T, then g is called a right inverse for f. If
g is both a left inverse and a right inverse, then g is called an inverse for f, f is
called invertible, and we denote g by f−1.

Exercise 3.3. (a) Suppose f : S → T has a left inverse. Prove that f is 1-1.
(b) Suppose f : S → T has a right inverse. Prove that f is onto.
(c) Show that the composition of two polynomials is a polynomial and that the
composition of two rational functions is a rational function.
HINT: If p is a polynomial, show by induction that pn is a polynomial. Now use
Exercise 3.1.
(d) Find formulas for g ◦ f and f ◦ g for the following. What are the domains of
these compositions?

(1) (i) f(x) = 1 + x2 and g(x) = 1/(1 + x)1/2.
(2) (ii) f(x) = x/(x+ 1) and g(x) = x/(1− x).
(3) (iii) f(x) = ax+ b and g(x) = cx+ d.

CONTINUITY

Next, we come to the definition of continuity. Unlike the preceding discussion, which
can be viewed as being related primarily to the algebraic properties of functions,
this one is an analytic notion.

DEFINITION. Let S and T be sets of complex numbers, and let f : S → T.
Then f is said to be continuous at a point c of S if for every positive ε, there exists
a positive δ such that if x ∈ S satisfies |x − c| < δ, then |f(x) − f(c)| < ε. The
function f is called continuous on S if it is continuous at every point c of S.
If the domain S of f consists of real numbers, then the function f is called right
continuous at c if for every ε > 0 there exists a δ > 0 such that |f(x) − f(c)| < ε
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whenever x ∈ S and 0 ≤ x−c < δ, and is called left continuous at c if for every ε > 0
there exists a δ > 0 such that |f(x)−f(c)| < ε whenever x ∈ S and 0 ≥ x−c > −δ.

REMARK. If f is continuous at a point c, then the positive number δ of the
preceding definition is not unique (any smaller number would work as well), but
it does depend both on the number ε and on the point c. Sometimes we will write
δ(ε, c) to make this dependence explicit. Later, we will introduce a notion of uniform
continuity in which δ only depends on the number ε and not on the particular point
c.
The next theorem indicates the interaction between the algebraic properties of
functions and continuity.

THEOREM 3.2. Let S and T be subsets of C, let f and g be functions from S
into T, and suppose that f and g are both continuous at a point c of S. Then

(1) There exists a δ > 0 and a positive number M such that if |y − c| < δ and
y ∈ S then |f(y)| ≤ M. That is, if f is continuous at c, then it is bounded
near c.

(2) f + g is continuous at c.
(3) fg is continuous at c.
(4) |f | is continuous at c.
(5) If g(c) 6= 0, then f/g is continuous at c.
(6) If f is a complex-valued function, and u and v are the real and imaginary

parts of f, then f is continuous at c if and only if u and v are continuous
at c.

PROOF. We prove parts (1) and (5), and leave the remaining parts to the exercise
that follows.
To see part (1), let ε = 1. Then, since f is continuous at c, there exists a δ > 0 such
that if |y−c| < δ and y ∈ S then |f(y)−f(c)| < 1. Since |z−w| ≥ ||z|−|w|| for any
two complex numbers z and w (backwards Triangle Inequality), it then follows that
||f(y)|− |f(c)|| < 1, from which it follows that if |y− c| < δ then |f(y)| < |f(c)|+1.
Hence, setting M = |f(c)|+1, we have that if |y−c| < δ and y ∈ S, then |f(y)| ≤M
as desired.
To prove part (5), we first make use of part 1. Let δ1,M1 and δ2,M2 be chosen so
that if |y − c| < δ1 and y ∈ S then

(3.1) |f(y)| < M1

and if |y − c| < δ2 and y ∈ S then

(3.2). |g(y)| < M2

Next, let ε′ be the positive number |g(c)|/2. Then, there exists a δ′ > 0 such that
if |y − c| < δ′ and y ∈ S then |g(y)− g(c)| < ε′ = |g(c)|/2. It then follows from the
backwards triangle inequality that

(3.3). |g(y)| > ε′ = |g(c)|/2 so that |1/g(y)| < 2/|g(c)|

Now, to finish the proof of part (5), let ε > 0 be given. If |y − c| < min(δ1, δ2, δ′)
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and y ∈ S, then from Inequalities (3.1), (3.2), and (3.3) we obtain

|f(y)
g(y)

− f(c)
g(c)
| = |f(y)g(c)− f(c)g(y)|

|g(y)g(c)|

=
|f(y)g(c)− f(c)g(c) + f(c)g(c)− f(c)g(y)|

|g(y)||g(c)|

≤ |f(y)− f(c)||g(c)|+ |f(c)||g(c)− g(y)|
|g(y)||g(c)|

< (|f(y)− f(c)|M2 +M1|g(c)− g(y)|)× 2
|g(c)|2

.

Finally, using the continuity of both f and g applied to the positive numbers ε1 =
ε/(4M2|g(c)|2) and ε2 = ε/(4M1|g(c)|2), choose δ > 0, with δ < min(δ1, δ2, δ′), and
such that if |y−c| < δ and y ∈ S then |f(y)−f(c)| < ε

4M2/|g(c)|2 and |g(c)−g(y)| <
ε

4M1/|g(c)|2 . Then, if |y − c| < δ and y ∈ S we have that

|f(y)
g(y)

− f(c)
g(c)
| < ε

as desired.

Exercise 3.4. (a) Prove part (2) of the preceding theorem. (It’s an ε/2 argument.)
(b) Prove part (3) of the preceding theorem. (It’s similar to the proof of part (5)
only easier.)
(c) Prove part (4) of the preceding theorem.
(d) Prove part (6) of the preceding theorem.
(e) Suppose S is a subset of R. Verify the above theorem replacing “ continuity”
with left continuity and right continuity.
(f) If S is a subset of R, show that f is continuous at a point c ∈ S if and only if
it is both right continuous and left continuous at c.

THEOREM 3.3. (The composition of continuous functions is continuous.) Let
S, T, and U be subsets of C, and let f : S → T and g : T → U be functions.
Suppose f is continuous at a point c ∈ S and that g is continuous at the point
f(c) ∈ T. Then the composition g ◦ f is continuous at c.

PROOF. Let ε > 0 be given. Because g is continuous at the point f(c), there
exists an α > 0 such that |g(t) − g(f(c))| < ε if |t − f(c)| < α. Now, using this
positive number α, and using the fact that f is continuous at the point c, there
exists a δ > 0 so that |f(s)− f(c)| < α if |s− c| < δ. Therefore, if |s− c| < δ, then
|f(s) − f(c)| < α, and hence |g(f(s)) − g(f(c))| = |g ◦ f(s) − g ◦ f(c)| < ε, which
completes the proof.

Exercise 3.5. (a) If f : C → C is the function defined by f(z) = z, prove that f
is continuous at each point of C.
(b) Use part (a) and Theorem 3.2 to conclude that every rational function is con-
tinuous on its domain.
(c) Prove that a step function h : [a, b] → C is continuous everywhere on [a, b]
except possibly at the points of the partition P that determines h.
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Exercise 3.6. (a) Let S be the set of nonnegative real numbers, and define f :
S → S by f(x) =

√
x. Prove that f is continuous at each point of S.

HINT: For c = 0, use δ = ε2. For c 6= 0, use the identity

√
y −
√
c = (

√
y −
√
c)
√
y +
√
c

√
y +
√
c

=
y − c
√
y +
√
c
≤ y − c√

c
.

(b) If f : C→ R is the function defined by f(z) = |z|, show that f is continuous at
every point of its domain.
Exercise 3.7. Using the previous theorems and exercises, explain why the following
functions f are continuous on their domains. Describe the domains as well.
(a) f(z) = (1− z2)/(1 + z2).
(b) f(z) = |1 + z + z2 + z3 − (1/z)|.
(c) f(z) =

√
1 +

√
1− |z|2.

Exercise 3.8. (a) If c and d are real numbers, show that max(c, d) = (c+ d)/2 +
|c− d|/2.
(b) If f and g are functions from S into R, show that max(f, g) = (f+g)/2+|f−g|/2.
(c) If f and g are real-valued functions that are both continuous at a point c, show
that max(f, g) and min(f, g) are both continuous at c.
Exercise 3.9. Let N be the set of natural numbers, let P be the set of positive
real numbers, and define f : N→ P by f(n) =

√
1 + n. Prove that f is continuous

at each point of N. Show in fact that every function f : N → C is continuous on
this domain N.
HINT: Show that for any ε > 0, the choice of δ = 1 will work.
Exercise 3.10. (Negations)
(a) Negate the statement: “For every ε > 0, |x| < ε.′′

(b) Negate the statement: “For every ε > 0, there exists an x for which |x| < ε.′′

(c) Negate the statement that “ f is continuous at c.′′

The next result establishes an equivalence between the basic ε, δ definition of con-
tinuity and a sequential formulation. In many cases, maybe most, this sequential
version of continuity is easier to work with than the ε, δ version.

THEOREM 3.4. Let f : S → C be a complex-valued function on S, and let c be
a point in S. Then f is continuous at c if and only if the following condition holds:
For every sequence {xn} of elements of S that converges to c, the sequence {f(xn)}
converges to f(c). Or, said a different way, if {xn} converges to c, then {f(xn)}
converges to f(c). And, said yet a third (somewhat less precise) way, the function
f converts convergent sequences to convergent sequences.

PROOF. Suppose first that f is continuous at c, and let {xn} be a sequence of
elements of S that converges to c. Let ε > 0 be given. We must find a natural
number N such that if n ≥ N then |f(xn) − f(c)| < ε. First, choose δ > 0 so
that |f(y) − f(c)| < ε whenever y ∈ S and |y − c| < δ. Now, choose N so that
|xn − c| < δ whenever n ≥ N. Then if n ≥ N, we have that |xn − c| < δ, whence
|f(xn) − f(c)| < ε. This shows that the sequence {f(xn)} converges to f(c), as
desired.
We prove the converse by proving the contrapositive statement; i.e., we will show
that if f is not continuous at c, then there does exist a sequence {xn} that converges
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to c but for which the sequence {f(xn)} does not converge to f(c). Thus, suppose f
is not continuous at c. Then there exists an ε0 > 0 such that for every δ > 0 there
is a y ∈ S such that |y − c| < δ but |f(y) − f(c)| ≥ ε0. To obtain a sequence, we
apply this statement to δ’s of the form δ = 1/n. Hence, for every natural number
n there exists a point xn ∈ S such that |xn − c| < 1/n but |f(xn) − f(c)| ≥ ε0.
Clearly, the sequence {xn} converges to c since |xn − c| < 1/n. On the other hand,
the sequence {f(xn)} cannot be converging to f(c), because |f(xn)−f(c)| is always
≥ ε0.
This completes the proof of the theorem.

CONTINUITY AND TOPOLOGY

Let f : S → T be a function, and let A be a subset of the codomain T. Recall that
f−1(A) denotes the subset of the domain S consisting of all those x ∈ S for which
f(x) ∈ A.
Our original definition of continuity was in terms of ε’s and δ’s. Theorem 3.4
established an equivalent form of continuity, often called “sequential continuity,”
that involves convergence of sequences. The next result shows a connection between
continuity and topology, i.e., open and closed sets.

THEOREM 3.5. (1) Suppose S is a closed subset of C and that f : S → C is
a complex-valued function on S. Then f is continuous on S if and only if f−1(A)
is a closed set whenever A is a closed subset of C. That is, f is continuous on a
closed set S if and only if the inverse image of every closed set is closed.
(2) Suppose U is an open subset of C and that f : U → C is a complex-valued
function on U. Then f is continuous on U if and only if f−1(A) is an open set
whenever A is an open subset of C. That is, f is continuous on an open set U if
and only if the inverse image of every open set is open.

PROOF. Suppose first that f is continuous on a closed set S and that A is a closed
subset of C. We wish to show that f−1(A) is closed. Thus, let {xn} be a sequence of
points in f−1(A) that converges to a point c. Because S is a closed set, we know that
c ∈ S, but in order to see that f−1(A) is closed, we need to show that c ∈ f−1(A).
That is, we need to show that f(c) ∈ A. Now, f(xn) ∈ A for every n, and, because
f is continuous at c, we have by Theorem 3.4 that f(c) = lim f(xn). Hence, f(c) is a
limit point of A, and so f(c) ∈ A because A is a closed set. Therefore, c ∈ f−1(A),
and f−1(A) is closed.
Conversely, still supposing that S is a closed set, suppose f is not continuous on
S, and let c be a point of S at which f fails to be continuous. Then, there exists
an ε > 0 and a sequence {xn} of elements of S such that c = limxn but such that
|f(c) − f(xn)| ≥ ε for all n. (Why? See the proof of Theorem 3.4.) Let A be the
complement of the open disk Bε(f(c)). Then A is a closed subset of C. We have
that f(xn) ∈ A for all n, but f(c) is not in A. So, xn ∈ f−1(A) for all n, but
c = limxn is not in f−1(A). Hence, f−1(A) does not contain all of its limit points,
and so f−1(A) is not closed. Hence, if f is not continuous on S, then there exists a
closed set A such that f−1(A) is not closed. This completes the proof of the second
half of part (1).
Next, suppose U is an open set, and assume that f is continuous on U. Let A be an
open set in C, and let c be an element of f−1(A). In order to prove thatf−1(A) is
open, we need to show that c belongs to the interior of f−1(A). Now, f(c) ∈ A, A
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is open, and so there exists an ε > 0 such that the entire disk Bε(f(c)) ⊆ A. Then,
because f is continuous at the point c, there exists a δ > 0 such that if |x− c| < δ
then |f(x)−f(c)| < ε. In other words, if x ∈ Bδ(c), then f(x) ∈ Bε(f(c)) ⊆ A. This
means that Bδ(c) is contained in f−1(A), and hence c belongs to the interior of
f−1(A). Hence, if f is continuous on an open set U, then f−1(A) is open whenever
A is open. This proves half of part (2).
Finally, still assuming that U is open, suppose f−1(A) is open whenever A is open,
let c be a point of S, and let us prove that f is continuous at c. Thus, let ε > 0
be given, and let A be the open set A = Bε(f(c)). Then, by our assumption,
f−1(A) is an open set. Also, c belongs to this open set f−1(A), and hence c
belongs to the interior of f−1(A). Therefore, there exists a δ > 0 such that the
entire disk bδ(c) ⊆ f−1(A). But this means that if ∈ S satisfies |x − c| < δ, then
x ∈ Bδ(c) ⊆ f−1(A), and so f(x) ∈ A = Bε(f(c)). Therefore, if |x − c| < δ,
then |f(x)− f(c)| < ε, which proves that f is continuous at c, and the theorem is
completely proved.

DEEPER ANALYTIC PROPERTIES OF CONTINUOUS FUNCTIONS

We collect here some theorems that show some of the consequences of continuity.
Some of the theorems apply to functions either of a real variable or of a complex
variable, while others apply only to functions of a real variable. We begin with
what may be the most famous such result, and this one is about functions of a real
variable.

THEOREM 3.6. (Intermediate Value Theorem) If f : [a, b]→ R is a real-valued
function that is continuous at each point of the closed interval [a, b], and if v is
a number (value) between the numbers f(a) and f(b), then there exists a point c
between a and b such that f(c) = v.

PROOF. If v = f(a) or f(b), we are done. Suppose then, without loss of generality,
that f(a) < v < f(b). Let S be the set of all x ∈ [a, b] such that f(x) ≤ v, and note
that S is nonempty and bounded above. (a ∈ S, and b is an upper bound for S.)
Let c = supS. Then there exists a sequence {xn} of elements of S that converges
to c. (See Exercise 2.20.) So, f(c) = lim f(xn) by Theorem 3.4. Hence, f(c) ≤ v.
(Why?)
Now, arguing by contradiction, if f(c) < v, let ε be the positive number v − f(c).
Because f is continuous at c, there must exist a δ > 0 such that |f(y) − f(c)| < ε
whenever |y− c| < δ and y ∈ [a, b]. Since any smaller δ satisfies the same condition,
we may also assume that δ < b−c. Consider y = c+δ/2. Then y ∈ [a, b], |y−c| < δ,
and so |f(y)− f(c)| < ε. Hence f(y) < f(c) + ε = v, which implies that y ∈ S. But,
since c = supS, c must satisfy c ≥ y = c+ δ/2. This is a contradiction, so f(c) = v,
and the theorem is proved.

The Intermediate Value Theorem tells us something qualitative about the range of
a continuous function on an interval [a, b]. It tells us that the range is “connected;”
i.e., if the range contains two points c and d, then the range contains all the points
between c and d. It is difficult to think what the analogous assertion would be for
functions of a complex variable, since “between” doesn’t mean anything for complex
numbers. We will eventually prove something called the Open Mapping Theorem
in Chapter VII that could be regarded as the complex analog of the Intermediate
Value Theorem.



66 III. FUNCTIONS AND CONTINUITY

The next theorem is about functions of either a real or a complex variable.

THEOREM 3.7. Let f : S → C be a continuous function, and let C be a compact
(closed and bounded) subset of S. Then the image f(C) of C is also compact. That
is, the continuous image of a compact set is compact.

PROOF. First, suppose f(C) is not bounded. Thus, let {xn} be a sequence of
elements of C such that, for each n, |f(xn)| > n. By the Bolzano-Weierstrass
Theorem, the sequence {xn} has a convergent subsequence {xnk}. Let x = limxnk .
Then x ∈ C because Cis a closed subset of C. Co, f(x) = lim f(xnk) by Theorem
3.4. But since |f(xnk)| > nk, the sequence {f(xnk)} is not bounded, so cannot be
convergent. Hence, we have arrived at a contradiction, and the set f(C) must be
bounded.
Now, we must show that the image f(C) is closed. Thus, let y be a limit point
of the image f(C) of C, and let y = lim yn where each yn ∈ f(C). For each n,
let xn ∈ C satisfy f(xn) = yn. Again, using the Bolzano-Weierstrass Theorem,
let {xnk} be a convergent subsequence of the bounded sequence {xn}, and write
x = limxnk . Then x ∈ C, since C is closed, and from Theorem 3.4

y = lim f(xn) = lim f(xnk) = f(x),

showing that y ∈ f(C), implying that f(C) is closed.

This theorem tells us something about the range of a continuous function of a real
or complex variable. It says that if a subset of the domain is closed and bounded,
so is the image of that subset.
The next theorem is about continuous real-valued functions of a complex variable,
and it is one of the theorems to remember.

THEOREM 3.8. Let f be a continuous real-valued function on a compact subset
S of C. Then f attains both a maximum and a minimum value on S. That is, there
exist points z1 and z2 in S such that f(z1) ≤ f(z) ≤ f(z2) for all z ∈ S.

PROOF. We prove that f attains a maximum value, leaving the fact that f attains
a minimum value to the exercise that follows. Let M0 be the supremum of the set
of all numbers f(x) for x ∈ S. (How do we know that this supremum exists?) We
will show that there exists an z2 ∈ S such that f(z2) = M0. This will finish the
proof, since we would then have f(z2) = M0 ≥ f(z) for all z ∈ S. Thus, let {yn}
be a sequence of elements in the range of f for which the sequence {yn} converges
to M0. (This is Exercise 2.20 again.) For each n, let xn be an element of S such
that yn = f(xn). Then the sequence {f(xn)} converges to M0. Let {xnk} be a
convergent subsequence of {xn}. (How?) Let z2 = limxnk . Then z2 ∈ S, because S
is closed, and f(z2) = lim f(xnk), because f is continuous. Hence, f(z2) = M0, as
desired.

Exercise 3.11. (a) Prove that the f of the preceding theorem attains a minimum
value on S.
(b) Give an alternate proof of Theorem 3.8 by using Theorem 3.7, and then proving
that a closed and bounded subset of R contains both its supremum and its infimum.
(c) Let S be a compact subset of C, and let c be a point of C that is not in S. Prove
that there is a closest point to c in S. That is, show that there exists a point w ∈ S
such that |w − c| ≤ |z − c| for all points z ∈ S.
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HINT: The function z → |z − c| is continuous on the set S.
Exercise 3.12. Let f : [a, b] → R be a real-valued function that is continuous at
each point of [a, b].
(a) Prove that the range of f is a closed interval [a′, b′]. Show by example that the
four numbers f(a), f(b), a′ and b′ can be distinct.
(b) Suppose f is 1-1. Show that, if c is in the open interval (a, b), then f(c) is in
the open interval (a′, b′).

We introduce next a different kind of continuity called uniform continuity. The
difference between regular continuity and uniform continuity is a bit subtle, and
well worth some thought.

DEFINITION. A function f : S → C is called uniformly continuous on S if for
each positive number ε, there exists a positive number δ such that |f(x)−f(y)| < ε
for all x, y ∈ S satisfying |x− y| < δ.

Basically, the difference between regular continuity and uniform conintuity is that
the same δ works for all points in S.
Here is another theorem worth remembering.

THEOREM 3.9. A continuous complex-valued function on a compact subset S
of C is uniformly continuous.

PROOF. We argue by contradiction. Thus, suppose f is continuous on S but not
uniformly continuous. Then, there exists an ε > 0 for which no positive number δ
satisfies the uniform continuity definition. Therefore, thinking of the δ’s as ranging
through the numbers 1/n, we know that for each positive integer n, there exist two
points xn and yn in S so that

(1) |yn − xn| < 1/n, and
(2) |f(yn)− f(xn)| ≥ ε.

Otherwise, some 1/n would suffice for a δ. Let {xnk} be a convergent subsequence
of {xn} with limit x. By (1) and the triangle inequality, we deduce that x is also the
limit of the corresponding subsequence {ynk} of {yn}. But then f(x) = lim f(xnk) =
lim f(ynk), implying that 0 = lim |f(ynk) − f(xnk)|, which implies that |f(ynk) −
f(xnk)| < ε for all large enough k. But that contradicts (2), and this completes the
proof.

Continuous functions whose domains are not compact sets may or may not be
uniformly continuous, as the next exercise shows.
Exercise 3.13. (a) Let f : (0, 1) → R be defined by f(x) = 1/x. Prove that f is
continuous at each x in its domain but that f is not uniformly continuous there.
HINT: Set ε = 1, and consider the pairs of points xn = 1/n and yn = 1/(n+ 1).
(b) Let f : [1,∞)→ [1,∞) be defined by f(x) =

√
x. Prove that f is not bounded,

but is nevertheless uniformly continuous on its domain.
HINT: Take δ = ε.

THEOREM 3.10. Let f : S → T be a continuous 1-1 function from a compact
(closed and bounded) subset of C onto the (compact) set T. Let g : T → S denote
the inverse function f−1 of f. Then g is continuous. The inverse of a continuous
function, that has a compact domain, is also continuous.

PROOF. We prove that g is continuous by using Theorem 3.5; i.e., we will show
that g−1(A) is closed whenever A is a closed subset of C. But this is easy, since
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g−1(A) = g−1(A∩ S) = f(A∩ S), and this is a closed set by Theorem 3.7, because
A ∩ S is compact. See part (e) of Exercise 2.24.

REMARK. Using the preceding theorem, and the exercise below, we will show
that taking nth roots is a continuous function. that is, the function f defined by
f(x) = x1/n is continuous.
Exercise 3.14. Use the preceding theorem to show the continuity of the following
functions.
(a) Show that if n is an odd positive integer, then there exists a continuous function
g defined on all of R such that g(x) is an nth root of x for all real numbers x. That
is, (g(x))n = x for all real x. (The function f(x) = xn is 1-1 and continuous.)
(b) Show that if n is any positive integer then there exists a unique continuous
function g defined on [0,∞) such that g(x) is an nth root of x for all nonnegative
x.
(c) Let r = p/q be a rational number. Prove that there exists a continuous function
g : [0,∞)→ [0,∞) such that g(x)q = xp for all x ≥ 0; i.e., g(x) = xr for all x ≥ 0.

THEOREM 3.11. Let f be a continuous 1-1 function from the interval [a, b]
onto the interval [c, d]. Then f must be strictly monotonic, i.e., strictly increasing
everywhere or strictly decreasing everywhere.

PROOF. Since f is 1-1, we clearly have that f(a) 6= f(b), and, without loss of
generality, let us assume that c = f(a) < f(b) = d. It will suffice to show that if
α and β belong to the open interval (a, b), and α < β, then f(α) ≤ f(β). (Why
will this suffice?) Suppose by way of contradiction that there exists α < β in
(a, b) for which f(α) > f(β). We use the intermediate value theorem to derive a
contradiction. Consider the four points a < α < β < b. Either f(a) < f(α) or
f(β) < f(b). (Why?) In the first case (f(a) < f(α)), f([a, α]) contains every value
between f(a) and f(α). And, f([α, β]) contains every value between f(α) and f(β).
So, let v be a number such that f(a) < v, f(β) < v, and v < f(α) (why does such
a number v exist?). By the Intermediate Value Theorem, there exists x1 ∈ (a, α)
such that v = f(x1), and there exists an x2 ∈ (α, β) such that v = f(x2). But this
contradicts the hypothesis that f is 1-1, since x1 6= x2. A similar argument leads to
a contradiction in the second case f(β) < f(b). (See the following exercise.) Hence,
there can exist no such α and β, implying that f is strictly increasing on [a, b].

Exercise 3.15. Derive a contradiction from the assumption that f(β) < f(b) in
the preceding proof.

POWER SERIES FUNCTIONS

The class of functions that we know are continuous includes, among others, the
polynomials, the rational functions, and the nth root functions. We can combine
these functions in various ways, e.g., sums, products, quotients, and so on. We also
can combine continuous functions using composition, so that we know that nth
roots of rational functions are also continuous. The set of all functions obtained
in this manner is called the class of “algebraic functions.” Now that we also have
developed a notion of limit, or infinite sum, we can construct other continuous
functions.
We introduce next a new kind of function. It is a natural generalization of a polyno-
mial function. Among these will be the exponential function and the trigonometric
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functions. We begin by discussing functions of a complex varible, although totally
analogous definitions and theorems hold for functions of a real variable.

DEFINITION. Let {an}∞0 be a sequence of real or complex numbers. By the
power series function f(z) =

∑∞
n=0 anz

n we mean the function f : S → C where
the domain S is the set of all z ∈ C for which the infinite series

∑
anz

n converges,
and where f is the rule that assigns to such a z ∈ S the sum of the series.
The numbers {an} defining a power series function are called the coefficients of the
function.
We associate to a power series function f(z) =

∑∞
n=0 anz

n its sequence {SN} of
partial sums. We write

SN (z) =
N∑
n=0

anz
n.

Notice that polynomial functions are very special cases of power series functions.
They are the power series functions for which the coefficients {an} are all 0 beyond
some point. Note also that each partial sum SN for any power series function is
itself a polynomial function of degree less than or equal to N. Moreover, if f is a
power series function, then for each z in its domain we have f(z) = limN SN (z).
Evidently, every power series function is a “limit” of a sequence of polynomials.
Obviously, the domain S ≡ Sf of a power series function f depends on the coeffi-
cients {an} determining the function. Our first goal is to describe this domain.

THEOREM 3.12. Let f be a power series function: f(z) =
∑∞
n=0 anz

n with
domain S. Then:

(1) 0 belongs to S.
(2) If a number t belongs to S, then every number u, for which |u| < |t|, also

belongs to S.
(3) S is a disk of radius r around 0 in C (possibly open, possibly closed, possibly

neither, possibly infinite). That is, S consists of the disk Br(0) = {z : |z| <
r} possibly together with some of the points z for which |z| = r.

(4) The radius r of the disk in part (3) is given by the Cauchy-Hadamard for-
mula:

r =
1

lim sup |an|1/n
,

which we interpret to imply that r = 0 if and only if the limsup on the right
is infinite, and r =∞ if and only if that limsup is 0.

PROOF. Part (1) is clear.
To see part 2, assume that t belongs to S and that |u| < |t|. We wish to show that
the infinites series

∑
anu

n converges. In fact, we will show that
∑
|anun| is conver-

gent, i.e., that
∑
anu

n is absolutely convergent. We are given that the infinite series∑
ant

n converges, which implies that the terms antn tend to 0. Hence, let B be a
number such that |anzn| ≤ B for all n, and set α = |u|/|t|. Then α < 1, and there-
fore the infinite series

∑
Bαn is convergent. Finally, |anun| = |antn|αn ≤ Bαn,

which, by the Comparison Test, implies that
∑
|anun| is convergent, as desired.

Part (3) follows, with just a little thought, from part 2.
To prove part (4), note that lim sup |an|1/n either is finite or it is infinite. assume
first that the sequence {|an|1/n} is not bounded; i.e., that lim sup |an|1/n = ∞.



70 III. FUNCTIONS AND CONTINUITY

Then, given any number p, there are infinitely many terms |an|1/n that are larger
than p. So, for any z 6= 0, there exist infinitely many terms |an|1/n that are larger
than 1/|z|. But then |anzn| > 1 for all such terms. Therefore the infinite series∑
anz

n is not convergent, since lim anz
n is not zero. So no such z is in the domain

S. This shows that if lim sup |an|1/n =∞, then r = 0 = 1/ lim sup |an|1/n.
Now, suppose the sequence {|an|1/n} is bounded, and let L denote its limsup. We
must show that 1/r = L. We will show the following two claims: (a) if 1/|z| > L,
then z ∈ S, and (b) if 1/|z| < L, then z /∈ S. (Why will these two claims complete the
proof?) Thus, suppose that 1/|z| > L. Let β be a number satisfying L < β < 1/|z|,
and let α = β|z|. Then 0 < α < 1. Now there exists a natural number N so that
|an|1/n < β for all n ≥ N, or equivalently |an| ≤ βn for all n ≥ N. (See part (a) of
Exercise 2.17. ) This means that for all n ≥ N we have |anzn| = |an/βn||βz|n ≤ αn.
This implies by the Comparison Test that the power series

∑
anz

n is absolutely
convergent, whence convergent. Hence, z ∈ S, and this proves claim (a) above.
Incidentally, note also that if L = 0, this argument shows that r =∞, as desired.
To verify claim (b), suppose that 1/|z| < L. Then there are infinitely many terms
of the sequence {|an|1/n} that are greater than 1/|z|. (Why?) For each such term,
we would then have |anzn| ≥ 1. This means that the infinite series

∑
anz

n is not
convergent and z /∈ S, which shows claim b.
Hence, in all cases, we have that r = 1/ lim sup |an|1/n, as desired.

DEFINITION. If f is a power series function, the number r of the preceding
theorem is called the radius of convergence of the power series. The disk S of
radius r around 0, denoted by Br(0), is called the disk of convergence.

Exercise 3.16. Compute directly the radii of convergence for the following power
series functions, i.e., without using the Cauchy-Hadamard formula. Then, when
possible, verify that the Cauchy-Hadamard formula agrees with your computation.
(a) f(z) =

∑
zn.

(b) f(z) =
∑
n2zn.

(c) f(z) =
∑

(−1)n(1/(n+ 1))zn.
(d) f(z) =

∑
(1/(n+ 1))z3n+1.

(e) f(z) =
∑∞
n=0 z

n/n!.

Exercise 3.17. (a) Use part (e) of Exercise 3.1 to show that a power series function
p is an even function if and only if its only nonzero coefficients are even ones, i.e.,
the a2k’s. Show also that a power series function is an odd function if and only if
its only nonzero coefficients are odd ones, i.e., the a2k+1’s.
(b) Suppose f(z) =

∑∞
k=0 a2kz

2k is a power series function that is an even function.
Show that

f(iz) =
∞∑
k=0

(−1)ka2kz
2k = fa(z),

where fa is the power series function obtained from f by alternating the signs of
its coefficients. We call this function fa the alternating version of f.
(c) If g(z) =

∑∞
k=0 a2k+1z

2k+1 is a power series function that is an odd function,
show that

g(iz) = i
∞∑
k=0

(−1)ka2k+1z
2k+1 = iga(z),
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where again ga is the power series function obtained from g by alternating the signs
of its coefficients.
(d) If f is any power series function, show that

f(iz) = fe(iz) + fo(iz) = fae (z) + ifao (z),

and hence that fe(iz) = fae (z) and fo(iz) = ipao(z).

The next theorem will not come as a shock, but its proof is not so simple.

THEOREM 3.13. Let f(z) =
∑
anz

n be a power series function with radius of
convergence r. Then f is continuous at each point in the open disk Br(0), i.e., at
each point z for which |z| < r.

PROOF. Let z ∈ Br(0) be given. We must make some auxiliary constructions be-
fore we can show that f is continuous at z. First, choose a z′ such that |z| < |z′| < r.
Next, set bn = |nan|, and define g(z) =

∑
bnz

n. By the Cauchy-Hadamard for-
mula, we see that the power series function g has the same radius of conver-
gence as the power series function f. Indeed, lim sup |bn|1/n = lim supn1/n|an| =
limn1/n lim sup |an|. Therefore, z′ belongs to the domain of g. Let M be a number
such that each partial sum of the series g(z′) =

∑N
n=0 bnz

′n is bounded by M.
Now, let ε > 0 be given, and choose δ to be the minimum of the two positive
numbers ε|z′|/M and |z′| − |z|. We consider any y for which |y − z| < δ. Then
y ∈ Br(0), |y| < |z′|, and

|f(y)− f(z)| = lim |SN (y)− SN (z)|

= lim |
N∑
n=0

an(yn − zn)|

≤ lim
N

N∑
n=0

|an||yn − zn|

= lim
N

N∑
n=1

|an||y − z|
n−1∑
j=0

|yj ||zn−1−j |

≤ lim
N

N∑
n=1

|an||y − z|
n−1∑
j=0

|z′|n−1

≤ lim
N
|y − z|(1/|z′|)

N∑
n=0

n|an||z′|n

≤ |y − z| lim
N

M

|z′|

< δ lim
N

M

|z′|
≤ ε.

This completes the proof.

Exercise 3.18. (a) Let f(z) =
∑∞
n=0 anz

n be a power series function, and let
p(z) =

∑m
k=0 bkz

k be a polynomial function. Prove that f + p and fp are both
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power series functions. Express the coefficients for f + p and fp in terms of the
an’s and bk’s.
(b) Suppose f and g are power series functions. Prove that f + g is a power series
function. What is its radius of convergence? What about cf? What about fg?
What about f/g? What about |f |?
Exercise 3.19. (a) Prove that every polynomial is a power series function with
infinite radius of convergence.
(b) Prove that 1/z and (1/(z − 1)(z + 2)) are not power series functions. (Their
domains aren’t right.)
(c) Define f(z) =

∑∞
n=0(−1)nz2n+1. Prove that the radius of convergence of this

power series function is 1, and that f(z) = z
1+z2 for all z ∈ B1(0). Conclude that

the rational function z/(1 + z2) agrees with a power series function on the disk
B1(0). But, they are not the same function.
HINT: Use the infinite geometric series.

Theorem 3.13 and Exercises 3.18 and 3.19 raise a very interesting and subtle point.
Suppose f(z) =

∑
anz

n is a power series function having finite radius of conver-
gence r > 0. Theorem 3.13 says that f is continuous on the open disk, but it does
not say anything about the continuity of f at points on the boundary of this disk
that are in the domain of f, i,e., at points z0 for which |z0| = r. and

∑
anz

n
0 con-

verges. Suppose g(z) is a continuous function whose domain contains the open disk
Br(0) and also a point z0, and assume that f(z) = g(z) for all z ∈ Br(0). Does
f(z0) have to agree with g(z0)? It’s worth some thought to understand just what
this question means. It amounts to a question of the equality of two different kinds
of limits. f(z0) is the sum of an infinite series, the limit of a sequence of partial
sums, while, because g is continuous at z0, g(z0 = limz→z0 g(z). At the end of this
chapter, we include a theorem of Abel that answers this question.
The next theorem is the analog for power series functions of part (2) of Theorem
3.1 for polynomials. We call it the “Identity Theorem,” but it equally well could
be known as the “Uniqueness of Coefficients Theorem,” for it implies that different
coefficients mean different functions.

THEOREM 3.14. (Identity Theorem) Let f(z) =
∑
anz

n be a power series
function with positive radius of convergence r. Suppose {zk} is a sequence of nonzero
distinct numbers in the domain of f such that:

(1) lim zk = 0.
(2) f(zk) = 0 for all k.

Then f is identically 0 (f(z) ≡ 0 for all z ∈ S). Moreover, each coefficient an of f
equals 0.

PROOF. Arguing by induction on n, let us prove that all the coefficients an are
0. First, since f is continuous at 0, and since lim zk = 0, we have that a0, which
equals f(0), = lim f(zk) = 0.
Assume then that a0 = a1 = . . . = an−1 = 0. Then

f(z) = anz
n + an+1z

n+1 + . . .

= zn
∞∑
j=0

bjz
j ,
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where bj = an+j . If g is the power series function defined by g(z) =
∑
bjz

j , then,
by the Cauchy-Hadamard Formula, we have that the radius of convergence for g is
the same as that for f. (Why does lim sup |bj |1/j = lim sup |ak|1/k?) We have that
f(z) = zng(z) for all z in the common disk of convergence of these functions f and
g. Since, for each k, zk 6= 0 and f(zk) = znk g(zk) = 0, it follows that g(zk) = 0
for every k. Since g is continuous at 0, it then follows as in the argument above
that g(0) = 0. But, g(0) = b0 = an. Hence an = 0, and so by induction all the
coefficients of the power series function f are 0. Clearly this implies that f(z) is
identically 0.

COROLLARY. Suppose f and g are two power series functions, that {zk} is a
sequence of nonzero points that converges to 0, and that f(zk) = g(zk) for all k.
Then f and g have the same coefficients, the same radius of convergence, and hence
f(z) = g(z) for all z in their common domain.

Exercise 3.20. (a) Prove the preceding corollary. (Compare with the proof of
Theorem 3.1.)
(b) Use the corollary, and the power series function g(z) = z, to prove that f(z) =
|z| is not a power series function.
(c) Show that there are power series functions that are not polynomial functions.
(d) Let f(z) =

∑
anz

n be a power series function with infinite radius of conver-
gence, all of whose coefficients are positive. Show that there is no rational function
r = p/q for which f(z) = r(z) for all complex numbers z. Conclude that the collec-
tion of power series functions provides some new functions.
HINT: Use the fact that for any n we have that f(x) > anx

n for all positive x.
Then, by choosing n appropriately, derive a contradiction to the resulting fact that
|p(x)/q(x)| > anx

n for all positive x. See part (b) of Exercise 3.2.

THE ELEMENTARY TRANSCENDENTAL FUNCTIONS

Having introduced a class of new functions (power series functions), we might well
expect that some of these will have interesting and unexpected properties. So,
which sets of coefficients might give us an exotic new function? Unfortunately, at
this point in our development, we haven’t much insight into this question. It is true,
see Exercise 3.16, that most power series functions that we naturally write down
have finite radii of convergence. Such functions may well be new and fascinating,
but as a first example, we would prefer to consider a power series function that is
defined everywhere, i.e., one with an infinite radius of convergence. Again revisiting
Exercise 3.16, let us consider the coefficients an = 1/n!. This may seem a bit ad
hoc, but let’s have a look.

DEFINITION. Define a power series function, denoted by exp, as follows:

exp(z) =
∞∑
n=0

zn

n!
.

We will call this function, with 20-20 hindsight, the exponential function.

What do we know about this function, apart from the fact that it is defined for all
complex numbers? We certainly do not know that it has anything to do with the
function ez; that will come in the next chapter. We do know what the number e
is, but we do not know how to raise that number to a complex exponent.
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All of the exponential function’s coefficients are positive, and so by part (d) of
Exercise 3.20 exp is not a rational function; it really is something new. It is natural
to consider the even and odd parts expe and expo of this new function. And then,
considering the constructions in Exercise 3.17, to introduce the alternating versions
expae and expao of them.

DEFINITION. Define two power series functions cosh (hyperbolic cosine) and
sinh (hyperbolic sine) by

cosh(z) =
exp(z) + exp(−z)

2
and sinh(z) =

exp(z)− exp(z)
2

,

and two other power series functions cos (cosine) and sin (sine) by

cos(z) = cosh(iz) =
exp(iz) + exp(−iz)

2

and

sin(z) = −i sinh(iz) =
exp(iz)− exp(−iz)

2i
.

The five functions just defined are called the elementary transcendental functions,
the sinh and cosh functions are called the basic hyperbolic functions, and the sine
and cosine functions are called the basic trigonometric or circular functions. The
connections between the hyperbolic functions and hyperbolic geometry, and the
connection between the trigonometric functions and circles and triangles, will only
emerge in the next chapter. From the very definitions, however, we can see a
connection between the hyperbolic functions and the trigonometric functions. It’s
something like interchanging the roles of the real and imaginary axes. This is
probably worth some more thought.

Exercise 3.21. (a) Verify the following equations:

exp(z) =
∞∑
n=0

zn

n!

= 1 + z +
z2

2!
+
z3

3!
+ . . .+

zk

k!
+ . . . ,

= cosh(z) + sinh(z).

sin(z) = z − z3

3!
+
z5

5!
− z7

7!
+ . . .+ (−1)k

z2k+1

(2k + 1)!
+ . . .

=
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,

cos(z) = 1− z2

2!
+
z4

4!
− z6

6!
+ . . .+ (−1)k

z2k

(2k)!
+ . . .

=
∞∑
k=0

(−1)k
z2k

(2k)!
,
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sinh(z) =
∞∑
k=0

z2k+1

(2k + 1)!
,

and

cosh(z) =
∞∑
k=0

z2k

(2k)!
.

(These expressions for the elementary transcendental functions are perhaps the
more familiar ones from a calculus course.)
(b) Compute the radii of convergence for the elementary transcendental functions.
HINT: Do not use the Cauchy-Hadamard formula. Just figure out for which z’s the
functions are defined.
(c) Verify that exp(0) = 1, sin(0) = sinh(0) = 0, and cos(0) = cosh(0) = 1.
(d) Prove that all five of the elementary transcendental functions are not rational
functions.
(e) Can you explain why sin2(z)+cos2(z) ≡ 1? What about the “ Addition Formula”

sin(z + w) = sin(z) cos(w) + cos(z) sin(w).

Exercise 3.22. (a) Show that the elementary transcendental functions map real
numbers to real numbers. That is, as functions of a real variable, they are real-
valued functions.
(b) Show that the exponential function exp is not bounded above. Show in fact
that, for each nonnegative integer n, exp(x)/xn is unbounded. Can you show that
exp(x) = ex? What, in fact, does ex mean if x is an irrational or complex number?

At this point, we probably need a little fanfare!

THEOREM 3.14159. (Definition of π) There exists a smallest positive number
x for which sin(x) = 0. We will denote this distinguished number x by the symbol
π.

PROOF. First we observe that sin(1) is positive. Indeed, the infinite series for
sin(1) is alternating. It follows from the alternating series test (Theorem 2.18) that
sin(1) > 1− 1/6 = 5/6.
Next, again using the alternating series test, we observe that sin(4) < 0. Indeed,

sin(4) < 4− 43

3!
+

45

5!
− 47

7!
+

49

9!
≈ −0.4553 < 0.

Hence, by the intermediate value theorem, there must exist a number c between
1 and 4 such that sin(c) = 0. So, there is at least one positive number x such
that sin(x) = 0. However, we must show that there is a smallest positive number
satisfying this equation.
Let A be the set of all x > 0 for which sin(x) = 0. Then A is a nonempty set
of real numbers that is bounded below. Define π = inf A. We need to prove that
sin(π) = 0, and that π > 0. Clearly then it will be the smallest positive number x
for which sin(x) = 0.
By Exercise 2.20, there exists a sequence {xk} of elements of A such that π = limxk.
Since sin is continuous at π, it follows that sin(π) = lim sin(xk) = lim 0 = 0. Finally,
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if π were equal to 0, then by the Identity Theorem, Theorem 3.14, we would have
that sinx = 0 for all x. Since this is clearly not the case, we must have that π > 0.
Hence, π is the smallest (minimum) positive number x for which sin(x) = 0.

As hinted at earlier, the connection between this number π and circles is not at all
evident at the moment. For instance, you probably will not be able to answer the
questions in the next exercise.
Exercise 3.23. (a) Can you see why sin(x + 2π) ≡ sin(x)? That is, is it obvious
that sin is a periodic function?
(b) Can you prove that cos(π) = −1?

REMARK. Defining π to be the smallest positive zero of the sine function may
strike many people as very much “out of the blue.” However, the zeroes of a
function are often important numbers. For instance, a zero of the function x2 − 2
is a square root of 2, and that number we know was exztremely important to the
Greeks as they began the study of what real numbers are. A zero of the function
z2 + 1 is something whose square is -1, i.e., negative. The idea of a square being
negative was implausible at first, but is fundamental now, so that the zero of this
particular function is critical for our understanding to numbers. Very likely, then,
the zeroes of any “new” function will be worth studying. For instance, we will soon
see that, perhaps disappointingly, there are no zeroes for the exponential function:
exp(z) is never 0. Maybe it’s even more interesting then that there are zeroes of
the sine function.
The next theorem establishes some familiar facts about the trigonometric functions.

THEOREM 3.15.

(1) exp(iz) = cos(z) + i sin(z) for all z ∈ C.
(2) Let {zk} be a sequence of complex numbers that converges to 0. Then

lim
sin(zk)
zk

= 0.

(3) Let {zk} be a sequence of complex numbers that converges to 0. Then

lim
1− cos(zk)

z2
k

=
1
2
.

Exercise 3.24. Prove Theorem 3.15.
HINT: For parts (2) and (3), use Theorem 3.13.

ANALYTIC FUNCTIONS AND TAYLOR SERIES

DEFINITION. Let S be a subset of C, let f : S → C be a complex-valued
function, and let c be a point of S. Then f is said to be expandable in a Taylor
series around c with radius of convergence r if there exists an r > 0 such that
Br(c) ⊆ S, and f(z) is given by the formula

f(z) =
∞∑
n=0

an(z − c)n
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for all z ∈ Br(c).
Let S be a subset of R, let f : S → R be a real-valued function on S, and let c be a
point of S. Then f is said to be expandable in a Taylor series around c with radius
of convergence r if there exists an r > 0 such that the interval (c − r, c + r) ⊆ S,
and f(x) is given by the formula

f(x) =
∞∑
n=0

an(x− c)n

for all x ∈ (c− r, c+ r).
Suppose S is an open subset of C. A function f : S → C is called analytic on S if
it is expandable in a Taylor series around every point c of S.
Suppose S is an open subset of R. A function f : S → C is called real analytic on
S if it is expandable in a Taylor series around every point c of S.

THEOREM 3.16. Suppose S is a subset of C, that f : S → C is a complex-valued
function and that c belongs to S. Assume that f is expandable in a Taylor series
around c with radius of convergence r. Then f is continuous at each z ∈ Br(c).
Suppose S is a subset of R, that f : S → R is a real-valued function and that c
belongs to S. Assume that f is expandable in a Taylor series around c with radius
of convergence r. Then f is continuous at each x ∈ (c− r, c+ r).

PROOF. If we let g be the power series function given by g(z) =
∑
anz

n, and T
be the function defined by T (z) = z − c, then f(z) = g(T (z)), and this theorem is
a consequence of Theorems 3.3 and 3.13.

Exercise 3.25. Prove that f(z) = 1/z is analytic on its domain.
HINT: Use r = |c|, and then use the infinite geometric series.

Exercise 3.26. State and prove an Identity Theorem, analogous to Theorem 3.14,
for functions that are expandable in a Taylor series around a point c.

Exercise 3.27. (a) Prove that every polynomial is expandable in a Taylor series
around every point c.
HINT: Use the binomial theorem.
(b) Is the exponential function expandable in a Taylor series around the number
−1?

UNIFORM CONVERGENCE

We introduce now two different notions of the limit of a sequence of functions.
Let S be a set of complex numbers, and let {fn} be a sequence of complex-valued
functions each having domain S.

DEFINITION. We say that the sequence {fn} converges or converges pointwise
to a function f : S → C if for every x ∈ S and every ε > 0 there exists a natural
number N, depending on x and ε, such that for every n ≥ N, |fn(x) − f(x)| < ε.
That is, equivalently, {fn} converges pointwise to f if for every x ∈ S the sequence
{fn(x)} of numbers converges to the number f(x).
We say that the sequence {fn} converges uniformly to a function f if for every
ε > 0, there exists an N, depending only on ε, such that for every n ≥ N and every
x ∈ S, |fn(x)− f(x)| < ε.
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If {un} is a sequence of functions defined on S, we say that the infinite series
∑
un

converges uniformly if the sequence {SN =
∑N
n=0 un} of partial sums converges

uniformly.

These two definitions of convergence of a sequence of functions differ in subtle ways.
Study the word order in the definitions.

Exercise 3.28. (a) Prove that if a sequence {fn} of functions converges uniformly
on a set S to a function f then it converges pointwise to f.
(b) Let S = (0, 1), and for each n define fn(x) = xn. Prove that {fn} converges
pointwise to the zero function, but that {fn} does not converge uniformly to the
zero function. Conclude that pointwise convergence does not imply uniform con-
vergence.
HINT: Suppose the sequence does converge uniformly. Take ε = 1/2, let N be a
corresponding integer, and consider x’s of the form x = 1− h for tiny h’s.
(c) Suppose the sequence {fn} converges uniformly to f on S, and the sequence
{gn} converges uniformly to g on S. Prove that the sequence {fn + gn} converges
uniformly to f + g on S.
(d) Suppose {fn} converges uniformly to f on S, and let c be a constant. Show
that {cfn} converges uniformly to cf on S.
(e) Let S = R, and set fn(x) = x+(1/n). Does {fn} converge uniformly on S? Does
{f2
n} converge uniformly on S? What does this say about the limit of a product of

uniformly convergent sequences versus the product of the limits?
(f) Suppose a and b are nonnegative real numbers and that |a− b| < ε2. Prove that
|
√
a−
√
b| < 2ε.

HINT: Break this into cases, the first one being when both
√
a and

√
b are less than

ε.
(g) Suppose {fn} is a sequence of nonnegative real-valued functions that converges
uniformly to f on S. Use part (f) to prove that the sequence {

√
fn} converges

uniformly to
√
f.

(h) For each positive integer n, define fn on (−1, 1) by fn(x) = |x|1+1/n. Prove that
the sequence {fn} converges uniformly on (−1, 1) to the function f(x) = |x|.
HINT: Let ε > 0 be given. Consider |x|’s that are < ε and |x|’s that are ≥ ε.
For |x| < ε, show that |fn(x) − f(x)| < ε for all n. For |x| ≥ ε, choose N so that
|ε1/n − 1| < ε. How?

Exercise 3.29. Let {fn} be a sequence of functions on a set S, let f be a function
on S, and suppose that for each n we have |f(x)−fn(x)| < 1/n for all x ∈ S. Prove
that the sequence {fn} converges uniformly to f.

We give next four important theorems concerning uniform convergence. The first of
these theorems is frequently used to prove that a given function is continuous. The
theorem asserts that if f is the uniform limit of a sequence of continuous functions,
then f is itself continuous.

THEOREM 3.17. (The uniform limit of continuous functions is continuous.)
Suppose {fn} is a sequence of continuous functions on a set S ⊆ C, and assume
that the sequence {fn} converges uniformly to a function f. Then f is continuous
on S.

PROOF. This proof is an example of what is called by mathematicians a “3ε ar-
gument.”
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Fix an x ∈ S and an ε > 0. We wish to find a δ > 0 such that if y ∈ S and |y−x| < δ
then |f(y)− f(x)| < ε.

We use first the hypothesis that the sequence converges uniformly. Thus, given this
ε > 0, there exists a natural number N such that if n ≥ N then |f(z)−fn(z)| < ε/3
for all z ∈ S. Now, because fN is continuous at x, there exists a δ > 0 such that if
y ∈ S and |y−x| < δ then |fN (y)− fN (x)| < ε/3. So, if y ∈ S and |y−x| < δ, then

|f(y)− f(x)| = |f(y)− fN (y) + fN (y)− fN (x) + fN (x)− f(x)|
≤ |f(y)− fN (y)|+ |fN (y)− fN (x)|+ |fN (x)− f(x)|

<
ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof.

REMARK. Many properties of functions are preserved under the taking of uniform
limits, e.g., continuity, as we have just seen. However, not all properties are pre-
served under this limit process. Differentiability is not, integrability is sometimes,
being a power series function is, and so on. We must be alert to be aware of when
it works and when it does not.

THEOREM 3.18. (Weierstrass M-Test) Let {un} be a sequence of complex-
valued functions defined on a set S ⊆ C. Write SN for the partial sum SN (x) =∑N
n=0 un(x). Suppose that, for each n, there exists an Mn > 0 for which |un(x)| ≤

Mn for all x ∈ S. Then

(1) If
∑
Mn converges, then the sequence {SN} converges uniformly to a func-

tion S. That is, the infinite series
∑
un converges uniformly.

(2) If each function un is continuous, and
∑
Mn converges, then the function

S of part (1) is continuous.

PROOF. Because
∑
Mn is convergent, it follows from the Comparison Test that

for each x ∈ S the infinite series
∑∞
n=0 un(x) is absolutely convergent, hence con-

vergent. Define a function S by S(x) =
∑∞
n=0 un(x) = limSN (x).

To show that {SN} converges uniformly to S, let ε > 0 be given, and choose a
natural number N such that

∑∞
n=N+1Mn < ε. This can be done because

∑
Mn
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converges. Now, for any x ∈ S and any m ≥ N, we have

|S(x)− Sm(x)| = | lim
k→∞

Sk(x)− Sm(x)|

= | lim
k→∞

(Sk(x)− Sm(x))|

= lim
k→∞

|Sk(x)− Sm(x)|

= lim
k→∞

|
k∑

n=m+1

un(x)|

≤ lim
k→∞

k∑
n=m+1

|un(x)|

≤ lim
k→∞

k∑
n=m+1

Mn

=
∞∑

n=m+1

Mn

≤
∞∑
n=N

Mn

< ε.

This proves part (1).
Part (2) now follows from part (1) and Theorem 3.17, since the SN ’s are continuous.

THEOREM 3.19. Let f(z) =
∑∞
n=0 anz

n be a power series function with radius
of convergence r > 0, and let {SN (z)} denote the sequence of partial sums of this
series:

SN (z) =
N∑
n=0

anz
n.

If 0 < r′ < r, then the sequence {SN} converges uniformly to f on the diskBr′(0).

PROOF. Define a power series function g by g(z) =
∑∞
n=0 |an|zn, and note that

the radius of convergence for g is the same as that for f, i.e., r. Choose t so that
r′ < t < r. Then, since t belongs to the disk of convergence of the power series
function g, we know that

∑∞
n=0 |an|tn converges. Set mn = |an|tn, and note that∑

mn converges. Now, for each z ∈ Br′(0), we have that

|anzn| ≤ |an|r′
n ≤ |an|tn = mn,

so that the infinite series
∑
anz

n converges uniformly on Br′(0) by the Weierstrass
M-Test.

Exercise 3.30. Let f(z) =
∑∞
n=0 z

n. Recall that the radius of convergence for f
is 1. Verify that the sequence {SN} of partial sums of this power series function
fails to converge uniformly on the full open disk of convergence B1(0), so that the
requirement that r′ < r is necessary in the preceding theorem.

The next theorem shows that continuous, real-valued functions on closed bounded
intervals are uniform limits of step functions. Step functions have not been men-
tioned lately, since they aren’t continuous functions, but this next theorem will be
crucial for us when we study integration in Chapter V.
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THEOREM 3.20. Let f be a continuous real-valued function on the closed and
bounded interval [a, b]. Then there exists a sequence {hn} of step functions on [a, b]
that converges uniformly to f.

PROOF. We use the fact that a continuous function on a compact set is uniformly
continuous (Theorem 3.9).

For each positive integer n, let δn be a positive number satisfying |f(x)−f(y)| < 1/n
if |x − y| < δn. Such a δn exists by the uniform continuity of f on [a, b]. Let
Pn = {x0 < x1 < . . . < xmn} be a partition of [a, b] for which xi − xi−1 < δn for
all 1 ≤ i ≤ mn. Define a step function hn on [a, b] as follows: If xi−1 ≤ x < xi,
then hn(x) = f(xi−1). This defines hn(x) for every x ∈ [a, b), and we complete the
definition of hn by setting hn(b) = f(b). It follows immediately that hn is a step
function.

Now, we claim that |f(x) − hn(x)| < 1/n for all x ∈ [a, b]. This is clearly the case
for x = b, since f(b) = hn(b) for all n. For any other x, let i be the unique index
such that xi−1 ≤ x < xi. Then

|f(x)− hn(x)| = |f(x)− f(xi−1)| < 1/n

because |x− xi−1| < δn.

So, we have defined a sequence {hn} of step functions, and the sequence {hn}
converges uniformly to f by Exercise 3.29.

We close this chapter with a famous theorem of Abel concerning the behavior of a
power series function on the boundary of its disk of convergence. See the comments
following Exercise 3.19.

THEOREM 3.21. (Abel) Suppose f(z) =
∑∞
n=0 anz

n is a power series function
having finite radius of convergence r > 0, and suppose there exists a point z0 on
the boundary of Br(0) that is in the domain of f ; i.e.,

∑
anz

n
0 converges to f(z0).

Suppose g is a continuous function whose domain contains the open disk Br(0) as
well as the point z0, and assume that f(z) = g(z) for all z in the open disk Br(0).
Then f(z0) must equal g(z0).

PROOF. For simplicity, assume that r = 1 and that z0 = 1. See the exercise that
follows this proof. Write Sn for the partial sum of the an’s: Sn =

∑n
n=0 an. In the

following computation, we will use the Abel Summation Formula in the form

N∑
n=0

anz
n = SNz

N +
N−1∑
n=0

Sn(zn − zn+1).

See Exercise 2.30. Let ε be a positive number. Then, for any 0 < t < 1 and any
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positive integer N, we have

|g(1)− f(1)| = |g(1)− f(t) + f(t)−
N∑
n=0

ant
n +

N∑
n=0

ant
n − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|+ |

N∑
n=0

ant
n − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |SN tN +
N−1∑
n=0

Sn(tn − tn+1)− f(1)|

= |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n

+ |SN tN +
N−1∑
n=0

(Sn − SN )(tn − tn+1) + SN

N−1∑
n=0

(tn − tn+1)− f(1)|

= |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n

+ |
N−1∑
n=0

(Sn − SN )(tn − tn+1) + SN (tN +
N−1∑
n=0

(tn − tn+1))− f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |
N−1∑
n=0

(Sn − SN )(tn − tn+1)|+ |SN − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |
P∑
n=0

(Sn − SN )(tn − tn+1)|+ |
N−1∑
n=P+1

(Sn − SN )(tn − tn+1)|+ |SN − f(1)|

≤ |g(1)− g(t)|+ |f(t)−
N∑
n=0

ant
n|

+ |
P∑
n=0

(Sn − SN )(tn − tn+1)|+
N−1∑
n=P+1

|Sn − SN |(tn − tn+1) + |SN − f(1)|

= t1 + t2 + t3 + t4 + t5.

First, choose an integer M1 so that if P and N are both larger than M1, then
t4 < ε. (The sequence {Sk} is a Cauchy sequence, and

∑
(tk − tk+1 is telescoping.)

Fix such a P > M1. Then choose a δ > 0 so that if 1 > t > 1− δ, then both t1 and
t3 < ε. How?
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Fix such a t. Finally, choose a N, greater than M1, and also large enough so that
both t2 and t5 are less than ε. (How?)
Now, |g(1)−f(1)| < 5ε. Since this is true for every ε > 0, it follows that f(1) = g(1),
and the theorem is proved.

Exercise 3.31. Let f, g, r, and z0 be as in the statement of the preceding theorem.
Define f̂(z) = f(z0z) and ĝ(z) = g(z0z).
(a) Prove that f̂ is a power series function f̂(z) =

∑∞
n=0 bnz

n, with radius of
convergence equal to 1, and such that

∑∞
n=0 bn converges to f̂(1); i.e., 1 is in the

domain of f̂ .
(b) Show that ĝ is a continuous function whose domain contains the open disk
B1(0) and the point z = 1.
(c) Show that, if f̂(1) = ĝ(1), then f(z0) = g(z0). Deduce that the simplification in
the preceding proof is justified.
(d) State and prove the generalization of Abel’s Theorem to a function f that is
expandable in a Taylor series around a point c.
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CHAPTER IV
DIFFERENTIATION, LOCAL BEHAVIOR

eiπ = −1.

In this chapter we will finally see why eiπ is −1. Along the way, we will give careful
proofs of all the standard theorems of Differential Calculus, and in the process we
will discover all the familiar facts about the trigonometric and exponential func-
tions. At this point, we only know their definitions as power series functions. The
fact that sin2 + cos2 = 1 or that ex+y = exey are not at all obvious. In fact, we
haven’t even yet defined what is meant by ex for an arbitrary number x.
The main theorems of this chapter include:

(1) The Chain Rule (Theorem 4.7),
(2) The Mean Value Theorem (Theorem 4.9),
(3) The Inverse Function Theorem (Theorem 4.10),
(4) The Laws of Exponents (Corollary to Theorem 4.11 and Exercise 4.20),

and
(5) Taylor’s Remainder Theorem (Theorem 4.19).

THE LIMIT OF A FUNCTION

The concept of the derivative of a function is what most people think of as the
beginning of calculus. However, before we can even define the derivative we must
introduce a kind of generalization of the notion of continuity. That is, we must
begin with the definition of the limit of a function.

DEFINITION. Let f : S → C be a function, where S ⊆ C, and let c be a limit
point of S that is not necessarily an element of S. We say that f has a limit L as z
approaches c, and we write

lim
z→c

f(z) = L,

if for every ε > 0 there exists a δ > 0 such that if z ∈ S and 0 < |z − c| < δ, then
|f(z)− L| < ε.
If the domain S is unbounded, we say that f has a limit L as z approaches ∞, and
we write

L = lim
z→∞

f(z),

if for every ε > 0 there exists a positive number B such that if z ∈ S and |z| ≥ B,
then |f(z)− L| < ε.
Analogously, if S ⊆ R, we say limx→∞ f(x) = L if for every ε > 0 there exists a
real number B such that if x ∈ S and x ≥ B, then |f(x) − L| < ε. And we say
that limx→−∞ f(x) = L if for every ε > 0 there exists a real number B such that if
x ∈ S and x ≤ B, then |f(x)− L| < ε.
Finally, for f : (a, b)→ C a function of a real variable, and for c ∈ [a, b], we define
the one-sided (left and right) limits of f at c. We say that f has a left hand limit
of L at c, and we write L = limx→c−0 f(x), if for every ε > 0 there exists a δ > 0
such that if x ∈ (a, b) and 0 < c − x < δ then |f(x) − L| < ε. We say that f has
a right hand limit of L at c, and write L = limx→c+0 f(x), if for every ε > 0 there
exists a δ > 0 such that if x ∈ S and 0 < x− c < δ then |f(x)− L| < ε.

The first few results about limits of functions are not surprising. The analogy
between functions having limits and functions being continuous is very close, so that
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for every elementary result about continuous functions there will be a companion
result about limits of functions.

THEOREM 4.1. Let c be a complex number. Let f : S → C and g : S → C be
functions. Assume that both fand g have limits as x approaches c. Then:

(1) There exists a δ > 0 and a positive number M such that if z ∈ S and
0 < |z− c| < δ then |f(z)| < M. That is, if f has a limit as z approaches c,
then f is bounded near c.

(2)
lim
z→c

(f(z) + g(z)) = lim
z→c

f(z) + lim
z→c

g(z).

(3)
lim
z→c

(f(z)g(z)) = lim
z→c

f(z) lim
z→c

g(z).

(4) If limz→c g(z) 6= 0, then

lim
z→c

f(z)
g(z)

=
limz→c f(z)
limz→c g(z)

,

(5) If u and v are the real and imaginary parts of a complex-valued function f,
then u and v have limits as z approaches c if and only if f has a limit as z
approaches c. And,

lim
z→c

f(z) = lim
z→c

u(z) + i lim
z→c

v(z).

Exercise 4.1. (a) Prove Theorem 4.1.
HINT: Compare with Theorem 3.2.
(b) Prove that limx→c f(x) = L if and only if, for every sequence {xn} of elements
of S that converges to c, we have lim f(xn) = L.
HINT: Compare with Theorem 3.4.
(c) Prove the analog of Theorem 4.1 replacing the limit as z approaches c by the
limit as z approaches ∞.
Exercise 4.2. (a) Prove that a function f : S → C is continuous at a point c of S
if and only if limx→c f(x) = f(c).
HINT: Carefully write down both definitions, and observe that they are verbetim
the same.
(b) Let f be a function with domain S, and let c be a limit point of S that is not
in S. Suppose g is a function with domain S ∪ {c}, that f(x) = g(x) for all x ∈ S,
and that g is continuous at c. Prove that limx→c f(x) = g(c).

Exercise 4.3. Prove that the following functions f have the specified limits L at
the given points c.
(a) f(x) = (x3 − 8)/(x2 − 4), c = 2, and L = 3.
(b) f(x) = (x2 + 1)/(x3 + 1), c = 1, and L = 1.
(c) f(x) = (x8 − 1)/(x6 + 1), c = i, and L = −4/3.
(d) f(x) = (sin(x) + cos(x)− exp(x))/(x2) , c = 0, and L = −1.

Exercise 4.4. Define f on the set S of all nonzero real numbers by f(x) = c if
x < 0 and f(x) = d if x > 0. Show that limx→0 f(x) exists if and only if c = d.
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(b) Let f : (a, b) → C be a complex-valued function on the open interval (a, b).
Suppose c is a point of (a, b). Prove that limx→c f(x) exists if and only if the two
one-sided limits limx→c−0 f(x) and limx→c+0 f(x) exist and are equal.
Exercise 4.5. (Change of variable in a limit) Suppose f : S → C is a function,
and that limx→c f(x) = L. Define a function g by g(y) = f(y + c).
(a) What is the domain of g?
(b) Show that 0 is a limit point of the domain of g and that limy→0 g(y) =
limx→c f(x).
(c) Suppose T ⊆ C, that h : T → S, and that limy→d h(y) = c. Prove that

lim
y→d

f(h(y)) = lim
x→c

f(x) = L.

REMARK. When we use the word “ interior” in connection with a set S, it is
obviously important to understand the context; i.e., is S being thought of as a set
of real numbers or as a set of complex numbers. A point c is in the interior of a set
S of complex numbers if the entire disk Bε(c) of radius ε around c is contained in
S. While, a point c belongs to the interior of a set S of real numbers if the entire
interval (c − ε, c + ε) is contained in S. Hence, in the following definition, we will
be careful to distinguish between the cases that f is a function of a real variable or
is a function of a complex variable.

THE DERIVATIVE OF A FUNCTION

Now begins what is ordinarily thought of as the first main subject of calculus, the
derivative.

DEFINITION. Let S be a subset of R, let f : S → C be a complex-valued
function (of a real variable), and let c be an element of the interior of S. We say
that f is differentiable at c if

lim
h→0

f(c+ h)− f(c)
h

exists. (Here, the number h is a real number.)
Analogously, let S be a subset of C, let f : S → C be a complex-valued function
(of a complex variable), and let c be an element of the interior of S. We say that f
is differentiable at c if

lim
h→0

f(c+ h)− f(c)
h

exists. (Here, the number h is a complex number.)
If f : S → C is a function either of a real variable or a complex variable, and if
S′ denotes the subset of S consisting of the points c where f is differentiable, we
define a function f ′ : S′ → C by

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

The function f ′ is called the derivative of f.
A continuous function f : [a, b] → C that is differentiable at each point x ∈ (a, b),
and whose the derivative f ′ is continuous on (a, b), is called a smooth function on
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[a, b]. If there exists a partition {a = x0 < x1 < . . . < xn = b} of [a, b] such that f
is smooth on each subinterval [xi−1, xi], then f is called piecewise smooth on [a, b].
Higher order derivatives are defined inductively. That is, f ′′ is the derivative of f ′,
and so on. We use the symbol f (n) for the nth derivative of f.

REMARK. In the definition of the derivative of a function f, we are interested in
the limit, as h approaches 0, not of f but of the quotient q(h) = f(c+h)−f(c)

h . Notice
that 0 is not in the domain of the function q, but 0 is a limit point of that domain.
This is the reason why we had to make such a big deal above out of the limit of a
function. The function q is often called the differential quotient.

REMARK. As mentioned in Chapter III, we are often interested in solving for un-
knowns that are functions. The most common such problem is to solve a differential
equation. In such a problem, there is an unknown function for which there is some
kind of relationship between it and its derivatives. Differential equations can be
extremely complicated, and many are unsolvable. However, we will have to consider
certain relatively simple ones in this chapter, e.g., f ′ = f, f ′ = −f, and f ′

′ = ±f.
There are various equivalent ways to formulate the definition of differentiable, and
each of these ways has its advantages. The next theorem presents one of those
alternative ways.

THEOREM 4.2. Let c belong to the interior of a set S (either in R or in C),
and let f : S → C be a function. Then the following are equivalent.

(1) f is differentiable at c. That is,

lim
h→0

f(c+ h)− f(c)
h

exists.

(2)

lim
x→c

f(x)− f(c)
x− c

exists.

(3) There exists a number L and a function θ such that the following two con-
ditions hold:

(4.1) f(c+ h)− f(c) = Lh+ θ(h)

and

(4.2) lim
h→0

θ(h)
h

= 0.

In this case, L is unique and equals f ′(c), and the function θ is unique and
equals f(c+ h)− f(c)− f ′(c)h.

PROOF. That (1) and (2) are equivalent follows from Exercise 4.5 by writing x as
c+ h.
Suppose next that f is differentiable at c, and define

L = f ′(c) = lim
h→0

f(c+ h)− f(c)
h

.
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Set
θ(h) = f(c+ h)− f(c)− f ′(c)h.

Then clearly
f(c+ h)− f(c) = Lh+ θ(h),

which is Equation (4.1). Also

|θ(h)
h
| = |f(c+ h)− f(c)− f ′(c)h

h
|

= |f(c+ h)− f(c)
h

− f ′(c)|,

which tends to 0 as h approaches 0 because f is differentiable at c. Hence, we have
established equations (4.1) and (4.2), showing that (1) implies (3).
Finally, suppose there is a number L and a function θ satisfying Equations (4.1)
and (4.2). Then

f(c+ h)− f(c)
h

= L+
θ(h)
h

,

which converges to L as h approaches 0 by Equation (4.2) and part (2) of Theorem
4.1. Hence, L = f ′(c), and so θ(h) = f(c+h)−f(c)−f ′(c)h. Therefore, (3) implies
(1), and the theorem is proved.

REMARK. Though it seems artificial and awkward, Condition (3) of this theorem
is very convenient for many proofs. One should remember it.
Exercise 4.6. (a) What is the domain of the function θ of condition (3) in the
preceding theorem? Is 0 in this domain? Are there any points in the interior of
this domain?
(b) Let L and θ be as in part (3) of the preceding theorem. Prove that, given an
ε > 0 there exists a δ > 0 such that if |h| < δ then |θ(h)| < ε|h|.

THEOREM 4.3. If f : S → C is a function, either of a real variable or a complex
variable, and if f is differentiable at a point c of S, then f is continuous at c. That
is, differentiability implies continuity.

PROOF. We are assuming that limh→0(f(c+h)−f(c))/h = L. Hence, there exists
a positive number δ0 such that | f(c+h)−f(c)

h − L| < 1 if |h| < δ0, implying that
|f(c+ h)− f(c)| < |h|(|L|+ 1)whenever |h| < δ0. So, if ε > 0 is given, let δ be the
minimum of δ0 and ε/(|L|+1). If y ∈ S and |y− c| < δ, then, thinking of y as being
c+ h,

|f(y)− f(c)| = |f(c+ h)− f(c)| < |h|(|L|+ 1) = |y − c|(|L|+ 1) < ε.

(Every y can be written as c+ h for some h, and |y − c| = |h|.)

Exercise 4.7. Define f(z) = |z| for z ∈ C.
(a) Prove that f is continuous at every point of C.
(b) Show that, if f is differentiable at a point c, then f ′(c) = 0.
HINT: Using part (b) of Exercise 4.1, evaluate f ′(c) in the following two ways.

f ′(c) = lim
n→∞

|c+ 1
n | − |c|
1
n
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and

f ′(c) = lim
n→∞

|c+ i
n | − |c|
i
n

.

Show that the only way these two limits can be equal is for them to be 0.
(c) Conclude that f is not differentiable anywhere. Indeed, if it were, what would
the function θ have to be, and why wouldn’t it satisfy Equation 4.2?
(d) Suppose f : R → R is the function of a real variable that is defined by f(x) =
|x|. Show that f is differentiable at every point x 6= 0. How does this result not
contradict part (c)?

The following theorem generalizes the preceding exercise.

THEOREM 4.4. Suppose f : S → R is a real-valued function of a complex
variable, and assume that f is differentiable at a point c ∈ S. Then f ′(c) = 0.
That is, every real-valued, differentiable function f of a complex variable satisfies
f ′(c) = 0 for all c in the domain of f ′.

PROOF. We compute f ′(c) in two ways.

f ′(c) = lim
n

f(c+ 1
n )− f(c)
1
n

is a real number..

f ′(c) = lim
n

f(c+ i
n )− f(c)
i
n

is a purely imaginary number.

Hence, f ′(c) must be 0, as claimed.

REMARK. This theorem may come as a surprise, for it shows that there are very
few real-valued differentiable functions of a complex variable. For this reason,
whenever f : S → R is a real-valued, differentiable function, we will presume that
f is a function of a real variable; i.e., that the domain S ⊆ R.
Evaluating limh→0 q(h) in the two different ways, h real, and h pure imaginary,
led to the proof of the last theorem. It also leads us to make definitions of what
are called “partial derivatives” of real-valued functions whose domains are subsets
of C ≡ R

2. As the next exercise will show, the theory of partial derivatives of
real-valued functions is a much richer theory than that of standard derivatives of
real-valued functions of a single complex variable.

DEFINITION. Let f : S → R be defined on a set S ⊆ C ≡ R2, and let c =
(a, b) = + + bi be a point in the interior of S. We define the partial derivative of f
with respect to x at the point c = (a, b) by the formula

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)
h

,

and the partial derivative of f with respect to y at c = (a, b) by the formula

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)
h

,

whenever these limits exist. (In both these limits, the variable h is a real variable.)(
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It is clear that the partial derivatives of a function arise when we fix either the real
part of the variable or the imaginary part of the variable to be a constant, and then
consider the resulting function of the other (real) variable. We will see in Exercise
4.8 that there is a definite difference between a function’s being differentiable at a
point c = (a + bi) in the complex plane C versus its having partial derivatives at
the point (a, b) in R2.

Exercise 4.8. (a) Suppose f is a complex-valued function of a complex variable,
and assume that both the real and imaginary parts of f are differentiable at a point
c. Show that f is differentiable at c and that f ′(c) = 0.
(b) Let f = u + iv be a complex-valued function of a complex variable that is
differentiable at a point c. Prove that both partial derivatives of u and v exist at
c = (a, b), and in fact that

∂u

∂x
(c) + i

∂v

∂x
(c) = f ′(c)

and
∂u

∂y
(c) + i

∂v

∂y
(c) = if ′(c).

(c) Define a complex-valued function f on C ≡ R2 by f(z) = f(x + iy) = x − iy.
Write f = u+ iv, and show that both partial derivatives of u and v exist at every
point, but that f is not a differentiable function of the complex variable z.

The next theorem is, in part, what we call in calculus the “differentiation formulas.”

THEOREM 4.5. Let f and g be functions (either of a real variable or a complex
variable), which are both differentiable at a point c. Let a and b be complex numbers.
Then:

(1) af + bg is differentiable at c, and (af + bg)′(c) = af ′(c) + bg′(c).
(2) (Product Formula) fg is differentiable at c, and (fg)′(c) = f ′(c)g(c) +

f(c)g′(c).
(3) (Quotient Formula) f/g is differentiable at c (providing that g(c) 6= 0),

and

(
f

g
)′(c) =

g(c)f ′(c)− f(c)g′(c)
(g(c))2

.

(4) If f = u+ iv is a complex-valued function, then f is differentiable at a point
c if and only if u and v are differentiable at c, and f ′(c) = u′(c) + iv′(c).

PROOF. We prove part (2) and leave parts (1), (3), and (4) for the exercises. We
have

lim
h→0

(fg)(c+ h)− (fg)(c)
h

= lim
h→0

f(c+ h)g(c+ h)− f(c)g(c)
h

= lim
h→0

f(c+ h)g(c+ h)− f(c)g(c+ h)
h

+ lim
h→0

f(c)g(c+ h)− f(c)g(c)
h

= lim
h→0

f(c+ h)− f(c)
h

lim
h→0

g(c+ h)

+ lim
h→0

f(c) lim
h→0

g(c+ h)− g(c)
h

= f ′(c)g(c) + f(c)g′(c),
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where we have used Theorems 4.1, 4.2, and 4.3.

Exercise 4.9. (a) Prove parts (1), (3), and (4) of Theorem 4.5.
(b) If f and g are real-valued functions that are differentiable at a point c, what
can be said about the differentiability of max(f, g)?
(c) Let f be a constant function f(z) ≡ k. Prove that f is differentiable everywhere
and that f ′(z) = 0 for all z.
(d) Define a function f by f(z) = z. Prove that f is differentiable everywhere and
that f ′(z) = 1 for all z.
(e) Verify the usual derivative formulas for polynomial functions: If p(z) =

∑n
k=0 akz

k,
then p′(z) =

∑n
k=1 kakz

k−1.

What about power series functions? Are they differentiable functions? If so, are
their derivatives again power series functions? In fact, everything works as ex-
pected.

THEOREM 4.6. Let f be a power series function f(z) =
∑∞
n=0 anz

n having
radius of convergence r > 0. Then f is differentiable at each point z in its open disk
Br(0) of convergence, and

f ′(z) =
∞∑
n=0

nanz
n−1 =

∞∑
n=1

nanz
n−1.

PROOF. The proof will use part (3) of Theorem 4.2. Fix an z with |z| < r. Choose
r′ so that |z| < r′ < r, and write α for r′ − |z|, i.e., |z| + α = r′. Note first
that the infinite series

∑∞
n=0 |an|r′

n converges to a positive number we will call M.
Also, from the Cauchy-Hadamard Formula, we know that the power series function∑
nanw

n has the same radius of convergence as does f, and hence the infinite series∑
nanz

n−1 converges to a number we will denote by L. We define a function θ by
θ(h) = f(z + h)− f(z)− Lh from which it follows immediately that

f(z + h)− f(z) = Lh+ θ(h),

which establishes Equation (4.1). To complete the proof that f is differentiable at
z, it will suffice to establish Equation (4.2), i.e., to show that

lim
h→0

θ(h)
h

= 0.

That is, given ε > 0 we must show that there exists a δ > 0 such that if 0 < |h| < δ
then

|θ(h)/h| = |f(z + h)− f(z)
h

− L| < ε.
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Assuming, without loss of generality, that |h| < α, we have that

|f(z + h)− f(z)
h

− L| = |
∑∞
n=0 an(z + h)n −

∑∞
n=0 anz

n

h
− L|

= |
∑∞
n=0 an(

∑n
k=0

(
n
k

)
zn−khk)−

∑∞
n=0 anz

n

h
− L|

= |
∑∞
n=0 an((

∑n
k=0

(
n
k

)
zn−khk)− zn)

h
− L|

= |
∑∞
n=1 an(

∑n
k=1

(
n
k

)
zn−khk)

h
− L|

= |
∞∑
n=1

an(
n∑
k=1

(
n

k

)
zn−khk−1)−

∞∑
n=1

nanz
n−1|

= |
∞∑
n=1

an(
n∑
k=1

(
n

k

)
zn−khk−1)−

∞∑
n=1

(
n

1

)
anz

n−1|

= |
∞∑
n=2

an(
n∑
k=2

(
n

k

)
zn−khk−1)|

≤
∞∑
n=2

n∑
k=2

|an|
(
n

k

)
|z|n−k|h|k−1

≤ |h|
∞∑
n=2

|an|
n∑
k=2

(
n

k

)
|z|n−k|h|k−2

≤ |h|
∞∑
n=2

|an|
n∑
k=2

(
n

k

)
|z|n−k|α|k−2

≤ |h| 1
α2

∞∑
n=0

|an|
n∑
k=0

(
n

k

)
|z|n−kαk

= |h| 1
α2

∞∑
n=0

|an|(|z|+ α)n

= |h| 1
α2

∞∑
n=0

|an|r′
n

= |h|M
α2
,

so that if δ = ε/Mα2 , then |θ(h)/h| < ε, whenever |h| < δ, as desired.

REMARK. Theorem 4.6 shows that indeed power series functions are differentiable,
and in fact their derivatives can be computed, just like polynomials, by differenti-
ating term by term. This is certainly a result we would have hoped was true, but
the proof is not trivial.
The next theorem, the Chain Rule, is another nontrivial one. It deals with the
differentiability of the composition of two differentiable functions. Again, the result
is what we would have wanted, the composition of two differentiable functions is
itself differentiable, but the argument required to prove it is tricky.
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THEOREM 4.7. (Chain Rule) Let f : S → C be a function, and assume that f
is differentiable at a point c. Suppose g : T → C is a function, that T ⊆ C, that the
number f(c) ∈ T, and that g is differentiable at f(c). Then the composition g ◦ f
is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).

PROOF. Using part (3) of Theorem 4.2, write

g(f(c) + k)− g(f(c)) = Lgk + θg(k)

and
f(c+ h)− f(c) = Lfh+ θf (h).

We know from that theorem that Lg = g′(f(c)) and Lf = f ′(c). And, we also know
that

lim
k→0

θg(k)
k

= 0 and lim
h→0

θf (h)
h

= 0.

Define a function k(h) = f(c + h) − f(c). Then, by Theorem 4.3, we have that
limh→0 k(h) = 0. We will show that g ◦ f is differentiable at c by showing that
there exists a number L and a function θ satisfying the two conditions of part (3)
of Theorem 4.2. Thus, we have that

g ◦ f(c+ h)− g ◦ f(c) = g(f(c+ h))− g(f(c))

= g(f(c) + k(h))− g(f(c))

= Lgk(h) + θg(k(h))

= Lg(f(c+ h)− f(c)) + θg(k(h))

= Lg(Lfh+ θf (h)) + θg(k(h))

= LgLfh+ Lgθf (h) + θg(k(h)).

We define L = Lglf = g′(f(c))f ′(c), and we define the function θ by

θ(h) = Lgθf (h) + θg(k(h)).

By our definitions, we have established Equation (4.1)

g ◦ f(c+ h)− g ◦ f(c) = Lh+ θ(h),

so that it remains to verify Equation (4.2).
We must show that, given ε > 0, there exists a δ > 0 such that if 0 < |h| < δ then
|θ(h)/h| < ε. First, choose an ε′ > 0 so that

(4.3). |Lg|ε′ + |Lf |ε′ + ε′
2
< ε

Next, using part (b) of Exercise 4.6, choose a δ′ > 0 such that if |k| < δ′ then
|θg(k)| < ε′|k|. Finally, choose δ > 0 so that if 0 < |h| < δ, then the following two
inequalities hold. |k(h)| < δ′ and |θf (h)| < ε′|h|. The first can be satisfied because
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f is continuous at c, and the second is a consequence of part (b) of Exercise 4.6.
Then: if 0 < |h| < δ,

|θ(h)| = |Lgθf (h) + θg(k(h))|
≤ |Lg||θf (h)|+ |θg(k(h))|
< |Lg|ε′|h|+ ε′|k(h)|
= |Lg|ε′|h|+ ε′|f(c+ h)− f(c)|
= |Lg|ε′|h|+ ε′|Lfh+ θf (h)|
≤ |Lg|ε′|h|+ ε′|Lf ||h|+ ε′|θf (h)|
< |Lg|ε′|h|+ ε′|Lf ||h|+ ε′ε′|h|

= (|Lg|ε′ + |Lf |ε′ + ε′
2)|h|,

whence
|θ(h)/h| < (|Lg|ε′ + |Lf |ε′ + ε′

2) < ε,

as desired.

Exercise 4.10. (a) Derive the familiar formulas for the derivatives of the elemen-
tary transcendental functions:

exp′ = exp, sin′ = cos, , sinh′ = cosh, cosh′ = sinh and cos′ = − sin .

(b) Define a function f as follows. f(z) = cos2(z) + sin2(z). Use part (a) and the
Chain Rule to show that f ′(z) = 0 for all z ∈ C. Does this imply that cos2(z) +
sin2(z) = 1 for all complex numbers z?
(c) Suppose f is expandable in a Taylor series around the point c : f(z) =

∑∞
n=0 an(z−

c)n for all z ∈ Br(c). Prove that f is differentiable at each point of the open disk
Br(c), and show that

f ′(z) =
∞∑
n=1

nan(z − c)n−1.

HINT: Use Theorem 4.6 and the chain rule.

CONSEQUENCES OF DIFFERENTIABILITY, THE MEAN VALUE THEOREM

DEFINITION. Let f : S → R be a real-valued function of a real variable, and
let c be an element of the interior of S. Then f is said to attain a local maximum
at c if there exists a δ > 0 such that (c − δ, c + δ) ⊆ S and f(c) ≥ f(x) for all
x ∈ (c− δ, c+ δ).
The function f is said to attain a local minimum at c if there exists an interval
(c− δ, c+ δ) ⊆ S such that f(c) ≤ f(x) for all x ∈ (c− δ, c+ δ).

The next theorem should be a familiar result from calculus.

THEOREM 4.8. (First Derivative Test for Extreme Values) Let f : S → R be a
real-valued function of a real variable, and let c ∈ S be a point at which f attains
a local maximum or a local minimum. If f is differentiable at c, then f ′(c) must
be 0.

PROOF. We prove the theorem when f attains a local maximum at c. The proof
for the case when f attains a local minimum is completely analogous.
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Thus, let δ > 0 be such that f(c) ≥ f(x) for all x such that |x−c| < δ. Note that, if
n is sufficiently large, then both c+ 1

n and c− 1
n belong to the interval (c− δ, c+ δ).

We evaluate f ′(c) in two ways. First,

f ′(c) = lim
n

f(c+ 1
n )− f(c)
1
n

≤ 0

because the numerator is always nonpositive and the denominator is always positive.
On the other hand,

f ′(c) = lim
n

f(c− 1
n )− f(c)
−1
n

≥ 0

since both numerator and denominator are nonpositive. Therefore, f ′(c) must be
0, as desired.

Of course we do not need a result like Theorem 4.8 for functions of a complex
variable, since the derivative of every real-valued function of a complex variable
necessarily is 0, independent of whether or not the function attains an extreme
value.

REMARK. As mentioned earlier, the zeroes of a function are often important num-
bers. The preceding theorem shows that the zeroes of the derivative f ′ of a function
f are intimately related to finding the extreme values of the function f. The ze-
roes of f ′ are often called the critical points for f. Part (a) of the next exercise
establishes the familiar procedure from calculus for determining the maximum and
minimum of a continuous real-valued function on a closed interval.
Exercise 4.11. (a) Let f be a continuous real-valued function on a closed interval
[a, b], and assume that f is differentiable at each point x in the open interval (a, b).
Let M be the maximum value of f on this interval, and m be its minimum value on
this interval. Write S for the set of all x ∈ (a, b) for which f ′(x) = 0. Suppose x is
a point of [a, b] for which f(x) is either M or m. Prove that x either is an element
of the set S, or x is one of the endpoints a or b.
(b) Let f be the function defined on [0, 1/2) by f(t) = t/(1− t). Show that f(t) < 1
for all t ∈ [0, 1/2).
(c) Let t ∈ (−1/2, 1/2) be given. Prove that there exists an r < 1, depending on t,
such that |t/(1 + y)| < r for all y between 0 and t.
(d) Let t be a fixed number for which 0 < t < 1. Show that, for all 0 ≤ s ≤ t,
(t− s)/(1 + s) ≤ t.
Probably the most powerful theorem about differentiation is the next one. It is
stated as an equation, but its power is usually as an inequality; i.e., the absolute
value of the left hand side is less than or equal to the absolute value of the right
hand side.

THEOREM 4.9. (Mean Value Theorem) Let f be a real-valued continuous func-
tion on a closed bounded interval [a, b], and assume that f is differentiable at each
point x in the open interval (a, b). Then there exists a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

PROOF. This proof is tricky. Define a function h on [a, b] by

h(x) = x(f(b)− f(a))− f(x)(b− a).
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Clearly, h is continuous on [a, b] and is differentiable at each point x ∈ (a, b). Indeed,

h′(x) = f(b)− f(a)− f ′(x)(b− a).

It follows from this equation that the theorem will be proved if we can show that
there exists a point c ∈ (a, b) for which h′(c) = 0. Note also that

h(a) = a(f(b)− f(a))− f(a)(b− a) = af(b)− bf(a)

and
h(b) = b(f(b)− f(a))− f(b)(b− a) = af(b)− bf(a),

showing that h(a) = h(b).
Let m be the minimum value attained by the continuous function h on the compact
interval [a, b] and let M be the maximum value attained by h on [a, b]. If m = M,
then h is a constant on [a, b] and h′(c) = 0 for all c ∈ (a, b). Hence, the theorem
is true if M = m, and we could use any c ∈ (a, b). If m 6= M, then at least one of
these two extreme values is not equal to h(a). Suppose m 6= h(a). Of course, m is
also not equal to h(b). Let c ∈ [a, b] be such that h(c) = m. Then, in fact, c ∈ (a, b).
By Theorem 4.8, h′(c) = 0.
We have then that in every case there exists a point c ∈ (a, b) for which h′(c) = 0.
This completes the proof.

REMARK. The Mean Value Theorem is a theorem about real-valued functions
of a real variable, and we will see later that it fails for complex-valued functions
of a complex variable. (See part (f) of Exercise 4.16.) In fact, it can fail for
a complex-valued function of a real variable. Indeed, if f(x) = u(x) + iv(x) is
a continuous complex-valued function on the interval [a, b], and differentiable on
the open interval (a, b), then the Mean Value Theorem certainly holds for the two
real-valued functions u and v, so that we would have

f(b)− f(a) = u(b)− u(a) + i(v(b)− v(a)) = u′(c1)(b− a) + iv′(c2)(b− a),

which is not f ′(c)(b − a) unless we can be sure that the two points c1 and c2 can
be chosen to be equal. This simply is not always possible. Look at the function
f(x) = x2 + ix3 on the interval [0, 1].
On the other hand, if f is a real-valued function of a complex variable (two real
variables), then a generalized version of the Mean Value Theorem does hold. See
part (c) of Exercise 4.35.
One of the first applications of the Mean Value Theorem is to show that a function
whose derivative is identically 0 is necessarily a constant function. This seemingly
obvious fact is just not obvious. The next exercise shows that this result holds
for complex-valued functions of a complex variable, even though the Mean Value
Theorem does not.
Exercise 4.12. (a) Suppose f is a continuous real-valued function on (a, b) and
that f ′(x) = 0 for all x ∈ (a, b). Prove that f is a constant function on (a, b).
HINT: Show that f(x) = f(a) for all x ∈ [a, b] by using the Mean Value Theorem
applied to the interval [a, x].
(b) Let f be a complex-valued function of a real variable. Suppose f is differentiable
at each point x in an open interval (a, b), and assume that f ′(x) = 0 for all x ∈ (a, b).
Prove that f is a constant function.
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HINT: Use the real and imaginary parts of f.
(c) Let f be a complex-valued function of a complex variable, and suppose that f
is differentiable on a disk Br(c) ⊆ C, and that f ′(z) = 0 for all z ∈ Br(c). Prove
that f(z) is constant on Br(c).
HINT: Let z be an arbitrary point in Br(c), and define a function h : [0, 1]→ C by
h(t) = f((1− t)c+ tz). Apply part (b) to h.

The next exercise establishes, at last, two important identities.

Exercise 4.13.) (cos2 + sin2 = 1 and exp(iπ = −1.)
(a) Prove that cos2(z) + sin2(z) = 1 for all complex numbers z.
(b) Prove that cos(π) = −1.
HINT: We know from part (a) that cos(π) = ±1. Using the Mean Value Theorem for
the cosine function on the interval [0, π], derive a contradiction from the assumption
that cos(π) = 1.
(c) Prove that exp(iπ) = −1.
HINT: Recall that exp(iz) = cos(z)+ i sin(z) for all complex z. (Note that this does
not yet tell us that eiπ = −1. We do not yet know that exp(z) = ez.)
(d) Prove that cosh2 z − sinh2 z = 1 for all complex numbers z.
(e) Compute the derivatives of the tangent and hyperbolic tangent functions tan =
sin / cos and tanh = sinh / cosh . Show in fact that

tan′ =
1

cos2
and tanh′ =

1
cosh2 .

Here are two more elementary consequences of the Mean Value Theorem.

Exercise 4.14. (a) Suppose f and g are two complex-valued functions of a real (or
complex) variable, and suppose that f ′(x) = g′(x) for all x ∈ (a, b) (or x ∈ Br(c).)
Prove that there exists a constant k such that f(x) = g(x) + k for all x ∈ (a, b) (or
x ∈ Br(c).)
(b) Suppose f ′(z) = c exp(az) for all z, where c and a are complex constants with
a 6= 0. Prove that there exists a constant c′ such that f(z) = c

a exp(az) + c′. What
if a = 0?
(c) (A generalization of part (a)) Suppose f and g are continuous real-valued func-
tions on the closed interval [a, b], and suppose there exists a partition {x0 < x1 <
. . . < xn} of [a, b] such that both f and g are differentiable on each subinterval
(xi−1, xi). (That is, we do not assume that f and g are differentiable at the end-
points.) Suppose that f ′(x) = g′(x) for every x in each open subinterval (xi−1, xi).
Prove that there exists a constant k such that f(x) = g(x) + k for all x ∈ [a, b].
HINT: Use part (a) to conclude that f = g+h where h is a step function, and then
observe that h must be continuous and hence a constant.
(d) Suppose f is a differentiable real-valued function on (a, b) and assume that
f ′(x) 6= 0 for all x ∈ (a, b). Prove that f is 1-1 on (a, b).

Exercise 4.15. Let f : [a, b] → R be a function that is continuous on its domain
[a, b] and differentiable on (a, b). (We do not suppose that f ′ is continuous on (a, b).)
(a) Prove that f is nondecreasing on [a, b] if and only if f ′(x) ≥ 0 for all x ∈ (a, b).
Show also that f is nonincreasing on [a, b] if and only if f ′(x) ≤ 0 for all x ∈ (a, b).
(b) Conclude that, if f ′ takes on both positive and negative values on (a, b), then
f is not 1-1. (See the proof of Theorem 3.11.)
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(c) Show that, if f ′ takes on both positive and negative values on (a, b), then there
must exist a point c ∈ (a, b) for which f ′(c) = 0. (If f ′ were continuous, this would
follow from the Intermediate Value Theorem. But, we are not assuming here that
f ′ is continuous.)
(d) Prove the Intermediate Value Theorem for Derivatives: Suppose f is continuous
on the closed bounded interval [a, b] and differentiable on the open interval (a, b).
If f ′ attains two distinct values v1 = f ′(x1) < v2 = f ′(x2), then f ′ attains every
value v between v1 and v2.
HINT: Suppose v is a value between v1 and v2. Define a function g on [a, b] by
g(x) = f(x)− vx. Now apply part (c) to g.

Here is another perfectly reasonable and expected theorem, but one whose proof is
tough.

THEOREM 4.10. (Inverse Function Theorem) Suppose f : (a, b)→ R is a func-
tion that is continuous and 1-1 from (a, b) onto the interval (a′, b′). Assume that f
is differentiable at a point c ∈ (a, b) and that f ′(c) 6= 0. Then f−1 is differentiable
at the point f(c), and

f−1′(f(c)) =
1

f ′(c)
.

PROOF. The formula f−1′(f(c)) = 1/f ′(c) is no surprise. This follows directly
from the Chain Rule. For, if f−1(f(x)) = x, and f and f−1 are both differentiable,
then f−1′(f(c))f ′(c) = 1, which gives the formula. The difficulty with this theorem
is in proving that the inverse function f−1 of f is differentiable at f(c). In fact, the
first thing to check is that the point f(c) belongs to the interior of the domain of
f−1, for that is essential if f−1 is to be differentiable there, and here is where the
hypothesis that f is a real-valued function of a real variable is important. According
to Exercise 3.12, the 1-1 continuous function f maps [a, b] onto an interval [a′, b′],
and f(c) is in the open interval (a′, b′), i.e., is in the interior of the domain of f−1.
According to part (2) of Theorem 4.2, we can prove that f−1 is differentiable at
f(c) by showing that

lim
x→f(c)

f−1(x)− f−1(f(c))
x− f(c)

=
1

f ′(c)
.

That is, we need to show that, given an ε > 0, there exists a δ > 0 such that if
0 < |x− f(c)| < δ then

|f
−1(x)− f−1(f(c))

x− f(c)
− 1
f ′(c)

| < ε.

First of all, because the function 1/q is continuous at the point f ′(c), there exists
an ε′ > 0 such that if |q − f ′(c)| < ε′, then

(4.4). |1
q
− 1
f ′(c)

| < ε

Next, because f is differentiable at c, there exists a δ′ > 0 such that if 0 < |y−c| < δ′

then

(4.5). |f(y)− f(c)
y − c

− f ′(c)| < ε′
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Now, by Theorem 3.10, f−1 is continuous at the point f(c), and therefore there
exists a δ > 0 such that if |x− f(c)| < δ then

(4.6). |f−1(x)− f−1(f(c)| < δ′

So, if |x− f(c)| < δ, then

|f−1(x)− c| = |f−1(x)− f−1(f(c))| < δ′.

But then, by Inequality 4.5,

|f(f−1(x))− f(c)
f−1(x)− c

− f ′(c)| < ε′,

from which it follows, using Inequality 4.4, that

|f
−1(x)− f−1(f(c))

x− f(c)
− 1
f ′(c)

| < ε,

as desired.

REMARK. A result very like Theorem 4.10 is actually true for complex-valued
functions of a complex variable. We will have to show that if c is in the interior of
the domain S of a one-to-one, continuously differentiable, complex-valued function
f of a complex variable, then f(c) is in the interior of the domain f(S) of f−1. But,
in the complex variable case, this requires a somewhat more difficult argument.
Once that fact is established, the proof that f−1 is differentiable at f(c) will be
the same for complex-valued functions of complex variables as it is here for real-
valued functions of a real variable. Though the proof of Theorem 4.10 is reasonably
complicated for real-valued functions of a real variable, the corresponding result for
complex functions is much more deep, and that proof will have to be postponed to
a later chapter. See Theorem 7.10.

THE EXPONENTIAL AND LOGARITHM FUNCTIONS

We derive next the elementary properties of the exponential and logarithmic func-
tions. Of course, by “exponential function,” we mean the power series function
exp . And, as yet, we have not even defined a logarithm function.

Exercise 4.16. (a) Define a complex-valued function f : C → C by f(z) =
exp(z) exp(−z). Prove that f(z) = 1 for all z ∈ C.
(b) Conclude from part (a) that the exponential function is never 0, and that
exp(−z) = 1/ exp(z).
(c) Show that the exponential function is always positive on R, and
that limx→−∞ exp(x) = 0.
(d) Prove that exp is continuous and 1-1 from (−∞,∞) onto (0,∞).
(e) Show that the exponential function is not 1-1 on C.
(f) Use parts b and e to show that the Mean Value Theorem is not in any way valid
for complex-valued functions of a complex variable.

Using part (d) of the preceding exercise, we make the following important definition.
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DEFINITION. We call the inverse exp−1 of the restriction of the exponential
function to R the (natural) logarithm function, and we denote this function by ln .

The properties of the exponential and logarithm functions are strongly tied to the
simplest kinds of differential equations. The connection is suggested by the fact, we
have already observed, that exp′ = exp . The next theorem, corollary, and exercises
make these remarks more precise.

THEOREM 4.11. Suppose f : C → C is differentiable everywhere and satisfies
the differential equation f ′ = af, where a is a complex number. Then f(z) =
c exp(az), where c = f(0).

PROOF. Consider the function h(z) = f(z)/ exp(az). Using the Quotient Formula,
we have that

h′(z) =
exp(az)f ′(z)− a exp(az)f(z)

[exp(az)]2
=

exp(az)(f ′(z)− af(z))
[exp(z)]2

= 0.

Hence, there exists a complex number c such that h(z) = c for all z. Therefore,
f(z) = c exp(az) for all z. Setting z = 0 gives f(0) = c, as desired.

COROLLARY. (Law of Exponents) For all complex numbers z and w, exp(z +
w) = exp(z) exp(w).

PROOF OF THE COROLLARY. Fix w, define f(z) = exp(z +w), and apply the
preceding theorem. We have f ′(z) = exp(z + w) = f(z), so we get

exp(z + w) = f(z) = f(0) exp(z) = exp(w) exp(z).

Exercise 4.17. (a) If n is a positive integer and z is any complex number, show
that exp(nz) = (exp(z))n.
(b) If r is a rational number and x is any real number, show that exp(rx) =
(exp(x))r.

Exercise 4.18. (a) Show that ln is continuous and 1-1 from (0,∞) onto R.
(b) Prove that the logarithm function ln is differentiable at each point y ∈ (0,∞)
and that ln′(y) = 1/y.
HINT: Write y = exp(c) and use Theorem 4.10.
(c) Derive the first law of logarithms: ln(xy) = ln(x) + ln(y).
(d) Derive the second law of logarithms: That is, if r is a rational number and x is
a positive real number, show that ln(xr) = r ln(x).

We are about to make the connection between the number e and the exponential
function. The next theorem is the first step.

THEOREM 4.12. ln(1) = 0 and ln(e) = 1.

PROOF. If we write 1 = exp(t), then t = ln(1). But exp(0) = 1, so that ln(1) = 0,
which establishes the first assertion.
Recall that

e = lim
n

(1 +
1
n

)n.
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Therefore,

ln(e) = ln(lim
n

(1 +
1
n

)n)

= lim
n

ln((1 +
1
n

)n)

= lim
n
n ln(1 +

1
n

)

= lim
n

ln(1 + 1
n )

1
n

= lim
n

ln(1 + 1
n )− ln(1)
1
n

= ln′(1)

= 1/1

= 1.

This establishes the second assertion of the theorem.

Exercise 4.19. (a) Prove that

e =
∞∑
n=0

1
n!
.

HINT: Use the fact that the logarithm function is 1-1.
(b) For r a rational number, show that exp(r) = er.
(c) If a is a positive number and r = p/q is a rational number, show that

ar = exp(r ln(a)).

(d) Prove that e is irrational.
HINT: Let pn/qn be the nth partial sum of the series in part (a). Show that qn ≤ n!,
and that lim qn(e− pn/qn) = 0. Then use Theorem 2.19.

We have finally reached a point in our development where we can make sense of rais-
ing any positive number to an arbitrary complex exponent. Of course this includes
raising positive numbers to irrational powers. We make our general definition based
on part (c) of the preceding exercise.

DEFINITION. For a a positive real number and z an arbitrary complex number,
define az by

az = exp(z ln(a)).

REMARK. The point is that our old understanding of what ar means, where a > 0
and r is a rational number, coincides with the function exp(r ln(a)). So, this new
definition of az coincides and is consistent with our old definition. And, it now
allows us to raies a positive number a to an arbitrary complex exponent.

REMARK. Let the bugles sound!! Now, having made all the appropriate definitions
and derived all the relevant theorems, we can finally prove that eiπ = −1. From
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the definition above, we see that if a = e, then we have ez = exp(z). Then, from
part (c) of Exercise 4.13, we have what we want:

eiπ = −1.

Exercise 4.20. (a) Prove that, for all complex numbers z and w, ez+w = ezew.
(b) If x is a real number and z is any complex number, show that

(ex)z = exz.

(c) Let a be a fixed positive number, and define a function f : C→ C by f(z) = az.
Show that f is differentiable at every z ∈ C and that f ′(z) = ln(a)az.
(d) Prove the general laws of exponents: If a and b are positive real numbers and
z and w are complex numbers,

az+w = azaw,

azbz = (ab)z,

and, if x is real,
axw = (ax)w.

(e) If y is a real number, show that |eiy| = 1. If z = x + iy is a complex number,
show that |ez| = ex.
(f) Let α = a + bi be a complex number, and define a function f : (0,∞) → C by
f(x) = xα = eα ln(x). Prove that f is differentiable at each point x of (0,∞) and
that f ′(x) = αxα−1.
(g) Let α = a+ bi be as in part (f). For x > 0, show that |xα| = xa.

THE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

The laws of exponents and the algebraic connections between the exponential func-
tion and the trigonometric and hyperbolic functions, give the following “addition
formulas:”

THEOREM 4.13. The following identities hold for all complex numbers z and
w.

sin(z + w) = sin(z) cos(w) + cos(z) sin(w).

cos(z + w) = cos(z) cos(w)− sin(z) sin(w).

sinh(z + w) = sinh(z) cosh(w) + cosh(z) sinh(w).

cosh(z + w) = cosh(z) cosh(w) + sinh(z) sinh(w).

PROOF. We derive the first formula and leave the others to an exercise.
First, for any two real numbers x and y, we have

cos(x+ y) + i sin(x+ y) = ei(x+y)

= eixeiy

= (cosx+ i sinx)× (cos y + i sin y)

= cosx cos y − sinx sin y + i(cosx sin y + sinx cos y),
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which, equating real and imaginary parts, gives that

cos(x+ y) = cosx cos y − sinx sin y

and
sin(x+ y) = sinx cos y + cosx sin y.

The second of these equations is exactly what we want, but this calculation only
shows that it holds for real numbers x and y. We can use the Identity Theorem to
show that in fact this formula holds for all complex numbers z and w. Thus, fix a
real number y. Let f(z) = sin z cos y + cos z sin y, and let

g(z) = sin(z + y) =
1
2i

(ei(z+y) − e−i(z+y) =
1
2i

(eizeiy − e−ize−iy).

Then both f and g are power series functions of the variable z. Furthermore, by
the previous calculation, f(1/k) = g(1/k) for all positive integers k. Hence, by the
Identity Theorem, f(z) = g(z) for all complex z. Hence we have the formula we
want for all complex numbers z and all real numbers y.
To finish the proof, we do the same trick one more time. Fix a complex number z.
Let f(w) = sin z cosw + cos z sinw, and let

g(w) = sin(z + w) =
1
2i

(ei(z+w) − e−i(z+w) =
1
2i

(eizeiw − e−ize−iw).

Again, both f and g are power series functions of the variable w, and they agree
on the sequence {1/k}. Hence they agree everywhere, and this completes the proof
of the first addition formula.

Exercise 4.21. (a) Derive the remaining three addition formulas of the preceding
theorem.
(b) From the addition formulas, derive the two “half angle” formulas for the trigono-
metric functions:

sin2(z) =
1− cos(2z)

2
,

and

cos2(z) =
1 + cos(2z)

2
.

THEOREM 4.14. The trigonometric functions sin and cos are periodic with pe-
riod 2π; i.e., sin(z+ 2π) = sin(z) and cos(z+ 2π) = cos(z) for all complex numbers
z.

PROOF. We have from the preceding exercise that sin(z + 2π) = sin(z) cos(2π) +
cos(z) sin(2π), so that the periodicity assertion for the sine function will follow if
we show that cos(2π) = 1 and sin(2π) = 0. From part (b) of the preceding exercise,
we have that

0 = sin2(π) =
1− cos(2π)

2

which shows that cos(2π) = 1. Since cos2 + sin2 = 1, it then follows that sin(2π) =
0.
The periodicity of the cosine function is proved similarly.
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Exercise 4.22. (a) Prove that the hyperbolic functions sinh and cosh are periodic.
What is the period?
(b) Prove that the hyperbolic cosine cosh(x) is never 0 for x a real number, that
the hyperbolic tangent tanh(x) = sinh(x)/ cosh(x) is bounded and increasing from
R onto (−1, 1), and that the inverse hyperbolic tangent has derivative given by
tanh−1′(y) = 1/(1− y2).
(c) Verify that for all y ∈ (−1, 1)

tanh−1(y) = ln(
√

1 + y

1− y
).

Exercise 4.23. (Polar coordinates) Let z be a nonzero complex number. Prove
that there exists a unique real number 0 ≤ θ < 2π such that z = reiθ, where r = |z|.
HINT: If z = a+ bi, then z = r(ar + b

r i. Observe that −1 ≤ a
r ≤ 1, −1 ≤ b

r ≤ 1, and
(ar )2 + ( br )2 = 1. Show that there exists a unique 0 ≤ θ < 2π such that a

r = cos θ
and b

r = sin θ.

L’Hopital’s Rule

Many limits of certain combinations of functions are difficult to evaluate because
they lead to what’s known as “indeterminate forms.” These are expressions of the
form 0/0, ∞/∞, 00, ∞ −∞, 1∞, and the like. They are precisely combinations
of functions that are not covered by our limit theorems. See Theorem 4.1. The
very definition of the derivative itself is such a case: limh→0(f(c+ h)− f(c)) = 0,
limh→0 h = 0, and we are interested in the limit of the quotient of these two
functions, which would lead us to the indeterminate form 0/0. The definition of the
number e is another example: lim(1 + 1/n) = 1, limn =∞, and we are interested
in the limit of (1 + 1/n)n, which leads to the indeterminate form 1∞. L’Hopital’s
Rule, Theorem 4.16 below, is our strongest tool for handling such indeterminate
forms.
To begin with, here is a useful generalization of the Mean Value Theorem.

THEOREM 4.15. (Cauchy Mean Value Theorem) Let f and g be continuous
real-valued functions on a closed interval [a, b], suppose g(a) 6= g(b), and assume
that both f and g are differentiable on the open interval (a, b). Then there exists a
point c ∈ (a, b) such that

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

.

Exercise 4.24. Prove the preceding theorem.
HINT: Define an auxiliary function h as was done in the proof of the original Mean
Value Theorem.

The following theorem and exercise comprise what is called L’Hopital’s Rule.

THEOREM 4.16. Suppose f and g are differentiable real-valued functions on the
bounded open interval (a, b) and assume that

lim
x→a+0

f ′(x)
g′(x)

= L,
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where L is a real number. (Implicit in this hypothesis is that g′(x) 6= 0 for x in
some interval (a, a+ α).) Suppose further that either

lim
x→a+0

f(x) = lim
x→a+0

g(x) = 0

or
lim

x→a+0
f(x) = lim

x→a+0
g(x) =∞.

then

lim
x→a+0

f(x)
g(x)

= L.

PROOF. Suppose first that

lim
x→a+0

f(x) = lim
x→a+0

g(x) = 0.

Observe first that, because g′(x) 6= 0 for all x in some interval (a, a + α), g′(x) is
either always positive or always negative on that interval. (This follows from part
(d) of Exercise 4.15.) Therefore the function g must be strictly monotonic on the
interval (a, a+ α). Hence, since limx→a+0 g(x) = 0, we must have that g(x) 6= 0 on
the interval (a, a+ α).
Now, given an ε > 0, choose a positive δ < α such that if a < c < a + δ then
| f
′(c)
g′(c) − L| < ε. Then, for every natural number n for which 1/n < δ, and every
a < x < a + δ, we have by the Cauchy Mean Value Theorem that there exists a
point c between a+ 1/n and x such that

|f(x)− f(a+ 1/n)
g(x)− g(a+ 1/n)

− L| = |f
′(c)
g′(c)

− L| < ε.

Therefore, taking the limit as n approaches ∞, we obtain

|f(x)
g(x)

− L| = lim
n→∞

|f(x)− f(a+ 1/n)
g(x)− g(a+ 1/n)

− L| ≤ ε

for all x for which a < x < a+ δ. This proves the theorem in this first case.
Next, suppose that

lim
x→a+0

f(x) = lim
x→a+0

g(x) =∞.

This part of the theorem is a bit more complicated to prove. First, choose a positive
α so that f(x) and g(x) are both positive on the interval (a, a+α). This is possible
because both functions are tending to infinity as x approaches a. Now, given an
ε > 0, choose a positive number β < α such that

|f
′(c)
g′(c)

− L| < ε

2

for all a < c < a + β. We express this absolute value inequality as the following
pair of ordinary inequalities:

L− ε

2
<
f ′(c)
g′(c)

< L+
ε

2
.
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Set y = a+ β. Using the Cauchy Mean Value Theorem, and the preceding inequal-
ities, we have that for all a < x < y

L− ε

2
<
f(x)− f(y)
g(x)− g(y)

< L+
ε

2
,

implying that

(L− ε

2
)(g(x)− g(y)) + f(y) < f(x) < (L+

ε

2
)(g(x)− g(y)) + f(y).

Dividing through by g(x) and simplifying we obtain

L− ε

2
−

(L− ε
2 )g(y)

g(x)
+
f(y)
g(x)

<
f(x)
g(x)

< L+
ε

2
−

(L+ ε
2 )g(y)

g(x)
+
f(y)
g(x)

.

Finally, using the hypothesis that limx→a+0 g(x) =∞, and the fact that L, ε, g(y),
and f(y) are all constants, choose a δ > 0, with δ < β, such that if a < x < a+ δ,
then

| −
(L− ε

2 )g(y)
g(x)

+
f(y)
g(x)

| < ε

2

and

| −
(L+ ε

2 )g(y)
g(x)

+
f(y)
g(x)

| < ε

2
.

Then, for all a < x < a+ δ, we would have

L− ε < f(x)
g(x)

< L+ ε,

implying that

|f(x)
g(x)

− L| < ε,

and the theorem is proved.

Exercise 4.25. (a) Show that the conclusions of the preceding theorem also hold
if we assume that

lim
x→a+0

f ′(x)
g′(x)

=∞.

HINT: Replace ε by a large real number B and show that f(x)/g(x) > B if 0 <
x− a < δ.
(b) Show that the preceding theorem, as well as part (a) of this exercise, also holds
if we replace the (finite) endpoint a by −∞.
HINT: Replace the δ’s by negative numbers B.
(c) Show that the preceding theorem, as well as parts a and b of this exercise, hold
if the limit as x approaches a from the right is replaced by the limit as x approaches
b from the left.
HINT: Replace f(x) by f(−x) and g(x) by g(−x).



108 IV. DIFFERENTIATION, LOCAL BEHAVIOR

(d) Give an example to show that the converse of L’Hopital’s Rule need not hold;
i.e., find functions f and g for which limx→a+0 f(x) = limx→a+0 g(x) = 0,

lim
x→a+0

f(x)
g(x)

exists, but lim
x→a+0

f ′(x)
g′(x)

does not exist.

(e) Deduce from the proof given above that if limx→a+0 f
′(x)/g′(x) = L and

limx→a+0 g(x) = ∞, then limx→a+0 f(x)/g(x) = L independent of the behavior
of f.
(f) Evaluate limx→∞ x1/x, and limx→0(1− x)1/x.
HINT: Take logarithms.

HIGHER ORDER DERIVATIVES

DEFINITION. Let S be a subset of R (or C), and Let f : S → C be a function
of a real (or complex) variable. We say that f is continuously differentiable on S0

if f is differentiable at each point x of S0 and the function f ′ is continuous on S0.
We say that f ∈ C1(S) if f is continuous on S and continuously differentiable on
S0. We say that f is 2-times continuously differentiable on S0 if the first derivative
f ′ is itself continuously differentiable on S0. And, inductively, we say that f is
k-times continuously differentiable on S0 if the k − 1st derivative of f is itself
continuously differentiable on S0. We write f (k) for the kth derivative of f, and we
write f ∈ Ck(S) if f is continuous on S and is k times continuously differentiable
on S0. Of course, if f ∈ Ck(S), then all the derivatives f (j), for j ≤ k, exist nd are
continuous on S0. (Why?)
For completeness, we define f (0) to be f itself, and we say that f ∈ C∞(S) if f is
continuous on S and has infinitely many continuous derivatives on S0; i.e., all of
its derivatives exist and are continuous on S0.
As in Chapter III, we say that f is real-analytic (or complex-analytic) on S if it is
expandable in a Taylor series around each point c ∈ S0

REMARK. Keep in mind that the definition above, as applied to functions whose
domain S is a nontrivial subset of C, has to do with functions of a complex variable
that are continuously differentiable on the set S0. We have seen that this is quite
different from a function having continuous partial derivatives on S0. We will return
to partial derivatives at the end of this chapter.

THEOREM 4.17. Let S be an open subset of R (or C).
(1) Suppose WS is a subset of R. Then, for each k ≥ 1, there exists a function

in Ck(S) that is not in Ck+1(S). That is, Ck+1(S) is a proper subset of
Ck(S).

(2) If f is real-analytic (or complex-analytic) on S, then f ∈ C∞(S).
(3) There exists a function in C∞(R) that is not real-analytic on R. That is,

the set of real-analytic functions on R is a proper subset of the set C∞(R).

REMARK. Suppose S is an open subset of C. It is a famous result from the Theory
of Complex Variables that if f is in C1(S), then f is necessarily complex analytic
on S. We will prove this amazing result in Theorem 7.5. Part (3) of the theorem
shows that the situation is quite different for real-valued functions of a real variable.

PROOF. For part (1), see the exercise below. Part (2) is immediate from part (c)
of Exercise 4.10. Before finishing the proof of part (3), we present the following
lemma:
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LEMMA. Let f be the function defined on all of R as follows.

f(x) =

{
0 x ≤ 0
p(x)e−1/x

xn x > 0

where p(x) is a fixed polynomial function and n is a fixed nonnegative integer. Then
f is continuous at each point x of R.

PROOF OF THE LEMMA. The assertion of the lemma is clear if x 6= 0. To see
that f is continuous at 0, it will suffice to prove that

lim
x→0+0

p(x)e−1/x

xn
= 0.

(Why?) But, for x > 0, we know from part (b) of Exercise 3.22 that e1/x >
1/(xn+1(n+ 1)!), implying that e−1/x < xn+1(n+ 1)!. Hence, for x > 0,

|f(x)| = |p(x)|e−1/x

xn
< (n+ 1)!x|p(x)|,

and this tends to 0 as x approaches 0 from the right, as desired.

. Returning to the proof of Theorem 4.17, we verify part (3) by observing that if f
is as in the preceding lemma then f is actually differentiable, and its derivative f ′

is a function of the same sort. (Why?) It follows that any such function belongs to
C∞(R). On the other hand, a nontrivial such f cannot be expandable in a Taylor
series around 0 because of the Identity Theorem. (Take xk = −1/k.) This completes
the proof.

Exercise 4.26. (a) Prove part (1) of Theorem 4.17. Use functions of the form
xn sin(1/x).
(b) Prove that any function of the form of the f in the lemma above is everywhere
differentiable on R, and its derivative has the same form. Conclude that any such
function belongs to C∞(R).
(c) For each positive integer n, define a function fn on the interval (−1, 1 by fn(x) =
|x|1+1/n. Prove that each fn is differentiable at every point in (−1, 1), including 0.
Prove also that the sequence {fn} converges uniformly to the function f(x) = |x|.
(See part (h) of Exercise 3.28.) Conclude that the uniform limit of differentiable
functions of a real variable need not be differentiable. (Again, for functions of a
complex variable, the situation is very different. In that case, the uniform limit of
differentiable functions is differentiable. See Theorem 7.11.)
Exercise 4.27. (A smooth approximation to a step function.) Suppose a < b <
c < d are real numbers. Show that there exists a function χ in C∞(R) such that
0 ≤ χ(x) ≤ 1 for all x, χ(x) ≡ 1 for x ∈ [b, c], and χ(x) ≡ 0 for x /∈ (a, d). (If a is
close to b and c is close to d, then this function is a C∞ approximation to the step
function that is 1 on the interval [b, c] and 0 elsewhere.)
(a) Let f be a function like the one in the lemma. Think about the graphs of the
functions f(x− c) and f(b−x). Construct a C∞ function g that is 0 between b and
c and positive everywhere else.
(b) Construct a C∞ function h that is positive between a and d and 0 everywhere
else.
(c) Let g and h be as in parts (a) and (b). If j = g+ h, show that j is never 0, and
write k for the C∞ function k = 1/j.
(d) Examine the function hk, and show that it is the desired function χ.
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THEOREM 4.18. (Formula for the coefficients of a Taylor Series function) Let
f be expandable in a Taylor series around a point c :

f(x) =
∑

an(x− c)n.

Then for each n, an = f (n)(c)/n!.

PROOF. Because each derivative of a Taylor series function is again a Taylor series
function, and because the value of a Taylor series function at the point c is equal
to its constant term a0, we have that a1 = f ′(c). Computing the derivative of the
derivative, we see that 2a2 = f ′

′(c) = f (2)(c). Continuing this, i.e., arguing by
induction, we find that n!an = f (n)(c), which proves the theorem.

TAYLOR POLYNOMIALS AND TAYLOR’S REMAINDER THEOREM

DEFINITION. Let f be in Cn(Br(c)) for c a fixed complex number, r > 0, and
n a positive integer. Define the Taylor polynomial of degree n for f at c to be the
polynomial Tn ≡ Tn(f,c) given by the formula:

(Tn(f,c))(z) =
n∑
j=0

aj(z − c)j ,

where aj = f (j)(c)/j!.

REMARK. If f is expandable in a Taylor series on Br(c), then the Taylor poly-
nomial for f of degree n is nothing but the nth partial sum of the Taylor series
for f on Br(c). However, any function that is n times differentiable at a point c
has a Taylor polynomial of order n. Functions that are infinitely differentiable have
Taylor polynomials of all orders, and we might suspect that these polynomials are
some kind of good approximation to the function itself.
Exercise 4.28. Prove that f is expandable in a Taylor series function around a
point c (with radius of convergence r > 0) if and only if the sequence {Tn(f,c)} of
Taylor polynomials converges pointwise to f ; i.e.,

f(z) = lim(Tn(f,c))(z)

for all z in Br(c).
Exercise 4.29. Let f ∈ Cn(Br(c)). Prove that f ′ ∈ Cn−1(Br(c)). Prove also that
(Tn(f,c))

′ = Tn−1
(f ′,c).

The next theorem is, in many ways, the fundamental theorem of numerical analysis.
It clearly has to do with approximating a general function by polynomials. It is a
generalization of the Mean Value Theorem, and as in that case this theorem holds
only for real-valued functions of a real variable.

THEOREM 4.19. (Taylor’s Remainder Theorem) Let f be a real-valued function
on an interval (c− r, c+ r), and assume that f ∈ Cn((c− r, c+ r)), and that f (n)

is differentiable on (c − r, c + r). Then, for each x in (c − r, c + r) there exists a y
between c and x such that

(4.7) f(x)− (Tn(f,c))(x) =
f (n+1)(y)
(n+ 1)!

(x− c)n+1.
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REMARK. If we write f(x) = Tnf,c)(x) + Rn+1(x), where Rn+1(x) is the error or
remainder term, then this theorem gives a formula, and hence an estimate, for that
remainder term. This is the evident connection with Numerical Analysis.

PROOF. We prove this theorem by induction on n. For n = 0, this is precisely the
Mean Value Theorem. Thus,

f(x)− T 0
f,c(x) = f(x)− f(c) = f ′(y)(x− c.

Now, assuming the theorem is true for all functions in Cn−1((c−r, c+r)), let us show
it is true for the given function f ∈ Cn((c− r, c+ r)). Set g(x) = f(x)− (Tn(f,c))(x)
and let h(x) = (x− c)n+1. Observe that both g(c) = 0 and h(c) = 0. Also, if x 6= c,
then h(x) 6= 0. So, by the Cauchy Mean Value Theorem, we have that

g(x)
h(x)

=
g(x)− g(c)
h(x)− h(c)

=
g′(w)
h′(w)

for some w between c and x. Now
g′(w) = f ′(w)− (tn(f,c))

′(w) = f ′(w)− (Tn−1
(f ′,c))(w)

(See the preceding exercise.), and h′(w) = (n+ 1)(w − c)n. Therefore,
f(x)− (Tn(f,c))(x)

(x− c)n+1
=
g(x)
h(x)

=
g′(w)
h′(w)

=
f ′(w)− (Tn−1

(f ′,c))(w)

(n+ 1)(w − c)n
.

We apply the inductive hypotheses to the function f ′ (which is in Cn−1((c−r, c+r)))
and obtain

f(x)− (Tn(f,c))(x)

(x− c)n+1
=
f ′(w)− (Tn−1

(f ′,c))(w)

(n+ 1)(w − c)n

=
f ′(n)(y)
n! (w − c)n

(n+ 1)(w − c)n

=
f ′

(n)(y)
(n+ 1)!

=
f (n+1)(y)
(n+ 1)!

for some y between c and w. But this implies that

f(x)− (Tn(f,c))(x) =
f (n+1)(y)(x− c)n+1

(n+ 1)!
,

for some y between c and x, which finishes the proof of the theorem.

Exercise 4.30. Define f(x) = 0 for x ≤ 0 and f(x) = e−1/x for x > 0. Verify that
f ∈ C∞(R), that f (n)(0) = 0 for all n, and yet f is not expandable in a Taylor
series around 0. Interpret Taylor’s Remainder Theorem for this function. That is,
describe the remainder Rn+1(x).

As a first application of Taylor’s Remainder Theorem we give the following result,
which should be familiar from calculus. It is the generalized version of what’s
ordinarily called the “second derivative test.”
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THEOREM 4.20. (Test for Local Maxima and Minima) Let f be a real-valued
function in Cn(c− r, c + r), suppose that the n + 1st derivative f (n+1) of f exists
everywhere on (c − r, c + r) and is continuous at c, and suppose that f (k)(c) = 0
for all 1 ≤ k ≤ n and that f (n+1)(c) 6= 0. Then:

(1) If n is even, f attains neither a local maximum nor a local minimum at c.
In this case, c is called an inflection point.

(2) If n is odd and f (n+1)(c) < 0, then f attains a local maximum at c.
(3) If n is odd and f (n+1)(c) > 0, then f attains a local minimum at c.

PROOF. Since f (n+1) is continuous at c, there exists a δ > 0 such that f (n+1)(y)
has the same sign as f (n+1)(c) for all y ∈ (c−δ, c+δ). We have by Taylor’s Theorem
that if x ∈ (c− δ, c+ δ) then there exists a y between x and c such that

f(x) = (Tn(f,c))(x) +
f (n+1)(y)
(n+ 1)!

(x− c)n+1,

from which it follows that

f(x)− f(c) =
n∑
k=1

f (k)(c)k!(x− c)k +
f (n+1)(y)
(n+ 1)!

(x− c)n+1

=
f (n+1)(y)
(n+ 1)!

(x− c)n+1.

Suppose n is even. It follows then that if x < c, the sign of (x− c)n+1 is negative,
so that the sign of f(x)− f(c) is the opposite of the sign of f (n+1)(c). On the other
hand, if x > c, then (x − c)n+1 > 0, so that the sign of f(x) − f(c) is the same
as the sign of f (n+1)(c). So, f(x) > f(c) for all nearby x on one side of c, while
f(x) < f(c) for all nearby x on the other side of c. Therefore, f attains neither a
local maximum nor a local minimum at c. This proves part (1).
Now, if n is odd, the sign of f(x)− f(c) is the same as the sign of f (n+1)(y), which
is the same as the sign of f (n+1)(c), for all x ∈ (c−δ, c+δ). Hence, if f (n+1)(c) < 0,
then f(x) − f(c) < 0 for all x ∈ (c − δ, c + δ), showing that f attains a local
maximum at c. And, if f (n+1)(c) > 0, then the sign of f(x)− f(c) is positive for all
x ∈ (c − δ, c + δ), showing that f attains a local minimum at c. This proves parts
(2) and (3).

The General Binomial Theorem

We use Taylor’s Remainder Theorem to derive a generalization of the Binomial The-
orem to nonintegral exponents. First we must generalize the definition of binomial
coefficient.

DEFINITION. Let α be a complex number, and let k be a nonnegative integer.
We define the general binomial coefficient

(
α
k

)
by(

α

k

)
=
α(α− 1) . . . (α− k + 1)

k!
.
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If α is itself a positive integer and k ≤ α, then
(
α
k

)
agrees with the earlier definition

of the binomial coefficient, and
(
α
k

)
= 0 when k > α. However, if α is not an integer,

but just an arbitrary complex number, then every
(
α
k

)
6= 0.

Exercise 4.31. Estimates for the size of binomial coefficients. Let α be a fixed
complex number.
(a) Show that

|
(
α

k

)
| ≤

k∏
j=1

(1 +
|α|
j

)

for all nonnegative integers k.
HINT: Note that

|
(
α

k

)
| ≤ |α|(|alpha|+ 1)(|alpha|+ 2) . . . (|α|+ k − 1)

k!
.

(b) Use part (a) to prove that there exists a constant C such that

|
(
α

k

)
| ≤ C2k

for all nonnegative integers k.
HINT: Note that (1 + |α|/j) < 2 for all j > |α|.
(c) Show in fact that for each ε > 0 there exists a constant Cε such that

|
(
α

k

)
| ≤ Cε(1 + ε)k

for all nonnegative integers k.
(d) Let h(t) be the power series function given by h(t) =

∑∞
k=0

(
α
k

)
tk. Use the ratio

test to show that the radius of convergence for h equals 1.

REMARK. The general Binomial Theorem, if there is one, should be something
like the following:

(x+ y)α =
∞∑
k=0

(
α

k

)
xα−kyk.

The problem is to determine when this infinite series converges, i.e., for what values
of the three variables x, y, and α does it converge. It certainly is correct if x = 0,
so we may as well assume that x 6= 0, in which case we are considering the validity
of the formula

(x+ y)α = xα(1 + t)α = xα
∞∑
k=0

(
α

k

)
tk,

where t = y/x. Therefore, it will suffice to determine for what values of t and α
does the infinite series

∞∑
k=0

(
α

k

)
tk

equal
(1 + t)α.
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The answer is that, for n arbitrary complex number α, this series converges to
the correct value for all t ∈ (−1, 1). (Of course, t must be larger than −1 for the
expression (1+ t)α even to be defined.) However, the next theorem only establishes
this equality for t’s in the subinterval (−1/2, 1/2). As mentioned earlier, its proof
is based on Taylor’s Remainder Theorem. We must postpone the complete proof
to the next chapter, where we will have a better version of Taylor’s Theorem.

THEOREM 4.21. Let α = a+ bi be a fixed complex number. Then

(1 + t)α =
∞∑
k=0

(
α

k

)
tk

for all t ∈ (−1/2, 1/2).

PROOF. Of course, this theorem is true if α is a nonnegative integer, for it is
then just the original Binomial Theorem, and in fact in that case it holds for every
complex number t. For a general complex number α, we have only defined xα for
positive x’s, so that (1 + t)α is not even defined for t < −1.
Now, for a general α = a + bi, consider the function g : (−1/2, 1/2) → C defined
by g(t) = (1 + t)α. Observe that the nth derivative of g is given by

g(n)(t) =
α(α− 1) . . . (α− n+ 1)

(1 + t)n−α
.

Then g ∈ C∞((−1/2, 1/2)). (Of course, g is actually in C∞(−1, 1), but the present
theorem is only concerned with t’s in (−1/2, 1/2).)
For each nonnegative integer k define

ak = g(k)(0)/k! =
α(α− 1) . . . (α− k + 1)

k!
=
(
α

k

)
,

and set h equal to the power series function given by h(t) =
∑∞
k=0 akt

k. Accord-
ing to part (d) of the preceding exercise, the radius of convergence for the power
series

∑
akt

k is 1. The aim of this theorem is to show that g(t) = h(t) for all
−1/2 < t < 1/2. In other words, we wish to show that g agrees with this power
series function at least on the interval (−1/2, 1/2). It will suffice to show that the
sequence {Sn} of partial sums of the power series function h converges to the func-
tion g, at least on (−1/2, 1/2). We note also that the nth partial sum of this power
series is just the nth Taylor polynomial Tng for g.

Sn(t) =
n∑
k=0

(
α

k

)
tk =

n∑
k=0

g(k)(0)
k!

tk.

Now, fix a t strictly between −1/2 and 1/2, and let r < 1 be as in part (c) of
Exercise 4.11. That is, |t/(1 + y)| < r for every y between 0 and t. (This is an
important inequality for our proof, and this is one place where the hypothesis that
t ∈ (−1/2, 1/2) is necessary.) Note also that, for any y ∈ (−1/2, 1/2), we have
|(1 + y)α| = (1 + y)a, and this is trapped between (1/2)a and (3/2)a. Hence, there
exists a number M such that |(1 + y)α| ≤M for all y ∈ (−1/2, 1/2).
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Next, choose an ε > 0 for which β = (1+ε)r < 1. We let Cε be a constant satisfying
the inequality in Part (c) of Exercise 4.31. So, using Taylor’s Remainder Theorem,
we have that there exists a y between 0 and t for which

|g(t)−
n∑
k=0

akt
k| = |g(t)− (Tn(g,0)(t)|

= |g
(n+1)(y)
(n+ 1)!

tn+1|

= | α(α− 1) . . . (α− n)
(n+ 1)!(1 + y)n+1−α t

n+1|

≤ |
(

α

n+ 1

)
||(1 + y)α|| t

1 + y
|n+1

≤ Cε(1 + ε)n+1M | t

1 + y
|n+1

≤ Cε(1 + ε)n+1Mrn+1

≤ CεMβn+1, .

Taking the limit as n tends to ∞, and recalling that β < 1, shows that g(t) = h(t)
for all −1/2 < t < 1/2, which completes the proof.

MORE ON PARTIAL DERIVATIVES

We close the chapter with a little more concerning partial derivatives. Thus far, we
have discussed functions of a single variable, either real or complex. However, it is
difficult not to think of a function of one complex variable z = x+ iy as equally well
being a function of the two real variables x and y. We will write (a, b) and a+ bi to
mean the same point in C ≡ R2, and we will write |(a, b)| and |a + bi| to indicate
the same quantity, i.e., the absolute value of the complex number a + bi ≡ (a, b).
We have seen in Theorem 4.4 that the only real-valued, differentiable functions of a
complex variable are the constant functions. However, this is far from the case if we
consider real-valued functions of two real variables, as is indicated in Exercise 4.8.
Consequently, we make the following definition of differentiability of a real-valued
function of two real variables. Note that it is clearly different from the definition of
differentiability of a function of a single complex variable, and though the various
notations for these two kinds of differentiability are clearly ambiguous, we will leave
it to the context to indicate which kind we are using.

DEFINITION. Let f : S → R be a function whose domain is a subset S of R2,
and let c = (a, b) be a point in the interior S0 of S. We say that f is differentiable,
as a function of two real variables, at the point (a, b) if there exists a pair of real
numbers L1 and L2 and a function θ such that

(4.8) f(a+ h1, b+ h2)− f(a, b) = L1h1 + L2h2 + θ(h1, h2)

and

(4.9) lim
|(h1,h2)|→0

θ(h1, h2)
|(h1, h2)|

= 0.
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One should compare this definition with part (3) of Theorem 4.2.
Each partial derivative of a function f is again a real-valued function of two real
variables, and so it can have partial derivatives of its own. We use simplifying no-
tation like fxyxx and fyyyxyy... to indicate “higher order” mixed partial derivatives.
For instance, fxxyx denotes the fourth partial derivative of f, first with respect
to x, second with respect to x again, third with respect to y, and finally fourth
with respect to x. These higher order partial derivatives are called mixed partial
derivatives.

DEFINITION. Suppose S is a subset of R2, and that f is a continuous real-
valued function on S. If both partial derivatives of f exist at each point of the
interior S0 of S, and both are continuous on S0, then f is said to belong to C1(S).
If all kth order mixed partial derivatives exist at each point of S0, and all of them
are continuous on S0, then f is said to belong to Ck(S). Finally, if all mixed partial
derivatives, of arbitrary orders, exist and are continuous on S0, then f is said to
belong to C∞(S).

Exercise 4.32. (a) Suppose f is a real-valued function of two real variables and
that it is differentiable, as a function of two real variables, at the point (a, b). Show
that the numbers L1 and L2 in the definition are exactly the partial derivatives of
f at (a, b). That is,

L1 =
∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)
h

and

L2 =
∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)
h

.

(b) Define f on R2 as follows: f(0, 0) = 0, and if (x, y) 6= (0, 0), then f(x, y) =
xy/(x2 +y2). Show that both partial derivatives of f at (0, 0) exist and are 0. Show
also that f is not, as a function of two real variables, differentiable at (0, 0).
HINT: Let h and k run through the numbers 1/n.
(c) What do parts (a) and (b) tell about the relationship between a function of
two real variables being differentiable at a point (a, b) and its having both partial
derivatives exist at (a, b)?
(d) Suppose f = u + iv is a complex-valued function of a complex variable, and
assume that f is differentiable, as a function of a complex variable, at a point
c = a + bi ≡ (a, b). Prove that the real and imaginary parts u and v of f are
differentiable, as functions of two real variables. Relate the five quantities

∂u

∂x
(a, b),

∂u

∂y
(a, b),

∂v

∂x
(a, b),

∂v

∂y
(a, b), and f ′(c).

Perhaps the most interesting theorem about partial derivatives is the “mixed par-
tials are equal” theorem. That is, fxy = fyx. The point is that this isnot always
the case. An extra hypothesis is necessary.

THEOREM 4.22. (Theorem on mixed partials) Let f : S → R be such that both
second order partials derivatives fxy and fyx exist at a point (a, b) of the interior
of S, and assume in addition that one of these second order partials exists at every
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point in a disk Br(a, b) around (a, b) and that it is continuous at the point (a, b).
Then fxy(a, b) = fyx(a, b).

PROOF. Suppose that it is fyx that is continuous at (a, b). Let ε > 0 be given, and
let δ1 > 0 be such that if |(c, d)− (a, b)| < δ1 then |fyx(c, d)− fyx(a, b)| < ε. Next,
choose a δ2 such that if 0 < |k| < δ2, then

|fxy(a, b)− fx(a, b+ k)− fx(a, b)
k

| < ε,

and fix such a k. We may also assume that |k| < δ1/2. Finally, choose a δ3 > 0 such
that if 0 < |h| < δ3, then

|fx(a, b+ k)− f(a+ h, b+ k)− f(a, b+ k)
h

| < |k|ε,

and

|fx(a, b)− f(a+ h, b)− f(a, b)
h

| < |k|ε,

and fix such an h. Again, we may also assume that |h| < δ1/2.
In the following calculation we will use the Mean Value Theorem twice.

0 ≤ |fxy(a, b)− fyx(a, b)|

≤ |fxy(a, b)− fx(a, b+ k)− fx(a, b)
k

|

+ |fx(a, b+ k)− fx(a, b)
k

− fyx(a, b)|

≤ ε+ |
fx(a, b+ k)− f(a+h,b+k)−f(a,b+k)

h

k
|

+ |
f(a+h,b)−f(a,b)

h − fx(a, b)
k

|

+ |f(a+ h, b+ k)− f(a, b+ k) + (f(a+ h, b)− f(a, b))
hk

− fyx(a, b)|

< 3ε+ |f(a+ h, b+ k)− f(a, b+ k) + (f(a+ h, b)− f(a, b))
hk

− fyx(a, b)|

= 3ε+ |fy(a+ h, b′)− fy(a, b′)
h

− fyx(a, b)|

= 3ε+ |fyx(a′, b′)− fyx(a, b)|
< 4ε,

because b′ is between b and b+ k, and a′ is between a and a+ h, so that |(a′, b′)−
(a, b)| < δ1/

√
2 < δ1. Hence, |fxy(a, b) − fyx(a, b) < 4ε, for an arbitrary ε, and so

the theorem is proved.

Exercise 4.33. Let f be defined on R2 by f(0, 0) = 0 and, for (x, y) 6= (0, 0),
f(x, y) = x3y/(x2 + y2).
(a) Prove that both partial derivatives fx and fy exist at each point in the plane.
(b) Show that fyx(0, 0) = 1 and fxy(0, 0) = 0.
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(c) Show that fxy exists at each point in the plane, but that it is not continuous at
(0, 0).

The following exercise is an obvious generalization of the First Derivative Test for
Extreme Values, Theorem 4.8, to real-valued functions of two real variables.
Exercise 4.34. Let f : S → R be a real-valued function of two real variables,
and let c = (a, b) ∈ S0 be a point at which f attains a local maximum or a local
minimum. Show that if either of the partial derivatives ∂f/∂x or ∂f/∂y exists at
c, then it must be equal to 0.
HINT: Just consider real-valued functions of a real variable like x → f(x, b) or
y → f(a, y), and use Theorem 4.8.

Whenever we make a new definition about functions, the question arises of how
the definition fits with algebraic combinations of functions and how it fits with the
operation of composition. In that light, the next theorem is an expected one.

THEOREM 4.23. (Chain Rule again) Suppose S is a subset of R2, that (a, b) is
a point in the interior of S, and that f : S → R is a real-valued function that is
differentiable, as a function of two real variables, at the point (a, b). Suppose that
T is a subset of R, that c belongs to the interior of T, and that φ : T → R

2 is
differentiable at the point c and φ(c) = (a, b). Write φ(t) = (x(t), y(t)). Then the
composition f ◦ φ is differentiable at c and

f ◦ φ′(c) =
∂f

∂x
(a, b)x′(c) +

∂f

∂y
(a, b)y′(c) =

∂f

∂x
(φ(c))x′(c) +

∂f

∂y
(φ(c))y′(c).

PROOF. From the definition of differentiability of a real-valued function of two
real variables, write

f(a+ h1, b+ h2)− f(a, b) = L1h1 + L2h2 + θf (H1, h2).

and from part (3) of Theorem 4.2, write

φ(c+ h)− φ(c) = φ′(c)h+ θφ(h),

or, in component form,

x(c+ h)− x(c) = x(c+ h)− a = x′(c)h+ θx(h)

and
y(c+ h)− y(c) = y(c+ h)− b = y′(c)h+ θy(h).

We also have that

lim
|(h1,h2)|→0

θf ((h1, h2))
|(h1, h2)|

= 0,

lim
h→0

θx(h)
h

= 0,

and

lim
h→0

θy(h)
h

= 0.
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We will show that f ◦φ is differentiable at c by showing that there exists a number
L and a function θ satisfying the two conditions of part (3) of Theorem 4.2.
Define

k1(h), k2(h)) = φ(c+ h)− φ(c) = (x(c+ h)− x(c), y(c+ h)− y(c)).

Thus, we have that

f ◦ φ(c+ h)− f ◦ φ(c) = f(φ(c+ h))− f(φ(c))

= f(x(c+ h), y(c+ h))− f(x(c), y(c))

= f(a+ k1(h), b+ k2(h))− f(a, b)

= L1k1(h) + L2k2(h) + θf (k1(h), k2(h))

= l1(x(c+ h)− x(c)) + L2(y(c+ h)− y(c))

+ θf (k1(h), k2(h))

= L1(x′(c)h+ θx(h)) + L2(y′(c)h+ θy(h))

+ θf (k1(h), k2(h))

= (L1x
′(c) + L2y

′(c))h

+ L1θx(h) + L2θy(h) + θf (k1(h), k2(h)).

We define L = (L1x
′(c) +L2y

′(c)) and θ(h) = l1θx(h) +L2θy(h) + θf (k1(h), k2(h)).
By these definitions and the calculation above we have Equation (4.1)

f ◦ φ(c+ h)− f ◦ φ(c) = Lh+ θ(h),

so that it only remains to verify Equation (4.2) for the function θ. We have seen
above that the first two parts of θ satisfy the desired limit condition, so that it
is just the third part of θ that requires some proof. The required argument is
analogous to the last part of the proof of the Chain Rule (Theorem 4.7), and we
leave it as an exercise.

Exercise 4.35. (a) Finish the proof to the preceding theorem by showing that

lim
h→0

θf (k1(h), k2(h))
h

= 0.

HINT: Review the corresponding part of the proof to Theorem 4.7.
(b) Suppose f : S → R is as in the preceding theorem and that φ is a real-valued
function of a real variable. Suppose f is differentiable, as a function of two real
variables, at the point (a, b), and that φ is differentiable at the point c = f(a, b).
Let g = φ ◦ f. Find a formula for the partial derivatives of the real-valued function
g of two real variables.
(c) (A generalized Mean Value Theorem) Suppose u is a real-valued function of
two real variables, both of whose partial derivatives exist at each point in a disk
Br(a, b). Show that, for any two points (x, y) and (x′, y′) in Br(a, b), there exists a
point (x̂, ŷ) on the line segment joining (x, y) to (x′, y′) such that

u(x, y)− u(x′, y′) =
∂u

∂x
(x̂, ŷ)(x− x′) +

∂u

∂y
(x̂, ŷ)(y − y′).
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HINT: Let φ : [0, 1]→ R
2 be defined by φ(t) = (1− t)(x′, y′) + t(x, y). Now use the

preceding theorem.
(d) Verify that the assignment f → ∂f/∂x is linear; i.e., that

∂(f + g)
∂x

=
∂f

∂x
+
∂g

∂x
.

Check that the same is true for partial derivatives with respect to y.
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CHAPTER V
INTEGRATION, AVERAGE BEHAVIOR

A = πr2.

In this chapter we will derive the formula A = πr2 for the area of a circle of radius
r. As a matter of fact, we will first have to settle on exactly what is the definition
of the area of a region in the plane, and more subtle than that, we must decide
what kinds of regions in the plane “have” areas. Before we consider the problem
of area, we will develop the notion of the integral (or average value) of a function
defined on an interval [a, b], which notion we will use later to compute areas, once
they have been defined.
The main results of this chapter include:

(1) The definition of integrability of a function, and the definition of the
integral of an integrable function,

(2) The Fundamental Theorem of Calculus (Theorem 5.9),
(3) The Integral Form of Taylor’s Remainder Theorem (Theorem 5.12),
(4) The General Binomial Theorem (Theorem 5.13),
(5) The definition of the area of a geometric set,
(6) A = πr2 (Theorem 5.15), and
(7) The Integral Test (Theorem 5.17).

INTEGRALS OF STEP FUNCTIONS

We begin by defining the integral of certain (but not all) bounded, real-valued
functions whose domains are closed bounded intervals. Later, we will extend the
definition of integral to certain kinds of unbounded complex-valued functions whose
domains are still intervals, but which need not be either closed or bounded. First,
we recall from Chapter III the following definitions.

DEFINITION. Let [a, b] be a closed bounded interval of real numbers. By a
partition of [a, b] we mean a finite set P = {x0 < x1 < . . . < xn} of n + 1 points,
where x0 = a and xn = b.
The n intervals {[xi−1, xi]} are called the closed subintervals of the partition P, and
the n intervals {(xi−1, xi)} are called the open subintervals or elements of P.
We write ‖P‖ for the maximum of the numbers (lengths of the subintervals) {xi −
xi−1}, and call ‖P‖ the mesh size of the partition P.
If a partition P = {xi} is contained in another partition Q = {yj}, i.e., each xi
equals some yj , then we say that Q is finer than P.

Let f be a function on an interval [a, b], and let P = {x0 < . . . < xn} be a partition
of [a, b]. Physicists often consider sums of the form

SP,{yi} =
n∑
i=1

f(yi)(xi − xi−1),

where yi is a point in the subinterval (xi−1, xi). These sums (called Riemann sums)
are approximations of physical quantities, and the limit of these sums, as the mesh
of the partition becomes smaller and smaller, should represent a precise value of the
physical quantity. What precisely is meant by the “ limit” of such sums is already
a subtle question, but even having decided on what that definition should be, it is
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as important and difficult to determine whether or not such a limit exists for many
(or even any) functions f. We approach this question from a slightly different point
of view, but we will revisit Riemann sums in the end.
Again we recall from Chapter III the following.

DEFINITION. Let [a, b] be a closed bounded interval in R.A real-valued function
h : [a, b] → R is called a step function if there exists a partition P = {x0 < x1 <
. . . < xn} of [a, b] such that for each 1 ≤ i ≤ n there exists a number ai such that
h(x) = ai for all x ∈ (xi−1, xi).

REMARK. A step function h is constant on the open subintervals (or elements)
of a certain partition. Of course, the partition is not unique. Indeed, if P is such
a partition, we may add more points to it, making a larger partition having more
subintervals, and the function h will still be constant on these new open subintervals.
That is, a given step function can be described using various distinct partitions.
Also, the values of a step function at the partition points themselves is irrelevant.
We only require that it be constant on the open subintervals.

Exercise 5.1. Let h be a step function on [a, b], and let P = {x0 < x1 < . . . < xn}
be a partition of [a, b] such that h(x) = ai on the subinterval (xi−1, xi) determined
by P.
(a) Prove that the range of h is a finite set. What is an upper bound on the
cardinality of this range?
(b) Prove that h is differentiable at all but a finite number of points in [a, b]. What
is the value of h′ at such a point?
(c) Let f be a function on [a, b]. Prove that f is a step function if and only if f ′(x)
exists and = 0 for every x ∈ (a, b) except possibly for a finite number of points.
(d) What can be said about the values of h at the endpoints {xi} of the subintervals
of P?
(e) Let h be a step function on [a, b], and let j be a function on [a, b] for which
h(x) = j(x) for all x ∈ [a, b] except for one point c. Show that j is also a step
function.
(f) If k is a function on [a, b] that agrees with a step function h except at a finite
number of points c1, c2, . . . , cN , show that k is also a step function.

Exercise 5.2. Let [a, b] be a fixed closed bounded interval in R, and let H([a, b])
denote the set of all step functions on [a, b].
(a) Using Part (c) of Exercise 5.1, prove that the set H([a, b]) is a vector space of
functions; i.e., it is closed under addition and scalar multiplication.
(b) Show that H([a, b]) is closed under multiplication; i.e., if h1, h2 ∈ H([a, b]), then
h1h2 ∈ H([a, b]).
(c) Show that H([a, b]) is closed under taking maximum and minimum and that it
contains all the real-valued constant functions.
(d) We call a function χ an indicator function if it equals 1 on an interval (c, d) and
is 0 outside [c, d]. To be precise, we will denote this indicator function by χ(c,d).
Prove that every indicator function is a step function, and show also that every
step function h is a linear combination of indicator functions:

h =
n∑
j=1

ajχ(cj ,dj).
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(e) Define a function k on [0, 1] by setting k(x) = 0 if x is a rational number and
k(x) = 1 if x is an irrational number. Prove that the range of k is a finite set, but
that k is not a step function.

Our first theorem in this chapter is a fundamental consistency result about the
“area under the graph” of a step function. Of course, the graph of a step function
looks like a collection of horizontal line segments, and the region under this graph
is just a collection of rectangles. Actually, in this remark, we are implicitly thinking
that the values {ai} of the step function are positive. If some of these values are
negative, then we must re-think what we mean by the area under the graph. We
first introduce the following bit of notation.

DEFINITION. Let h be a step function on the closed interval [a, b]. Suppose
P = {x0 < x1 < . . . < xn} is a partition of [a, b] such that h(x) = ai on the interval
(xi−1, xi). Define the weighted average of h relative to P to be the number SP (h)
defined by

SP (h) =
n∑
i=1

ai(xi − xi−1).

REMARK. Notice the similarity between the formula for a weighted average and
the formula for a Riemann sum. Note also that if the interval is a single point, i.e.,
a = b, then the only partition P of the interval consists of the single point x0 = a,
and every weighted average SP (h) = 0.
The next theorem is not a surprise, although its proof takes some careful thinking.
It is simply the assertion that the weighted averages are independent of the choice
of partition.

THEOREM 5.1. Let h be a step function on the closed interval [a, b]. Suppose
P = {x0 < x1 < . . . < xn} is a partition of [a, b] such that h(x) = ai on the interval
(xi−1, xi), and suppose Q = {y0 < y1 < . . . < ym} is another partition of [a, b] such
that h(x) = bj on the interval (yj−1, yj). Then the weighted average of h relative to
P is the same as the weighted average of h relative to Q. That is, SP (h) = SQ(h).

PROOF. Suppose first that the partition Q is obtained from the partition P by
adding one additional point. Then m = n+1, and there exists an i0 between 1 and
n− 1 such that

(1) for 0 ≤ i ≤ i0 we have yi = xi.
(2) xi0 < yi0+1 < xi0+1.
(3) For i0 < i ≤ n we have xi = yi+1.

In other words, yi0+1 is the only point of Q that is not a point of P, and yi0+1 lies
strictly between xi0 and xi0+1.

Because h is constant on the interval (xi0 , xi0+1) = (yi0 , yi0+2), it follows that

(1) For 1 ≤ i ≤ i0, ai = bi.
(2) bi0+1 = bi0+2 = ai0+1.
(3) For i0 + 1 ≤ i ≤ n, ai = bi+1.
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So,

SP (h) =
n∑
i=1

ai(xi − xi−1)

=
i0∑
i=1

ai(xi − xi−1) + ai0+1(xi0+1 − xi0)

+
n∑

i=i0+2

ai(xi − xi−1)

=
i0∑
i=1

bi(yi − yi−1) + ai0+1(yi0+2 − yi0)

+
n∑

i=i0+2

bi+1(yi+1 − yi)

=
i0∑
i=1

bi(yi − yi−1) + ai0+1(yi0+2 − yi0+1 + yi0+1 − yi0)

+
n+1∑

i=i0+3

bi(yi − yi−1)

=
i0∑
i=1

bi(yi − yi−1) + bi0+1(yi0+1 − yi0) + bi0+2(yi0+2 − yi0+1)

+
m∑

i=i0+3

bi(yi − yi−1)

=
m∑
i=1

bi(yi − yi−1)

= SQ(h),

which proves the theorem in this special case where Q is obtained from P by adding
just one more point.
It follows easily now by induction that if Q is obtained from P by adding any finite
number of additional points, then h is constant on each of the open subintervals
determined by Q, and SQ(h) = SP (h).
Finally, let Q = {y0 < y1 < . . . < ym} be an arbitrary partition of [a, b], for which
h is constant on each of the open subintervals (yj−1, yj) determined by Q. Define R
to be the partition of [a, b] obtained by taking the union of the partition points {xi}
and {yj}. Then R is a partition of [a, b] that is obtained by adding a finite number
of points to the partition P, whence SR(h) = SP (h). Likewise, R is obtained from
the partition Q by adding a finite number of points, whence SR(h) = SQ(h), and
this proves that SQ(h) = SP (h), as desired.

DEFINITION. Let [a, b] be a fixed closed bounded interval in R. We define the
integral of a step function h on [a, b], and denote it by

∫
h, as follows: If P = {x0 <

x1 < . . . < xn} is a partition of [a, b], for which h(x) = ai for all x ∈ (xi−1, xi),
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then ∫
h = SP (h) =

n∑
i=1

ai(xi − xi−1).

REMARK. The integral of a step function h is defined to be the weighted average
of h relative to a partition P of [a, b]. Notice that the preceding theorem is crucial
in order that this definition of

∫
h be unambiguously defined. The integral of a

step function should not depend on which partition is used. Theorem 5.1 asserts
precisely this fact.
Note also that if the interval is a single point, i.e., a = b, then the integral of every
step function h is 0.
We use a variety of notations for the integral of h :

∫
h =

∫ b

a

h =
∫ b

a

h(t) dt.

The following exercise provides a very useful way of describing the integral of a
step function. Not only does it show that the integral of a step function looks like
a Riemann sum, but it provides a description of the integral that makes certain
calculations easier. See, for example, the proof of the next theorem.

Exercise 5.3. Suppose h is a step function on [a, b] and that R = {z0 < z1 < . . . <
zn} is a partition of [a, b] for which h is constant on each subinterval (zi−1, zi) of
R.
(a) Prove that ∫

h = SR(h) =
n∑
i=1

h(wi)(zi − zi−1),

where, for each 1 ≤ i ≤ n, wi is any point in (zi−1, zi). (Note then that the integral
of a step function takes the form of a Riemann sum.)
(b) Show that

∫
h is independent of the values of h at the points {zi} of the partition

R.

Exercise 5.4. Let h1 and h2 be two step functions on [a, b].
(a) Suppose that h1(x) = h2(x) for all x ∈ [a, b] except for one point c. Prove that∫
h1 =

∫
h2.

HINT: Let P be a partition of [a, b], for which both h1 and h2 are constant on its
open subintervals, and for which c is one of the points of P. Now use the preceding
exercise to calculate the two integrals.
(b) Suppose h1(x) = h2(x) for all but a finite number of points c1, . . . , cN ∈ [a, b].
Prove that

∫
h1 =

∫
h2.

We have used the terminology “weighted average” of a step function relative to a
partition P. The next exercise shows how the integral of a step function can be
related to an actual average value of the function.

Exercise 5.5. Let h be a step function on the closed interval [a, b], and let P =
{x0 < x1 < . . . < xn} be a partition of [a, b] for which h(x) = ai on the interval
(xi−1, xi). Let us think of the interval [a, b] as an interval of time, and suppose
that the function h assumes the value ai for the interval of time between xi−1 and
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xi. Show that the average value A(h) taken on by h throughout the entire interval
([a, b]) of time is given by

A(h) =
∫
h

b− a
.

THEOREM 5.2. Let H([a, b]) denote the vector space of all step functions on
the closed interval [a, b]. Then the assignment h →

∫
h of H([a, b]) into R has the

following properties:
(1) (Linearity) H([a, b]) is a vector space. Furthermore,

∫
(h1 + h2) =

∫
h1 +∫

h2, and
∫
ch = c

∫
h for all h1, h2, h ∈ H([a, b]), and for all real numbers

c.
(2) If h =

∑n
i=1 aiχ(ci,di) is a linear combination of indicator functions (See

part (d) of Exercise 5.2), then
∫
h =

∑n
i=1 ai(di − ci).

(3) (Positivity) If h(x) ≥ 0 for all x ∈ [a, b], then
∫
h ≥ 0.

(4) (Order-preserving) If h1 and h2 are step functions for which h1(x) ≤ h2(x)
for all x ∈ [a, b], then

∫
h1 ≤

∫
h2.

PROOF. That H([a, b]) is a vector space was proved in part (a) of Exercise 5.2.
Suppose P = {x0 < x1 < . . . < xn} is a partition of [a, b] such that h1(x) is constant
for all x ∈ (xi−1, xi), and suppose Q = {y0 < y1 < . . . < ym} is a partition of [a, b]
such that h2(x) is constant for all x ∈ (yj−1, yj). Let R = {z0 < z1 < . . . < zr}
be the partition of [a, b] obtained by taking the union of the xi’s and the yj ’s.
Then h1 and h2 are both constant on each open subinterval of R, since each such
subinterval is contained in some open subinterval of P and also is contained in some
open subinterval of Q. Therefore, h1 + h2 is constant on each open subinterval of
R. Now, using Exercise 5.3, we have that∫

(h1 + h2) =
r∑

k=1

((h1 + h2)(wk))(zk − zk−1)

=
r∑

k=1

h1(wk)(zk − zk−1) +
r∑

k=1

h2(wk)(zk − zk−1)

=
∫
h1 +

∫
h2.

This proves the first assertion of part (1).
Next, let P = {x0 < x1 < . . . < xn} be a partition of [a, b] such that h(x) is constant
on each open subinterval of P. Then ch(x) is constant on each open subinterval of
P, and using Exercise 5.3 again, we have that∫

(ch) =
n∑
i=1

ch(wi)(xi − xi−1)

= c
n∑
i=1

h(wi)(xi − xi−1)

= c

∫
h,

which completes the proof of the other half of part (1).
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To see part (2), we need only verify that
∫
χ(ci,di) = di − ci, for then part (2)

will follow from part (1). But χ(ci,di) is just a step function determined by the
four point partition {a, ci, di, b} and values 0 on (a, ci) and (di, b) and 1 on (ci, di).
Therefore, we have that

∫
χ(ci,di) = di − ci.

If h(x) ≥ 0 for all x, and P = {x0 < x1 < . . . < xn} is as above, then∫
h =

n∑
i=1

h(wi)(xi − xi−1) ≥ 0,

and this proves part (3).
Finally, suppose h1(x) ≤ h2(x) for all x ∈ [a, b]. By Exercise 5.2, we know that the
function h3 = h2 − h1 is a step function on [a, b]. Also, h3(x) ≥ 0 for all x ∈ [a, b].
So, by part (3),

∫
h3 ≥ 0. Then, by part (1),

0 ≤
∫
h3 =

∫
(h2 − h1) =

∫
h2 −

∫
h1,

which implies that
∫
h1 ≤

∫
h2, as desired.

Exercise 5.6. (a) Let h be the constant function c on [a, b]. Show that
∫
h =

c(b− a).
(b) Let a < c < d < b be real numbers, and let h be the step function on [a, b] that
equals r for c < x < d and 0 otherwise. Prove that

∫ b
a
h(t) dt = r(d− c).

(c) Let h be a step function on [a, b]. Prove that |h| is a step function, and that
|
∫
h| ≤

∫
|h|.

HINT: Note that −|h|(x) ≤ h(x) ≤ |h|(x). Now use the preceding theorem.
(d) Suppose h is a step function on [a, b] and that c is a constant for which |h(x)| ≤ c
for all x ∈ [a, b]. Prove that |

∫
h| ≤ c(b− a).

INTEGRABLE FUNCTIONS

We now wish to extend the definition of the integral to a wider class of functions.
This class will consist of those functions that are uniform limits of step functions.
The requirement that these limits be uniform is crucial. Pointwise limits of step
functions doesn’t work, as we will see in Exercise 5.7 below. The initial step in
carrying out this generalization is the following.

THEOREM 5.3. Let [a, b] be a closed bounded interval, and let {hn} be a se-
quence of step functions that converges uniformly to a function f on [a, b]. Then
the sequence {

∫
hn} is a convergent sequence of real numbers.

PROOF. We will show that {
∫
hn} is a Cauchy sequence in R. Thus, given an

ε > 0, choose an N such that for any n ≥ N and any x ∈ [a, b], we have

|f(x)− hn(x)| < ε

2(b− a)
.

Then, for any m and n both ≥ N and any x ∈ [a, b], we have

|hn(x)− hm(x)| ≤ |hn(x)− f(x)|+ |f(x)− hm(x)| < ε

b− a
.
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Therefore,

|
∫
hn −

∫
hm| = |

∫
(hn − hm)| ≤

∫
|hn − hm| ≤

∫
ε

b− a
= ε,

as desired.

The preceding theorem provides us with a perfectly good idea of how to define the
integral of a function f that is the uniform limit of a sequence of step functions.
However, we first need to establish another kind of consistency result.

THEOREM 5.4. If {hn} and {kn} are two sequences of step functions on [a, b],
each converging uniformly to the same function f, then

lim
∫
hn = lim

∫
kn.

PROOF. Given ε > 0, choose N so that if n ≥ N, then |hn(x)−f(x)| < ε/(2(b−a))
for all x ∈ [a, b], and such that |f(x)− kn(x)| < ε/(2(b− a)) for all x ∈ [a, b]. Then,
|hn(x)− kn(x)| < ε/(b− a) for all x ∈ [a, b] if n ≥ N. So,

|
∫
hn −

∫
kn| ≤

∫
|hn − kn| ≤

∫
ε

b− a
= ε

if n ≥ N. Taking limits gives

| lim
∫
hn − lim

∫
kn| ≤ ε.

Since this is true for arbitrary ε > 0, it follows that lim
∫
hn = lim

∫
kn, as desired.

DEFINITION. Let [a, b] be a closed bounded interval of real numbers. A function
f : [a, b] → R is called integrable on [a, b] if it is the uniform limit of a sequence
{hn} of step functions.
Let I([a, b]) denote the set of all functions that are integrable on [a, b]. If f ∈ I([a, b]),
define the integral of f, denoted

∫
f, by∫
f = lim

∫
hn,

where {hn} is some (any) sequence of step functions that converges uniformly to f
on [a, b].

As in the case of step functions, we use the following notations:∫
f =

∫ b

a

f =
∫ b

a

f(t) dt.

REMARK. Note that Theorem 5.4 is crucial in order that this definition be unam-
biguous. Indeed, we will see below that this critical consistency result is one place
where uniform limits of step functions works while pointwise limits do not. See
parts (c) and (d) of Exercise 5.7. Note also that it follows from this definition that∫ a
a
f = 0, because

∫ a
a
h = 0 for any step function. In fact, we will derive almost
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everything about the integral of a general integrable function from the correspond-
ing results about the integral of a step function. No surprise. This is the essence
of mathematical analysis, approximation.

Exercise 5.7. Define a function f on the closed interval [0, 1] by f(x) = 1 if x is
a rational number and f(x) = 0 if x is an irrational number.
(a) Suppose h is a step function on [0, 1]. Prove that there must exist an x ∈ [0, 1]
such that |f(x)− h(x)| ≥ 1/2.
HINT: Let (xi−1, xi) be an interval on which h is a constant c. Now use the fact
that there are both rationals and irrationals in this interval.
(b) Prove that f is not the uniform limit of a sequence of step functions. That is,
f is not an integrable function.
(c) Consider the two sequences {hn} and {kn} of step functions defined on the
interval [0, 1] by hn = χ(0,1/n), and kn = nχ(0,1/n). Show that both sequences {hn}
and {kn} converge pointwise to the 0 function on [0, 1].
HINT: All functions are 0 at x = 0. For x > 0, choose N so that 1/N < x. Then,
for any n ≥ N, hn(x) = kn(x) = 0.
(d) Let hn and kn be as in part (c). Show that lim

∫
hn = 0, but lim

∫
kn = 1.

Conclude that the consistency result in Theorem 5.4 does not hold for pointwise
limits of step functions.

Exercise 5.8. Define a function f on the closed interval [0, 1] by f(x) = x.

(a) For each positive integer n, let Pn be the partition of [0, 1] given by the points
{0 < 1/n < 2/n < 3/n < . . . < (n− 1)/n < 1}. Define a step function hn on [0, 1]
by setting hn(x) = i/n if i−1

n < x < i
n , and hn(i/n) = i/n for all 0 ≤ i ≤ n. Prove

that |f(x)−hn(x)| < 1/n for all x ∈ [0, 1], and then conclude that f is the uniform
limit of the hn’s whence f ∈ I([0, 1]).
(b) Show that ∫

hn =
n∑
i=1

i

n2
=
n(n+ 1)

2n2
.

(c) Show that
∫ 1

0
f(t) dt = 1/2.

The next exercise establishes some additional properties of integrable functions on
an interval [a, b].

Exercise 5.9. Let [a, b] be a closed and bounded interval, and let f be an element
of I([a, b]).
(a) Show that, for each ε > 0 there exists a step function h on [a, b] such that
|f(x)− h(x)| < ε for all x ∈ [a, b].
(b) For each positive integer n let hn be a step function satisfying the conclusion
of part (a) for ε = 1/n. Define kn = hn − 1/n and ln = hn + 1/n. Show that kn
and ln are step functions, that kn(x) < f(x) < ln(x) for all x ∈ [a, b], and that
|ln(x)− kn(x)| = ln(x)− kn(x) = 2/n for all x. Hence,

∫ b
a

(ln − kn) = 2
n (b− a).

(c) Conclude from part (b) that, given any ε > 0, there exist step functions k and
l such that k(x) ≤ f(x) ≤ l(x) for which

∫
(l(x)− k(x)) < ε.

(d) Prove that there exists a sequence {jn} of step functions on [a, b], for which
jn(x) ≤ jn+1(x) ≤ f(x) for all x, that converges uniformly to f. Show also that there
exists a sequence {j′n} of step functions on [a, b], for which j′n(x) ≥ j′n+1(x) ≥ f(x)
for all x, that converges uniformly to f. That is, if f ∈ I([a, b]), then f is the
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uniform limit of a nondecreasing sequence of step functions and also is the uniform
limit of a nonincreasing sequence of step functions.
HINT: To construct the jn’s and j′n’s, use the step functions kn and ln of part
(b), and recall that the maximum and minimum of step functions is again a step
function.
(e) Show that if f(x) ≥ 0 for all x ∈ [a, b], and g is defined by g(x) =

√
f(x), then

g ∈ I([a, b]).
HINT: Write f = limhn where hn(x) ≥ 0 for all x and n. Then use part (g) of
Exercise 3.28.
(f) (Riemann sums again.) Show that, given an ε > 0, there exists a partition P
such that if Q = {x0 < x1 < . . . < xn} is any partition finer than P, and {wi} are
any points for which wi ∈ (xi−1, xi), then

|
∫ b

a

f(t) dt−
n∑
i=1

f(wi)(xi − xi−1)| < ε.

HINT: Let P be a partition for which both the step functions k and l of part (c)
are constant on the open subintervals of P. Verify that for any finer partition Q,
l(wi) ≥ f(wi) ≥ k(wi), and hence∑

i

l(wi)(xi − xi−1) ≥
∑
i

f(wi)(xi − xi−1) ≥
∑
i

k(wi)(xi − xi−1).

DEFINITION. A bounded real-valued function f on a closed bounded interval
[a, b] is called Riemann-integrable if, given any ε > 0, there exist step functions k
and l, on [a, b] for which k(x) ≤ f(x) ≤ l(x) for all x, such that

∫
(l − k) < ε. We

denote the set of all functions on [a, b] that are Riemann-integrable by IR([a, b]).

REMARK. The notion of Riemann-integrability was introduced by Riemann in the
mid nineteenth century and was the first formal definition of integrability. Since
then several other definitions have been given for an integral, culminating in the
theory of Lebesgue integration. The definition of integrability that we are using in
this book is slightly different and less general from that of Riemann, and both of
these are very different and less general from the definition given by Lebesgue in the
early twentieth century. Part (c) of Exercise 5.9 above shows that the functions we
are calling integrable are necessarily Riemann-integrable. We will see in Exercise
5.10 that there are Riemann-integrable functions that are not integrable in our
sense. In both cases, Riemann’s and ours, an integrable function f must be trapped
between two step functions k and l. In our definition, we must have l(x)− k(x) < ε
for all x ∈ [a, b], while in Riemann’s definition, we only need that

∫
l − k < ε. The

distinction is that a small step function must have a small integral, but it isn’t
necessary for a step function to be (uniformly) small in order for it to have a small
integral. It only has to be small on most of the interval [a, b].
On the other hand, all the definitions of integrability on [a, b] include among the
integrable functions the continuous ones. And, all the different definitions of inte-
gral give the same value to a continuous function. The differences then in these
definitions shows up at the point of saying exactly which functions are integrable.
Perhaps the most enlightening thing to say in this connection is that it is impossible
to make a “good” definition of integrability in such a way that every function is
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integrable. Subtle points in set theory arise in such attempts, and many fascinating
and deep mathematical ideas have come from them. However, we will stick with
our definition, since it is simpler than Riemann’s and is completely sufficient for
our purposes.

THEOREM 5.5. Let [a, b] be a fixed closed and bounded interval, and let I([a, b])
denote the set of integrable functions on [a, b]. Then:

(1) Every element of I([a, b]) is a bounded function. That is, integrable func-
tions are necessarily bounded functions.

(2) I([a, b]) is a vector space of functions.
(3) I([a, b]) is closed under multiplication; i.e., if f and g ∈ I([a, b]), then

fg ∈ I([a, b]).
(4) Every step function is in I([a, b]).
(5) If f is a continuous real-valued function on [a, b], then f is in I([a, b]). That

is, every continuous real-valued function on [a, b] is integrable on [a, b].

PROOF. Let f ∈ I([a, b]), and write f = limhn, where {hn} is a sequence of step
functions that converges uniformly to f. Given the positive number ε = 1, choose
N so that |f(x) − hN (x)| < 1 for all x ∈ [a, b]. Then |f(x)| ≤ |hN (x)| + 1 for all
x ∈ [a, b]. Because hN is a step function, its range is a finite set, so that there exists
a number M for which |hN (x)| ≤M for all x ∈ [a, b]. Hence, |f(x)| ≤M + 1 for all
x ∈ [a, b], and this proves part (1).
Next, let f and g be integrable, and write f = limhn and g = lim kn, where
{hn} and {kn} are sequences of step functions that converge uniformly to f and g
respectively. If s and t are real numbers, then the sequence {shn + tkn} converges
uniformly to the function sf + tg. See parts (c) and (d) of Exercise 3.28. Therefore,
sf + tg ∈ I([a, b]), and I([a, b]) is a vector space, proving part (2).
Note that part (3) does not follow immediately from Exercise 3.28; the product of
uniformly convergent sequences may not be uniformly convergent. To see it for this
case, let f = limhn and g = lim kn be elements of I([a, b]). By part (1), both f and
g are bounded, and we write Mf and Mg for numbers that satisfy |f(x)| ≤Mf and
|g(x)| ≤Mg for all x ∈ [a, b]. Because the sequence {kn} converges uniformly to g,
there exists an N such that if n ≥ N we have |g(x) − kn(x)| < 1 for all x ∈ [a, b].
This implies that, if n ≥ N, then |kn(x)| ≤Mg + 1 for all x ∈ [a, b].
Now we show that fg is the uniform limit of the sequence hnkn. For, if n ≥ N, then

|f(x)g(x)− hn(x)kn(x)| = |f(x)g(x)− f(x)kn(x) + f(x)kn(x)− hn(x)kn(x)|
≤ |f(x)||g(x)− kn(x)|+ |kn(x)||f(x)− hn(x)|
≤Mf |g(x)− kn(x)|+ (Mg + 1)|f(x)− hn(x)|,

which implies that fg = lim(hnkn).
If h is itself a step function, then it is obviously the uniform limit of the constant
sequence {h}, which implies that h is integrable.
Finally, if f is continuous on [a, b], it follows from Theorem 3.20 that f is the
uniform limit of a sequence of step functions, whence f ∈ I([a, b]).

Exercise 5.10. Let f be the function defined on [0, 1] by f(x) = sin(1/x) if x 6= 0
and f(0) = 0.
(a) Show that f is continuous at every nonzero x and discontinuous at 0.
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HINT: Observe that, on any interval (0, δ), the function sin(1/x) attains both the
values 1 and −1.

(b) Show that f is not integrable on [0, 1].

HINT: Suppose f = limhn. Choose N so that |f(x)−hN (x)| < 1/2 for all x ∈ [0, 1].
Let P be a partition for which hN is constant on its open subintervals, and examine
the situation for x’s in the interval (x0, x1).

(c) Show that f is Riemann-integrable on [0, 1]. Conclude that I([a, b]) is a proper
subset of IR([a, b]).

Exercise 5.11. (a) Let f be an integrable function on [a, b]. Suppose g is a function
for which g(x) = f(x) for all x ∈ [a, b] except for one point c. Prove that g is
integrable and that

∫
g =

∫
f.

HINT: If f = limhn, define kn(x) = hn(x) for all x 6= c and kn(c) = g(c). Then use
Exercise 5.4.

(b) Again, let f be an integrable function on [a, b]. Suppose g is a function for
which g(x) = f(x) for all but a finite number of points c1, . . . , cN ∈ [a, b]. Prove
that g ∈ I([a, b]), and that

∫
g =

∫
f.

(c) Suppose f is a function on the closed interval [a, b], that is uniformly continuous
on the open interval (a, b). Prove that f is integrable on [a, b].

HINT: Just reproduce the proof to Theorem 3.20.

REMARK. In view of part (b) of the preceding exercise, we see that whether a
function f is integrable or not is totally independent of the values of the function
at a fixed finite set of points. Indeed, the function needn’t even be defined at a
fixed finite set of points, and still it can be integrable. This observation is helpful
in many instances, e.g., in parts (d) and (e) of Exercise 5.21.

THEOREM 5.6. The assignment f →
∫
f on I([a, b]) satisfies the following

properties.

(1) (Linearity) I([a, b]) is a vector space, and
∫

(αf + βg) = α
∫
f + β

∫
g for

all f, g ∈ I([a, b])and α, β ∈ R.
(2) (Positivity) If f(x) ≥ 0 for all x ∈ [a, b], then

∫
f ≥ 0.

(3) (Order-preserving) If f, g ∈ I([a, b]) and f(x) ≤ g(x) for all x ∈ [a, b], then∫
f ≤

∫
g.

(4) If f ∈ I([a, b]), then so is |f |, and |
∫
f | ≤

∫
|f |.

(5) If f is the uniform limit of functions fn, each of which is in I([a, b]), then
f ∈ I([a, b]) and

∫
f = lim

∫
fn.

(6) Let {un} be a sequence of functions in I([a, b]). Suppose that for each n there
is a number mn, for which |un(x)| ≤ mn for all x ∈ [a, b], and such that
the infinite series

∑
mn converges. Then the infinite series

∑
un converges

uniformly to an integrable function, and
∫ ∑

un =
∑∫

un.

PROOF. That I([a, b]) is a vector space was proved in part (2) of Theorem 5.5.
Let f and g be in I([a, b]), and write f = limhn and g = lim kn, where the hn’s and
the kn’s are step functions. Then αf + βg = lim(αhn + βkn), so that, by Theorem
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5.2 and the definition of the integral, we have∫
(αf + βg) = lim

∫
(αhn + βkn)

= lim(α
∫
hn + β

∫
kn)

= α lim
∫
hn + β lim

∫
kn

= α

∫
f + β

∫
g,

which proves part (1).
Next, if f ∈ I([a, b]) satisfies f(x) ≥ 0 for all x ∈ [a, b], let {ln} be a nonincreasing
sequence of step functions that converges uniformly to f. See part (d) of Exercise
5.9. Then ln(x) ≥ f(x) ≥ 0 for all x and all n. So, again by Theorem 5.2, we have
that ∫

f = lim
∫
ln ≥ 0.

This proves part (2).
Part (3) now follows by combining parts (1) and (2) just as in the proof of Theorem
5.2.
To see part (4), let f ∈ I([a, b]) be given. Write f = limhn. Then |f | = lim |hn|.
For

||f(x)| − |hn(x)|| ≤ |f(x)− hn(x)|.

Therefore, |f | is integrable. Also,∫
|f | = lim

∫
|hn| ≥ lim |

∫
hn| = | lim

∫
hn| = |

∫
f |.

To see part (5), let {fn} be a sequence of elements of I([a, b]), and suppose that
f = lim fn. For each n, let hn be a step function on [a, b] such that |fn(x)−hn(x)| <
1/n for all x ∈ [a, b]. Note also that it follows from parts (3) and (4) that

|
∫
fn −

∫
hn| <

b− a
n

.

Now {hn} converges uniformly to f. For,

|f(x)− hn(x)| ≤ |f(x)− fn(x)|+ |fn(x)− hn(x)|

< |f(x)− fn(x)|+ 1
n
,

showing that f = limhn. Therefore, f ∈ I([a, b]). Moreover,
∫
f = lim

∫
hn. Finally,∫

f = lim
∫
fn, for

|
∫
f −

∫
fn| ≤ |

∫
f −

∫
hn|+ |

∫
hn −

∫
fn|

≤ |
∫
f −

∫
hn|+

b− a
n

.
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This completes the proof of part (5).

Part (6) follows directly from part (5) and the Weierstrass M Test (Theorem 3.18).
For, part (1) of that theorem implies that the infinite series

∑
un converges uni-

formly, and then
∫ ∑

un =
∑∫

un follows from part (5) of this theorem.

As a final extension of our notion of integral, we define the integral of certain
complex-valued functions.

DEFINITION. Let [a, b] be a fixed bounded and closed interval. A complex-
valued function f = u+ iv is called integrable if its real and imaginary parts u and
v are integrable. In this case, we define

∫ b

a

f =
∫ b

a

(u+ iv) =
∫ b

a

u+ i

∫ b

a

v.

THEOREM 5.7.

(1) The set of all integrable complex-valued functions on [a, b] is a vector space
over the field of complex numbers, and

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g

for all integrable complex-valued functions f and g and all complex numbers
α and β.

(2) If f is an integrable complex-valued function on [a, b], then so is |f |, and
|
∫ b
a
f | ≤

∫ b
a
|f |.

PROOF. We leave the verification of part (1) to the exercise that follows.

To see part (2), suppose that f is integrable, and write f = u + iv. Then |f | =√
u2 + v2, so that |f | is integrable by Theorem 5.5 and part (e) of Exercise 5.9.

Now write z =
∫ b
a
f, and write z in polar coordinates as z = reiθ, where r = |z| =

|
∫ b
a
f |. (See Exercise 4.23.) Define a function g by g(x) = e−iθf(x) and notice that

|g| = |f |. Then
∫ b
a
g = e−iθ

∫ b
a
f = r, which is a real number. Writing g = û + iv̂,
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we then have that r =
∫
û+ i

∫
v̂, implying that

∫
v̂ = 0. So,

|
∫ b

a

f | = r

=
∫ b

a

g

=
∫ b

a

û+ i

∫ b

a

v̂

=
∫ b

a

û

= |
∫ b

a

û|

≤
∫ b

a

|û|

≤
∫ b

a

|g|

=
∫ b

a

|f |,

as desired.

Exercise 5.12. Prove part (1) of the preceding theorem.
HINT: Break α, β,

∫
f, and

∫
g into real and imaginary parts.

THE FUNDAMENTAL THEOREM OF CALCULUS

We begin this section with a result that is certainly not a surprise, but we will need
it at various places in later proofs, so it’s good to state it precisely now.

THEOREM 5.8. Suppose f ∈ I([a, b]), and suppose a < c < b. Then f ∈ I([a, c]),
f ∈ I([c, b]), and ∫ b

a

f =
∫ c

a

f +
∫ b

c

f.

PROOF. Suppose first that h is a step function on [a, b], and let P = {x0 < x1 <
. . . < xn} be a partition of [a, b] such that h(x) = ai on the subinterval (xi−1, xi) of
P. Of course, we may assume without loss of generality that c is one of the points
of P, say c = xk. Clearly h is a step function on both intervals [a, c] and [c, b].
Now, let Q1 = {a = x0 < x1 < . . . < c = xk} be the partition of [a, c] obtained by
intersecting P with [a, c], and let Q2 = {c = xk < xk+1 < . . . < xn = b} be the
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partition of [c, b] obtained by intersecting P with [c, b]. We have that∫ b

a

h = SP (h)

=
n∑
i=1

ai(xi − xi−1)

=
k∑
i=1

ai(xi − xi−1) +
n∑

i=k+1

ai(xi − xi−1)

= SQ1(h) + SQ2(h)

=
∫ c

a

h+
∫ b

c

h,

which proves the theorem for step functions.
Now, write f = limhn, where each hn is a step function on [a, b]. Then clearly
f = limhn on [a, c], which shows that f ∈ I([a, c]), and∫ c

a

f = lim
∫ c

a

hn.

Similarly, f = limhn on [c, b], showing that f ∈ I([c, b]), and∫ b

c

f = lim
∫ b

c

hn.

Finally, ∫ b

a

f = lim
∫ b

a

hn

= lim(
∫ c

a

hn +
∫ b

c

hn)

= lim
∫ c

a

hn + lim
∫ b

c

hn

=
∫ c

a

f +
∫ b

c

f,

as desired.

I’s time for the trumpets again! What we call the Fundamental Theorem of Cal-
culus was discovered by Newton and Leibniz more or less simultaneously in the
seventeenth century, and it is without doubt the cornerstone of all we call mathe-
matical analysis today. Perhaps the main theoretical consequence of this theorem is
that it provides a procedure for inventing “new” functions. Polynomials are rather
natural functions, power series are a simple generalization of polynomials, and then
what? It all came down to thinking of a function of a variable x as being the
area beneath a curve between a fixed point a and the varying point x. By now, we
have polished and massaged these ideas into a careful, detailed development of the
subject, which has substantially obscured the original ingenious insights of Newton
and Leibniz. On the other hand, our development and proofs are complete, while
theirs were based heavily on their intuition. So, here it is.
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THEOREM 5.9. (Fundamental Theorem of Calculus) Suppose f is an arbitrary
element of I([a, b]). Define a function F on [a, b] by F (x) =

∫ x
a
f. Then:

(1) F is continuous on [a, b], and F (a) = 0.
(2) If f is continuous at a point c ∈ (a, b), then F is differentiable at c and

F ′(c) = f(c).
(3) Suppose that f is continuous on [a, b]. If G is any continuous function on

[a, b] that is differentiable on (a, b) and satisfies G′(x) = f(x) for all x ∈
(a, b), then ∫ b

a

f(t) dt = G(b)−G(a).

REMARK. Part (2) of this theorem is the heart of it, the great discovery of Newton
and Leibniz, although most beginning calculus students often think of part (3) as
the main statement. Of course it is that third part that enables us to actually
compute integrals.

PROOF. Because f ∈ I([a, b]), we know that f ∈ I([a, x]) for every x ∈ [a, b], so
that F (x) at least is defined.
Also, we know that f is bounded; i.e., there exists an M such that |f(t)| ≤ M for
all t ∈ [a, b]. Then, if x, y ∈ [a, b] with x ≥ y, we have that

|F (x)− F (y)| = |
∫ x

a

f −
∫ y

a

f |

= |
∫ y

a

f +
∫ x

y

f −
∫ y

a

f |

= |
∫ x

y

f |

≤
∫ x

y

|f |

≤
∫ x

y

M

= M(x− y),

so that |F (x) − F (y)| ≤ M |x − y| < ε if |x − y| < δ = ε/M. This shows that F
is (uniformly) continuous on [a, b]. Obviously, F (a) =

∫ a
a
f = 0, and part (1) is

proved.
Next, suppose that f is continuous at c ∈ (a, b), and write L = f(c). Let ε > 0 be
given. To show that F is differentiable at c and that F ′(c) = f(c), we must find a
δ > 0 such that if 0 < |h| < δ then

|F (c+ h)− F (c)
h

− L| < ε.

Since f is continuous at c, choose δ > 0 so that |f(t)− f(c)| < ε if |t− c| < δ. Now,
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assuming that h > 0 for the moment, we have that

F (c+ h)− F (c) =
∫ c+h

a

f −
∫ c

a

f

=
∫ c

a

f +
∫ c+h

c

f −
∫ c

a

f

=
∫ c+h

c

f,

and

L =

∫ c+h
c

L

h
.

So, if 0 < h < δ, then

|F (c+ h)− F (c)
h

− L| = |
∫ c+h
c

f(t) dt
h

−
∫ c+h
c

L

h
|

= |
∫ c+h
c

(f(t)− L) dt
h

|

≤
∫ c+h
c
|f(t)− L| dt
h

=

∫ c+h
c
|f(t)− f(c)| dt

h

≤
∫ c+h
c

ε

h

= ε,

where the last inequality follows because for t ∈ [c, c+h], we have that |t−c| ≤ h < δ.
A similar argument holds if h < 0. (See the following exercise.) This proves part
(2).
Suppose finally that G is continuous on [a, b], differentiable on (a, b), and that
G′(x) = f(x) for all x ∈ (a, b). Then, F − G is continuous on [a, b], differentiable
on (a, b), and by part (2) (F − G)′(x) = F ′(x) − G′(x) = f(x) − f(x) = 0 for all
x ∈ (a, b). It then follows from Exercise 4.12 that F −G is a constant function C,
whence,

G(b)−G(a) = F (b) + C − F (a)− C = F (b) =
∫ b

a

f(t) dt,

and the theorem is proved.

Exercise 5.13. (a) Complete the proof of part (2) of the preceding theorem; i.e.,
take care of the case when h < 0.
HINT: In this case, a < c+ h < c. Then, write

∫ c
a
f =

∫ c+h
a

f +
∫ c
c+h

f.

(b) Suppose f is a continuous function on the closed interval [a, b], and that f ′ exists
and is continuous on the open interval (a, b). Assume further that f ′ is integrable
on the closed interval [a, b]. Prove that f(x) − f(a) =

∫ x
a
f ′ for all x ∈ [a, b]. Be

careful to understand how this is different from the Fundamental Theorem.
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(c) Use the Fundamental Theorem to prove that for x ≥ 1 we have

ln(x) = F (x) ≡
∫ x

1

1
t
dt,

and for 0 < x < 1 we have

ln(x) = F (x) ≡ −
∫ 1

x

1
t
dt.

HINT: Show that these two functions have the same derivative and agree at x = 1.

CONSEQUENCES OF THE FUNDAMENTAL THEOREM

The first two theorems of this section constitute the basic “techniques of integra-
tion” taught in a calculus course. However, the careful formulations of these stan-
dard methods of evaluating integrals have some subtle points, i.e., some hypotheses.
Calculus students are rarely told about these details.

THEOREM 5.10. (Integration by Parts Formula) Let f and g be integrable
functions on [a, b], and as usual let F and G denote the functions defined by

F (x) =
∫ x

a

f, and G(x) =
∫ x

a

g.

Then ∫ b

a

fG = [F (b)G(b)− F (a)G(a)]−
∫ b

a

Fg.

Or, recalling that f = F ′ and g = G′,∫ b

a

F ′G = [F (b)G(b)− F (a)G(a)]−
∫ b

a

FG′.

Exercise 5.14. (a) Prove the preceding theorem.
HINT: Replace the upper limit b by a variable x, and differentiate both sides. By
the way, how do we know that the functions Fg and fG are integrable?
(b) Suppose f and g are integrable functions on [a, b] and that both f ′ and g′

are continuous on (a, b) and integrable on [a, b]. (Of course f ′ and g′ are not even
defined at the endpoints a and b, but they can still be integrable on [a, b]. See the
remark following Exercise 5.11.) Prove that∫ b

a

fg′ = [f(b)g(b)− f(a)g(a)]−
∫ b

a

f ′g.

THEOREM 5.11. (Integration by Substitution) Let f be a continuous function
on [a, b], and suppose g is a continuous, one-to-one function from [c, d] onto [a, b]
such that g is continuously differentiable on (c, d), and such that a = g(c) and
b = g(d). Assume finally that g′ is integrable on [c, d]. Then∫ b

a

f(t) dt =
∫ d

c

f(g(s))g′(s) ds.



140 V. INTEGRATION, AVERAGE BEHAVIOR

PROOF. It follows from our assumptions that the function f(g(s))g′(s) is contin-
uous on (a, b) and integrable on [c, d]. It also follows from our assumptions that g
maps the open interval (c, d) onto the open interval (a, b). As usual, let F denote
the function on [a, b] defined by F (x) =

∫ x
a
f(t) dt. Then, by part (2) of the Funda-

mental Theorem, F is differentiable on (a, b), and F ′ = f. Then, by the chain rule,
F ◦ g is continuous and differentiable on (c, d) and

(F ◦ g)′(s) = F ′(g(s))g′(s) = f(g(s))g′(s).

So, by part (3) of the Fundamental Theorem, we have that∫ d

c

f(g(s))g′(s) ds =
∫ d

c

(F ◦ g)′(s) ds

= (F ◦ g)(d)− (F ◦ g)(c)

= F (g(d))− F (g(c))

= F (b)− F (a)

=
∫ b

a

f(t) dt,

which finishes the proof.

Exercise 5.15. (a) Prove the “Mean Value Theorem” for integrals: If f is contin-
uous on [a, b], then there exists a c ∈ (a, b) such that∫ b

a

f(t) dt = f(c)(b− a).

(b) (Uniform limits of differentiable functions. Compare with Exercise 4.26.) Sup-
pose {fn} is a sequence of continuous functions on a closed interval [a, b] that
converges pointwise to a function f. Suppose that each derivative f ′n is continu-
ous on the open interval (a, b), is integrable on the closed interval [a, b], and that
the sequence {f ′n} converges uniformly to a function g on (a, b). Prove that f is
differentiable on (a, b), and f ′ = g.
HINT: Let x be in (a, b), and let c be in the interval (a, x). Justify the following
equalities, and use them together with the Fundamental Theorem to make the
proof.

f(x)− f(c) = lim(fn(x)− fn(c)) = lim
∫ x

c

f ′n =
∫ x

c

g.

We revisit now the Remainder Theorem of Taylor, which we first presented in
Theorem 4.19. The point is that there is another form of this theorem, the integral
form, and this version is more powerful in some instances than the original one,
e.g., in the general Binomial Theorem below.

THEOREM 5.12. (Integral Form of Taylor’s Remainder Theorem) Let c be a
real number, and let f have n + 1 derivatives on (c − r, c + r), and suppose that
f (n+1) ∈ I([c− r, c+ r]). Then for each c < x < c+ r,

f(x)− Tn(f,c)(x) =
∫ x

c

f (n+1)(t)
(x− t)n

n!
dt,
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where Tnf denotes the nth Taylor polynomial for f.
Similarly, for c− r < x < c,

f(x)− Tn(f,c)(x) =
∫ c

x

f (n+1)(t)
(x− t)n

n!
dt.

Exercise 5.16. Prove the preceding theorem.
HINT: Argue by induction on n, and integrate by parts.

REMARK. We return now to the general Binomial Theorem, first studied in The-
orem 4.21. The proof given there used the derivative form of Taylor’s remainder
Theorem, but we were only able to prove the Binomial Theorem for |t| < 1/2. The
theorem below uses the integral form of Taylor’s Remainder Theorem in its proof,
and it gives the full binomial theorem, i.e., for all t for which |t| < 1.

THEOREM 5.13. (General Binomial Theorem) Let α = a+bi be a fixed complex
number. Then

(1 + t)α =
∞∑
k=0

(
α

k

)
tk

for all t ∈ (−1, 1).

PROOF. For clarity, we repeat some of the proof of Theorem 4.21. Given a general
α = a+bi, consider the function g : (−1, 1)→ C defined by g(t) = (1+t)α. Observe
that the nth derivative of g is given by

g(n)(t) =
α(α− 1) . . . (α− n+ 1)

(1 + t)n−α
.

Then g ∈ C∞((−1, 1)).
For each nonnegative integer k define

ak = g(k)(0)/k! =
α(α− 1) . . . (α− k + 1)

k!
=
(
α

k

)
,

and set h(t) =
∑∞
k=0 akt

k. The radius of convergence for the power series function
h is 1, as was shown in Exercise 4.31. We wish to show that g(t) = h(t) for all
−1 < t < 1. That is, we wish to show that g is a Taylor series function around 0.
It will suffice to show that the sequence {Sn} of partial sums of the power series
function h converges to the function g. We note also that the nth partial sum is
just the nth Taylor polynomial Tng for g.
Now, fix a t strictly between 0 and 1. The argument for t’s between −1 and 0 is
completely analogous.. Choose an ε > 0 for which β = (1 + ε)t < 1. We let Cε be
a numbers such that |

(
α
n

)
| ≤ Cε(1 + ε)n for all nonnegative integers n. See Exercise

4.31. We will also need the following estimate, which can be easily deduced as a
calculus exercise (See part (d) of Exercise 4.11.). For all s between 0 and t, we have
(t−s)/(1+s) ≤ t. Note also that, for any s ∈ (0, t), we have |(1+s)α| = (1+s)a, and
this is trapped between 1 and (1 + t)a. Hence, there exists a number Mt such that
|(1 + s)α−1| ≤ Mt for all s ∈ (−0, t). We will need this estimate in the calculation
that follows.
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Then, by the integral form of Taylor’s Remainder Theorem, we have:

|g(t)−
n∑
k=0

akt
k| = |g(t)− Tng (t)|

= |
∫ t

0

g(n+1)(s)
(t− s)n

n!
ds|

= |
∫ t

0

(
(n+ 1)× α

n+ 1

)
(1 + s)α−n−1(t− s)n ds|

≤
∫ t

0

|
(

α

n+ 1

)
||(1 + s)α−1|(n+ 1)|( t− s

1 + s
|n ds

≤
∫ t

0

|
(

α

n+ 1

)
|Mt(n+ 1)tn ds

≤ CεMt(n+ 1)
∫ t

0

(1 + ε)n+1tn ds

= CεMt(n+ 1)(1 + ε)n+1tn+1

= CεMt(n+ 1)βn+1,

which tends to 0 as n goes to ∞, because β < 1. This completes the proof for
0 < t < 1.

AREA OF REGIONS IN THE PLANE

It would be desirable to be able to assign to each subset S of the Cartesian plane
R

2 a nonnegative real number A(S) called its area. We would insist based on
our intuition that (i) if S is a rectangle with sides of length L and W then the
number A(S) should be LW, so that this abstract notion of area would generalize
our intuitively fundamental one. We would also insist that (ii) if S were the union
of two disjoint parts, S = S1 ∪ S2, then A(S) should be A(S1) + A(S2). (We were
taught in high school plane geometry that the whole is the sum of its parts.) In
fact, even if S were the union of an infinite number of disjoint parts, S = ∪∞n=1Sn
with Si ∩ Sj = ∅ if i 6= j, we would insist that (iii) A(S) =

∑∞
n=1A(Sn).

The search for such a definition of area for every subset of R2 motivated much
of modern mathematics. Whether or not such an assignment exists is intimately
related to subtle questions in basic set theory, e.g., the Axiom of Choice and the
Continuum Hypothesis. Most mathematical analysts assume that the Axiom of
Choice holds, and as a result of that assumption, it has been shown that there can
be no assignment S → A(S) satisfying the above three requirements. Conversely, if
one does not assume that the Axiom of Choice holds, then it has also been shown
that it is perfectly consistent to assume as a basic axiom that such an assignment
S → A(S) does exist. We will not pursue these subtle points here, leaving them
to a course in Set Theory or Measure Theory. However, Here’s a statement of the
Axiom of Choice, and we invite the reader to think about how reasonable it seems.

AXIOM OF CHOICE. Let S be a collection of sets. Then there exists a set A
that contains exactly one element out of each of the sets S in S.

The difficulty mathematicians encountered in trying to define area turned out to
be involved with defining A(S) for every subset S ∈ R2. To avoid this difficulty,
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we will restrict our attention here to certain “ reasonable” subsets S. Of course, we
certainly want these sets to include the rectangles and all other common geometric
sets.

DEFINITION. By a (open) rectangle we will mean a set R = (a, b) × (c, d) in
R

2. That is, R = {(x, y) : a < x < b and c < y < d}. The analogous definition of a
closed rectangle [a, b]× [c, d] should be clear: [a, b]× [c, d] = {(x, y) : a ≤ x ≤ b, c ≤
y ≤ d}.
By the area of a (open or closed) rectangle R = (a, b) × (c, d) or [a, b] × [c, d] we
mean the number A(R) = (b− a)(d− c).

. The fundamental notion behind our definition of the area of a set S is this. If an
open rectangle R = (a, b)× (c, d) is a subset of S, then the area A(S) surely should
be greater than or equal to A(R) = (b − a)(d − c). And, if S contains the disjoint
union of several open rectangles, then the area of S should be greater than or equal
to the sum of their areas.
We now specify precisely for which sets we will define the area. Let [a, b] be a fixed
closed bounded interval in R and let l and u be two continuous real-valued functions
on [a, b] for which l(x) < u(x) for all x ∈ (a, b).

DEFINITION. Given [a, b], l, and u as in the above, let S be the set of all pairs
(x, y) ∈ R2, for which a < x < b and l(x) < y < u(x). Then S is called an open
geometric set. If we replace the < signs with ≤ signs, i.e., if S is the set of all
(x, y) such that a ≤ x ≤ b, and l(x) ≤ y ≤ u(x), then S is called a closed geometric
set. In either case, we say that S is bounded on the left and right by the vertical
line segments {(a, y) : l(a) ≤ y ≤ u(a)} and {(b, y) : l(b) ≤ y ≤ u(b)}, and it is
bounded below by the graph of the function l and bounded above by the graph of
the function u. We call the union of these four bounding curves the boundary of S,
and denote it by CS .
If the bounding functions u and l of a geometric set S are smooth or piecewise
smooth functions, we will call S a smooth or piecewise smooth geometric set.
If S is a closed geometric set, we will indicate the corresponding open geometric
set by the symbol S0.

The symbol S0 we have introduced for the open geometric set corresponding to a
closed one is the same symbol that we have used previously for the interior of a set.
Study the exercise that follows to see that the two uses of this notation agree.

Exercise 5.17. (a) Show that rectangles, triangles, and circles are geometric sets.
What in fact is the definition of a circle?
(b) Find some examples of sets that are not geometric sets. Think about a horse-
shoe on its side, or a heart on its side.
(c) Let f be a continuous, nonnegative function on [a, b]. Show that the “region”
under the graph of f is a geometric set.
(d) Show that the intersection of two geometric sets is a geometric set. Describe the
left, right, upper, and lower boundaries of the intersection. Prove that the interior
(S1 ∩ S2)0 of the intersection of two geometric sets S1 and S2 coincides with the
intersection S0

1 ∩ S0
2 of their two interiors.

(e) Give an example to show that the union of two geometric sets need not be a
geometric set.
(f) Show that every closed geometric set is compact.
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(g) Let S be a closed geometric set. Show that the corresponding open geometric
set S0 coincides with the interior of S, i.e., the set of all points in the interior of S.
HINT: Suppose a < x < b and l(x) < y < u(x). Begin by showing that, because
both l and u are continuous, there must exist an ε > 0 and a δ > 0 such that
a < x− δ < x+ δ < b and l(x) < y − ε < y + ε < u(x).

Now, given a geometric set S (either open or closed), that is determined by an
interval [a, b] and two bounding functions u and l, let P = {x0 < x1 < . . . < xn}
be a partition of [a, b]. For each 1 ≤ i ≤ n, define numbers ci and di as follows:

ci = sup
xi−1<x<xi

l(x), and di = inf
xi−1<x<xi

u(x).

Because the functions l and u are continuous, they are necessarily bounded, so that
the supremum and infimum above are real numbers. For each 1 ≤ i ≤ n define Ri
to be the open rectangle (xi−1, xi) × (ci, di). Of course, di may be < ci, in which
case the rectangle Ri is the empty set. In any event, we see that the partition
P determines a finite set of (possibly empty) rectangles {Ri}, and we denote the
union of these rectangles by the symbol CP . = ∪ni=1(xi−1, xi)× (ci, di).
The area of the rectangle Ri is (xi − xi−1)(di − ci) if ci < di and 0 otherwise. We
may write in general that A(Ri) = (xi− xi−1) max((di− ci), 0). Define the number
AP by

AP =
n∑
i=1

(xi − xi−1)(di − ci).

Note that AP is not exactly the sum of the areas of the rectangles determined by
P because it may happen that di < ci for some i’s, so that those terms in the sum
would be negative. In any case, it is clear that AP is less than or equal to the sum
of the areas of the rectangles, and this notation simplifies matters later.
For any partition P, we have S ⊇ CP , so that, if A(S) is to denote the area of S,
we want to have

A(S) ≥
n∑
i=1

A(Ri)

=
n∑
i=1

(xi − xi−1) max((di − ci), 0)

≥
n∑
i=1

(xi − xi−1)(di − ci)

= AP .

DEFINITION. Let S be a geometric set (either open or closed), bounded on the
left by x = a, on the right by x = b, below by the graph of l, and above by the
graph of u. Define the area A(S) of S by

A(S) = sup
P
AP = sup

P={x0<x1<...<xn}

n∑
i=1

(xi − xi−1)(di − ci),

where the supremum is taken over all partitions P of [a, b], and where the numbers
ci and di are as defined above.
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Exercise 5.18. (a) Using the notation of the preceding paragraphs, show that
each rectangle Ri is a subset of the set S and that Ri ∩Rj = ∅ if i 6= j. It may help
to draw a picture of the set S and the rectangles {Ri}. Can you draw one so that
di < ci?
(b) Suppose S1 is a geometric set and that S2 is another geometric set that is
contained in S1. Prove that A(S2) ≤ A(S1).
HINT: For each partition P, compare the two AP ’s.

Exercise 5.19. Let T be the triangle in the plane with vertices at the three points
(0, 0), (0,H), and (B, 0). Show that the area A(T ), as defined above, agrees with
the formula A = (1/2)BH, where B is the base and H is the height.

The next theorem gives the connection between area (geometry) and integration
(analysis). In fact, this theorem is what most calculus students think integration
is all about.

THEOREM 5.14. Let S be a geometric set, i.e., a subset of R2 that is determined
in the above manner by a closed bounded interval [a, b] and two bounding functions
l and u. Then

A(S) =
∫ b

a

(u(x)− l(x)) dx.

PROOF. Let P = {x0 < x1 < . . . < xn} be a partition of [a, b], and let ci and di
be defined as above. Let h be a step function that equals di on the open interval
(xi−1, xi), and let k be a step function that equals ci on the open interval (xi−1, xi).
Then on each open interval (xi−1, xi) we have h(x) ≤ u(x) and k(x) ≥ l(x). Com-
plete the definitions of h and k by defining them at the partition points so that
h(xi) = k(xi) for all i. Then we have that h(x)−k(x) ≤ u(x)− l(x) for all x ∈ [a, b].
Hence,

AP =
n∑
i=1

(xi − xi−1)(di − ci) =
∫ b

a

(h− k) ≤
∫ b

a

(u− l).

Since this is true for every partition P of [a, b], it follows by taking the supremum
over all partitions P that

A(S) = sup
P
AP ≤

∫ b

a

(u(x)− l(x)) dx,

which proves half of the theorem; i.e., that A(S) ≤
∫ b
a
u− l.

To see the other inequality, let h be any step function on [a, b] for which h(x) ≤ u(x)
for all x, and let k be any step function for which k(x) ≥ l(x) for all x. Let
P = {x0 < x1 < . . . < xn} be a partition of [a, b] for which both h and k are constant
on the open subintervals (xi−1, xi) of P. Let a1, a2, . . . , an and b1, b2, . . . , bn be the
numbers such that h(x) = ai on (xi−1, xi) and k(x) = bi on (xi−1, xi). It follows,
since h(x) ≤ u(x) for all x, that ai ≤ di. Also, it follows that bi ≥ ci. Therefore,

∫ b

a

(h− k) =
n∑
i=1

(ai − bi)(xi − xi−1) ≤
n∑
i=1

(xi − xi−1)(di − ci) = AP ≤ A(S).
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Finally, let {hm} be a nondecreasing sequence of step functions that converges
uniformly to u, and let {km} be a nonincreasing sequence of step functions that
converges uniformly to l. See part (d) of Exercise 5.9. Then∫ b

a

(u− l) = lim
m

∫ b

a

(hm − km) ≤ A(S),

which proves the other half of the theorem.

OK! Trumpet fanfares, please!

THEOREM 5.15. (A = πr2.) If S is a circle in the plane having radius r, then
the area A(S) of S is πr2.

PROOF. Suppose the center of the circle S is the point (h, k). This circle is a
geometric set. In fact, we may describe the circle with center (h, k) and radius r
as the subset S of R2 determined by the closed bounded interval [h− r, h+ r] and
the functions

u(x) = k +
√
r2 − (x− h)2

and
l(x) = k −

√
r2 − (x− h)2.

By the preceding theorem, we then have that

A(S) =
∫ h+r

h−r
2
√
r2 − (x− h)2 dx = πr2.

We leave the verification of the last equality to the following exercise.

Exercise 5.20. Evaluate the integral in the above proof:∫ h+r

h−r
2
√
r2 − (x− h)2 dx.

Be careful to explain each step by referring to theorems and exercises in this book.
It may seem like an elementary calculus exercise, but we are justifying each step
here.

REMARK. There is another formula for the area of a geometric set that is some-
times very useful. This formula gives the area in terms of a “double integral.”
There is really nothing new to this formula; it simply makes use of the fact that the
number (length) u(x)− l(x) can be represented as the integral from l(x) to u(x) of
the constant 1. Here’s the formula:

A(S) =
∫ b

a

(
∫ u(x)

l(x)

1 dy) dx.

The next theorem is a result that justifies our definition of area by verifying that
the whole is equal to the sum of its parts, something that any good definition of
area should satisfy.
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THEOREM 5.16. Let S be a closed geometric set, and suppose S = ∪ni=1Si,
where the sets {Si} are closed geometric sets for which S0

i ∩ S0
j = ∅ if i 6= j. Then

A(S) =
n∑
i=1

A(Si).

PROOF. Suppose S is determined by the interval [a, b] and the two bounding
functions l and u, and suppose Si is determined by the interval [ai, bi] and the two
bounding functions li and ui. Because Si ⊆ S, it must be that the interval [ai, bi] is
contained in the interval [a, b]. Initially, the bounding functions li and ui are defined
and continuous on [ai, bi], and we extend their domain to all of [a, b] by defining
li(x) = ui(x) = 0 for all x ∈ [a, b] that are not in [ai, bi]. The extended functions li
and ui may not be continuous on all of [a, b], but they are still integrable on [a, b].
(Why?) Notice that we now have the formula

A(Si) =
∫ bi

ai

(ui(x)− li(x)) dx =
∫ b

a

(ui(x)− li(x)) dx.

Next, fix an x in the open interval (a, b). We must have that the vertical intervals
(li(x), ui(x)) and (lj(x), uj(x)) are disjoint if i 6= j. Otherwise, there would exist a
point y in both intervals, and this would mean that the point (x, y) would belong to
both S0

i and S0
j , which is impossible by hypothesis. Therefore, for each x ∈ (a, b),

the intervals {(li()x), ui(x))} are pairwise disjoint open intervals, and they are all
contained in the interval (l(x), u(x)), because the Si’s are subsets of S. Hence, the
sum of the lengths of the open intervals {(li(x), ui(x))} is less than or equal to
the length of (l(x), u(x)). Also, for any point y in the closed interval [l(x), u(x)],
the point (x, y) must belong to one of the Si’s, implying that y is in the closed
interval [li(x), ui(x)] for some i. But this means that the sum of the lengths of the
closed intervals [li(x), ui(x)] is greater than or equal to the length of the interval
[l(x), u(x)]. Since open intervals and closed intervals have the same length, we then
see that (u(x)− l(x) =

∑n
i=1(ui(x)− li(x)).

We now have the following calculation:

n∑
i=1

A(Si) =
n∑
i=1

∫ bi

ai

(ui(x)− li(x)) dx

=
n∑
i=1

∫ b

a

(ui(x)− li(x)) dx

=
∫ b

a

n∑
i=1

(ui(x)− li(x)) dx

=
∫ b

a

(u(x)− l(x)) dx

= A(S),

which completes the proof.

EXTENDING THE DEFINITION OF INTEGRABILITY
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We now wish to extend the definition of the integral to a wider class of functions,
namely to some that are unbounded and Others whose domains are not closed and
bounded intervals. This extended definition is somewhat ad hoc, and these integrals
are sometimes called “improper integrals.”

DEFINITION. Let f be a real or complex-valued function on the open in-
terval (a, b) where a is possibly −∞ and b is possibly +∞. We say that f is
improperly-integrable on (a, b) if it is integrable on each closed and bounded subin-
terval [a′, b′] ⊂ (a, b), and for each point c ∈ (a, b) we have that the two limits
lim b′ → b− 0

∫ b′
c
f and lima′→a+0

∫ c
a′
f exist.

More generally, We say that a real or complex-valued function f, not necessarily
defined on all of the open interval (a, b), is improperly-integrable on (a, b) if there
exists a partition {xi} of [a, b] such that f is defined and improperly-integrable on
each open interval (xi−1, xi).
We denote the set of all functions f that are improperly-integrable on an open
interval (a, b) by Ii((a, b)).
Analogous definitions are made for a function’s being integrable on half-open inter-
vals [a, b) and (a, b].

Note that, in order for f to be improperly-integrable on an open interval, we only
require f to be defined at almost all the points of the interval, i.e., at every point
except the endpoints of some partition.
Exercise 5.21. (a) Let f be defined and improperly-integrable on the open interval
(a, b). Show that lima′→a+0

∫ c
a′
f + limb′→b−0

∫ b′
c
f is the same for all c ∈ (a, b).

(b) Define a function f on (0, 1) by f(x) = (1−x)−1/2. Show that f is improperly-
integrable on (0, 1) and that f is not bounded. (Compare this with part (1) of
Theorem 5.5.)
(c) Define a function g on (0, 1) by g(x) = (1−x)−1. Show that g is not improperly-
integrable on (0, 1), and, using part (b), conclude that the product of improperly-
integrable functions on (0, 1) need not itself be improperly-integrable. (Compare
this with part (3) of Theorem 5.5.)
(d) Define h to be the function on (0,∞) given by h(x) = 1 for all x. Show that
h is not improperly-integrable on (0,∞). (Compare this with parts (4) and (5) of
Theorem 5.5.)

Part (a) of the preceding exercise is just the consistency condition we need in order
to make a definition of the integral of an improperly-integrable function over an
open interval.

DEFINITION. Let f be defined and improperly-integrable on an open interval
(a, b). We define the integral of f over the interval (a, b), and denote it by

∫ b
a
f, by∫ b

a

f = lim
a′→a+0

∫ c

a′
f + lim

b′→b−0

∫ b′

c

f.

In general, if f is improperly-integrable over an open interval, i.e., f is defined and
improperly-integrable over each subinterval of (a, b) determined by a partition {xi},
then we define the integral of f over the interval (a, b) by∫ b

a

f =
n∑
i=1

∫ xi

xi−1

f.
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THEOREM 5.17. Let (a, b) be a fixed open interval (with a possibly equal to −∞
and b possibly equal to +∞), and let Ii((a, b)) denote the set of improperly-integrable
functions on (a, b). Then:

(1) Ii((a, b)) is a vector space of functions.
(2) (Linearity)

∫ b
a

(αf +βg) = α
∫ b
a
f +β

∫ b
a
g for all f, g ∈ Ii((a, b))and α, β ∈

C.
(3) (Positivity) If f(x) ≥ 0 for all x ∈ (a, b), then

∫ b
a
f ≥ 0.

(4) (Order-preserving) If f, g ∈ Ii((a, b)) and f(x) ≤ g(x) for all x ∈ (a, b),
then

∫ b
a
f ≤

∫ b
a
g.

Exercise 5.22. (a) Use Theorems 5.5, 5.6, 5.7, and properties of limits to prove
the preceding theorem.
(b) Let f be defined and improperly-integrable on (a, b). Show that, given an ε > 0,
there exists a δ > 0 such that for any a < a′ < a+ δ and any b− δ < b′ < b we have
|
∫ a′
a
f |+ |

∫ b
b′
f | < ε.

(c) Let f be improperly-integrable on an open interval (a, b). Show that, given an
ε > 0, there exists a δ > 0 such that if (c, d) is any open subinterval of (a, b) for
which d− c < δ, then |

∫ d
c
f | < ε.

HINT: Let {xi} be a partition of [a, b] such that f is defined and improperly-
integrable on each subinterval (xi−1, xi). For each i, choose a δi using part (b).
Now f is bounded by M on all the intervals [xi−1 + δi, xi − δi], so δ = ε/M should
work there.
(d) Suppose f is a continuous function on a closed bounded interval [a, b] and is
continuously differentiable on the open interval (a, b). Prove that f ′ is improperly-
integrable on (a, b), and evaluate

∫ b
a
f ′.

HINT: Fix a point c ∈ (a, b), and use the Fundamental Theorem of Calculus to
show that the two limits exist.
(e) (Integration by substitution again.) Let g : [c, d]→ [a, b] be continuous on [c, d]
and satisfy g(c) = a and g(d) = b. Suppose there exists a partition {x0 < x1 <
. . . < xn} of the interval [c, d] such that g is continuously differentiable on each
subinterval (xi−1, xi). Prove that g′ is improperly-integrable on the open interval
(c, d). Show also that if f is continuous on [a, b], we have that

∫ b

a

f(t) dt =
∫ d

c

f(g(s))g′(s) ds.

HINT: Integrate over the subintervals (xi−1, xi), and use part (d).

REMARK. Note that there are parts of Theorems 5.5 and 5.6 that are not as-
serted in Theorem 5.17. The point is that these other properties do not hold for
improperly-integrable functions on open intervals. See the following exercise.

Exercise 5.23. (a) Define f to be the function on [1,∞) given by f(x) =
(−1)n−1/n if n − 1 ≤ x < n. Show that f is improperly-integrable on (1,∞),
but that |f | is not improperly-integrable on (1,∞). (Compare this with part (4) of
Theorem 5.6.)
HINT: Verify that

∫ N
1
f is a partial sum of a convergent infinite series, and then

verify that
∫ N

1
|f | is a partial sum of a divergent infinite series.
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(b) Define the function f on (1,∞) by f(x) = 1/x. For each positive integer n, define
the function fn on (1,∞) by fn(x) = 1/x if 1 < x < n and fn(x) = 0 otherwise.
Show that each fn is improperly-integrable on (1,∞), that f is the uniform limit
of the sequence {fn}, but that f is not improperly-integrable on (1,∞). (Compare
this with part (5) of Theorem 5.6.)
(c) Suppose f is a nonnegative real-valued function on the half-open interval (a,∞)
that is integrable on every closed bounded subinterval [a, b′]. For each positive
integer n ≥ a, define yn =

∫ n
a
f(x) dx. Prove that f is improperly-integrable on

[a,∞) if and only if the sequence {yn} is convergent. In that case, show that∫∞
a
f = lim yn.

We are now able to prove an important result relating integrals over infinite intervals
and convergence of infinite series.

THEOREM 5.18. Let f be a positive function on [1,∞), assume that f is inte-
grable on every closed bounded interval [1, b], and suppose that f is nonincreasing;
i.e., if x < y then f(x) ≥ f(y). For each positive integer i, set ai = f(i), and let
SN denote the N th partial sum of the infinite series

∑
ai : SN =

∑N
i=1 ai. Then:

(1) For each N, we have

SN − a1 ≤
∫ N

1

f(x) dx ≤ SN−1.

(2) For each N, we have that

SN−1 −
∫ N

1

f(x) dx ≤ a1 − aN ≤ a1;

i.e., the sequence {SN−1 −
∫ N

1
f} is bounded above.

(3) The sequence {SN−1 −
∫ N

1
f} is nondecreasing.

(4) (Integral Test) The infinite series
∑
ai converges if and only if the function

f is improperly-integrable on (1,∞).

PROOF. For each positive integer N, define a step function kN on the interval
[1, N ] as follows. Let P = {x0 < x1 < . . . < xN−1} be the partition of [1, N ] given
by the points {1 < 2 < 3 < . . . < N}, i.e., xi = i + 1. Define kN (x) to be the
constant ci = f(i+ 1) on the interval [xi−1, xi) = [i, i+ 1). Complete the definition
of kN by setting kN (N) = f(N). Then, because f is nonincreasing, we have that
kN (x) ≤ f(x) for all x ∈ [1, N ]. Also,∫ N

1

kN =
N−1∑
i=1

ci(xi − xi−1)

=
N−1∑
i=1

f(i+ 1)

=
N∑
i=2

f(i)

=
N∑
i=2

ai

= SN − a1,
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which then implies that

SN − a1 =
∫ N

1

kN (x) dx ≤
∫ N

1

f(x) dx.

This proves half of part (1).
For each positive integer N > 1 define another step function lN , using the same
partition P as above, by setting lN (x) = f(i) if i ≤ x < i + 1 for 1 ≤ i < N,
and complete the definition of lN by setting lN (N) = f(N). Again, because f is
nonincreasing, we have that f(x) ≤ lN (x) for all x ∈ [1, N ]. Also∫ N

1

lN =
N−1∑
i=1

f(i)

=
N−1∑
i=1

ai

= SN−1,

which then implies that∫ N

1

f(x) dx ≤
∫ N

1

lN (x) dx = SN−1,

and this proves the other half of part (1).
It follows from part (1) that

SN−1 −
∫ N

1

f(x) dx ≤ SN−1 − SN + a1 = a1 − aN ,

and this proves part (2).
We see that the sequence {SN−1 −

∫ N
1
f} is nondecreasing by observing that

SN −
∫ N+1

1

f − SN−1 +
∫ N

1

f = aN −
∫ N+1

N

f

= f(N)−
∫ N+1

N

f

≥ 0,

because f is nonincreasing.
Finally, to prove part (4), note that both of the sequences {SN} and {

∫ N
1
f} are

nondecreasing. If f is improperly-integrable on [1,∞), then limN

∫ N
1
f exists, and

SN ≤ a1 +
∫∞

1
f(x) dx for all N, which implies that

∑
ai converges by Theorem

2.14. Conversely, if
∑
ai converges, then limSN exists. Since

∫ N
1
f(x) dx ≤ SN−1,

it then follows, again from Theorem 2.14, that limN

∫ N
1
f(x) dx exists. So, by the

preceding exercise, f is improperly-integrable on [1,∞).

We may now resolve a question first raised in Exercise 2.32. That is, for 1 < s < 2,
is the infinite series

∑
1/ns convergent or divergent? We saw in that exercise that

this series is convergent if s is a rational number.
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Exercise 5.24. (a) Let s be a real number. Use the Integral Test to prove that
the infinite series

∑
1/ns is convergent if and only if s > 1.

(b) Let s be a complex number s = a+ bi. Prove that the infinite series
∑

1/ns is
absolutely convergent if and only if a > 1.
Exercise 5.25. Let f be the function on [1,∞) defined by f(x) = 1/x.
(a) Use Theorem 5.18 to prove that the sequence {

∑N
i=1

1
i − lnN} converges to a

positive number γ ≤ 1. (This number γ is called Euler’s constant.)
HINT: Show that this sequence is bounded above and nondecreasing.
(b) Prove that

∞∑
i=1

(−1)i+1

i
= ln 2.

HINT: Write S2N for the 2Nth partial sum of the series. Use the fact that

S2N =
2N∑
i=1

1
i
− 2

N∑
i=1

1
2i
.

Now add and subtract ln(2N) and use part (a).

INTEGRATION IN THE PLANE

Let S be a closed geometric set in the plane. If f is a real-valued function on S,
we would like to define what it means for f to be “integrable” and then what the
“integral” of f is. To do this, we will simply mimic our development for integration
of functions on a closed interval [a, b].
So, what should be a “step function” in this context? That is, what should is a
“partition” of S be in this context? Presumably a step function is going to be a
function that is constant on the “elements” of a partition. Our idea is to replace
the subintervals determined by a partition of the interval [a, b] by geometric subsets
of the geometric set S.

DEFINITION. The overlap of two geometric sets S1 and S2 is defined to be the
interior (S1 ∩S2)0 of their intersection. S1 and S2 are called nonoverlapping if this
overlap (S1 ∩ S2)0 is the empty set.

DEFINITION. A partition of a closed geometric set S in R2 is a finite collection
{S1, S2, . . . , Sn} of nonoverlapping closed geometric sets for which ∪ni=1Si = S; i.e.,
the union of the Si’s is all of the geometric set S.
The open subsets {S0

i } are called the elements of the partition.
A step function on the closed geometric set S is a real-valued function h on S for
which there exists a partition P = {Si} of S such that h(z) = ai for all z ∈ S0

i ; i.e.,
h is constant on each element of the partition P.

REMARK. One example of a partition of a geometric set, though not at all the
most general kind, is the following. Suppose the geometric set S is determined by
the interval [a, b] and the two bounding functions u and l. Let {x0 < x1 < . . . < xn}
be a partition of the interval [a, b]. We make a partition {Si} of S by constructing
vertical lines at the points xi from l(xi) to u(xi). Then Si is the geometric set
determined by the interval [xi−1, xi] and the two bounding functions ui and li that
are the restrictions of u and l to the interval [xi−1, xi].
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A step function is constant on the open geometric sets that form the elements of
some partition. We say nothing about the values of h on the “boundaries” of these
geometric sets. For a step function h on an interval [a, b], we do not worry about
the finitely many values of h at the endpoints of the subintervals. However, in the
plane, we are ignoring the values on the boundaries, which are infinite sets. As
a consequence, a step function on a geometric set may very well have an infinite
range, and may not even be a bounded function, unlike the case for a step function
on an interval. The idea is that the boundaries of geometric sets are “negligible”
sets as far as area is concerned, so that the values of a function on these boundaries
shouldn’t affect the integral (average value) of the function.
Before continuing our development of the integral of functions in the plane, we
digress to present an analog of Theorem 3.20 to functions that are continuous on a
closed geometric set.

THEOREM 5.19. Let f be a continuous real-valued function whose domain is a
closed geometric set S. Then there exists a sequence {hn} of step functions on S
that converges uniformly to f.

PROOF. As in the proof of Theorem 3.20, we use the fact that a continuous func-
tion on a compact set is uniformly continuous.
For each positive integer n, let δn be a positive number satisfying |f(z)−f(w)| < 1/n
if |z − w| < δn. Such a δn exists by the uniform continuity of f on S. Because S
is compact, it is bounded, and we let R = [a, b] × [c, d] be a closed rectangle that
contains S. We construct a partition {Sni } of S as follows. In a checkerboard fashion,
we write R as the union ∪Rni of small, closed rectangles satisfying

(1) If z and w are in Rni , then |z − w| < δn. (The rectangles are that small.)
(2) Rni

0 ∩Rnj
0 = ∅. (The interiors of these small rectangles are disjoint.)

Now define Sni = S ∩ Rni . Then Sni
0 ∩ Snj

0 = ∅, and S = ∪Sni . Hence, {Sni } is a
partition of S.
For each i, choose a point zni in Sni , and set ani = f(zni ). We define a step function
hn as follows: If z belongs to one (and of course only one) of the open geometric
sets Sni

0, set hn(z) = ani . And, if z does not belong to any of the open geometric
sets Sni

0, set hn(z) = f(z). It follows immediately that hn is a step function.
Now, we claim that |f(z)−hn(z)| < 1/n for all z ∈ S. For any z in one of the Sni

0’s,
we have

|f(z)− hn(z)| = |fz)− ani | = |f(z)− f(znI )| < 1/n

because |z − zni | < δn. And, for any z not in any of the Sni
0’s, f(z) − hn(z) = 0.

So, we have defined a sequence {hn} of step functions on S, and the sequence {hn}
converges uniformly to f by Exercise 3.29.

What follows now should be expected. We will define the integral of a step function
h over a geometric set S by ∫

S

h =
n∑
i=1

ai ×A(Si).

We will define a function f on S to be integrable if it is the uniform limit of a
sequence {hn} of step functions, and we will then define the integral of f by∫

S

f = lim
∫
S

hn.
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Everything should work out nicely. Of course, we have to check the same two
consistency questions we had for the definition of the integral on [a, b], i.e., the
analogs of Theorems 5.1 and 5.4.

THEOREM 5.20. Let S be a closed geometric set, and let h be a step function
on S. Suppose P = {S1, . . . , Sn} and Q = {T1, . . . , Tm} are two partitions of S for
which h(z) is the constant ai on S0

i and h(z) is the constant bj on T 0
j . Then

n∑
i=1

aiA(Si) =
m∑
j=1

bjA(Tj).

PROOF. We know by part (d) of Exercise 5.17 that the intersection of two geo-
metric sets is itself a geometric set. Also, for each fixed index j, we know that the
sets {Tj ∩S0

i } are pairwise disjoint. Then, by Theorem 5.16, we have that A(Tj) =∑n
i=1A(Tj ∩ Si). Similarly, for each fixed i, we have that A(Si =

∑m
j=1A(Tj ∩ Si).

Finally, for each pair i and j, for which the set T 0
j ∩S0

i is not empty, choose a point
zi,j ∈ T 0

j ∩S0
i , and note that ai = h(zi,j) = bj , because zi,j belongs to both S0

i and
T 0
j .

With these observations, we then have that

n∑
i=1

aiA(Si) =
n∑
i=1

ai

m∑
j=1

A(Tj ∩ Si)

=
n∑
i=1

m∑
j=1

aiA(Tj ∩ Si)

=
n∑
i=1

m∑
j=1

h(zi,j)A(Tj ∩ Si)

=
n∑
i=1

m∑
j=1

bjA(Tj ∩ Si)

=
m∑
j=1

n∑
i=1

bjA(Tj ∩ Si)

=
m∑
j=1

bj

n∑
i=1

A(Tj ∩ Si)

=
m∑
j=1

bjA(Tj),

which completes the proof.

OK, the first consistency condition is satisfied. Moving right along:

DEFINITION. Let h be a step function on a closed geometric set S. Define the
integral of h over the geometric set S by the formula∫

S

h =
∫
S

H(z) dz =
n∑
i=1

aiA(Si),
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where S1, . . . , Sn is a partition of S for which h is the constant ai on the interior
S0
i of the set Si.

Just as in the case of integration on an interval, before checking the second con-
sistency result, we need to establish the following properties of the integral of step
functions.

THEOREM 5.21. Let H(S) denote the vector space of all step functions on the
closed geometric set S. Then the assignment h →

∫
h of H(S) into R has the

following properties:
(1) (Linearity) H(S) is a vector space, and

∫
S

(h1 + h2) =
∫
S
h1 +

∫
S
h2, and∫

S
ch = c

∫
S
h for all h1, h2, h ∈ H(S), and for all real numbers c.

(2) If h =
∑n
i=1 ciχSi is a linear combination of indicator functions of geometric

sets that are subsets of S, then
∫
h =

∑n
i=1 ciA(Si).

(3) (Positivity) If h(z) ≥ 0 for all z ∈ S, then
∫
S
h ≥ 0.

(4) (Order-preserving) If h1 and h2 are step functions on S for which h1(z) ≤
h2(z) for all z ∈ S, then

∫
S
h1 ≤

∫
S
h2.

PROOF. Suppose h1 is constant on the elements of a partition P = {Si} and h2

is constant on the elements of a partition Q = {Tj}. Let V be the partition of the
geometric set S whose elements are the sets {Uk} = {S0

i ∩ T 0
j }. Then both h1 and

h2 are constant on the elements Uk of V, so that h1 + h2 is also constant on these
elements. Therefore, h1 + h2 is a step function, and∫

(h1 + h2) =
∑
k

(ak + bk)A(Uk) =
∑
k

akA(Uk) +
∑
k

bkA(Uk) =
∫
h1 +

∫
h2,

and this proves the first assertion of part (1).
The proof of the other half of part (1), as well as parts (2), (3), and (4), are totally
analogous to the proofs of the corresponding parts of Theorem 5.2, and we omit
the arguments here.

Now for the other necessary consistency condition:

THEOREM 5.22. let S be a closed geometric set in the plane.
(1) If {hn} is a sequence of step functions that converges uniformly to a function

f on S, then the sequence {
∫
S
hn} is a convergent sequence of real numbers.

(2) If {hn} and {kn} are two sequences of step functions on S that converge
uniformly to the same function f, then

lim
∫
S

hn = lim
∫
S

kn.

Exercise 5.26. Prove Theorem 5.22. Mimic the proofs of Theorems 5.3 and 5.4.

DEFINITION. If f is a real-valued function on a closed geometric set S in the
plane, then f is integrable on S if it is the uniform limit of a sequence {hn} of step
functions on S.
We define the integral of an integrable function f on S by∫

S

f ≡
∫
S

f(z) dz = lim
∫
S

hn,

where {hn} is a sequence of step functions on S that converges uniformly to f.
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THEOREM 5.23. Let S be a closed geometric set in the plane, and let I(S)
denote the set of integrable functions on S. Then:

(1) I(S) is a vector space of functions.
(2) If f and g ∈ I(S), and one of them is bounded, then fg ∈ I(S).
(3) Every step function is in I(S).
(4) If f is a continuous real-valued function on S, then f is in I(S). That is,

every continuous real-valued function on S is integrable on S.

Exercise 5.27. (a) Prove Theorem 5.23. Note that this theorem is the analog of
Theorem 5.5, but that some things are missing.
(b) Show that integrable functions on S are not necessarily bounded; not even step
functions have to be bounded.
(c) Show that, if f ∈ I(S), and g is a function on S for which f(x, y) = g(x, y) for
all (x, y) in the interior S0 of S, then g ∈ I(S). That is, integrable functions on S
can do whatever they like on the boundary.

THEOREM 5.24. Let S be a closed geometric set. The assignment f →
∫
f on

I(S) satisfies the following properties.

(1) (Linearity) I(S) is a vector space, and
∫
S

(αf + βg) = α
∫
S
f + β

∫
S
g for

all f, g ∈ I(S)and α, β ∈ R.
(2) (Positivity) If f(z) ≥ 0 for all z ∈ S, then

∫
S
f ≥ 0.

(3) (Order-preserving) If f, g ∈ I(S) and f(z) ≤ g(z) for all z ∈ S, then∫
S
f ≤

∫
S
g.

(4) If f ∈ I(S), then so is |f |, and |
∫
S
f | ≤

∫
S
|f |.

(5) If f is the uniform limit of functions fn, each of which is in I(S), then
f ∈ I(S) and

∫
S
f = lim

∫
S
fn.

(6) Let {un} be a sequence of functions in I(S), and suppose that for each n
there is a number mn, for which |un(z)| ≤ mn for all z ∈ S, and such that
the infinite series

∑
mn converges. Then the infinite series

∑
un converges

uniformly to an integrable function, and
∫
S

∑
un =

∑∫
S
un.

(7) If f ∈ I(S), and {S1, . . . , Sn} is a partition of S, then f ∈ I(Si) for all i,
and ∫

S

=
n∑
i=1

∫
Si

f.

Exercise 5.28. Prove Theorem 5.24. It is mostly the analog to Theorem 5.6. To
see the last part, let hi be the step function that is identically 1 on Si; check that
hif ∈ I(Si); then examine

∑
i

∫
S
fhi.

Of course, we could now extend the notion of integrability over a geometric set S
to include complex-valued functions just as we did for integrability over an interval
[a, b]. However, real-valued functions on geometric sets will suffice for the purposes
of this book.
We include here, to be used later in Chapter VII, a somewhat technical theorem
about constructing partitions of a geometric set.

THEOREM 5.25. Let S1, . . . , Sn be closed, nonoverlapping, geometric sets, all
contained in a geometric set S. Then there exists a partition Ŝ1, . . . , ŜM of S such
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that for 1 ≤ i ≤ n we have Si = Ŝi. In other words, the si’s are the first n elements
of a partition of S.

PROOF. Suppose S is determined by the interval [a, b] and the two bounding
functions u and l. We prove this theorem by induction on n.

If n = 1, let S1 be determined by the interval [a1, b1] and the two bounding functions
u1 and l1. Set Ŝ1 = S1, and define four more geometric sets Ŝ2, . . . , Ŝ5 as follows:

(1) Ŝ2 is determined by the interval [a, a1] and the two bounding functions u
and l restricted to that interval.

(2) S3 is determined by the interval [a1, b1] and the two bounding functions u
and u1 restricted to that interval.

(3) S4 is determined by the interval [a1, b1] and the two bounding functions l
and l1 restricted to that interval.

(4) Ŝ5 is determined by the interval [b1, b] and the two bounding functions u
and l restricted to that interval.

Observe that the five sets Ŝ1, Ŝ2, . . . , Ŝ5 constitute a partition of the geometric set
S, proving the theorem in the case n = 1.
Suppose next that the theorem is true for any collection of n sets satisfying the
hypotheses. Then, given S1, . . . , Sn+1 as in the hypothesis of the theorem, apply
the inductive hypothesis to the n sets S1, . . . , Sn to obtain a partition T1, . . . , Tm
of S for which Ti = Si for all 1 ≤ i ≤ n. For each n + 1 ≤ i ≤ m, consider the
geometric set S′i = Sn+1 ∩ Ti of the geometric set Ti. We may apply the case n = 1
of this theorem to this geometric set to conclude that S′i is the first element S′i,1 of
a partition {S′i,1, S′i,2, . . . , S′i,mi} of the geometric set Ti.

Define a partition {Ŝk} of S as follows: For 1 ≤ k ≤ n, set Ŝk = Tk. Set Ŝn+1 =
∪mi=n+1S

′
i,1 = Sn+1. And define the rest of the partition {Ŝk} to be made up of the

remaining sets S′i,j for n+ 1 ≤ i ≤ m and 2 ≤ j ≤ mi. It follows directly that this
partition {Ŝk} satisfies the requirements of the theorem.

Exercise 5.29. Let S1, . . . , Sn be as in the preceding theorem. Suppose Sk is
determined by the interval [ak, bk] and the two bounding functions uk and lk. We
will say that Sk is “below” Sj , equivalently Sj is “above” Sk, if there exists a point
x such that uk(x) < lj(x). Note that this implies that x ∈ [ak, bk] ∩ [aj , bj ].
(a) Suppose Sk is below Sj , and suppose (z, yk) ∈ Sk and (z, yj) ∈ Sj . Show that
yj > yk. That is, if Sk is below Sj , then no part of Sk can be above Sj .
(b) Suppose S2 is below S1 and S3 is below S2. Show that no part of S3 can be
above S1.

HINT: By way of contradiction, let x1 ∈ [a1, b1] be such that u2(x1) < l1(x1); let
x2 ∈ [a2, b2] be such that u3(x2) < l2(x2); and suppose x3 ∈ [a3, b3] is such that
u1(x3) < l3(x3). Derive contradictions for all possible arrangements of the three
points x1, x2, and x3.

(c) Prove that there exists an index k0 such that Sk0 is minimal in the sense that
there is no other Sj that is below Sk0 .

HINT: Argue by induction on n. Thus, let {Tl} be the collection of all Sk’s that
are below S1, and note that there are at most n−1 elements of {Tl}. By induction,
there is one of the Tl’s, i.e., an Sk0 that is minimal for that collection. Now, using
part (b), show that this Sk0 must be minimal for the original collection.
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There is one more concept about integrating over geometric sets that we will need in
later chapters. We have only considered sets that are bounded on the left and right
by straight vertical lines and along the top and bottom by graphs of continuous
functions y = u(x) and y = l(x). We equally well could have discussed sets that are
bounded above and below by straight horizontal lines and bounded on the left and
right by graphs of continuous functions x = l(y) and x = r(y). These additional
sets do not provide anything particularly important, so we do not discuss them.
However, there are times when it is helpful to work with geometric sets with the
roles of horizontal and vertical reversed. We accomplish this with the following
definition.

DEFINITION. Let S be a subset of R2. By the symmetric image of S we mean
the set Ŝ of all points (x, y) ∈ R2 for which the point (y, x) ∈ S.

The symmetric image of a set is just the reflection of the set across the y = x line
in the plane. Note that the symmetric image of the rectangle [a, b]× [c, d] is again
a rectangle, [c, d]× [a, b], and therefore the area of a rectangle is equal to the area
of its symmetric image. This has the implication that if the symmetric image of
a geometric set is also a geometric set, then they both have the same area. The
symmetric image of a geometric set doesn’t have to be a geometric set itself. For
instance, consider the examples suggested in part (b) of Exercise 5.17. But clearly
rectangles, triangles, and circles have this property, for their symmetric images are
again rectangles, triangles, and circles. For a geometric set, whose symmetric image
is again a geometric set, there are some additional computational properties of the
area of S as well as the integral of functions over S, and we present them in the
following exercises.

Exercise 5.30. Suppose S is a closed geometric set, which is determined by a closed
interval [a, b] and two bounding functions u(x) and l(x). Suppose the symmetric
image Ŝ of S is also a closed geometric set, determined by an interval [â, b̂] and two
bounding functions û(x) and l̂(x).
(a) Make up an example to show that the numbers â and b̂ need not have anything
to do with the numbers a and b, and that the functions û and l̂ need not have
anything to do with the functions u and l.

(b) Prove that S and Ŝ have the same area.
HINT: use the fact that the area of a geometric set is approximately equal to the
sum of the areas of certain rectangles, and then use the fact that the area of the
symmetric image of a rectangle is the same as the area of the rectangle.
(c) Show that for every point (x, y) ∈ S, we must have â ≤ y ≤ b̂, and for every
such y, we must have l̂(y) ≤ x ≤ û(y).
HINT: If (x, y) ∈ S, then (y, x) ∈ Ŝ.
(d) Prove that the area A(S) of S is given by the formula

A(S) =
∫ b

a

∫ u(x)

l(x)

1 dydx =
∫ b̂

â

∫ û(y)

l̂(y)

1 dxdy.

(See the remark preceding Theorem 5.16.)
(e) Let S be the right triangle having vertices (a, c), (b, c), and (b, d), where d > c.

Describe the symmetric image of S; i.e., find the corresponding â, b̂, û, and l̂. Use
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part (d) to obtain the following formulas for the area of S :

A(S) =
∫ b

a

∫ d+ t−b
a−b (c−d)

c

1 dsdt =
∫ d

c

∫
b+ t−d

c−d (a−b)
1 dsdt.

Exercise 5.31. (a) Prove that if S1 and S2 are geometric sets whose symmetric
images are again geometric sets, then the symmetric image of the geometric set
S1 ∩ S2 is also a geometric set.
(b) Suppose T is a closed geometric set that is contained in a closed geometric set
S. Assume that both the symmetric images T̂ and Ŝ are also geometric sets. If Ŝ
is determined by an interval [â, b̂] and two bounding functions û and l̂, prove that

A(T ) =
∫ b̂

â

∫ û(s)

l̂(s)

χT (t, s) dtds,

where χT is the indicator function of the set T ; i.e., χT (t, s) = 1 if (t, s) ∈ T, and
χT (t, s) = 0 if (t, s) /∈ T.
HINT: See the proof of Theorem 5.16, give names to all the intervals and bounding
functions, and in the end use part (d) of the preceding exercise.
(c) Suppose {Si} is a partition of a geometric set S, and suppose the symmetric
images of S and all the Si’s are also geometric sets. Suppose h is a step function
that is the constant ai on the element S0

i of the partition {Si}. Prove that
∫
S
h =∑n

i=1 ai
∫
S
χS0

i
, and therefore that

∫
S

h =
∫ b

a

∫ u(t)

l(t)

h(t, s) dsdt =
∫ b̂

â

∫ û(s)

l̂(s)

h(t, s) dtds.

HINT: Use part (b).
(d) Let S be a geometric set whose symmetric image Ŝ is also a geometric set, and
suppose f is a continuous function on S. Show that

∫
S

f =
∫ b

a

∫ u(t)

l(t)

f(t, s) dsdt =
∫ b̂

â

∫ û(s)

l̂(s)

f(t, s) dtds.

HINT: Make use of the fact that the step functions constructed in Theorem 5.19
satisfy the assumptions of part (c). Then take limits.
(e) Let S be the triangle in part (e) of the preceding exercise. If f is a continuous
function on S, show that the integral of f over S is given by the formulas

∫
S

f =
∫ b

a

∫ d+ t−b
a−b (c−d)

c

f(t, s) dsdt =
∫ d

c

∫
b+ s−d

c−d (a−b)
f(t, s) dtds.
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CHAPTER VI
INTEGRATION OVER SMOOTH CURVES IN THE PLANE

C = 2πr

In this chapter we will define what we mean by a smooth curve in the plane and
what is meant by its arc length. These definitions are a good bit more tricky than
one might imagine. Indeed, it is the subtlety of the definition of arc length that
prevented us from defining the trigonometric functions in terms of wrapping the
real line around the circle, a definition frequently used in high school trigonometry
courses. Having made a proper definition of arc length, we will then be able to
establish the formula C = 2πr for the circumference of a circle of radius r.
By the “plane,” we will mean R2 ≡ C, and we will on occasion want to carefully
distinguish between these two notions of the plane, i.e., two real variables x and y
as opposed to one complex variable z = x+ iy. In various instances, for clarity, we
will use notations like x+ iy and (x, y), remembering that both of these represent
the same point in the plane. As x + iy, it is a single complex number, while as
(x, y) we may think of it as a vector in R2 having a magnitude and, if nonzero, a
direction.
We also will define in this chapter three different kinds of integrals over such curves.
The first kind, called “integration with respect to arc length,” will be completely
analogous to the integral defined in Chapter V for functions on a closed and bounded
interval, and it will only deal with functions whose domain is the set consisting of
the points on the curve. The second kind of integral, called a “contour integral,” is
similar to the first one, but it emphasizes in a critical way that we are integrating a
complex-valued function over a curve in the complex plane C and not simply over
a subset of R2. The applications of contour integrals is usually to functions whose
domains are open subsets of the plane that contain the curve as a proper subset,
i.e., whose domains are larger than just the curve. The third kind of integral over a
curve, called a “line integral,” is conceptually very different from the first two. In
fact, we won’t be integrating functions at all but rather a new notion that we call
“differential forms.” This is actually the beginnings of the subject called differential
geometry, whose intricacies and power are much more evident in higher dimensions
than 2.
The main points of this chapter include:

(1) The definition of a smooth curve, and the definition of its arc length,
(2) the derivation of the formula C = 2πr for the circumference of a circle of

radius r (Theorem 6.5),
(3) the definition of the integral with respect to arc length,
(4) the definition of a contour integral,
(5) the definition of a line integral, and
(6) Green’s Theorem (Theorem 6.14).

SMOOTH CURVES IN THE PLANE

Our first project is to make a satisfactory definition of a smooth curve in the plane,
for there is a good bit of subtlety to such a definition. In fact, the material in this
chapter is all surprisingly tricky, and the proofs are good solid analytical arguments,
with lots of ε’s and references to earlier theorems.
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Whatever definition we adopt for a curve, we certainly want straight lines, circles,
and other natural geometric objects to be covered by our definition. Our intuition
is that a curve in the plane should be a “1-dimensional” subset, whatever that may
mean. At this point, we have no definition of the dimension of a general set, so
this is probably not the way to think about curves. On the other hand, from the
point of view of a physicist, we might well define a curve as the trajectory followed
by a particle moving in the plane, whatever that may be. As it happens, we do
have some notion of how to describe mathematically the trajectory of a moving
particle. We suppose that a particle moving in the plane proceeds in a continuous
manner relative to time. That is, the position of the particle at time t is given by
a continuous function f(t) = x(t) + iy(t) ≡ (x(t), y(t)), as t ranges from time a to
time b. A good first guess at a definition of a curve joining two points z1 and z2

might well be that it is the range C of a continuous function f that is defined on
some closed bounded interval [a, b]. This would be a curve that joins the two points
z1 = f(a) and z2 = f(b) in the plane. Unfortunately, this is also not a satisfactory
definition of a curve, because of the following surprising and bizarre mathematical
example, first discovered by Guiseppe Peano in 1890.

THE PEANO CURVE. The so-called “Peano curve” is a continuous function
f defined on the interval [0, 1], whose range is the entire unit square [0, 1] × [0, 1]
in R2.

Be careful to realize that we’re talking about the “range” of f and not its graph.
The graph of a real-valued function could never be the entire square. This Peano
function is a complex-valued function of a real variable. Anyway, whatever defini-
tion we settle on for a curve, we do not want the entire unit square to be a curve,
so this first attempt at a definition is obviously not going to work.
Let’s go back to the particle tracing out a trajectory. The physicist would probably
agree that the particle should have a continuously varying velocity at all times, or
at nearly all times, i.e., the function f should be continuously differentiable. Recall
that the velocity of the particle is defined to be the rate of change of the position of
the particle, and that’s just the derivative f ′ of f. We might also assume that the
particle is never at rest as it traces out the curve, i.e., the derivative f ′(t) is never 0.
As a final simplification, we could suppose that the curve never crosses itself, i.e.,
the particle is never at the same position more than once during the time interval
from t = a to t = b. In fact, these considerations inspire the formal definition of a
curve that we will adopt below.
Recall that a function f that is continuous on a closed interval [a, b] and continu-
ously differentiable on the open interval (a, b) is called a smooth function on [a, b].
And, if there exists a partition {t0 < t1 < . . . < tn} of [a, b] such that f is smooth on
each subinterval [ti−1, ti], then f is called piecewise smooth on [a, b]. Although the
derivative of a smooth function is only defined and continuous on the open interval
(a, b), and hence possibly is unbounded, it follows from part (d) of Exercise 5.22
that this derivative is improperly-integrable on that open interval. We recall also
that just because a function is improperly-integrable on an open interval, its abso-
lute value may not be improperly-integrable. Before giving the formal definition of
a smooth curve, which apparently will be related to smooth or piecewise smooth
functions, it is prudent to present an approximation theorem about smooth func-
tions. Theorem 3.20 asserts that every continuous function on a closed bounded
interval is the uniform limit of a sequence of step functions. We give next a similar,
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but stronger, result about smooth functions. It asserts that a smooth function can
be approximated “almost uniformly” by piecewise linear functions.

THEOREM 6.1. Let f be a smooth function on a closed and bounded interval
[a, b], and assume that |f ′| is improperly-integrable on the open interval (a, b). Given
an ε > 0, there exists a piecewise linear function p for which

(1) |f(x)− p(x)| < ε for all x ∈ [a, b].
(2)

∫ b
a
|f ′(x)− p′(x)| dx < ε.

That is, the functions f and p are close everywhere, and their derivatives are close
on average in the sense that the integral of the absolute value of the difference of
the derivatives is small.

PROOF. Because f is continuous on the compact set [a, b], it is uniformly con-
tinuous. Hence, let δ > 0 be such that if x, y ∈ [a, b], and |x − y| < δ, then
|f(x)− f(y)| < ε/2.
Because |f ′| is improperly-integrable on the open interval (a, b), we may use part
(b) of Exercise 5.22 to find a δ′ > 0, which may also be chosen to be < δ, such that∫ a+δ′

a
|f ′|+

∫ b
b−δ′ |f

′| < ε/2, and we fix such a δ′.
Now, because f ′ is uniformly continuous on the compact set [a + δ′, b − δ′], there
exists an α > 0 such that |f ′(x)−f ′(y)| < ε/4(b−a) if x and y belong to [a+δ′, b−δ′]
and |x − y| < α. Choose a partition {x0 < x1 < . . . < xn} of [a, b] such that
x0 = a, x1 = a+δ′, xn−1 = b−δ′, xn = b, and xi−xi−1 < min(δ, α) for 2 ≤ i ≤ n−1.
Define p to be the piecewise linear function on [a, b] whose graph is the polygonal line
joining the n+ 1 points (a, f(x1)), {(xi, f(xi))} for 1 ≤ i ≤ n− 1, and (b, f(xn−1)).
That is, p is constant on the outer subintervals [a, x1] and [xn−1, b] determined
by the partition, and its graph between x1 and xn−1 is the polygonal line joining
the points {(x1, f(x1)), . . . , (xn−1, f(xn−1))}. For example, for 2 ≤ i ≤ n − 1, the
function p has the form

p(x) = f(xi−1) +
f(xi)− f(xi−1)

xi − xi−1
(x− xi−1)

on the interval [xi−1, xi]. So, p(x) lies between the numbers f(xi−1) and f(xi) for
all i. Therefore,

|f(x)−p(x)| ≤ |f(x)−f(xi)|+ |f(xi)− l(x)| ≤ |f(x)−f(xi)|+ |f(xi)−f(xi−1)| < ε.

Since this inequality holds for all i, part (1) is proved.
Next, for 2 ≤ i ≤ n − 1, and for each x ∈ (xi−1, xi), we have p′(x) = (f(xi) −
f(xi−1))/(xi − xi−1), which, by the Mean Value Theorem, is equal to f ′(yi) for
some yi ∈ (xi−1, xi). So, for each such x ∈ (xi−1, xi), we have |f ′(x) − p′(x)| =
|f ′(x) − f ′(yi)|, and this is less than ε/4(b − a), because |x − yi| < α. On the two
outer intervals, p(x) is a constant, so that p′(x) = 0. Hence,∫ b

a

|f ′ − p′| =
n∑
i=1

∫ xi

xi−1

|f ′ − p′|

=
∫ x1

a

|f ′|+
n−1∑
i=2

|f ′ − p′|+
∫ b

xn−1

|f ′|

≤
∫ a+δ′

a

|f ′|+
∫ b

b−δ′
|f ′|+ ε

4(b− a)

∫ xn−1

x1

1

< ε.
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The proof is now complete.

REMARK. It should be evident that the preceding theorem can easily be general-
ized to a piecewise smooth function f, i.e., a function that is continuous on [a, b],
continuously differentiable on each subinterval (ti−1, ti) of a partition {t0 < t1 <
. . . < tn}, and whose derivative f ′ is absolutely integrable on (a, b). Indeed, just
apply the theorem to each of the subintervals (ti−1, ti), and then carefully piece
together the piecewise linear functions on those subintervals.
Now we are ready to define what a smooth curve is.

DEFINITION. By a smooth curve from a point z1 to a different point z2 in
the plane, we mean a set C ⊆ C that is the range of a 1-1, smooth, function
φ : [a, b] → C, where [a, b] is a bounded closed interval in R, where z1 = φ(a) and
z2 = φ(b), and satisfying φ′(t) 6= 0 for all t ∈ (a, b).
More generally, if φ : [a, b] → R

2 is 1-1 and piecewise smooth on [a, b], and if
{t0 < t1 < . . . < tn} is a partition of [a, b] such that φ′(t) 6= 0 for all t ∈ (ti−1, ti),
then the range C of φ is called a piecewise smooth curve from z1 = φ(a) to z2 = φ(b).
In either of these cases, φ is called a parameterization of the curve C.

Note that we do not assume that |φ′| is improperly-integrable, though the preceding
theorem might have made you think we would.

REMARK. Throughout this chapter we will be continually faced with the fact that
a given curve can have many different parameterizations. Indeed, if φ1 : [a, b]→ C
is a parameterization, and if g : [c, d]→ [a, b] is a smooth function having a nonzero
derivative, then φ2(s) = φ1(g(s)) is another parameterization of C. Since our defi-
nitions and proofs about curves often involve a parametrization, we will frequently
need to prove that the results we obtain are independent of the parameterization.
The next theorem will help; it shows that any two parameterizations of C are
connected exactly as above, i.e., there always is such a function g relating φ1 and
φ2.

THEOREM 6.2. Let φ1 : [a, b]→ C and φ2 : [c, d]→ C be two parameterizations
of a piecewise smooth curve C joining z1 to z2. Then there exists a piecewise smooth
function g : [c, d]→ [a, b] such that φ2(s) = φ1(g(s)) for all s ∈ [c, d]. Moreover, the
derivative g′ of g is nonzero for all but a finite number of points in [c, d].

PROOF. Because both φ1 and φ2 are continuous and 1-1, it follows from Theorem
3.10 that the function g = φ−1

1 ◦ φ2 is continuous and 1-1 from [c, d] onto [a, b].
Moreover, from Theorem 3.11, it must also be that g is strictly increasing or strictly
decreasing. Write φ1(t) = u1(t) + iv1(t) ≡ (u1(t), v1(t)), and φ2(s) = u2(s) +
iv2(s) ≡ (u2(s), v2(s)). Let {x0 < x1 < . . . < xp} be a partition of [a, b] for which
φ′1 is continuous and nonzero on the subintervals (xj−1, xj), and let {y0 < y1 <
. . . < yq} be a partition of [c, d] for which φ′2 is continuous and nonzero on the
subintervals (yk−1, yk). Then let {s0 < s1 < . . . < sn} be the partition of [c, d]
determined by the finitely many points {yk} ∪ {g−1(xj)}. We will show that g is
continuously differentiable at each point s in the subintervals (si−1, si).
Fix an s in one of the intervals (si−1, si), and let t = φ−1

1 (φ2(s)) = g(s). Of course
this means that φ1(t) = φ2(s), or u1(t) = u2(s) and v1(t) = v2(s). Then t is in
some one of the intervals (xj−1, xj), so that we know that φ′1(t) 6= 0. Therefore,
we must have that at least one of u′1(t) or v′1(t) is nonzero. Suppose it is v′1(t)
that is nonzero. The argument, in case it is u′1(t) that is nonzero, is completely
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analogous. Now, because v′1 is continuous at t and v′1(t) 6= 0, it follows that v1

is strictly monotonic in some neighborhood (t − δ, t + δ) of t and therefore is 1-1
on that interval. Then v−1

1 is continuous by Theorem 3.10, and is differentiable at
the point v1(t) by the Inverse Function Theorem. We will show that on this small
interval g = v−1

1 ◦ v2, and this will prove that g is continuously differentiable at s.
Note first that if φ2(σ) = x+ iy is a point on the curve C, then v2(φ−1

2 (x+ iy)) = y.
Then, for any τ ∈ [a, b], we have

v−1
1 (v2(g−1(τ))) = v−1

1 (v2(φ−1
2 (φ1(τ))))

= v−1
1 (v2(φ−1

2 (u1(τ) + iv1(τ))))

= v−1
1 (v1(τ))

= τ,

showing that v−1
1 ◦ v2 = g−1−1 = g. Hence g is continuously differentiable at every

point s in the subintervals (si−1, si). Indeed g′(σ) = v−1
1

′
(v2(σ))v′2(σ) for all σ near

s, and hence g is piecewise smooth.
Obviously, φ2(s) = φ1(g(s)) for all s, implying that φ′2(s) = φ′1(g(s))g′(s). Since
φ′2(s) 6= 0 for all but a finite number of points s, it follows that g′(s) 6= 0 for all but
a finite number of points, and the theorem is proved.

COROLLARY. Let φ1 and φ2 be as in the theorem. Then, for all but a finite
number of points z = φ1(t) = φ2(s) on the curve C, we have

φ′1(t)
|φ′1(t)|

=
φ′2(s)
|φ′2(s)|

.

PROOF OF THE COROLLARY. From the theorem we have that

φ′2(s) = φ′1(g(s))g′(s) = φ′1(t)g′(s)

for all but a finite number of points s ∈ (c, d). Also, g is strictly increasing, so that
g′(s) ≥ 0 for all points s where g is differentiable. And in fact, g′(s) 6= 0 for all but
a finite number of s’s, because g′(s) is either (v−1

1 ◦ v2)′(s) or (u−1
1 ◦ u2)′(s), and

these are nonzero except for a finite number of points. Now the corollary follows
by direct substitution.

REMARK. If we think of φ′(t) = (x′(t), y′(t)) as a vector in the plane R2, then the
corollary asserts that the direction of this vector is independent of the parameteri-
zation, at least at all but a finite number of points. This direction vector will come
up again as the unit tangent of the curve.
The adjective “smooth” is meant to suggest that the curve is bending in some
reasonable way, and specifically it should mean that the curve has a tangent, or
tangential direction, at each point. We give the definition of tangential direction
below, but we note that in the context of a moving particle, the tangential direction
is that direction in which the particle would continue to move if the force that is
keeping it on the curve were totally removed. If the derivative φ′(t) 6= 0, then this
vector is the velocity vector, and its direction is exactly what we should mean by
the tangential direction.
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The adjective “piecewise” will allow us to consider curves that have a finite number
of points where there is no tangential direction, e.g., where there are “corners.”
We are carefully orienting our curves at the moment. A curve C from z1 to z2 is
being distinguished from the same curve from z2 to z1, even though the set C is the
same in both instances. Which way we traverse a curve will be of great importance
at the end of this chapter, when we come to Green’s Theorem.

DEFINITION. Let C, the range of φ : [a, b] → C, be a piecewise smooth curve,
and let z = (x, y) = φ(c) be a point on the curve. We say that the curve C has a
tangential direction at z, relative to the parameterization φ, if the following limit
exists:

lim
t→c

φ(t)− z
|φ(t)− z|

= lim
t→c

φ(t)− φ(c)
|φ(t)− φ(c)|

.

If this limit exists, it is a vector of length 1 in R2, and this unit vector is called the
unit tangent (relative to the parameterization φ) to C at z.
The curve C has a unit tangent at the point z if there exists a parameterization φ
for which the unit tangent at z relative to φ exists.

Exercise 6.1. (a) Restate the definition of tangential direction and unit tangent
using the R2 version of the plane instead of the C version. That is, restate the
definition in terms of pairs (x, y) of real numbers instead of a complex number z.
(b) Suppose φ : [a, b] → C is a parameterization of a piecewise smooth curve C,
and that t ∈ (a, b) is a point where φ is differentiable with φ′(t) 6= 0. Show that the
unit tangent (relative to the parameterization φ) to C at z = φ(t) exists and equals
φ′(t)/|φ′(t)|. Conclude that, except possibly for a finite number of points, the unit
tangent to C at z is independent of the parameterization.
(c) Let C be the graph of the function f(t) = |t| for t ∈ [−1, 1]. Is C a smooth
curve? Is it a piecewise smooth curve? Does C have a unit tangent at every point?
(d) Let C be the graph of the function f(t) = t2/3 = (t1/3)2 for t ∈ [−1, 1]. Is C
a smooth curve? Is it a piecewise smooth curve? Does C have a unit tangent at
every point?
(e) Consider the set C that is the right half of the unit circle in the plane. Let
φ1 : [−1, 1]→ C be defined by

φ1(t) = (cos(t
π

2
), sin(t

π

2
)),

and let φ2 : [−1, 1]→ C be defined by

φ2(t) = (cos(t3
π

2
), sin(t3

π

2
)).

Prove that φ1 and φ2 are both parameterizations of C.Discuss the existence of a unit
tangent at the point (1, 0) = φ1(0) = φ2(0) relative to these two parameterizations.
(f) Suppose φ : [a, b]→ C is a parameterization of a curve C from z1 to z2. Define
ψ on [a, b] by ψ(t) = φ(a + b − t). Show that ψ is a parameterization of a curve
from z2 to z1.

Exercise 6.2. (a) Suppose f is a smooth, real-valued function defined on the
closed interval [a, b], and let C ⊆ R2 be the graph of f. Show that C is a smooth
curve, and find a “natural” parameterization φ : [a, b]→ C of C. What is the unit
tangent to C at the point (t, f(t))?
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(b) Let z1 and z2 be two distinct points in C, and define φ : [0, 1] → by φ(t) =
(1− t)z1 + tz2. Show that φ is a parameterization of the straight line from the point
z1 to the point z2. Consequently, a straight line is a smooth curve. (Indeed, what
is the definition of a straight line?)
(c) Define a function φ : [−r, r]→ R

2 by φ(t) = (t,
√
r2 − t2). Show that the range

C of φ is a smooth curve, and that φ is a parameterization of C.
(d) Define φ on [0, π/2) by φ(t) = eit. For what curve is φ a parametrization?
(e) Let z1, z2, . . . , zn be n distinct points in the plane, and suppose that the polygo-
nal line joing these points in order never crosses itself. Construct a parameterization
of that polygonal line.
(f) Let S be a piecewise smooth geometric set determined by the interval [a, b] and
the two piecewise smooth bounding functions u and l. Suppose z1 and z2 are two
points in the interior S0 of S. Show that there exists a piecewise smooth curve C
joining z1 to z2, i.e., a piecewise smooth function φ : [â, b̂]→ C with φ(â) = z1 and
φ(̂b) = z2, that lies entirely in S0.
(g) Let C be a piecewise smooth curve, and suppose φ : [a, b]→ C is a parameteri-
zation of C. Let [c, d] be a subinterval of [a, b]. Show that the range of the restriction
of φ to [c, d] is a smooth curve.
Exercise 6.3. Suppose C is a smooth curve, parameterized by φ = u+ iv : [a, b]→
C.
(a) Suppose that u′(t) 6= 0 for all t ∈ (a, b). Prove that there exists a smooth,
real-valued function f on some closed interval [a′, b′] such that C coincides with the
graph of f.
HINT: f should be something like v ◦ u−1.
(b) What if v′(t) 6= 0 for all t ∈ (a, b)?
Exercise 6.4. Let C be the curve that is the range of the function φ : [−1, 1]→ C,
where φ(t) = t3 + t6i).
(a) Is C a piecewise smooth curve? Is it a smooth curve? What points z1 and z2

does it join?
(b) Is φ a parameterization of C?
(c) Find a parameterization for C by a function ψ : [3, 4]→ C.
(d) Find the unit tangent to C and the point 0 + 0i.
Exercise 6.5. Let C be the curve parameterized by φ : [−π, π − ε] → C defined
by φ(t) = eit = cos(t) + i sin(t).
(a) What curve does φ parameterize?
(b) Find another parameterization of this curve, but base on the interval [0, 1− ε].

ARC LENGTH

Suppose C is a piecewise smooth curve, parameterized by a function φ. Continuing
to think like a physicist, we might guess that the length of this curve could be
computed as follows. The particle is moving with velocity φ′(t). This velocity is
thought of as a vector in R2, and as such it has a direction and a magnitude or
speed. The speed is just the absolute value |φ′(t)| of the velocity vector φ′(t). Now
distance is speed multiplied by time, and so a good guess for the formula for the
length L of the curve C would be

(6.1) L =
∫ b

a

|φ′(t)| dt.
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Two questions immediately present themselves. First, and of primary interest, is
whether the function |φ′| is improperly-integrable on (a, b)? We know by Exercise
5.22 that φ′ itself is improperly-integrable, but we also know from Exercise 5.23 that
a function can be improperly-integrable on an open interval and yet its absolute
value is not. In fact, the answer to this first question is no (See Exercise 6.6.). We
know only that |φ′| exists and is continuous on the open subintervals of a partition
of [a, b].
The second question is more subtle. What if we parameterize a curve in two different
ways, i.e., with two different functions φ1 and φ2? How do we know that the two
integral formulas for the length have to agree? Of course, maybe most important
of all to us, we also must justify the physicist’s intuition. That is, we must give
a rigorous mathematical definition of the length of a smooth curve and show that
Formula (6.1) above does in fact give the length of the curve. First we deal with
the independence of parameterization question.

THEOREM 6.3. Let C be a smooth curve joining (distinct) points z1 to z2 in C,
and let φ1 : [a, b] → C and φ2 : [c, d] → C be two parameterizations of C. Suppose
|φ′2| is improperly-integrable on (c, d). Then |φ′1|is improperly-integrable on (a, b),
and ∫ b

a

‖φ′1(t)‖ dt =
∫ d

c

‖φ′2(s)‖ ds.

PROOF. We will use Theorem 6.2. Thus, let g = φ−1
1 ◦ φ2, and recall that g is

continuous on [c, d] and continuously differentiable on each open subinterval of a
certain partition of [c, d]. Therefore, by part (d) of Exercise 5.22, g′ is improperly-
integrable on (c, d).
Let {x0 < x1 < . . . < xp} be a partition of [a, b] for which φ′1 is continuous and
nonzero on the subintervals (xj−1, xj). To show that |φ′1| is improperly-integrable on
(a, b), it will suffice to show this integrability on each subinterval (xj−1, xj). Thus,
fix a closed interval [a′, b′] ⊂ (xj−1, xj), and let [c′, d′] be the closed subinterval of
[c, d] such that g maps [c′, d′] 1-1 and onto [a′, b′]. Hence, by part (e) of Exercise
5.22, we have ∫ b′

a′
|φ′1(t)| dt =

∫ d′

c′
|φ′1(g(s))|g′(s) ds

=
∫ d′

c′
|φ′1(g(s))||g′()s)| ds

=
∫ d′

c′
|φ′1(g(s))g′(s)| ds

=
∫ d′

c′
|(φ1 ◦ g)′(s)| ds

=
∫ d′

c′
|φ′2(s)| ds

≤
∫ d

c

|φ′2(s)| ds,

which, by taking limits as a′ goes to xj−1 and b′ goes to xj , shows that |φ′1| is
improperly-integrable over (xj−1, xj) for every j, and hence integrable over all of
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(a, b). Using part (e) of Exercise 5.22 again, and a calculation similar to the one
above, we deduce the equality ∫ b

a

|φ′1| =
∫ d

c

|φ′2|,

and the theorem is proved.

Exercise 6.6. (A curve of infinite length) Let φ : [0, 1] : R2 be defined by φ(0) =
(0, 0), and for t > 0, φ(t) = (t, t sin(1/t)). Let C be the smooth curve that is the
range of φ.
(a) Graph this curve.
(b) Show that

|φ′(t)| =
√

1 + sin2(1/t)− sin(2/t)
t

+
cos2(1/t)

t2

=
1
t

√
t2 + t2 sin2(1/t)− t sin(2/t) + cos2(1/t).

(c) Show that

∫ 1

δ

|φ′(t)| dt =
∫ 1/δ

1

1
t

√
1
t2

+
sin2(t)
t2

− sin(2t)
t

+ cos2(t) dt.

(d) Show that there exists an ε > 0 so that for each positive integer n we have
cos2(t)− sin(2t)/t > 1/2 for all t such that |t− nπ| < ε.
(e) Conclude that |φ′| is not improperly-integrable on (0, 1). Deduce that, if Formula
(6.1) is correct for the length of a curve, then this curve has infinite length.

Next we develop a definition of the length of a parameterized curve from a purely
mathematical or geometric point of view. Happily, it will turn out to coincide with
the physically intuitive definition discussed above.
Let C be a piecewise smooth curve joining the points z1 and z2, and let φ : [a, b]→ C
be a parameterization of C. Let P = {a = t0 < t1 < . . . < tn = b} be a partition
of the interval [a, b]. For each 0 ≤ j ≤ n write zj = φ(tj), and think about the
polygonal trajectory joining these points {zj} in order. The length LφP of this
polygonal trajectory is given by the formula

LφP =
n∑
j=1

|zj − zj−1|,

and this length is evidently an approximation to the length of the curve C. Indeed,
since the straight line joining two points is the shortest curve joining those points,
these polygonal trajectories all should have a length smaller than or equal to the
length of the curve. These remarks motivate the following definition.

DEFINITION. Let φ : [a, b] → C be a parameterization of a piecewise smooth
curve C ⊂ C. By the length Lφ of C, relative to the parameterization φ, we mean
the number Lφ = supP L

φ
P , where the supremum is taken over all partitions P of

[a, b].
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REMARK. Of course, the supremum in the definition above could well equal in-
finity in some cases. Though it is possible for a curve to have an infinite length,
the ones we will study here will have finite lengths. This is another subtlety of this
subject. After all, every smooth curve is a compact subset of R2, since it is the
continuous image of a closed and bounded interval, and we think of compact sets as
being “finite” in various ways. However, this finiteness does not necessarily extend
to the length of a curve.

Exercise 6.7. Let φ : [a, b] → R
2 be a parameterization of a piecewise smooth

curve C, and let P and Q be two partitions of [a, b].
(a) If P is finer than Q, i.e., Q ⊆ P, show that LφQ ≤ L

φ
P .

(b) If φ(t) = u(t) + iv(t), express LφP in terms of the numbers u(tj) and v(tj).

Of course, we again face the annoying possibility that the definition of length of a
curve will depend on the parameterization we are using. However, the next theorem,
taken together with Theorem 6.3, will show that this is not the case.

THEOREM 6.4. If C is a piecewise smooth curve parameterized by φ : [a, b]→ C,
then

Lφ =
∫ b

a

|φ′(t)| dt,

specifically meaning that one of these quantities is infinite if and only if the other
one is infinite.

PROOF. We prove this theorem for the case when C is a smooth curve, leaving
the general argument for a piecewise smooth curve to the exercises. We also only
treat here the case when Lφ is finite, also leaving the argument for the infinite case
to the exercises. Hence, assume that φ = u+ iv is a smooth function on [a, b] and
that Lφ <∞.
Let ε > 0 be given. Choose a partition P = {t0 < t1 < . . . < tn} of [a, b] for which

Lφ − LφP = Lφ −
n∑
j=1

|φ(tj)− φ(tj−1)| < ε.

Because φ is continuous, we may assume by making a finer partition if necessary
that the tj ’s are such that |φ(t1)−φ(t0)| < ε and |φ(tn)−φ(tn−1)| < ε. This means
that

Lφ −
n−1∑
j=2

|φ(tj)− φ(tj−1)| < 3ε.

The point of this step (trick) is that we know that φ′ is continuous on the open
interval (a, b), but we will use that it is uniformly continuous on the compact set
[t1, tn−1]. Of course that means that |φ′| is integrable on that closed interval, and
in fact one of the things we need to prove is that |φ′| is improperly-integrable on
the open interval (a, b).
Now, because φ′ is uniformly continuous on the closed interval [t1, tn−1], there exists
a δ > 0 such that |φ′(t) − φ′(s)| < ε if |t − s| < δ and t and s are in the interval
[t1, tn−1]. We may assume, again by taking a finer partition if necessary, that the
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mesh size of P is less than this δ. Then, using part (f) of Exercise 5.9, we may also
assume that the partition P is such that

|
∫ tn−1

t1

|φ′(t)| dt−
n−1∑
j=2

|φ′(sj)|(tj − tj−1)| < ε

no matter what points sj in the interval (tj−1, tj) are chosen. So, we have the
following calculation, in the middle of which we use the Mean Value Theorem on
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the two functions u and v.

0 ≤ |Lφ −
∫ tn−1

t1

|φ′(t)| dt|

≤ |Lφ −
n−1∑
j=2

|φ(tj)− φ(tj−1)|

+ |
n−1∑
j=2

|φ(tj)− φ(tj−1)| −
∫ tn−1

t1

|φ′(t)| dt|

≤ 3ε+ |
n−1∑
j=2

|φ(tj)− φ(tj−1)| −
∫ gn−1

t1

|φ′(t)| dt|

= 3ε+ |
n−1∑
j=2

|u(tj)− u(tj−1) + i(v(tj)− v(tj−1)| −
∫ tn−1

t1

|φ′(t)| dt|

= 3ε+ |
n−1∑
j=2

√
(u(tj)− u(tj−1))2 + (v(tj)− v(tj−1))2

−
∫ gn−1

t1

|φ′(t)| dt|

= 3ε+ |
n−1∑
j=2

√
(u′(sj))2 + (v′(rj))2(tj − tj−1)

−
∫ tn−1

t1

|φ′(t)| dt|

≤ 3ε+ |
n−1∑
j=2

√
(u′(sj))2 + (v′(sj))2(tj − tj−1)

−
∫ tn−1

t1

|φ′(t)| dt|

+
n−1∑
j=2

|
√

(u(sj))2 + (v′(rj))2 −
√

(u(sj))2 + (v′(sj))2|(tj − tj−1)

= 3ε+ |
n−1∑
j=2

|φ′(sj)|(tj − tj−1)−
∫ tn−1

t1

|φ′(t)| dt|

+
n−1∑
j=2

|
√

(u(sj))2 + (v′(rj))2 −
√

(u(sj))2 + (v′(sj))2|(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|(v′(rj))2 − (v′(sj))2|√
(u′(sj))2 + (v′(rj))2 +

√
(u′(sj))2 + (v′(sj))2

(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|v′(rj)− v′(sj)||v′(rj) + v′(sj)|
|v′(rj)|+ |v′(sj)|

(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|v′(rj)− v′(sj)|(tj − tj−1)

≤ 4ε+
n−1∑
j=2

|φ′(rj)− φ′(sj)|(tj − tj−1)

≤ 4ε+
n−1∑
j=2

ε(tj − tj−1)

= 4ε+ ε(tn−1 − t1)

< ε(4 + b− a).



VI. INTEGRATION OVER SMOOTH CURVES IN THE PLANE 173

This implies that

Lφ − ε(4 + b− a) ≤
∫ tn−1

t1

|φ′| ≤ Lφ + ε(4 + b− a).

If we now let t1 approach a and tn−1 approach b, we get

Lφ − ε(4 + b− a) ≤
∫ b

a

|φ′| ≤ Lφ + ε(4 + b− a),

which completes the proof, since ε is arbitrary.

Exercise 6.8. (a) Take care of the piecewise case in the preceding theorem.
(b) Take care of the case when Lφ is infinite in the preceding theorem.

We now have all the ingredients necessary to define the length of a smooth curve.

DEFINITION. Let C be a piecewise smooth curve in the plane. The length or
arc length L ≡ L(C) of C is defined by the formula

L(C) = Lφ = sup
P
LφP ,

where φ is any parameterization of C.
If z and w are two points on a piecewise smooth curve C, we will denote by L(z, w)
the arc length of the portion of the curve between z and w.

REMARK. According to Theorems 6.3 and 6.4, we have the following formula for
the length of a piecewise smooth curve:

L =
∫ b

a

|φ′(t)| dt,

where φ is any parameterization of C.
It should come as no surprise that the length of a curve C from z1 to z2 is the same
as the length of that same curve C, but thought of as joining z2 to z1. Nevertheless,
let us make the calculation to verify this. If φ : [a, b] → C is a parameterization
of this curve from z1 to z2, then we have seen in part (f) of exercise 6.1 that
ψ : [a, b]→ C, defined by ψ(t) = φ(a+ b− t), is a parameterization of C from z2 to
z1. We just need to check that the two integrals giving the lengths are equal. Thus,∫ b

a

|ψ′(t)| dt =
∫ b

a

|φ′(a+ b− t)(−1)| dt =
∫ b

a

|φ′(a+ b− t)| dt =
∫ b

a

|φ′(s)| ds,

where the last equality follows by changing variables, i.e., setting t = a+ b− s.
We can now derive the formula for the circumference of a circle, which was one of
our main goals. TRUMPETS?

THEOREM 6.5. Let C be a circle of radius r in the plane. Then the length of
C is 2πr.

PROOF. Let the center of the circle be denoted by (h, k). We can parameterize the
top half of the circle by the function φ on the interval [0, π] by φ(t) = h+ r cos(t) +
i(k + r sin(t)). So, the length of this half circle is given by

L =
∫ π

0

|φ′(t)| dt =
∫ π

0

| − r sin(t) + ir cos(t)| dt =
∫ π

0

r dt = πr.
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The same kind of calculation would show that the lower half of the circle has length
πr, and hence the total length is 2πr.

The integral formula for the length of a curve is frequently not much help, especially
if you really want to know how long a curve is. The integrals that show up are
frequently not easy to work out.

Exercise 6.9. (a) Let C be the portion of the graph of the function y = x2 between
x = 0 and x = 1. Let φ : [0, 1]→ C be the parameterization of this curve given by
φ(t) = t+ t2i. Find the length of this curve.
(b) Define φ : [−0, π] → C by φ(t) = a cos(t) + ib sin(t). What curve does φ
parameterize, and can you find its length?

INTEGRATION WITH RESPECT TO ARC LENGTH

We introduce next what would appear to be the best parameterization of a piece-
wise smooth curve, i.e., a parameterization by arc length. We will then use this
parameterization to define the integral of a function whose domain is the curve.

THEOREM 6.6. Let C be a piecewise smooth curve of finite length L joining
two distinct points z1 to z2. Then there exists a parameterization γ : [0, L] → C
for which the arc length of the curve joining γ(t) to γ(u) is equal to |u − t| for all
t < u ∈ [0, L].

PROOF. Let φ : [a, b] → C be a parameterization of C. Define a function F :
[a, b]→ [0, L] by

F (t) =
∫ t

a

|φ′(s)| ds.

In other words, F (t) is the length of the portion of C that joins the points z1 = φ(a)
and φ(t). By the Fundamental Theorem of Calculus, we know that the function
F is continuous on the entire interval [a, b] and is continuously differentiable on
every subinterval (ti−1, ti) of the partition P determined by the piecewise smooth
parameterization φ. Moreover, F ′(t) = |φ′(t)| > 0 for all t ∈ (ti−1, ti), implying
that F is strictly increasing on these subintervals. Therefore, if we write si =
F (ti), then the si’s form a partition of the interval [0, L], and the function F :
(ti−1, ti)→ (si−1, si) is invertible, and its inverse F−1 is continuously differentiable.
It follows then that γ = φ ◦ F−1 : [0, L] → C is a parameterization of C. The arc
length between the points γ(t) and γ(u) is the arc length between φ(F−1(t)) and
φ(F−1(u)), and this is given by the formula

∫ F−1(u)

F−1(t)

|φ′(s)| ds =
∫ F−1(u)

a

|φ′(s)| ds−
∫ F−1(t)

a

|φ′(s)| ds

= F (F−1(u))− F (F−1(t))

= u− t,

which completes the proof.

COROLLARY. If γ is the parameterization by arc length of the preceding theo-
rem, then, for all t ∈ (si−1, si), we have |γ′(s)| = 1.
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PROOF OF THE COROLLARY. We just compute

|γ′(s)| = |(φ ◦ F−1)′(s)|
= |φ′(F−1(s))(F−1)′(s)|

= |φ′(F−1(s)|| 1
F ′(F−1(s))

|

= |φ′(f−1(s))| 1
|φ′(f−1(s))|

= 1,

as desired.

We are now ready to make the first of our three definitions of integral over a curve.
This first one is pretty easy.
Suppose C is a piecewise smooth curve joining z1 to z2 of finite length L, parame-
terized by arc length. Recall that this means that there is a 1-1 function γ from the
interval [0, L] onto C that satisfies the condidition that the arc length betweenthe
two points γ(t) and γ(s) is exactly the distance between the points t and s. We can
just identify the curve C with the interval [0, L], and relative distances will corre-
spond perfectly. A partition of the curve C will correspond naturally to a partition
of the interval [0, L]. A step function on the dcurve will correspond in an obvious
way to a step function on the interval [0, L], and the formula for the integral of a
step function on the curve is analogous to what it is on the interval. Here are the
formal definitions:

DEFINITION. Let C be a piecewise smooth curve of finite length L joining
distinct points, and let γ : [0, L]→ C be a parameterization of C by arc length. By
a partition of C we mean a set {z0, z1, . . . , zn} of points on C such that zj = γ(tj)
for all j, where the points {t0 < t1 < . . . < tn} form a partition of the interval [0, L].
The portions of the curve between the points zj−1 and zj , i.e., the set γ(tj−1, tj),
are called the elements of the partition.
A step fucntion on C is a real-valued function h on C for which there exists a
partition {z0, z1, . . . , zn} of C such that h(z) is a constant aj on the portion of the
curve between zj−1 and zj .

Before defining the integral of a step function on a curve, we need to establish
the usual consistency result, encountered in the previous cases of integration on
intervals and integration over geometric sets, the proof of which this time we put
in an exercise.
Exercise 6.10. Suppose h is a function on a piecewise smooth curve of finite length
L, and assume that there exist two partitions {z0, z1, . . . , zn} and {w0, w1, . . . , wm}
of C such that h(z) is a constant ak on the portion of the curve between zk−1 and
zk, and h(z) is a constant bj on the portion of the curve between wj−1 and wj .
Show that

n∑
k=1

akL(zk−1, zk) =
m∑
j=1

bjL(wj−1, wj).

HINT: Make use of the fact that h ◦ γ is a step function on the interval [0, L].

Now we can make the definition of the integral of a step function on a curve.
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DEFINITION. Let h be a step function on a piecewise smooth curve C of fi-
nite length L. The integral, with respect to arc length of h over C is denoted by∫
C
h(s) ds, and is defined by

∫
C

h(s) ds =
n∑
j=1

ajL(zj−1, zj),

where {z0, z1, . . . , zn} is a partition of C for which h(z) is the constant aj on the
portion of C between zj−1 and zj .

Of course, integrable functions on C with respect to arc length will be defined to be
functions that are uniform limits of step functions. Again, there is the consistency
issue in the definition of the integral of an integrable function.

Exercise 6.11. (a) Suppose {hn} is a sequence of step functiohns on a piecewise
smooth curve C of finite length, and assume that the sequence {hn} converges
uniformly to a function f. Prove that the sequence {

∫
C
hn(s) ds} is a convergent

sequence of real numbers.
(b) Suppose {hn} and {kn} are two sequences of step functions on a piecewise
smooth curve C of finite length l, and that both sequences converge uniformly to
the same function f. Prove that

lim
∫
C

hn(s) ds = lim
∫
C

kn(s) ds.

DEFINITION. Let C be a piecewise smooth curve of finite length L. A function
f with domain C is called integrable with respect to arc length on C if it is the
uniform limit of step functions on C.

The integral with respect to arc length of an integrable function f on C is again
denoted by

∫
C
f(s) ds, and is defined by∫

C

f(s) ds = lim
∫
C

hn(s) ds,

where {hn} is a sequence of step functions that converges uniformly to f on C.

In a sense, we are simply identifying the curve C with the interval [0, L] by means
of the 1-1 parameterizing function γ. The next theorem makes this quite plain.

THEOREM 6.7. Let C be a piecewise smooth curve of finite length L, and let γ
be a parameterization of C by arc length. If f is an integrable function on C, then

∫
C

f(s) ds =
∫ L

0

f(γ(t)) dt.

PROOF. First, if h is a step function on C, let {zj} be a partition of C for which
h(z) is a constant aj on the portion of the curve between zj−1 and zj . Let {tj} be
the partition of [0, L] for which zj = γ(tj) for every j. Note that h ◦ γ is a step
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function on [0, L], and that h ◦ γ(t) = aj for all t ∈ (tj−1, tj). Then,

∫
C

h(s) ds =
N∑
j=1

ajL(zj−1, zj)

=
n∑
j=1

ajL(γ(tj−1), γ(tj))

=
n∑
j=1

aj(tj − tj−1)

=
∫ L

0

h ◦ γ(t) dt,

which proves the theorem for step functions.
Finally, if f = limhn is an integrable function on C, then the sequence {hn ◦ γ}
converges uniformly to f ◦ γ on [0, L], and so

∫
C

f(s) ds = lim
∫
C

hn(s) ds

= lim
∫ L

0

hn(γ(t)) dt

=
∫ l

0

f(γ(t)) dt,

where the final equality follows from Theorem 5.6. Hence, Theorem 6.7 is proved.

Although the basic definitions of integrable and integral, with respect to arc length,
are made in terms of the particular parameterization γ of the curve, for compu-
tational purposes we need to know how to evaluate these integrals using different
parameterizations. Here is the result:

THEOREM 6.8. Let C be a piecewise smooth curve of finite length L, and let
φ : [a, b]→ C be a parameterization of C. If f is an integrable function on C. Then

∫
C

f(s) ds =
∫ b

a

f(φ(t))|φ′(t)| dt.

PROOF. Write γ : [0, L] → C for a parameterization of C by arc length. As in
the proof to Theorem 6.3, we write g : [a, b] → [0, L] for γ−1 ◦ φ. Just as in that
proof, we know that g is a piecewise smooth function on the interval [a, b]. Hence,
recalling that |γ′(t)| = 1 and g′(t) > 0 for all but a finite number of points, the
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following calculation is justified:∫
C

f(s) ds =
∫ L

0

f(γ(t)) dt

=
∫ L

0

f(γ(t))|γ′(t)| dt

=
∫ b

a

f(γ(g(u)))|γ′(g(u))|g′(u) du

=
∫ b

a

f(γ(g(u)))|γ′(g(u))||g′(u)| du

=
∫ b

a

f(φ(u))|γ′(g(u))g′(u)| du

=
∫ b

a

f(φ(u))|(′gamma ◦ g)′(u)| du

=
∫ b

a

f(φ(u))|φ′(u)| du,

as desired.

Exercise 6.12. Let C be the straight line joining the points (0, 1) and (1, 2).
(a) Find the arc length parameterization γ : [0,

√
2]→ C.

(b) Let f be the function on this curve given by f(x, y) = x2y. Compute
∫
C
f(s) ds.

(c) Let f be the function on this curve that is defined by f(x, y) is the distance
from (x, y) to the point (0, 3). Compute

∫
c
f(s) ds.

The final theorem of this section sums up the properties of integrals with respect
to arc length. There are no surprises here.

THEOREM 6.9. Let C be a piecewise smooth curve of finite length L, and write
I(C) for the set of all functions that are integrable with respect to arc length on C.
Then:

(1) I(C) is a vector space ovr the real numbers, and∫
C

(af(s) + bg(s)) ds = a

∫
C

f(s) ds+ b

∫
C

g(s) ds

for all f, g ∈ I(C) and all a, b ∈ R.
(2) (Positivity) If f(z) ≥ 0 for all z ∈ C, then

∫
C
f(s) ds ≥ 0.

(3) If f ∈ I(C), then so is |f |, and |
∫
C
f(s) ds| ≤

∫
C
|f(s)| ds.

(4) If f is the uniform limit of functions fn, each of which is in I(C), then
f ∈ I(C) and

∫
C
f(s) ds = lim

∫
C
fn(s) ds.

(5) Let {un} be a sequence of functions in I(C), and suppose that for each n
there is a number mn, for which |un(z)| ≤ mn for all z ∈ C, and such that
the infinite series

∑
mn converges. Then the infinite series

∑
un converges

uniformly to an integrable function, and
∫
C

∑
un(s) ds =

∑∫
C
un(s) ds.

Exercise 6.13. (a) Prove the preceding theorem. Everything is easy if we compose
all functions on C with the parameterization γ, obtaining functions on [0, L], and
then use Theorem 5.6.
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(b) Suppose C is a piecewise smooth curve of finite length joining z1 and z2. Show
that the integral with respect to arc length of a function f over C is the same
whether we think of C as being a curve from z1 to z2 or, the other way around, a
curve from z2 to z1.

REMARK. Because of the result in part (b) of the preceding exercise, we speak of
“integrating over C” when we are integrating with respect to arc length. We do
not speak of “integrating from z1 to z2,” since the direction doesn’t matter. This
is in marked contrast to the next two kinds of integrals over curves that we will
discuss.
here is one final bit of notation. Often, the curves of interest to us are graphs of
real-valued functions. If g : [a, b] → R is a piecewise smooth function, then its
graph C is a piecewise smooth curve, and we write

∫
graph(g)

f(s) ds for the integral
with respect to arc length of f over C = graph(g).

CONTOUR INTEGRALS

We discuss next what appears to be a simpler notion of integral over a curve. In this
one, we really do regard the curve C as a subset of the complex plane as opposed
to two-dimensional real space; we will be integrating complex-valued functions;
and we explicitly think of the parameterizations of the curve as complex-valued
functions on an interval [a, b]. Also, in this definition, a curve C from z1 to z2 will
be distinguished from its reverse, i.e., the same set C thought of as a curve from z2

to z1.

DEFINITION. Let C be a piecewise smooth curve from z1 to z2 in the plane C,
parameterized by a (complex-valued) function φ : [a, b] → C. If f is a continuous,
complex-valued function on C, The contour integral of f from z1 to z2 along C will
be denoted by

∫
C
f(ζ) dζ or more precisely by

∫
C

z2
z1
f(ζ) dζ, and is defindd by

∫
C

z2

z1

f(ζ) dζ =
∫ b

a

f(φ(t))φ′(t) dt.

REMARK. There is, as usual, the question about whether this definition depends
on the parameterization. Again, it does not. See the next exercise.
The definition of a contour integral looks very like a change of variables formula
for integrals. See Theorem 5.11 and part (e) of Exercise 5.22. This is an example
of how mathematicians often use a true formula from one context to make a new
definition in another context.
Notice that the only difference between the computation of a contour integral and
an integral with respect to arc length on the curve is the absence of the absolute
value bars around the factor φ′(t). This will make contour integrals more subtle
than integrals with respect to arc length, just as conditionally convergent infinite
series are more subtle than absolutely convergent ones.
Note also that there is no question about the integrability of f(φ(t))φ′(t), because
of Exercise 5.22. f is bounded, φ′ is improperly-integrable on (a, b), and therefore
so is their product.

Exercise 6.14. (a) State and prove the “independence of parameterization” result
for contour integrals.
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(b) Prove that ∫
C

z2

z1

f(ζ) dζ = −
∫
C

z1

z2

f(ζ) dζ.

Just remember how to parameterize the curve in the opposite direction.
(c) Establish the following relation between the absolute value of a contour integral
and a corresponding integral with respect to arc length.

|
∫
C

f(ζ) dζ| ≤
∫
C

|f(s)| ds.

Not all the usual properties hold for contour integrals, e.g., like those in Theorem
6.9 above. The functions here, and the values of their contour integrals, are complex
numbers, so all the properties of integrals having to do with positivity and inequal-
ities, except for the one in part (c) of Exercise 6.14, no longer make any sense.
However, we do have the following results for contour integrals, the verification of
which is just as it was for Theorem 6.9.

THEOREM 6.10. Let C be a piecewise smooth curve of finite length joining z1

to z2. Then the contour integrals of continuous functions on C have the following
properties.

(1) If f and g are any two continuous functions on C, and a and b are any two
complex numbers, then∫

C

(af(ζ) + bg(ζ)) dζ = a

∫
C

f(ζ) dζ + b

∫
C

g(ζ) dζ.

(2) If f is the uniform limit on C of a sequence {fn} of continuous functions,
then

∫
C
f(ζ) dζ = lim

∫
C
fn(ζ) dζ.

(3) Let {un} be a sequence of continuous functions on C, and suppose that
for each n there is a number mn, for which |un(z)| ≤ mn for all z ∈ C,
and such that the infinite series

∑
mn converges. Then the infinite series∑

un converges uniformly to a continuous function, and
∫
C

∑
un(ζ) dζ =∑∫

C
un(ζ) dζ.

In the next exercise, we give some important contour integrals, which will be referred
to several times in the sequel. Make sure you understand them.
Exercise 6.15. Let c be a point in the complex plane, and let r be a positive
number. Let C be the curve parameterized by φ : [−π, π − ε] : C defined by
φ(t) = c+reit = c+r cos(t)+ir sin(t). For each integer n ∈ Z, define fn(z) = (z−c)n.
(a) What two points z1 and z2 does C join, and what happens to z2 as ε approaches
0?
(b) Compute

∫
C
fn(ζ) dζ for all integers n, positive and negative.

(c) What happens to the integrals computed in part (b) when ε approaches 0?
(d) Set ε = π, and compute

∫
C
fn(ζ) dζ for all integers n.

(e) Again, set ε = π. Evaluate∫
C

cos(ζ − c)
ζ − c

dζ and
∫
C

sin(ζ − c)
ζ − c

dζ.

HINT: Make use of the infinite series representations of the trigonometric functions.
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VECTOR FIELDS, DIFFERENTIAL FORMS, AND LINE INTEGRALS

We motivate our third definition of an integral over a curve by returning to physics.
This definition is very much a real variable one, so that we think of the plane as R2

instead of C. A connection between this real variable definition and the complex
variable definition of a contour integral will emerge later.

DEFINITION. By a vector field on an open subset U of R2, we mean nothing
more than a continuous function ~V (x, y) ≡ (P (x, y), Q(x, y)) from U into R2. The
functions P and Q are called the components of the vector field ~V .

We will also speak of smooth vector fields, by which we will mean vector fields ~V
both of whose component functions P and Q have continuous partial derivatives

∂P

∂x
,
∂P

∂y
,
∂Q

∂x
textand

∂Q

∂y

on U.

REMARK. The idea from physics is to think of a vector field as a force field, i.e.,
something that exerts a force at the point (x, y) with magnitude |~V (x, y)| and acting
in the direction of the vector ~V (x, y). For a particle to move within a force field,
“work” must be done, that is energy must be provided to move the particle against
the force, or energy is given to the particle as it moves under the influence of the
force field. In either case, the basic definition of work is the product of force and
distance traveled. More precisely, if a particle is moving in a direction ~u within
a force field, then the work done on the particle is the product of the component
of the force field in the direction of ~u and the distance traveled by the particle
in that direction. That is, we must compute dot products of the vectors ~V (x, y)
and ~u(x, y). Therefore, if a particle is moving along a curve C, parameterized with
respect to arc length by γ : [0, L] → C, and we write γ(t) = (x(t), y(t)), then the
work W (z1, z2) done on the particle as it moves from z1 = γ(0) to z2 = γ(L) within
the force field ~V , should intuitively be given by the formula

W (z1, z2) =
∫ L

0

〈~V (γ(t)) | γ′(t)〉 dt

=
∫ L

0

P (x(t), y(t))x′(t) +Q(x(t), y(t))y′(t) dt

≡
∫
C

P dx+Qdy,

where the last expression is explicitly defining the shorthand notation we will be
using.
The preceding discussion leads us to a new notion of what kind of object should be
“integrated” over a curve.

DEFINITION. A differential form on a subset U of R2 is denoted by ω = Pdx+
Qdy, and is determined by two continuous real-valued functions P and Q on U.
We say that ω is bounded or uniformly continuous if the functions P and Q are
bounded or uniformly continuous functions on U. We say that the differential form
ω is smooth of order k if the set U is open, and the functions P and Q have
continuous mixed partial derivatives of order k.
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If ω = Pdx+Qdy is a differential form on a set U, and if C is any piecewise smooth
curve of finite length contained in U, then we define the line integral

∫
C
ω of ω over

C by ∫
C

ω =
∫
C

P dx+Qdy =
∫ L

0

P (γ(t))x′(t) +Q(γ(t))y′(t) dt,

where γ(t) = (x(t), y(t)) is a parameterization of C by arc length.

REMARK. There is no doubt that the integral in this definition exists, because P
and Q are continuous functions on the compact set C, hence bounded, and γ′ is
integrable, implying that both x′ and y′ are integrable. Therefore P (γ(t))x′(t) +
Q(γ(t))y′(t) is integrable on (0, L).
These differential forms ω really should be called “differential 1-forms.” For in-
stance, an example of a differential 2-form would look like Rdxdy, and in higher
dimensions, we could introduce notions of differential forms of higher and higher
orders, e.g., in 3 dimension things like P dxdy +Qdzdy +Rdxdz. Because we will
always be dealing with R2, we will have no need for higher order differential forms,
but the study of such things is wonderful. Take a course in Differential Geometry!
Again, we must see how this quantity

∫
C
ω depends, if it does, on different param-

eterizations. As usual, it does not.

Exercise 6.16. Suppose ω = Pdx + Qdy is a differential form on a subset U of
R

2.
(a) Let C be a piecewise smooth curve of finite length contained in U that joins z1

to z2. Prove that∫
C

ω =
∫
C

P dx+Qdy =
∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

for any parameterization φ : [a, b]→ C having components x(t) and y(t).
(b) Let C be as in part (a), and let Ĉ denote the reverse of C, i.e., the same set C
but thought of as a curve joining z2 to z1. Show that

∫
ĉ
ω = −

∫
C
ω.

(c) Let C be as in part (a). Prove that

|
∫
C

P dx+Qdy| ≤ (MP +MQ)L,

where MP and MQ are bounds for the continuous functions |P | and |Q| on the
compact set C, and where L is the length of C.

EXAMPLE. The simplest interesting example of a differential form is constructed
as follows. Suppose U is an open subset of R2, and let f : U → R be a differentiable
real-valued function of two real variables; i.e., both of its partial derivatives exist
at every point (x, y) ∈ U. (See the last section of Chapter IV.) Define a differential
form ω = df, called the differential of f, by

df =
∂f

∂x
dx+

∂f

∂y
dy,

i.e., P = ∂f/∂x and Q = ∂f/∂y. These differential forms df are called exact
differential forms.
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REMARK. Not every differential form ω is exact, i.e., of the form df. Indeed,
determining which ω’s are df ’s boils down to what may be the simplest possible
partial differential equation problem. If ω is given by two functions P and Q, then
saying that ω = df amounts to saying that f is a solution of the pair of simultaneous
partial differential equations

∂f

∂x
= P and

∂f

∂y
= Q.

See part (b) of the exercise below for an example of a nonexact differential form.
Of course if a real-valued function f has continuous partial derivatives of the second
order, then Theorem 4.22 tells us that the mixed partials fxy and fyx must be equal.
So, if ω = Pdx + Qdy = df for some such f, Then P and Q would have to satisfy
∂P/∂y = ∂Q/∂x. Certainly not every P and Q would satisfy this equation, so it
is in fact trivial to find examples of differential forms that are not differentials of
functions. A good bit more subtle is the question of whether every differential form
Pdx+Qdy, for which ∂P/∂y = ∂Q/∂x, is equal to some df. Even this is not true in
general, as part (c) of the exercise below shows. The open subset U on which the
differential form is defined plays a significant role, and, in fact, differential forms
provide a way of studying topologically different kinds of open sets.
In fact, although it may seem as if a differential form is really nothing more than a
pair of functions, the concept of a differential form is in part a way of organizing our
thoughts about partial differential equation problems into an abstract mathematical
context. This abstraction is a good bit more enlightening in higher dimensional
spaces, i.e., in connection with functions of more than two variables. Take a course
in Multivariable Analysis!
Exercise 6.17. (a) Solve the pair of simultaneous partial differential equations

∂f

∂x
= x+ y and

∂f

∂y
= x− y.

(b) Show that it is impossible to solve the pair of simultaneous partial differential
equations

∂f

∂x
= x+ y and

∂f

∂y
= y3.

Hence, conclude that the differential form ω = (x+y)dx+y3dy is not the differential
df of any real-valued function f.
(c) Let U be the open subset of R2 that is the complement of the single point (0, 0).
Let P (x, y) = −y/(x2 + y2) and Q(x, y) = x/(x2 + y2). Show that ∂P/∂y = ∂Q/∂x
at every point of U, but that ω = Pdx+Qdy is not the differential df of any smooth
function f on U.
HINT: If P were fx, then f would have to be of the form f(x, y) = − tan−1(x/y) +
g(y), where g is some differentiable function of y. Show that if Q = fy then g(y) is
a constant c. Hence, f(x, y) must be − tan−1(x/y) + c. But this function f is not
continuous, let alone differentiable, at the point (1, 0). Consider lim f(1, 1/n) and
lim f(1,−1/n).

The next thing we wish to investigate is the continuity of
∫
C
ω as a function of the

curve C. This brings out a significant difference in the concepts of line integrals
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versis integrals with respect to arc length. For the latter, we typically think of a
fixed curve and varying functions, whereas with line integrals, we typically think
of a fixed differential form and variable curves. This is not universally true, but
should be kept in mind.

THEOREM 6.11. Let ω = Pdx+Qdy be a fixed, bounded, uniformly continuous
differential form on a set U in R2, and let C be a fixed piecewise smooth curve
of finite length L, parameterized by φ : [a, b] → C, that is contained in U. Then,
given an ε > 0 there exists a δ > 0 such that, for any curve Ĉ contained in U,

|
∫
C
ω −

∫
Ĉ
ω| < ε whenever the following conditions on the curve Ĉ hold:

(1) Ĉ is a piecewise smooth curve of finite length L̂ contained in U, parame-
terized by φ̂ : [a, b]→ Ĉ.

(2) |φ(t)− φ̂(t)| < δ for all t ∈ [a, b].
(3)

∫ b
a
|φ′(t)− φ̂′(t)| dt < δ.

PROOF. Let ε > 0 be given. Because both P and Q are bounded on U, let MP

and MQ be upper bounds for the functions |P | and |Q| respectively. Also, since
both P and Q are uniformly continuous on U, there exists a δ > 0 such that if
|(c, d) − (c′, d′)| < δ, then |P (c, d) − P (c′, d′)| < ε/4L and |Q(c, d) − Q(c′, d′)| <
ε/4L. We may also choose this δ to be less than both ε/4MP and ε/4MQ. Now,
suppose Ĉ is a curve of finite length L̂, parameterized by φ̂ : [a, b] → Ĉ, and
that |φ(t) − φ̂(t)| < δ for all t ∈ [a, b], and that

∫ b
a
|φ′(t) − φ̂′(t)| < δ. Writing

φ(t) = (x(t), y(t)) and φ̂(t) = (x̂(t), ŷ(t)), we have

0 ≤ |
∫
C

P dx+Qdy −
∫
Ĉ

P dx+Qdy|

= |
∫ b

a

P (φ(t))x′(t)− P (φ̂(t))x̂′(t) +Q(φ(t))y′(t)−Q(φ̂(t))ŷ′(t) dt|

≤
∫ b

a

|P (φ(t))x′(t)− P (φ̂(t))x̂′(t)| dt+
∫ b

a

|Q(φ(t))y′(t)−Q(φ̂(t))ŷ′(t)| dt

≤
∫ b

a

|P (φ(t))− P (φ̂(t))||x′(t)| dt+
∫ b

a

|P (φ̂(t))||x′(t)− x̂′(t)| dt

+
∫ b

a

|Q(φ(t))−Q(φ̂(t))||y′(t)| dt+
∫ b

a

|Q(φ̂(t))||y′(t)− ŷ′(t)| dt

≤ ε

4L

∫ b

a

|x′(t)| dt+MP

∫ b

a

|x′(t)− x̂′(t)| dt

+
ε

4L

∫ b

a

|y′(t)| dt+MQ

∫ b

a

|y′(t)− ŷ′(t)| dt

≤ ε

4L

∫ b

a

|φ′(t)| dt+MP

∫ b

a

|φ′(t)− φ̂′(t)| dt

+
ε

4L

∫ b

a

|φ′(t)| dt+MQ

∫ b

a

|φ′(t)− φ̂′(t)| dt

<
ε

4
+
ε

4
+MP δ +MQδ

< ε,
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as desired.

Again, we have a special notation when the curve C is a graph. If g : [a, b]→ R is
a piecewise smooth function, then its graph C is a piecewise smooth curve, and we
write

∫
graph(g)

P dx+Qdy for the line integral of the differential form Pdx+Qdy

over the curve C = graph(g).
As alluded to earlier, there is a connection between contour integrals and line
integrals. It is that a single contour integral can often be expressed in terms of two
line integrals. Here is the precise statement.

THEOREM 6.12. Suppose C is a piecewise curve of finite length, and that f =
u + iv is a complex-valued, continuous function on C. Let φ : [a, b] → C be a
parameterization of C, and write φ(t) = x(t) + iy(t). Then∫

C

f(ζ) dζ =
∫
C

(U dx− v dy) +
∫
C

(v dx+ u dy).

PROOF. We just compute:∫
C

f(ζ) dζ =
∫ b

a

f(φ(t))φ′(t) dt

=
∫ b

a

(u(φ(t)) + iv(φ(t)))(x′(t) + iy′(t)) dt

=
∫ b

a

(u(φ(t))x′(t)− v(φ(t))y′(t))

+ i(v(φ(t))x′(t) + u(φ(t))y′(t)) dt

=
∫ b

a

(u(φ(t))x′(t)− v(φ(t))y′(t)) dt

+ i

∫ b

a

(v(φ(t))x′(t) + u(φ(t))y′(t)) dt

=
∫
C

u dx− v dy + i

∫
C

v dx+ u dy,

as asserted.

INTEGRATION AROUND CLOSED CURVES, AND GREEN’S THEOREM

Thus far, we have discussed integration over curves joining two distinct points z1

and z2. Very important in analysis is the concept of integrating around a closed
curve, i.e., one that starts and ends at the same point. There is nothing really
new here; the formulas for all three kinds of integrals we have defined will look the
same, in the sense that they all are described interms of some parameterization φ. A
parameterization φ : [a, b]→ C of a closed curve C is just like the parameterization
for a curve joining two points, except that the two points φ(a) and φ(b) are equal.
Two problems are immediately apparent concerning integrating around a closed
curve. First, where do we start on the curve, which point is the initial point? And
second, which way to we go around the curve? Recall tha if φ : [a, b] → C is a
parameterization of C, then ψ : [a, b] → C, defined by ψ(t) = φ(a + b − t), is a
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parameterization of C that is the reverse of φ, i.e., it goes around the curve in
the other direction. If we are integrating with respect to arc length, this reverse
direction won’t make a difference, but, for contour integrals and line integrals,
integrating in the reverse direction will introduce a minus sign.
The first question mentioned above is not so difficult to handle. It doesn’t really
matter where we start on a closed curve; the parameterization can easily be shifted.
Exercise 6.18. Let φ[a, b]→ R

2 be a piecewise smooth function that is 1-1 except
that φ(a) = φ(b). For each 0 < c < b− a, define φ̂ : [a+ c, b+ c] : R2 by φ̂(t) = φ(t)
for a+ c ≤ t ≤ b, and φ̂(t) = φ(t− b+ a for b ≤ t ≤ b+ c.

(a) Show that φ̂ is a piecewise smooth function, and that the range C of φ coincides
with the range of φ̂.
(b) Let f be an integrable (with respect to arc length) function on C. Show that∫ b

a

f(φ(t))|φ′(t)| dt =
∫ b+c

a+c

f(φ̂(t))|φ̂′(t)| dt.

That is, the integral
∫
C
f(s) ds of f with respect to arc length around the closed

curve C is independent of where we start.
(c) Let f be a continuous complex-valued function on C. Show that∫ b

a

f(φ(t))φ′(t) dt =
∫ b+c

a+c

f(φ̂(t))φ̂′(t) dt.

That is, the contour integral
∫
C
f(ζ) dζ of f around the closed curve C is indepen-

dent of where we start.
(d) Let ω = Pdx+Qdy be a differential form on C. Prove that∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt =
∫ b+c

a+c

P (φ̂(t))x̂′(t) +Q(φ̂(t))ŷ′(t) dt.

That is, the line integral
∫
C
ω of ω around C is independent of where we start.

The question of which way we proceed around a closed curve is one that leads to
quite intricate and difficult mathematics, at least when we consider totaly general
smooth curves. For our purposes it wil, suffice to study a special kind of closed
curve, i.e., curves that are the boundaries of piecewise smooth geometric sets. In-
deed, the intricate part of the general situation has a lot to do with determining
which is the “inside” of the closed curve and which is the “outside,” a question that
is easily settled in the case of a geometric set. Simple pictures make this general
question seem silly, but precise proofs that there is a definite inside and a definite
outside are difficult, and eluded mathematicians for centuries, culminating in the
famous Jordan Curve Theorem, which asserts exactly what our intuition predicts:

JORDAN CURVE THEOREM. The complement of a closed curve is the
union of two disjoint components, one bounded and one unbounded.

We define the bounded component to be the inside of the curve and the unbounded
component to be the outside.
We adopt the following convention for how we integrate around the boundary of
a piecewise smooth geometric set S. That is, the curve CS will consist of four
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parts: the lower boundary (graph of the lower bounding function l), the righthand
boundary (a portion of the vertical line x = b), the upper boundary (the graph
of the upper bounding function u), and finally the lefthand side (a portion of the
vertical line x = a). By integrating around such a curve CS , we will always mean
proceeding counterclockwise around the curves. Specifically, we move from left to
right along the lower boundary, from bottom to top along the righthand boundary,
from right to left across the upper boundary, and from top to bottom along the
lefthand boundary. Of course, as shown in the exercise above, it doesn’t matter
where we start.
Exercise 6.19. Let S be the closed piecewise smooth geometric set that is de-
termined by the interval [a, b] and the two piecewise smooth bounding functions u
and l. Assume that the boundary CS of S has finite length. Suppose the graph
of u intersects the lines x = a and x = b at the points (a, c) and (b, d), and sup-
pose that the graph of l intersects those lines at the points (a, e) and (b, f). Find a
parameterization φ : [a′, b′]→ CS of the curve CS .
HINT: Try using the interval [a, b+ d− f + b− a+ c− e] as the domain [a′, b′] of φ.

The next theorem, though simple to state and use, contains in its proof a combi-
natorial idea that is truly central to all that follows in this chapter. In its simplest
form, it is just the realization that the line integral in one direction along a curve
is the negative of the line integral in the opposite direction.

THEOREM 6.13. Let S1, . . . , Sn be a collection of closed geometric sets that
constitute a partition of a geometric set S, and assume that the boundaries of all
the Si’s, as well as the boundary of S, have finite length. Suppose ω is a continuous
differential form on all the boundaries {CSk}. Then∫

CS

ω =
n∑
k=1

∫
CSk

ω.

PROOF. We give a careful proof for a special case, and then outline the general
argument. Suppose then that S is a piecewise smooth geometric set, determined
by the interval [a, b] and the two bounding functions u and l, and assume that the
boundary CS has finite length. Suppose m(x) is a piecewise smooth function on
[a, b], satisfying

∫ b
a
|m′| <∞, and assume that l(x) < m(x) < u(x) for all x ∈ (a, b).

Let S1 be the geometric set determined by the interval [a, b] and the two bounding
functions m and l, and let S2 be the geometric set determined by the interval [a, b]
and the two bounding functions u and m. We note first that the two geometric
sets S1 and S2 comprise a partition of the geometric set S, so that this is indeed a
pspecial case of the theorem.
Next, consider the following eight line integrals: First, integrate from left to write
along the graph of m, second, up the line x = b from (b,m(b)) to (b, u(b)), third,
integrate from right to left across the graph of u, fourth, integrate down the line
x = a from (a, u(a)) to (a,m(a)), fifth, continue down the line x = a from (a,m(a))
to (a, l(a)), sixth, integrate from left to right across the graph of l, seventh, integrate
up the line x = b from (b, l(b)) to (b,m(b)), and finally, integfrate from right to left
across the graph of m.
The first four line integrals comprise the line integral around the geometric set S2,
and the last four comprise the line integral around the geometric set S1. On the
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other hand, the first and eighth line integrals here cancel out, for one is just the
reverse of the other. Hence, the sum total of these eight line integrals, integrals
2–7, is just the line integral around the boundary CS of S. Therefore∫

CS

ω =
∫
CS1

ω +
∫
CS2

ω

as desired.
We give next an outline of the proof for a general partition S1, . . . , Sn of S. Let
Sk be determined by the interval [ak, bk] and the two bounding functions uk and
lk. Observe that, if the boundary CSk of Sk intersects the boundary CSj of Sj in
a curve C, then the line integral of ω along C, when it is computed as part of
integrating counterclockwise around Sk, is the negative of the line integral along
C, when it is computed as part of the line integral counterclockwise around Sj .
Indeed, the first line integral is the reverse of the second one. (A picture could be
helpful.) Consequently, when we compute the sum of the line integrals of ω around
the CSk ’s, All terms cancel out except those line integrals that ar computed along
parts of the boundaries of the Sk’s that intersect no other Sj . But such parts of the
boundaries of the Sk’s must coincide with parts of the boundary of S. Therefore,
the sum of the line integrals of ω around the boundaries of the Sk’s equals the line
integral of ω around the boundary of S, and this is precisely what the theorem
asserts.

Exercise 6.20. Prove the analog of Theorem 6.13 for contour integrals: Let
S1, . . . , Sn be a collection of closed geometric sets that constitute a partition of
a geometric set S, and assume that the boundaries of all the Si’s, as well as the
boundary of S, have finite length. Suppose f is a continuous complex-valued func-
tion on all the boundaries {CSk} as well as on the boundary CS . Then

∫
CS

f(ζ) dζ =
n∑
k=1

∫
CSk

f(ζ) dζ.

We come now to the most remarkable theorem in the subject of integration over
curves, Green’s Theorem. Another fanfare, please!

THEOREM 6.14. (Green) Let S be a piecewise smooth, closed, geometric set,
let CS denote the closed curve that is the boundary of S, and assume that CS is of
finite length. Suppose ω = Pdx + Qdy is a continuous differential form on S that
is smooth on the interior S0 of S. Then∫

CS

ω =
∫
CS

P dx+Qdy =
∫
S

∂Q

∂x
− ∂P

∂y
.

REMARK. The first thing to notice about this theorem is that it connects an
integral around a (1-dimensional) curve with an integral over a (2-dimensional)
set, suggesting a kind of connection between a 1-dimensional process and a 2-
dimensional one. Such a connection seems to be unexpected, and it should therefore
have some important implications, as indeed Green’s Theorem does.
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The second thing to think about is the case when ω is an exact differential df of a
smooth function f of two real variables. In that case, Green’s Theorem says

∫
CS

∂f

∂x
dx+

∂f

∂y
dy =

∫
S

(fyx − fxy),

which would be equal to 0 if f ∈ C2(S), by Theorem 4.22. Hence, the integral of df
around any such curve would be 0. If U is an open subset of R2, there may or may
not be some other ω’s, called closed differential forms, having the property that
their integral around every piecewise smooth curve of finite length in U is 0, and
the study of these closed differential forms ω that are not exact differential forms
df has led to much interesting mathematics. It turns out that the structure of the
open set U, e.g., how many “holes” there are in it, is what’s important. Take a
course in Algebraic Topology!

The proof of Green’s Theorem is tough, and we break it into several steps.

LEMMA 1. Suppose S is the rectangle [a, b] × [c, d]. Then Green’s Theorem is
true.

PROOF OF LEMMA 1. We think of the closed curve CS bounding the rectangle
as the union of four straight lines, C1, C2, C3 and C4, and we parameterize them as
follows: Let φ : [a, b]→ C1 be defined by φ(t) = (t, c); let φ : [b, b+ d− c]→ C2 be
defined by φ(t) = (b, t− b+ c); let φ : [b+d− c, b+d− c+ b−a]→ C3 be defined by
φ(t) = (b+d−c+b− t, d); and let φ : [b+d−c+b−a, b+d−c+b−a+d−c]→ C4

be defined by φ(t) = (a, b+d− c+ b−a+d− t). One can check directly to see that
this φ parameterizes the boundary of the rectangle S = [a, b]× [c, d].

As usual, we write φ(t) = (x(t), y(t)). Now, we just compute, use the Fundamental
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Theorem of Calculus in the middle, and use part (d) of Exercise 5.30 at the end.∫
CS

ω =
∫
C1

ω +
∫
C2

ω

+
∫
C3

ω +
∫
C4

ω

=
∫
C1

P dx+Qdy +
∫
C2

P dx+Qdy

+
∫
C3

P dx+Qdy +
∫
C4

P dx+Qdy

=
∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c

b

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c+b−a

b+d−c
P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c+b−a+d−c

b+d−c+b−a
P (φ(t))x′(t) +Q(φ(t))y′(t) dt

=
∫ b

a

P (t, c) dt+
∫ b+d−c

b

Q(b, t− b+ c) dt

+
∫ b+d−c+b−a

b+d−c
P (b+ d− c+ b− t, d)(−1) dt

+
∫ b+d−c+b−a+d−c

b+d−c+b−a
Q(a, b+ d− c+ b− a+ d− t)(−1) dt

=
∫ b

a

P (t, c) dt+
∫ d

c

Q(b, t) dt

−
∫ b

a

P (t, d) dt−
∫ d

c

Q(a, t) dt

=
∫ d

c

(Q(b, t)−Q(a, t)) dt−
∫ b

a

(P (t, d)− P (t, c)) dt

=
∫ d

c

∫ b

a

∂Q

∂x
(s, t) dsdt

−
∫ b

a

∫ d

c

∂P

∂y
(t, s) dsdt

=
∫
S

(
∂Q

∂x
− ∂P

∂y
,

proving the lemma.

LEMMA 2. Suppose S is a right triangle whose vertices are of the form (a, c), (b, c)
and (b, d). Then Green’s Theorem is true.

PROOF OF LEMMA 2. We parameterize the boundary CS of this triangle as
follows: For t ∈ [a, b], set φ(t) = (t, c); for t ∈ [b, b+ d− c], set φ(t) = (b, t+ c− b);
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and for t ∈ [b+d− c, b+d− c+ b−a], set φ(t) = (b+d− c+ b− t, b+d− c+d− t).
Again, one can check that this φ parameterizes the boundary of the triangle S.
Write φ(t) = (x(t), y(t)). Again, using the Fundamental Theorem and Exercise 5.30,
we have∫

CS

ω =
∫
CS

P dx+Qdy

=
∫ b

a

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c

b

P (φ(t))x′(t) +Q(φ(t))y′(t) dt

+
∫ b+d−c+b−a

b+d−c
P (φ(t))x′(t) +Q(φ(t))y′(t) dt

=
∫ b

a

P (t, c) dt+
∫ b+d−c

b

Q(b, t+ c− b) dt

+
∫ b+d−c+b−a

b+d−c
P (b+ d− c+ b− t, b+ d− c+ d− t)(−1) dt

+
∫ b+d−c+b−a

b+d−c
Q(b+ d− c+ b− t, b+ d− c+ d− t)(−1) dt

=
∫ b

a

P (t, c) dt+
∫ d

c

Q(b, t) dt

−
∫ b

a

P (s, (d+
s− b
a− b

(c− d))) ds

−
∫ d

c

Q(b+
s− d
c− d

(a− b)), s) ds

=
∫ d

c

(Q(b, s)−Q((b+
s− d
c− d

(a− b)), s)) ds

−
∫ b

a

(P (s, (d+
s− b
a− b

(c− d)))− P (s, c)) ds

=
∫ d

c

∫ b

b+ s−d
c−d (a−b)

∂Q

∂x
(t, s) dtds

−
∫ b

a

∫ d+ s−b
a−b (c−d)

c

∂P

∂y
(s, t) dtds

=
∫
S

(
∂Q

∂x
− ∂P

∂y
,

which proves Lemma 2.

LEMMA 3. Suppose S1, . . . , Sn is a partition of the geometric set S, and that the
boundary CSk has finite length for all 1 ≤ k ≤ n. If Green’s Theorem holds for each
geometric set Sk, then it holds for S.

PROOF OF LEMMA 3. From Theorem 6.13 we have∫
CS

ω =
n∑
k=1

∫
CSk

ω,
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and from Theorem 5.24 we have∫
S

Qx − Py =
n∑
k=1

∫
Sk

Qx − Py.

Since Green’s Theorem holds for each k, we have that∫
CSk

ω =
∫
Sk

Qx − Py,

and therefore ∫
CS

ω =
∫
S

Qx − Py,

as desired.

Exercise 6.21. (a) Prove Green’s Theorem for a right triangle with vertices of the
form (a, c), (b, c), and (a, d).
(b) Prove Green’s Theorem for a trapezoid having vertices of the form (a, c), (b, c),
(b, d), and (a, e), where both d and e are greater than c.
HINT: Represent this trapezoid as the union of a rectangle and a right triangle that
share a border. Then use Lemma 3.
(c) Prove Green’s Theorem for S any quadrilateral that has two vertical sides.
(d) Prove Green’s Theorem for any geometric set S whose upper and lower bounding
functions are piecewise linear functions.
HINT: Show that S can be thought of as a finite union of quadrilaterals, like those in
part (c), each one sharing a vertical boundary with the next. Then, using induction
and the previous exercise finish the argument.

We need one final lemma before we can complete the general proof of Green’s
Theorem. This one is where the analysis shows up; there are carefully chosen ε’s
and δ’s.

LEMMA 4. Suppose S is contained in an open set U and that ω is smooth on all
of U. Then Green’s Theorem is true.

PROOF OF LEMMA 4. Let the piecewise smooth geometric set S be determined
by the interval [a, b] and the two bounding functions u and l. Using Theorem 2.11,
choose an r > 0 such that the neighborhood Nr(S) ⊆ U. Now let ε > 0 be given,
and choose delta to satisfy the following conditions:

(1) (a) δ < r/2, from which it follows that the open neighborhood Nδ(S) is a
subset of the compact set Nr/2(S). (See part (f) of Exercise 2.24.)

(2) (b) δ < ε/4M, where M is a common bound for all four continuous functions
|P |, |Q|, |Py|, and |Qx| on the compact set Nr/2(S).

(3) (c) δ < ε/4M(b− a).
(4) (d) δ satisfies the conditions of Theorem 6.11.

Next, using Theorem 6.1, choose two piecewise linear functions pu and pl so that
(1) |u(x)− pu(x)| < δ/2 for all x ∈ [a, b].
(2) |l(x)− pl(x)| < δ/2 for all x ∈ [a, b].
(3)

∫ b
a
|u′(x)− p′u(x)| dx < δ.

(4)
∫ b
a
|l′(x)− p′l(x)| dx < δ.
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Let Ŝ be the geometric set determined by the interval [a, b] and the two bounding
functions û and l̂, where û = pu + δ/2 and l̂ = pl− δ/2. We know that both û and l̂
are piecewise linear functions. We have to be a bit careful here, since for some x’s it
could be that pu(x) < pl(x). Hence, we could not simply use pu and pl themselves
as bounding functions for Ŝ. We do know from (1) and (2) that u(x) < û(x) and
l(x) > l̂(x), which implies that the geometric set S is contained in the geometric
set Ŝ. Also Ŝ is a subset of the neighborhood Nδ(s), which in turn is a subset of
the compact set Nr/2(S).
Now, by part (d) of the preceding exercise, we know that Green’s Theorem holds
for Ŝ. That is ∫

C
Ŝ

ω =
∫
Ŝ

(Qx − Py).

We will show that Green’s Theorem holds for S by showing two things: (i) |
∫
CS
ω−∫

C
Ŝ

ω| < 4ε, and (ii) |
∫
S

(Qx) − Py) −
∫
Ŝ

(Qx − Py)| < ε. We would then have, by
the usual adding and subtracting business, that

|
∫
CS

ω −
∫
S

(Qx − Py)| < 5ε,

and, since ε is an arbitrary positive number, we would obtain∫
CS

ω =
∫
S

(Qx − Py).

Let us estabish (i) first. We have from (1) above that |u(x) − û(x)| < δ for all
x ∈ [a, b], and from (3) that∫ b

a

|u′(x)− û′(x)| dx =
∫ b

a

|u′(x)− p′u(x)| dx < δ.

Hence, by Theorem 6.11, ∫
graph(u)

ω −
∫

graph(û)

ω| < ε.

Similarly, using (2) and (4) above, we have that

|
∫

graph(l)

ω −
∫

graph(l̂)

ω| < ε.

Also, the difference of the line integrals of ω along the righthand boundaries of S
and Ŝ is less than ε. Thus

|
∫
C

(b,u(b))

(b,l(b))

ω −
∫
C

(b,û(b))

(b,l̂(b))

ω| = |
∫ u(b)

l(b)

Q(b, t) dt−
∫ û(b)

l̂(b)

Q(b, t) dt|

≤ |
∫ û(b)

u(b)

Q(b, t) dt|+ |
∫ l(b)

l̂(b)

Q(b, t) dt|

≤M(|l(b)− l̂(b)|+ |u(b)− û(b)|)
≤M(δ + δ)

= 2Mδ

< ε.
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Of course, a similar calculation shows that

|
∫
C

(a,l(a))

(a,u(a))

ω −
∫
C

(a,l̂(a))

(a,û(a))

ω| < ε.

These four line integral inequalities combine to give us that

|
∫
CS

ω −
∫
C
Ŝ

ω| < 4ε,

establishing (i).
Finally, to see (ii), we just compute

0 ≤ |
∫
Ŝ

(Qy − Px)−
∫
S

(Qy − Px)|

= |
∫ b

a

∫ û(t)

l̂(t)

(Qx((t, s)− Py(t, s)) dsdt−
∫ b

a

∫ u(t)

l(t)

(Qx(t, s)− Py(t, s)) dsdt|

= |
∫ b

a

∫ l(t)

l̂(t)

(Qx(t, s)− Py(t, s)) dsdt+
∫ b

a

∫ û(t)

u(t)

(Qx(t, s)− Py(t, s)) dsdt|

≤ 2M(
∫ b

a

|l(t)− l̂(t)|+ |û(t)− u(t)| dt

≤ 4Mδ(b− a)

< ε.

This establishes (ii), and the proof is complete.

At last, we can finish the proof of this remarkable result.

PROOF OF GREEN’S THEOREM. As usual, let S be determined by the interval
[a, b] and the two bounding functions u and l. Recall that u(x) − l(x) > 0 for all
x ∈ (a, b). For each natural number n > 2, let Sn be the geometric set that is
determined by the interval [a + 1/n, b − 1/n] and the two bounding functions un
and ln, where un = u − (u − l)/n restricted to the interval [a + 1/n, b − 1/n], and
ln = l + (u − l)/n restricted to [a + 1/n, b − 1/n]. Then each Sn is a piecewise
smooth geometric set, whose boundary has finite length, and each Sn is contained
in the open set S0 where by hypothesis ω is smooth. Hence, by Lemma 4, Green’s
Theorem holds for each Sn. Now it should follow directly, by taking limits, that
Green’s Theorem holds for S. In fact, this is the case, and we leave the details to
the exercise that follows.

Exercise 6.22. Let S, ω, and the Sn’s be as in the preceding proof.
(a) Using Theorem 6.11, show that∫

CS

ω = lim
∫
CSn

ω.

(b) Let f be a bounded integrable function on the geometric set S. Prove that∫
S

f = lim
∫
Sn

f.
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(c) Complete the proof to Green’s Theorem; i.e., take limits.

REMARK. Green’s Theorem is primarily a theoretical result. It is rarely used
to “compute” a line integral around a curve or an integral of a function over a
geometric set. However, there is one amusing exception to this, and that is when
the differential form ω = x dy. For that kind of ω, Green’s Theorem says that the
area of the geometric set S can be computed as follows:

A(S) =
∫
S

1 =
∫
S

∂Q

∂x
=
∫
CS

x dy.

This is certainly a different way of computing areas of sets from the methods we
developed earlier. Try this way out on circles, ellipses, and the like.
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CHAPTER VII
THE FUNDAMENTAL THEOREM OF ALGEBRA,

AND THE FUNDAMENTAL THEOREM OF ANALYSIS

In this chapter we will discover the incredible difference between the analysis of
functions of a single complex variable as opposed to functions of a single real vari-
able. Up to this point, in some sense, we have treated them as being quite similar
subjects, whereas in fact they are extremely different in character. Indeed, if f is
a differentiable function of a complex variable on an open set U ⊆ C, then we will
see that f is actually expandable in a Taylor series around every point in U. In
particular, a function fof a complex variable is guaranteed to have infinitely many
derivatives on U if it merely has the first one on U. This is in marked contrast with
functions of a real variable. See part (3) of Theorem 4.17.
The main points of this chapter are:

(1) The Cauchy-Riemann Equations (Theorem 7.1),
(2) Cauchy’s Theorem (Theorem 7.3),
(3) Cauchy Integral Formula (Theorem 7.4),
(4) A complex-valued function that is differentiable on an open set is

expandable in a Taylor series around each point of the set (Theorem
7.5),

(5) The Identity Theorem (Theorem 7.6),
(6) The Fundamental Theorem of Algebra (Theorem 7.7),
(7) Liouville’s Theorem (Theorem 7.8),
(8) The Maximum Modulus Principle (corollary to Theorem 7.9),
(9) The Open Mapping Theorem (Theorem 7.10),

(10) The uniform limit of analytic functions is analytic (Theorem 7.12),
and

(11) The Residue Theorem (Theorem 7).17.

CAUCHY’S THEOREM

We begin with a simple observation connecting differentiability of a function of a
complex variable to a relation among of partial derivatives of the real and imaginary
parts of the function. Actually, we have already visited this point in Exercise 4.8.

THEOREM 7.1. (Cauchy-Riemann equations) Let f = u + iv be a complex-
valued function of a complex variable z = x+ iy ≡ (x, y), and suppose f is differen-
tiable, as a function of a complex variable, at the point c = (a, b). Then the following
two partial differential equations, known as the Cauchy-Riemann Equations, hold:

∂u

∂x
(a, b) =

∂v

∂y
(a, b),

and
∂u

∂y
(a, b) = −∂v

∂x
(a, b).

PROOF. We know that

f ′(c) = limh→ 0
f(c+ h)− f(c)

h
,
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and this limit is taken as the complex number h approaches 0. We simply examine
this limit for real h’s approaching 0 and then for purely imaginary h’s approaching
0. For real h’s, we have

f ′(c) = f ′(a+ ib)

= lim
h→0

f(a+ h+ ib)− f(a+ ib)
h

= limh→ 0
u(a+ h, b) + iv(a+ h, b)− u(a, b)− iv(a, b)

h

= lim
h→0

u(a+ h, b)− u(a, b)
h

+ i lim
h→0

v(a+ h, b)− v(a, b)
h

=
∂u

∂x
(a, b) + i

∂v

∂x
(a, b).

For purely imaginary h’s, which we write as h = ik, we have

f ′(c) = f ′(a+ ib)

= lim
k→0

f(a+ i(b+ k))− f(a+ ib)
ik

= lim
k→0

u(a, b+ k) + iv(a, b+ k)− u(a, b)− iv(a, b)
ik

= −i lim
k→0

u(a, b+ k)− u(a, b)
k

+
v(a, b+ k)− v(a, b)

k

= −i∂u
∂y

(a, b) +
∂v

∂y
(a, b).

Equating the real and imaginary parts of these two equivalent expressions for f ′(c)
gives the Cauchy-Riemann equations.

As an immediate corollary of this theorem, together with Green’s Theorem (Theo-
rem 6.14), we get the following result, which is a special case of what is known as
Cauchy’s Theorem.

COROLLARY. Let S be a piecewise smooth geometric set whose boundary CS
has finite length. Suppose f is a complex-valued function that is continuous on S
and differentiable at each point of the interior S0 of S. Then the contour integral∫
CS
f(ζ) dζ = 0.

Exercise 7.1. (a) Prove the preceding corollary. See Theorem 6.12.
(b) Suppose f = u+ iv is a differentiable, complex-valued function on an open disk
Br(c) in C, and assume that the real part u is a constant function. Prove that f is
a constant function. Derive the same result assuming that v is a constant function.
(c) Suppose f and g are two differentiable, complex-valued functions on an open
disk Br(c) in C. Show that, if the real part of f is equal to the real part of g, then
there exists a constant k such that f(z) = g(z) + k, for all z ∈ Br(c).

For future computational purposes, we give the following implications of the Cauchy-
Riemann equations. As with Theorem 7.1, this next theorem mixes the notions of
differentiability of a function of a complex variable and the partial derivatives of
its real and imaginary parts.
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THEOREM 7.2. Let f = u+ iv be a complex-valued function of a complex vari-
able, and suppose that f is differentiable at the point c = (a, b). Let A be the 2× 2
matrix

A =
(
ux(a, b) vx(a, b)
uy(a, b) vy(a, b)

)
.

Then:
(1) |f ′(c)|2 = det(A).
(2) The two vectors

~V1 = (ux(a, b), uy(a, b)) and ~V2 = (vx(a, b), vy(a, b))

are linearly independent vectors in R2 if and only if f ′(c) 6= 0.
(3) The vectors

~V3 = (ux(a, b), vx(a, b)) and ~V4 = (uy(a, b), vy(a, b))

are linearly independent vectors in R2 if and only if f ′(c) 6= 0.

PROOF. Using the Cauchy-Riemann equations, we see that the determinant of the
matrix A is given by

detA = ux(a, b)vy(a, b)− uy(a, b)vx(a, b)

= (ux(a, b))2 + (vx(a, b))2

= (ux(a, b) + ivx(a, b))(ux(a, b)− ivx(a, b))

= f ′(c)f ′(c)

= |f ′(c)|2,

proving part (1).
The vectors ~V1 and ~V2 are the columns of the matrix A, and so, from elementary
linear algebra, we see that they are linearly independent if and only if the determi-
nant of A is nonzero. Hence, part (2) follows from part (1). Similarly, part (3) is a
consequence of part (1).

It may come as no surprise that the contour integral of a function f around the
boundary of a geometric set S is not necessarily 0 if the function f is not differ-
entiable at each point in the interior of S. However, it is exactly these kinds of
contour integrals that will occupy our attention in the rest of this chapter, and we
shouldn’t jump to any conclusions.
Exercise 7.2. Let c be a point in C, and let S be the geometric set that is a
closed disk Br(c). Let φ be the parameterization of the boundary Cr of S given by
φ(t) = c+ reit for t ∈ [0, 2π]. For each integer n ∈ Z, define fn(z) = (z − c)n.
(a) Show that

∫
Cr
fn(ζ dζ = 0 for all n 6= −1.

(b) Show that ∫
Cr

f−1(ζ) dζ =
∫
Cr

1
ζ − c

dζ = 2πi.

There is a remarkable result about contour integrals of certain functions that aren’t
differentiable everywhere within a geometric set, and it is what has been called
the Fundamental Theorem of Analysis, or Cauchy’s Theorem. This theorem has
many general statements, but we present one here that is quite broad and certainly
adequate for our purposes.
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THEOREM 7.3. (Cauchy’s Theorem, Fundamental Theorem of Analysis) Let S
be a piecewise smooth geometric set whose boundary CS has finite length, and let
Ŝ ⊆ S0 be a piecewise smooth geometric set, whose boundary CŜ also is of finite

length. Suppose f is continuous on S ∩ ˜̂S0, i.e., at every point z that is in S but

not in Ŝ0, and assume that f is differentiable on S0 ∩ ˜̂S, i.e., at every point z in S0

but not in Ŝ. (We think of these sets as being the points “between” the boundary
curves of these geometric sets.) Then the two contour integrals

∫
CS
f(ζ) dζ and∫

C
Ŝ

f(ζ) dζ are equal.

PROOF. Let the geometric set S be determined by the interval [a, b] and the two
bounding functions u and l, and let the geometric set Ŝ be determined by the
subinterval [â, b̂] of [a, b] and the two bounding functions û and l̂. Because Ŝ ⊆ S0,

we know that û(t) < u(t) and l(t) < l̂(t) for all t ∈ [â, b̂]. We define four geometric
sets S1, . . . , S4 as follows:

(1) S1 is determined by the interval [a, â] and the two bounding functions u
and l restricted to that interval.

(2) S2 is determined by the interval [â, b̂] and the two bounding functions u
and û restricted to that interval.

(3) S3 is determined by the interval [â, b̂] and the two bounding functions l̂
and l restricted to that interval.

(4) S4 is determined by the interval [̂b, b] and the two bounding functions u
and l restricted to that interval.

Observe that the five sets Ŝ, S1, . . . , S4 constitute a partition of the geometric
set S. The corollary to Theorem 7.1 applies to each of the four geometric sets
S1, . . . , S4. Hence, the contour integral of f around each of the four boundaries of
these geometric sets is 0. So, by Exercise 6.20,∫

CS

f(ζ) dζ =
∫
C
Ŝ

f(ζ) dζ +
4∑
k=1

∫
CSk

f(ζ) dζ

=
∫
C
Ŝ

f(ζ) dζ,

as desired.

Exercise 7.3. (a) Draw a picture of the five geometric sets in the proof above and
justify the claim that the sum of the four contour integrals around the geometric
sets S1, . . . , S4 is the integral around CS minus the integral around CŜ .
(b) Let S1, . . . , Sn be pairwise disjoint, piecewise smooth geometric sets, each hav-
ing a boundary of finite length, and each contained in a piecewise smooth geometric
set S whose boundary also has finite length. Prove that the Sk’s are some of the
elements of a partition {S̃l} of S, each of which is piecewise smooth and has a
boundary of finite length. Show that, by reindexing, S1, . . . , Sn can be chosen to
be the first n elements of the partition {Ŝl}.
HINT: Just carefully adjust the proof of Theorem 5.25.
(c) Suppose S is a piecewise smooth geometric set whose boundary has finite length,
and let S1, . . . , Sn be a partition of S for which each Sk is piecewise smooth and has
a boundary CSk of finite length. Suppose f is continuous on each of the boundaries
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CSk of the Sk’s as well as the boundary CS of S, and assume that f is continuous on
each of the Sk’s, for 1 ≤ k ≤ m, and differentiable at each point of their interiors.
Prove that ∫

CS

f(ζ) dζ =
n∑

k=m+1

∫
CSk

f(ζ) dζ.

(d) Prove the following generalization of the Cauchy Theorem: Let S1, . . . , Sn be
pairwise disjoint, piecewise smooth geometric sets whose boundaries have finite
length, all contained in the interior of a piecewise smooth geometric set S whose
boundary also has finite length. Suppose f is continuous at each point of S that is
not in the interior of any of the Sk’s, and that f is differentiable at each point of
S0 that is not an element of any of the Sk’s. Prove that

∫
CS

f(ζ) dζ =
n∑
k=1

∫
CSk

f(ζ) dζ.

Perhaps the main application of Theorem 7.3 is what’s called the Cauchy Integral
Formula. It may not appear to be useful at first glance, but we will be able to use
it over and over throughout this chapter. In addition to its theoretical uses, it is
the basis for a technique for actually evaluating contour integrals, line integrals, as
well as ordinary integrals.

THEOREM 7.4. (Cauchy Integral Formula) Let S be a piecewise smooth geo-
metric set whose boundary CS has finite length, and let f be a continuous function
on S that is differentiable on the interior S0 of S. Then, for any point z ∈ S0, we
have

f(z) =
1

2πi

∫
CS

f(ζ)
ζ − z

dζ.

REMARK. This theorem is an initial glimpse at how differentiable functions of
a complex variable are remarkably different from differentiable functions of a real
variable. Indeed, Cauchy’s Integral Formula shows that the values of a differentiable
function f at all points in the interior of a geometric set S are completely determined
by the values of that function on the boundary of the set. The analogous thing for
a function of a real variable would be to say that all the values of a differentiable
function f at points in the open interval (a, b) are completely determined by its
values at the endpoints a and b. This is patently absurd for functions of a real
variable, so there surely is something marvelous going on for differentiable functions
of a complex variable.

PROOF. Let r be any positive number such that Br(z) is contained in the interior
S0 of S, and note that the close disk Br(z) is a piecewise smooth geometric set
Ŝ contained in S0. We will write Cr instead of CŜ for the boundary of this disk,
and we will use as a parameterization of the curve Cr the function φ : [0, 2π]→ Cr
given by φ(t) = z + reit. Now the function g(ζ) = f(ζ)/(ζ − z) is continuous on

S ∩ ˜̂S0 and differentiable on S0 ∩ ˜̂S, so that Theorem 7.3 applies to the function g.
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Hence
1

2πi

∫
CS

f(ζ)
ζ − z

dζ =
1

2πi

∫
CS

g(ζ) dζ

=
1

2πi

∫
CR

g(ζ), dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ

=
1

2πi

∫ 2π

0

f(z + reit)
z + reit − z

ireit dt

=
1

2π

∫ 2π

0

f(z + reit) dt.

Since the equality established above is valid, independent of r, we may take the
limit as r goes to 0, and the equality will persist. We can evaluate such a limit by
replacing the r by 1/n, in which case we would be evaluating

lim
n→∞

1
2π

∫ 2π

0

f(z +
1
n
eit) dt = lim

n→∞

1
2π

∫ 2π

0

fn(t) dt,

where fn(t) = f(z + frac1neit). Finally, because the function f is continuous at
the point z, it follows that the sequence {fn} converges uniformly to the constant
function f(z) on the interval [0, 2π]. So, by Theorem 5.6, we have that

lim
n→∞

1
2π

∫ 2π

0

fn(t) dt =
1

2π

∫ 2π

0

f(z) dt = f(z).

Therefore,

1
2πi

∫
CS

f(ζ
ζ − z

dζ = lim
r→0

1
2π

∫ 2π

0

f(z + reit) dt = f(z),

and the theorem is proved.

The next exercise gives two simple but strong consequences of the Cauchy Integral
Formula, and it would be wise to spend a few minutes deriving other similar results.
Exercise 7.4. (a) Let S and f be as in the preceding theorem, and assume that
f(z) = 0 for every point on the boundary CS of S. Prove that f(z) = 0 for every
z ∈ S.
(b) Let S be as in part (a), and suppose that f and g are two continuous functions
on S, both differentiable on S0, and such that f(ζ) = g(ζ) for every point on the
boundary of S. Prove that f(z) = g(z) for all z ∈ S.

The preceding exercise shows that two differentiable functions of a complex variable
are equal everywhere on a piecewise smooth geometric set S if they agree on the
boundary of the set. More is true. We will see below in the Identity Theorem that
they are equal everywhere on a piecewise smooth geometric set S if they agree just
along a single convergent sequence in the interior of S.
Combining part (b) of Exercise 7.3, Exercise 6.20, and Theorem 7.3, we obtain the
following corollary:
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COROLLARY. Let S1, . . . , Sn be pairwise disjoint, piecewise smooth geometric
sets whose boundaries have finite length, all contained in the interior of a piecewise
smooth geometric set S whose boundary has finite length. Suppose f is continuous
at each point of S that is not in the interior of any of the Sk’s, and that f is
differentiable at each point of S0 that is not an element of any of the Sk’s. Then,
for any z ∈ S0 that is not an element of any of the Sk’s, we have

f(z) =
1

2πi

(∫
CS

f(ζ)
ζ − z

dζ −
n∑
k=1

∫
CSk

f(ζ)
ζ − z

dζ

)
.

PROOF. Let r > 0 be such that Br(z) is disjoint from all the Sk’s. By part (b) of
Exercise 7.3, let T1, . . . , Tm be a partition of S such that Tk = Sk for 1 ≤ k ≤ n,
and Tn+1 = Br(z). By Exercise 6.20, we know that∫

CS

f(ζ)
ζ − z

dζ =
m∑
k=1

∫
CTk

f(ζ)
ζ − z

dζ.

From the Cauchy Integral Formula, we know that∫
CTn+1

f(ζ)
ζ − z

dζ = 2πif(z).

Also, since f(ζ)/(ζ − z) is differentiable at each point of the interior of the sets Tk
for k > n+ 1, we have from Theorem 7.2 that for all k > n+ 1∫

Ctk

f(ζ)
ζ − z

dζ = 0.

Therefore, ∫
CS

f(ζ)
ζ − z

dζ =
n∑
k=1

∫
CSk

f(ζ)
ζ − z

dζ + 2πif(z),

which completes the proof.

Exercise 7.5. Suppose S is a piecewise smooth geometric set whose boundary
has finite length, and let c1, . . . , cn be points in S0. Suppose f is a complex-valued
function that is continuous at every point of S except the Ck’s and differentiable
at every point of S0 except the ck’s. Let r1, . . . , rn be positive numbers such that
the disks {BRk(ck)} are pairwise disjoint and all contained in S0.
(a) Prove that ∫

CS

f(ζ) dζ,=
n∑
k=1

∫
Ck

f(ζ) dζ

where Ck denotes the boundary of the disk Brk(ck).
(b) For any z ∈ S0 that is not in any of the closed disks Brk(ck), show that∫

CS

f(ζ)
ζ − z

dζ = 2πif(z) +
n∑
k=1

∫
Ck

f(ζ)
ζ − z

dζ.
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(c) Specialize part (b) to the case where S = Br(c), and f is analytic at each
point of Br(c) except at the central point c. For each z 6= c in Br(c), and any
0 < δ < |z − c|, derive the formula

f(z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cδ

f(ζ)
ζ − z

dζ.

BASIC APPLICATIONS OF THE CAUCHY INTEGRAL FORMULA

As a major application of the Cauchy Integral Formula, let us show the much
alluded to remarkable fact that a function that is a differentiable function of a
complex variable on an open set U is actually expandable in a Taylor series around
every point in U, i.e., is an analytic function on U.

THEOREM 7.5. Suppose f is a differentiable function of a complex variable on
an open set U ⊆ C, and let c be an element of U. Then f is expandable in a Taylor
series around c. In fact, for any r > 0 for which Br(c) ⊆ U, we have

f(z) =
∞∑
n=0

an(z − c)n

for all z ∈ Br(c).
PROOF. Choose an r > 0 such that the closed disk Br(c) ⊆ U, and write Cr for
the boundary of this disk. Note that, for all points ζ on the curve Cr, and any
fixed point z in the open disk Br(c), we have that |z − c| < r = |ζ − c|, whence
|z − c|/|ζ − c| = |z − c|/r < 1. Therefore the geometric series

∞∑
n=0

(
z − c
ζ − c

)n
converges to

1
1− z−c

ζ−c
.

Moreover, by the Weierstrass M -Test, as functions of the variable ζ, this infinite
series converges uniformly on the curve Cr. We will use this in the calculation below.
Now, according to Theorem 7.4, we have that

f(z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c+ c− z

dζ

=
1

2πi

∫
Cr

f(ζ)
(ζ − c)(1− z−c

ζ−c )
dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c

∞∑
n=0

(
z − c
ζ − c

)n
dζ

=
1

2πi

∫
Cr

∞∑
n=0

f(ζ)
(ζ − c)n+1

(z − c)n dζ

=
1

2πi

∞∑
n=0

∫
Cr

f(ζ)
(ζ − c)n+1

(z − c)n dζ

=
∞∑
n=0

an(z − c)n,
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where we are able to bring the summation sign outside the integral by part (3) of
Theorem 6.10, and where

an =
1

2πi

∫
Cr

f(ζ)
(ζ − c)n+1

dζ.

This proves that f is expandable in a Taylor series around the point c, as desired.

Using what we know about the relationship between the coefficients of a Taylor se-
ries and the derivatives of the function, together with the Cauchy Integral Theorem,
we obtain the following formulas for the derivatives of a differentiable function f of
a complex variable. These are sometimes also called the Cauchy Integral Formulas.

COROLLARY. Suppose f is a differentiable function of a complex variable on
an open set U, and let c be an element of U. Then f is infinitely differentiable at c,
and

f (n)(c) =
n!

2πi

∫
Cs

f(ζ)
(ζ − c)n+1

dζ,

for any piecewise smooth geometric set S ⊆ U whose boundary CS has finite length,
and for which c belongs to the interior S0 of S.

Exercise 7.6. (a) Prove the preceding corollary.
(b) Let f, U, and c be as in Theorem 7.5. Show that the radius of convergence r of
the Taylor series expansion of f around c is at least as large as the supremum of
all s for which Bs(c) ⊆ U.
(c) Conclude that the radius of convergence of the Taylor series expansion of a
differentiable function of a complex variable is as large as possible. That is, if f
is differentiable on a disk Br(c), then the Taylor series expansion of f around c
converges on all of Br(c).
(d) Consider the real-valued function of a real variable given by f(x) = 1/(1 + x2).
Show that f is differentiable at each real number x. Show that f is expandable in
a Taylor series around 0, but show that the radius of convergence of this Taylor
series is equal to 1. Does this contradict part (c)?
(e) Let f be the complex-valued function of a complex variable given by f(z) =
1/(1 + z2). We have just replaced the real variable x of part (d) by a complex
variable z. Explain the apparent contradiction that parts (c) and (d) present in
connection with this function.
Exercise 7.7. (a) Let S be a piecewise smooth geometric set whose boundary
CS has finite length, and let f be a continuous function on the curve CS . Define a
function F on S0 by

F (z) =
∫
CS

f(ζ)
ζ − z

dζ.

Prove that F is expandable in a Taylor series around each point c ∈ S0. Show in
fact that F (z) =

∑
an(z − c)n for all z in a disk Br(c) ⊆ S0, where

an =
n!

2πi

∫
CS

f(ζ)
(ζ − c)n+1

dζ.

HINT: Mimic the proof of Theorem 7.5.
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(b) Let f and F be as in part (a). Is F defined on the boundary CS of S? If z
belongs to the boundary CS , and z = lim zn, where each zn ∈ S0, Does the sequence
{F (zn)} converge, and, if so, does it converge to f(z)?
(c) Let S be the closed unit disk B1(0), and let f be defined on the boundary C1

of this disk by f(z) = z̄, i.e., f(x+ iy) = x− iy. Work out the function F of part
(a), and then re-think about part (b).
(d) Let f and F be as in part (a). If, in addition, f is continuous on all of S
and differentiable on S0, show that F (z) = 2πif(z) for all z ∈ S0. Think about
this “magic” constant 2πi. Review the proof of the Cauchy Integral Formula to
understand where this constant comes from.

Theorem 3.14 and Exercise 3.26 constitute what we called the “identity theorem”
for functions that are expandable in a Taylor series around a point c. An even
stronger result than that is actually true for functions of a complex variable.

THEOREM 7.6. (Identity Theorem) Let f be a continuous complex-valued func-
tion on a piecewise smooth geometric set S, and assume that f is differentiable on
the interior S0 of S. Suppose {zk} is a sequence of distinct points in S0 that con-
verges to a point c in S0. If f(zk) = 0 for every K, then f(z) = 0 for every z ∈ S.

PROOF. It follows from Exercise 3.26 that there exists an r > 0 such that f(z) = 0
for all z ∈ Br(c). Now let w be another point in S0, and let us show that f(w) must
equal 0. Using part (f) of Exercise 6.2, let φ : [â, b̂]→ C be a piecewise smooth curve,
joining c to w, that lies entirely in S0. Let A be the set of all t ∈ [â, b̂] such that
f(φ(s)) = 0 for all s ∈ [â, t). We claim first that A is nonempty. Indeed, because
φ is continuous, there exists an ε > 0 such that |φ(s) − c| = |φ(s) − φ(â)| < r if
|s− â| < ε. Therefore f(φ(s)) = 0 for all s ∈ [â, â+ε), whence, â+ε ∈ A. Obviously,
A is bounded above by b̂, and we write t0 for the supremum of A. We wish to show
that t0 = b̂, whence, since φ is continuous at B̂, f(w) = f(φ(̂b)) = f(φ(t0)) = 0.
Suppose, by way of contradiction, that t0 < b̂, and write z0 = φ(t0). Now z0 ∈ S0,
and z0 = limφ(t0 − 1/k) because φ is continuous at t0. But f(φ(t0 − 1/k)) = 0 for
all k. So, again using Exercise 3.26, we know that there exists an r′ > 0 such that
f(z) = 0 for all z ∈ Br′(z0). As before, because φ is continuous at t0, there exists a
δ > 0 such that t0 + δ < b̂ and |φ(s)−φ(t0)| < r′ if |s− t0| < δ. Hence, f(φ(s)) = 0
for all s ∈ (t0 − δ, t0 + δ), which implies that t0 + δ belongs to A. But then t0
could not be the supremum of A, and therefore we have arrived at a contradiction.
Consequently, t0 = b̂, and therefore f(w) = 0 for all w ∈ S0. Of course, since every
point in S is a limit of points from S0, and since f is continuous on S, we see that
f(z) = 0 for all z ∈ S, and the theorem is proved.

The next exercise gives some consequences of the Identity Theorem. Part (b) may
appear to be a contrived example, but it will be useful later on.

Exercise 7.8. (a) Suppose f and g are two functions, both continuous on a
piecewise smooth geometric set S and both differentiable on its interior. Suppose
{zk} is a sequence of elements of S0 that converges to a point c ∈ S0, and assume
that f(zk) = g(zk) for all k. Prove that f(z) = g(z) for all z ∈ S.
(b) Suppose f is a nonconstant differentiable function defined on the interior of a
piecewise smooth geometric set S. If c ∈ S0 and Bε(c) ⊆ S0, show that there must
exist an 0 < r < ε for which f(c) 6= f(z) for all z on the boundary of the disk Br(c).
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THE FUNDAMENTAL THEOREM OF ALGEBRA

We can now prove the Fundamental Theorem of Algebra, the last of our primary
goals. One final trumpet fanfare, please!

THEOREM 7.7. (Fundamental Theorem of Algebra) Let p(z) be a nonconstant
polynomial of a complex variable. Then there exists a complex number z0 such
that p(z0) = 0. That is, every nonconstant polynomial of a complex variable has a
root in the complex numbers.

PROOF. We prove this theorem by contradiction. Thus, suppose that p is a non-
constant polynomial of degree n ≥ 1, and that p(z) is never 0. Set f(z) = 1/p(z),
and observe that f is defined and differentiable at every point z ∈ C. We will show
that f is a constant function, implying that p = 1/f is a constant, and that will
give the contradiction. We prove that f is constant by showing that its derivative is
identically 0, and we compute its derivative by using the Cauchy Integral Formula
for the derivative.
From part (4) of Theorem 3.1, we recall that there exists a B > 0 such that
|cn|

2 |z|
n ≤ |p(z)|, for all z for which |z| ≥ B, and where cn is the (nonzero) leading

coefficient of the polynomial p. Hence, |f(z)| ≤ M
|z|n for all |z| ≥ B, where we write

M for 2/|cn|. Now, fix a point c ∈ C. Because f is differentiable on the open set
U = C, we can use the corollary to Theorem 7.4 to compute the derivative of f at
c by using any of the curves Cr that bound the disks Br(c), and we choose an r
large enough so that |c+ reit| ≥ B for all 0 ≤ t ≤ 2π. Then,

|f ′(c)| = | 1
2πi

∫
Cr

f(ζ)
(ζ − c)2

dζ|

=
1

2π
|
∫ 2π

0

f(c+ reit)
(c+ reit − c)2

ireit dt|

≤ 1
2πr

∫ 2π

0

|f(c+ reit)| dt

≤ 1
2πr

∫ 2π

0

M

|c+ reit|n
dt

≤ M

rBn
.

Hence, by letting r tend to infinity, we get that

|f ′(c)| ≤ lim
r→∞

M

rBn
= 0,

and the proof is complete.

REMARK. The Fundamental Theorem of Algebra settles a question first raised
back in Chapter I. There, we introduced a number I that was a root of the poly-
nomial x2 + 1. We did this in order to build a number system in which negative
numbers would have square roots. We adjoined the “number” i to the set of real
numbers to form the set of complex numbers, and we then saw that in fact every
complex number z has a square root. However, a fear was that, in order to build
a system in which every number has an nth root for every n, we would continually
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need to be adjoining new elements to our number system. However, the Funda-
mental Theorem of Algebra shows that this is not necessary. The set of complex
numbers is already rich enough to contain all nth roots and even more.

Practically the same argument as in the preceding proof establishes another striking
result.

THEOREM 7.8. (Liouville) Suppose f is a bounded, everywhere differentiable
function of a complex variable. Then f must be a constant function.

Exercise 7.9. Prove Liouville’s Theorem.

THE MAXIMUM MODULUS PRINCIPLE

Our next goal is to examine so-called “max/min” problems for coplex-valued func-
tions of complex variables. Since order makes no sense for complex numbers, we will
investigate max/min problems for the absolute value of a complex-valued function.
For the corresponding question for real-valued functions of real variables, we have
as our basic result the First Derivative Test (Theorem 4.8). Indeed, when search-
ing for the poinhts where a differentiable real-valued function f on an interval [a, b]
attains its extreme values, we consider first the poinhts where it attains a local
max or min, to which purpose end Theorem 4.8 is useful. Of course, to find the
absolute minimum and maximum, we must also check the values of the function at
the endpoints.

An analog of Theorem 4.8 holds in the complex case, but in fact a much different
result is really valid. Indeed, it is nearly impossible for the absolute value of a
differentiable function of a complex variable to attain a local maximum or minimum.

THEOREM 7.9. Let f be a continuous function on a piecewise smooth geometric
set S, and assume that f is differentiable on the interior S0 of S. Suppose c is a
point in S0 at which the real-valued function |f | attains a local maximum. That is,
there exists an ε > 0 such that |f(c)| ≥ |f(z)| for all z satisfying |z − c| < ε. Then
f is a constant function on S; i.e., f(z) = f(c) for all z ∈ S. In other words, the
only differentiable functions of a complex variable, whose absolute value attains a
local maximum on the interior of a geometric set, are constant functions on that
set.

PROOF. If f(c) = 0, then f(z) = 0 for all z ∈ Bε(c). Hence, by the Identity
Theorem (Theorem 7.6), f(z) would equal 0 for all z ∈ S. so, we may as well
assume that f(c) 6= 0. Let r be any positive number for which the closed disk Br(c)
is contained in Bε(c). We claim first that there exists a point z on the boundary Cr
of the disk Br(c) for which |f(z)| = |f(c)|. Of course, |f(z| ≤ |f(c)| for all z on this
boundary by assumption. By way of contradiction, suppose that |f(ζ)| < |f(c)|
for all ζ on the boundary Cr of the disk. Write M for the maximum value of the
function |f | on the compact set Cr. Then, by our assumption, M < |f(c)|. Now,
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we use the Cauchy Integral Formula:

|f(c)| = | 1
2πi

∫
Cr

f(ζ)
ζ − c

dζ|

=
1

2π
|
∫ 2π

0

f(c+ reit)
reit

ireit dt|

≤ 1
2π

∫ 2π

0

|f(c+ reit)| dt

≤ 1
2π

∫ 2π

0

M dt

= M

< |f(c)|,

and this is a contradiction.
Now for each natural number n for which 1/n < ε, let zn be a point for which
|zn − c| = 1/n and |f(zn)| = |f(c)|. We claim that the derivative f ′(zn) of f
at zn = 0 for all n. What we know is that the real-valued function F (x, y) =
|f(x+ iy)|2 = (u(x, y)2 +(v(x, y))2 attains a local maximum value at zn = (xn, yn).
Hence, by Exercise 4.34, both partial derivatives of F must be 0 at (xn, yn). That
is

2u(xn, yn)
∂u

∂x
(xn, yn) + 2v(xn, yn)

∂v

∂x
(xn, yn) = 0

and

2u(xn, yn)
∂u

∂y
(xn, yn) + 2v(xn, yn)

∂v

∂y
(xn, yn) = 0.

Hence the two vectors

~V1 = (
∂u

∂x
(xn, yn),

∂v

∂x
(xn, yn))

and
~V2 = (

∂u

∂y
(xn, yn),

∂v

∂y
(xn, yn))

are both perpendicular to the vector ~V3 = (u(xn, yn), v(xn, yn)). But ~V3 6= 0, be-
cause ‖~V3‖ = |f(zn)| = |f(c)| > 0, and hence ~V1 and ~V2 are linearly dependent.
But this implies that f ′(zn) = 0, according to Theorem 7.2.
Since c = lim zn, and f ′ is analytic on S0, it follows from the Identity Theorem that
there exists an r > 0 such that f ′(z) = 0 for all z ∈ Br(c). But this implies that
f is a constant f(z) = f(c) for all z ∈ Br(c). And thenm, again using the Identity
Theorem, this implies that f(z) = f(c) for all z ∈ S, which completes the proof.

REMARK. Of course, the preceding proof contains in it the verification that if |f |
attains a maximum at a point c where it is differentiable, then f ′(c) = 0. This
is the analog for functions of a complex variable of Theorem 4.8. But, Theorem
7.9 certainly asserts a lot more than that. In fact, it says that it is impossible for
the absolute value of a nonconstant differentiable function of a complex variable to
attain a local maximum. Here is the coup d’grâs:
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COROLLARY. (Maximum Modulus Principle) Let f be a continuous, noncon-
stant, complex-valued function on a piecewise smooth geometric set S, and suppose
that f is differentiable on the interior S0 of S. Let M be the maximum value of
the continuous, real-valued function |f | on S, and let z be a point in S for which
|f(z)| = M. Then, z does not belong to the interior S0 of S; it belongs to the bound-
ary of S. In other words, |f | attains its maximum value only on the boundary of
S.

Exercise 7.10. (a) Prove the preceding corollary.
(b) Let f be an analytic function on an open set U, and let c ∈ U be a point at which
|f | achieves a local minimum; i.e., there exists an ε > 0 such that |f(c)| ≤ |f(z)| for
all z ∈ Bε(c). Show that, if f(c) 6= 0, then f is constant on Bε(c). Show by example
that, if f(c) = 0, then f need not be a constant on Bε(c).
(c) Prove the “Minimum Modulus Principle:” Let f be a nonzero, continuous,
nonconstant, function on a piecewise smooth geometric set S, and let m be the
minimum value of the function |f | on S. If z is a point of S at which this minimum
value is atgtained, then z belongs to the boundary CS of S.

THE OPEN MAPPING THEOREM AND THE INVERSE FUNCTION THEOREM

We turn next to a question about functions of a complex variable that is related
to Theorem 4.10, the Inverse Function Theorem. That result asserts, subject to a
couple of hypotheses, that the inverse of a one-to-one differentiable function of a
real variable is also differentiable. Since a function is only differentiable at points
in the interior of its domain, it is necessary to verify that the point f(c) is in
the interior of the domain f(S) of the inverse function f−1 before the question of
differentiability at that point can be addressed. And, the peculiar thing is that it
is this point about f(c) being in the interior of f(S) that is the subtle part. The
fact that the inverse function is differentiable there, and has the prescribed form,
is then only a careful ε− δ argument. For continuous real-valued functions of real
variables, the fact that f(c) belongs to the interior of f(S) boils down to the fact
that intervals get mapped onto intervals by continuous functions, which is basically
a consequence of the Intermediate Value Theorem. However, for complex-valued
functions of complex variables, the situation is much deeper. For instance, the
continuous image of a disk is just not always another disk, and it may not even be
an open set. Well, all is not lost; we just have to work a little harder.

THEOREM 7.10. (Open Mapping Theorem) Let S be a piecewise smooth geo-
metric set, and write U for the (open) interior S0 of S. Suppose f is a nonconstant
differentiable, complex-valued function on the set U. Then the range f(U)of f is an
open subset of C.

PROOF. Let c be in U. Because f is not a constant function, there must exist an
r > 0 such that f(c) 6= f(z) for all z on the boundary Cr of the disk Br(c). See part
(b) of Exercise 7.8. Let z0 be a point in the compact set Cr at which the continuous
real-valued function |f(z) − f(c)| attains its minimum value s. Since f(z) 6= f(c)
for any z ∈ Cr, we must have that s > 0. We claim that the disk Bs/2(f(c)) belongs
to the range f(U) of f. This will show that the point f(c) belongs to the ihnterior
of the set f(U), and that will finish the proof.
By way of contradiction, suppose Bs/2(f(c) is not contained in f(U),, and let w ∈
Bs/2(f(c)) be a complex number that is not in f(U). We have that |w−f(c)| < s/2,
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which implies that |w− f(z)| > s/2 for all z ∈ Cr. Consider the function g defined
on the closed disk Br(c) by g(z) = 1/(w−f(z)). Then g is continuous on the closed
disk Br(c) and differentiable on Br(c). Moreover, g is not a constant function,
for if it were, f would also be a constant function on Br(c) and therefore, by
the Identity Theorem, constant on all of U, whichg is not the case by hypothesis.
Hence, by the Maximum Modulus Principle, the maximum value of |g| only occurs
on the boundary Cr of this disk. That is, there exists a point z′ ∈ Cr such that
|g(z)| < |g(z′)| for all z ∈ Br(c). But then

2
s

=
1
s/2

<
1

|w − f(c)|
<

1
|w − f(z′)|

≤ 1
s
,

which gives the desired contradiction. Therefore, the entire disk Bs/2(f(c)) belongs
to f(U), and hence the point f(c) belongs to the interior of the set f(U). Since this
holds for any point c ∈ U, it follows that f(U) is open, as desired.

Now we can give the version of the Inverse Function Theorem for complex variables.

THEOREM 7.11. Let S be a piecewise smooth geometric set, and suppose f :
S → C is continuously differentiable at a point c = a+bi, and assume that f ′(c) 6= 0.
Then:

(1) There exists an r > 0, such that Br(c) ⊆ S, for which f is one-to-one on
Br(c).

(2) f(c) belongs to the interior of f(S).
(3) If g denotes the restriction of the function f to Br(c), then g is one-to-one,

g−1 is differentiable at the point f(c), and g−1′(f(c) = 1/f ′(c).

PROOF. Arguing by contradiction, suppose that f is not one-to-one on any disk
Br(c). Then, for each natural number n, there must exist two points zn = xn + iyn
and z′n = x′n + iy′n such that |zn − c| < 1/n, |z′n − c| < 1/n, and f(zn) = f(z′n). If
we write f = u + iv, then we would have that u(xn, yn) − u(x′n, y

′
n) = 0 for all n.

So, by part (c) of Exercise 4.35, there must exist for each n a point (x̂n, ŷn), such
that (x̂n, ŷn) is on the line segment joining zn and z′n, and for which

0 = u(xn, yn)− u(x′n, y
′
n) =

∂u

∂x
(x̂n, ŷn)(xn − x′n) +

∂u

∂y
(x̂n, ŷn)(yn − y′n).

Similarly, applying the same kind of reasoning to v, there must exist points (x̃n, ỹn)
on the segment joining zn to z′n such that

0 =
∂v

∂x
(x̃n, ỹn)(xn − x′n) +

∂v

∂y
(x̃n, ỹn)(yn − y′n).

If we define vectors ~Un and ~Vn by

~Un = (
∂u

∂x
(x̂n, ŷn),

∂u

∂y
(x̂n, ŷn))

and
~Vn = (

∂v

∂x
(x̃n, ỹn),

∂v

∂y
(x̃n, ỹn)),
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then we have that both ~Un and ~Vn are perpendicular to the nonzero vector ((xn −
x′n), (yn − y′n)). Therefore, ~Un and ~Vn are linearly dependent, whence

det(
( ∂u
∂x (x̂n, ŷn) ∂u

∂y (x̂n, ŷn)
∂v
∂x (x̃n, ỹn) ∂v

∂y (x̃n, ỹn)

)
) = 0.

Now, since both {x̂n + iŷn} and {x̃n + iỹn} converge to the point c = a + ib, and
the partial derivatives of u and v are continuous at c, we deduce that

det(
( ∂u
∂x (a, b) ∂u

∂y (a, b)
∂v
∂x (a, b) ∂v

∂y (a, b)

)
) = 0.

Now, from Theorem 7.2, this would imply that f ′(c) = 0, and this is a contradiction.
Hence, there must exist an r > 0 for which f is one-to-one on Br(c), and this proves
part (1).
Because f is one-to-one on Br(c), f is obviously not a constant function. So, by
the Open Mapping Theorem, the point f(c) belongs to the interior of the range of
f, and this proves part (2).
Now write g for the restriction of f to the disk Br(c). Then g is one-to-one. Ac-
cording to part (2) of Theorem 4.2, we can prove that g−1 is differentiable at f(c)
by showing that

lim
z→f(c)

g−1(z)− g−1(f(c))
z − f(c)

=
1

f ′(c)
.

That is, we need to show that, given an ε > 0, there exists a δ > 0 such that if
0 < |z − f(c)| < δ then

|g
−1(z)− g−1(f(c))

z − f(c)
− 1
f ′(c)

| < ε.

First of all, because the function 1/w is continuous at the point f ′(c), there exists
an ε′ > 0 such that if |w − f ′(c)| < ε′, then

| 1
w
− 1
f ′(c)

| < ε.

Next, because f is differentiable at c, there exists a δ′ > 0 such that if 0 < |y−c| < δ′

then

|f(y)− f(c)
y − c

− f ′(c)| < ε′.

Now, by Theorem 3.10, g−1 is continuous at the point f(c), and therefore there
exists a δ > 0 such that if |z − f(c)| < δ then

|g−1(z)− g−1(f(c)| < δ′.

So, if |z − f(c)| < δ, then

|g−1(z)− c| = |g−1(z)− g−1(f(c))| < δ′.
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But then,

|f(g−1(z))− f(c)
g−1(z)− c

− f ′(c)| < ε′,

from which it follows that

|g
−1(z)− g−1(f(c))

z − f(c)
− 1
f ′(c)

| < ε,

as desired.

UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS

Part (c) of Exercise 4.26 gives an example showing that the uniform limit of a
sequence of differentiable functions of a real variable need not be differentiable.
Indeed, when thinking about uniform convergence of functions, the fundamental
result to remember is that the uniform limit of continuous functions is continuous
(Theorem 3.17). The functions in Exercise 4.26 were differentiable functions of
a real variable. The fact is that, for functions of a complex variable, things are
as usual much more simple. The following theorem is yet another masterpiece of
Weierstrass.

THEOREM 7.12. Suppose U is an open subset of C, and that {fn} is a sequence
of analytic functions on U that converges uniformly to a function f. Then f is
analytic on U. That is, the uniform limit of differentiable functions on an open set
U in the complex plane is also differentiable on U.

PROOF. Though this theorem sounds impressive and perhaps unexpected, it is
really just a combination of Theorem 6.10 and the Cauchy Integral Formula. Indeed,
let c be a point in U, and let r > 0 be such that Br(c) ⊆ U. Then the sequence
{fn} converges uniformly to f on the boundary Cr of this closed disk. Moreover,
for any z ∈ Br(c), the sequence {fn(ζ)/(ζ−z)} converges uniformly to f(ζ)/(ζ−z)
on Cr. Hence, by Theorem 6.10, we have

f(z) = lim fn(z)

= lim
n

1
2πi

∫
Cr

fn(ζ)
ζ − z

dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ.

Hence, by part (a) of Exercise 7.7, f is expandable in a Taylor series around c, i.e.,
f is analytic on U.

ISOLATED SINGULARITIES, AND THE RESIDUE THEOREM

The first result we present in this section is a natural extension of Theorem 7.3.
However, as we shall see, its consequences for computing contour integrals can
hardly be overstated.
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THEOREM 7.13. Let S be a piecewise smooth geometric set whose boundary CS
has finite length. Suppose c1, . . . , cn are distinct points in the interior S0 of S,
and that r1, . . . , rn are positive numbers such that the closed disks {Brk(ck)} are
contained in S0 and pairwise disjoint. Suppose f is continuous on S \ ∪Brk(ck),
i.e., at each point of S that is not in any of the open disks Brk(ck), and that f is
differentiable on S0 \ ∪Brk(ck), i.e., at each point of S0 that is not in any of the
closed disks Brk(ck). Write Ck for the circle that is the boundary of the closed disk
Brk(ck). Then ∫

CS

f(ζ) dζ =
n∑
k=1

∫
Ck

f(ζ) dζ.

PROOF. This is just a special case of part (d) of Exercise 7.3.

Let f be continuous on the punctured disk B′r(c), analytic at each point z in B′r(c),
and suppose f is undefined at the central point c. Such points c are called isolated
singularities of f, and we wish now to classify these kinds of points. Here is the
first kind:

DEFINITION. A complex number c is called a removable singularity of an ana-
lytic function f if there exists an r > 0 such that f is continuous on the punctured
disk B′r(c), analytic at each point in B′r(c), and limz→c f(z) exists.

Exercise 7.11. (a) Define f(z) = sin z/z for all z 6= 0. Show that 0 is a removable
singularity of f.
(b) For z 6= c, define f(z) = (1 − cos(z − c))/(z − c). Show that c is a removable
singularity of f.
(c) For z 6= c, define f(z) = (1−cos(z−c))/(z−c)2. Show that c is still a removable
singularity of f.
(d) Let g be an analytic function on Br(c), and set f(z) = (g(z)− g(c))/(z− c) for
all z ∈ B′r(c). Show that c is a removable singularity of f.

The following theorem provides a good explanation for the term “removable sin-
gularity.” The idea is that this is not a “true” singularity; it’s just that for some
reason the natural definition of f at c has not yet been made.

THEOREM 7.14. Let f be continuous on the punctured disk B
′
r(c) and dif-

ferentiable at each point of the open punctured disk B′r(c), and assume that c is
a removable singularity of f. Define f̃ by f̃(z) = f(z) for all z ∈ B′r(c), and
f̃(c) = limz→c f(z). Then

(1) f̃ is analytic on the entire open disk Br(c), whence

f(z) =
∞∑
k=0

ck(z − c)k

for all z ∈ B′r(c).
(2) For any piecewise smooth geometric set S ⊆ Br(c), whose boundary CS has

finite length, and for which c ∈ S0,∫
CS

f(ζ) dζ = 0.
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PROOF. As in part (a) of Exercise 7.7, define F on Br(c) by

F (z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ.

Then, by that exercise, F is analytic on Br(c). We show next that F (z) = f̃(z) on
Br(c), and this will complete the proof of part (1).
Let z be a point in Br(c) that is not equal to c, and let ε > 0 be given. Choose
δ > 0 such that δ < |z − c|/2 and such that |f̃(ζ) − f̃(c)| < ε if |ζ − c| < δ. Then,
using part (c) of Exercise 7.5, we have that

f̃(z) = f(z)

=
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cδ

f(ζ)
ζ − z

dζ

= F (z)− 1
2πi

∫
Cδ

f(ζ)− f̃(c)
ζ − z

dζ − 1
2πi

∫
Cδ

f̃(c)
ζ − z

dζ

= F (z)− 1
2πi

∫
Cδ

f̃(ζ)− f̃(c)
ζ − z

dζ,

where the last equality holds because the function f̃(c)/(ζ−z) is an analytic function
of ζ on the disk Bδ(c), and hence the integral is 0 by Theorem 7.3. So,

|f̃(z)− F (z)| = | 1
2πi

∫
Cδ

f̃(ζ)− f̃(c)
ζ − z

dζ|

≤ 1
2π

∫
Cδ

|f̃(ζ)− f̃(c)|
|ζ − z|

ds

≤ 1
2π

∫
Cδ

ε

δ/2
ds

=
2ε
δ
× δ

= 2ε.

Since this holds for arbitrary ε > 0, we see that f̃(z) = F (z) for all z 6= c in Br(c).
Finally, since

f̃(c) = lim
z→c

f̃(z) = lim z → cF (z) = F (c),

the equality of F and f̃ on all of Br(c) is proved. This finishes the proof of part
(1).

Exercise 7.12. Prove part (2) of the preceding theorem.

Now, for the second kind of isolated singularity:

DEFINITION. A complex number c is called a pole of a function f if there exists
an r > 0 such that f is continuous on the punctured disk B′r(c), analytic at each
point of B′r(c), the point c is not a removable singularity of f, and there exists
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a positive integer k such that the analytic function (z − c)kf(z) has a removable
singularity at c.
A pole c of f is said to be of order n, if n is the smallest positive integer for which
the function f̃(z) ≡ (z − c)nf(z) has a removable singularity at c.

Exercise 7.13. (a) Let c be a pole of order n of a function f, and write f̃(z) =
(z − c)nf(z). Show that f̃ is analytic on some disk Br(c).
(b) Define f(z) = sin z/z3 for all z 6= 0. Show that 0 is a pole of order 2 of f.

THEOREM 7.15. Let f be continuous on a punctured disk B′r(c), analytic at
each point of B′r(c), and suppose that c is a pole of order n of f. Then

(1) For all z ∈ B′r(c),

f(z) =
∞∑

k=−n

ak(z − c)k.

(2) The infinite series of part (1) converges uniformly on each compact subset
K of B′r(c).

(3) For any piecewise smooth geometric set S ⊆ Br(c), whose boundary CS has
finite length, and satisfying c ∈ S0,∫

CS

f(ζ) dζ = 2πia−1,

where A−1 is the coefficient of (z − c)−1 in the series of part (1).

PROOF. For each z ∈ B′r(c), write f̃(z) = (z − c)nf(z). Then, by Theorem 7.14,
f̃ is analytic on Br(c), whence

f(z) =
f̃(z)

(z − c)n

=
1

(z − c)n
∞∑
k=0

ck(z − c)k

=
∞∑

k=−n

ak(z − c)k,

where ak = cn+k. This proves part (1).
We leave the proof of the uniform convergence of the series on each compact subset
of B′r(c), i.e., the proof of part (2), to the exercises.
Part (3) follows from Cauchy’s Theorem (Theorem 7.3) and the computations in
Exercise 7.2. Thus: ∫

CS

f(ζ) dζ =
∫
Cr

f(ζ) dζ

=
∫
Cr

∞∑
k=−n

ak(z − c)k dζ

=
∞∑

k=−n

ak

∫
Cr

(ζ − c)k dζ

= a−12πi,



VII. FUNDAMENTAL THEOREM OF ANALYSIS 217

as desired. The summation sign comes out of the integral because of the uniform
convergence of the series on the compact circle Cr.

Exercise 7.14. (a) Complete the proof to part (2) of the preceding theorem.
That is, show that the infinite series

∑∞
k=−n ak(z−c)k converges uniformly on each

compact subset K of B′r(c).
HINT: Use the fact that the Taylor series

∑∞
n=0 cn(z−c)n for f̃ converges uniformly

on the entire disk Br(c), and that if c is not in a compact subset K of Br(c), then
there exists a δ > 0 such that |z − c| > δ for all z ∈ K.
(b) Let f, c, and f̃ be as in the preceding proof. Show that

a−1 =
f̃ (n−1)(c)
(n− 1)!

.

(c) Suppose g is a function defined on a punctured disk B′r(c) that is given by the
formula

g(z) =
∞∑

k=−n

ak(z − c)k

for some positive integer n and for all z ∈ B′r(c). Suppose in addition that the
coefficient a−n 6= 0. Show that c is a pole of order n of g.

Having defined two kinds of isolated singularities of a function f, the removable
ones and the polls of finite order, there remain all the others, which we collect into
a third type.

DEFINITION. Let f be continuous on a punctured disk B′r(c), and analytic at
each point of B′r(c). The point c is called an essential singularity of f if it is neither
a removable singularity nor a poll of any finite order. Singularities that are either
poles or essential singularities are called nonremovable singularities.

Exercise 7.15. For z 6= 0, define f(z) = e1/z. Show that 0 is an essential singularity
of f.

THEOREM 7.16. Let f be continuous on a punctured disk B′r(c), analytic at
each point of B′r(c), and suppose that c is an essential singularity of f. Then

(1) For all z ∈ B′r(c),

f(z) =
∞∑

k=−∞

ak(z − c)k,

where the sequence {ak}∞−∞ has the property that for any negative integer
N there is a k < N such that ak 6= 0.

(2) The infinite series in part (1) converges uniformly on each compact subset
K of B′r(c). That is, if Fn is defined by Fn(z) =

∑n
k=−n ak(z − c)k, then

the sequence {Fn} converges uniformly to f on the compact set K.
(3) For any piecewise smooth geometric set S ⊆ Br(c), whose boundary CS has

finite length, and satisfying c ∈ S0, we have∫
CS

f(ζ) dζ = 2πia−1,

where a−1 is the coefficient of (z − c)−1 in the series of part (1).
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PROOF. Define numbers {ak}∞−∞ as follows.

ak =
1

2πi

∫
Cr

f(ζ)
(ζ − c)k+1

dζ.

Note that for any 0 < δ < r we have from Cauchy’s Theorem that

ak =
1

2πi

∫
Cδ

f(ζ)
(ζ − c)k+1

dζ,

where Cδ denotes the boundary of the disk Bδ(c).
Let z 6= c be in Br(c), and choose δ > 0 such that δ < |z − c|. Then, using part (c)
of Exercise 7.5, and then mimicking the proof of Theorem 7.5, we have

f(z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cδ

f(ζ)
ζ − z

dζ

=
1

2πi

∫
Cr

f(ζ)
(ζ − c)− (z − c)

dζ +
1

2πi

∫
Cδ

f(ζ)
(z − c)− (ζ − c)

dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c

1
1− z−c

ζ−c
dζ +

1
2πi

∫
Cδ

f(ζ)
z − c

1
1− ζ−c

z−c
dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c

∞∑
k=0

(
z − c
ζ − c

)k dζ +
1

2πi

∫
Cδ

f(ζ)
z − c

∞∑
j=0

(
ζ − c
z − c

)j dζ

=
∞∑
k=0

1
2πi

∫
Cr

f(ζ)
(ζ − c)k+1

dζ(z − c)k +
∞∑
j=0

1
2πi

∫
Cδ

f(ζ)(ζ − c)j dζ(z − c)−j−1

=
∞∑
k=0

ak(z − c)k +
−1∑

k=−∞

1
2πi

∫
Cδ

f(ζ)
(ζ − c)k+1

dζ(z − c)k

=
∞∑
k=0

ak(z − c)k +
−1∑

k=−∞

1
2πi

∫
Cr

f(ζ)
(ζ − c)k+1

dζ(z − c)k

=
∞∑

k=−∞

ak(z − c)k,

which proves part (1).
We leave the proofs of parts (2) and (3) to the exercises.

Exercise 7.16. (a) Justify bringing the summation signs out of the integrals in
the calculation in the preceding proof.
(b) Prove parts (2) and (3) of the preceding theorem. Compare this with Exercise
7.14.

REMARK. The representation of f(z) in the punctured disk B′r(c) given in part
(1) of Theorems 7.15 and 7.16 is called the Laurent expansion of f around the
singularity c. Of course it differs from a Taylor series representation of f, as this
one contains negative powers of z − c. In fact, which negative powers it contains
indicates what kind of singularity the point c is.
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Non removable isolated singularities of a function f share the property that the
integral of f around a disk centered at the singularity equals 2πia−1, where the
number a−1 is the coefficient of (z − c)−1 in the Laurent expansion of f around c.
This number 2πia−1 is obviously significant, and we call it the residue of f at c,
and denote it by Rf (c).
Combining Theorems 7.13, 7.15, and 7.16, we obtain:

THEOREM 7.17. (Residue Theorem) Let S be a piecewise smooth geometric
set whose boundary has finite length, let c1, . . . , cn be points in S0, and suppose
f is a complex-valued function that is continuous at every point z in S except the
ck’s, and differentiable at every point z ∈ S0 except at the ck’s. Assume finally
that each ck is a nonremovable isolated singularity of f. Then∫

CS

f(ζ) dζ =
n∑
k=1

Rf (ck).

That is, the contour integral around CS is just the sum of the residues inside S.

Exercise 7.17. Prove Theorem 7.17.
Exercise 7.18. Use the Residue Theorem to compute

∫
CS
f(ζ) dζ for the functions

f and geometric sets S given below. That is, determine the poles of f inside S,
their orders, the corresponding residues, and then evaluate the integrals.
(a) f(z) = sin(3z)/z2, and S = B1(0).
(b) f(z) = e1/z, and S = B1(0).
(c) f(z) = e1/z2

, and S = B1(0).
(d) f(z) = (1/z(z − 1)), and S = B2(0).
(e) f(z) = ((1− z2)/z(1 + z2)(2z + 1)2), and S = B2(0).
(f) f(z) = 1/(1 + z4) = (1/(z2 − i)(z2 + i)), and S = Br(0) for any r > 1.

The Residue Theorem, a result about contour integrals of functions of a complex
variable, can often provide a tool for evaluating integrals of functions of a real
variable.

EXAMPLE 1. Consider the integral∫ ∞
−∞

1
1 + x4

dx.

Let us use the Residue Theorem to compute this integral.
Of course what we need to compute is

lim
B→∞

∫ B

−B

1
1 + x4

dx.

The first thing we do is to replace the real variable x by a complex variable Z, and
observe that the function f(z) = 1/(1 + z4) is analytic everywhere except at the
four points ±eiπ/4 and ±e3iπ/4. See part (f) of the preceding exercise. These are
the four points whose fourth power is −1, and hence are the poles of the function
f.
Next, given a positive number B, we consider the geometric set (rectangle) SB that
is determined by the interval [−B,B] and the two bounding functions l(x) = 0 and
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u(x) = B. Then, as long as B > 1, we know that f is analytic everywhere in S0

except at the two points c1 = eiπ/4 and c2 = e3iπ/4, so that the contour integral of
f around the boundary of SB is given by∫

CSB

1
1 + ζ4

dζ = Rf (c1) +Rf (c2).

Now, this contour integral consists of four parts, the line integrals along the bottom,
the two sides, and the top. The magic here is that the integrals along the sides, and
the integral along the top, all tend to 0 as B tends to infinity, so that the integral
along the bottom, which after all is what we originally were interested in, is in the
limit just the sum of the residues inside the geometric set.

Exercise 7.19. Verify the details of the preceding example.
(a) Show that

lim
B→∞

∫ B

0

1
1 + (B + it)4

dt = 0.

(b) Verify that

lim
B→∞

∫ B

−B

1
1 + (t+ iB)4

dt = 0.

(c) Show that ∫ ∞
−∞

1
1 + x4

dx = π
√

2.

Methods similar to that employed in the previous example and exercise often suffice
to compute integrals of real-valued functions. However, the method may have to
be varied. For instance, sometimes the appropriate geometric set is a rectangle
below the x-axis instead of above it, sometimes it should be a semicircle instead of
a rectangle, etc. Indeed, the choice of contour (geometric set) can be quite subtle.
The following exercise may shed some light.

Exercise 7.20. (a) Compute ∫ ∞
−∞

eix

1 + x4
dx

and ∫ ∞
−∞

e−ix

1 + x4
dx.

(b) Compute ∫ ∞
−∞

sin(−x)
1 + x3

dx

and ∫ ∞
−∞

sinx
1 + x3

dx.
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EXAMPLE 2. An historically famous integral in analysis is
∫∞
−∞ sinx/x dx. The

techniques described above don’t immediately apply to this function, for, even
replacing the x by a z, this function has no poles, so that the Residue Theorem
wouldn’t seem to be much help. Though the point 0 is a singularity, it is a removable
one, so that this function sin z/z is essentially analytic everywhere in the complex
plane. However, even in a case like this we can obtain information about integrals
of real-valued functions from theorems about integrals of complex-valued functions.
Notice first that

∫∞
−∞ sinx/x dx is the imaginary part of

∫∞
−∞ eix/x dx, so that we

may as well evaluate the integral of this function. Let f be the function defined
by f(z) = eiz/z, and note that 0 is a pole of order 1 of f, and that the residue
Rf (0) = 2πi. Now, for each B > 0 and δ > 0 define a geometric set SB,δ, determined
by the interval [−B,B], as follows: The upper bounding function uB,δ is given by
uB,δ(x) = B, and the lower bounding function lB,δ is given by lB,δ(x) = 0 for
−B ≤ x ≤ −δ and δ ≤ x ≤ B, and lB,δ(x) = δeiπx/δ for −δ < x < δ. That is, SB,δ
is just like the rectangle SB in Example 1 above, except that the lower boundary is
not a straight line. Rather, the lower boundary is a straight line from −B to −δ, a
semicircle below the x-axis of radius δ from −δ to δ, and a straight line again from
δ to B.
By the Residue Theorem, the contour integral∫

CSB,δ

f(ζ) dζ = Rf (0) = 2πi.

As in the previous example, the contour integrals along the two sides and across
the top of SB,δ tend to 0 as B tends to infinity. Finally, according to part (e) of
Exercise 6.15, the contour integral of f along the semicircle in the lower boundary
is πi independent of the value of δ. So,

lim
B→∞

lim
δ→0

∫
graph(lB,δ)

eiζ

ζ
dζ = πi,

implying then that ∫ ∞
−∞

sinx
x

dx = π.

Exercise 7.21. (a) Justify the steps in the preceding example. In particular, verify
that

lim
B→∞

∫ B

0

ei(B+it)

B + it
dt = 0,

lim
B→∞

∫ B

−B

ei(t+iB)

t+ iB
dt = 0,

and ∫
Cδ

eiζ

ζ
dζ = πi,

where Cδ is the semicircle of radius δ, centered at the origin and lying below the
x-axis.
(b) Evaluate ∫ ∞

−∞

sin2 x

x2
dx.
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APPENDIX
EXISTENCE AND UNIQUENESS OF A COMPLETE ORDERED FIELD

This appendix is devoted to the proofs of Theorems 1.1 and 1.2, which together
assert that there exists a unique complete ordered field. Our construction of this
field will follow the ideas of Dedekind, which he presented in the late 1800’s.

DEFINITION. By a Dedekind cut, or simply a cut, we will mean a pair (A,B)
of nonempty (not necessarily disjoint) subsets of the set Q of rational numbers for
which the following two conditions hold.

(1) A ∪B = Q. That is, every rational number is in one or the other of these
two sets.

(2) For every element a ∈ A and every element b ∈ B, A ≤ b. That is, every
element of A is less than or equal to every element of B.

Recall that when we define the rational numbers as quotients (ordered pairs) of
integers, we faced the problem that two different quotients determine the same
rational number, e.g., 2/3 ≡ 6/9. There is a similar equivalence among Dedekind
cuts.

DEFINITION. Two Dedekind cuts (A1, b1) and (A2, B2) are called equivalent if
a1 ≤ b2 for all a1 ∈ A1 and all b2 ∈ B2, and a2 ≤ b1 for all a2 ∈ A2 and all b1 ∈ B1.
In such a case, we write (A1, B1) ≡ (A2, B2).

bf Exercise A.1. (a) Show that every rational number r determines three distinct
Dedekind cuts that are mutually equivalent.
(b) Let B be the set of all positive rational numbers r whose square is greater than
2, and let A comprise all the rationals not in B. Prove that the pair (A,B) is a
Dedekind cut. Do you think this cut is not equivalent to any cut determined by a
rational number r as in part (a)? Can you prove this?
(c) Prove that the definition of equivalence given above satisfies the three conditions
of an equivalence relation. Namely, show that
(i) (Reflexivity) (A,B) is equivalent to itself.
(ii) (Symmetry) If (A1, B1) ≡ (A2, B2), then (A2, B2) ≡ (A1, B1).
(iii) (Transitivity) If (A1, B1) ≡ (A2, B2) and (A2, B2) ≡ (A3, B3), then (A1, B1) ≡
(A3, B3).

There are three relatively simple-sounding and believable properties of cuts, and
we present them in the next theorem. It may be surprising that the proof seems to
be more difficult than might have been expected.

THEOREM A.1. Let (A,B) be a Dedekind cut. Then
(1) If a ∈ A and a′ < a, then a′ ∈ A.
(2) If b ∈ B and b′ > b, then b′ ∈ B.
(3) Let ε be a positive rational number. Then there exists an a ∈ A and a b ∈ B

such that b− a < ε.

PROOF. Suppose a is an element of A, and let a′ < a be given. By way of
contradiction suppose that a′ does not belong to A. Then, by Condition (1) of
the definition of a cut, it must be that a′ ∈ B. But then, by Condition (2) of the
definition of a cut, we must have that a ≤ a′, and this is a contradiction, because
a′ < a. This proves part (1). Part (2) is proved in a similar manner.
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To prove part (3), let the rational number ε > 0 be given, and set r = ε/2. Choose
an element a0 ∈ A and an element b0 ∈ B. Such elements exist, because A and B
are nonempty sets. Choose a natural number N such that a0 + Nr > b0. Such a
natural number N must exist. For instance, just choose N to be larger than the
rational number (b0 − a0)/r. Now define a sequence {ak} of rational numbers by
ak = a0 + kr, and let K be the first natural number for which aK ∈ B. Obviously,
such a number exists, and in fact K must be less than or equal to N. Now, aK−1

is not in B, so it must be in A. Set a = AK−1 and b = AK . Clearly, a ∈ A, b ∈ B,
and

b− a = aK − aK−1 = a0 +Kr − a0 − (K − 1)r = r =
ε

2
< ε,

and this proves part (3).

We will make a complete ordered field F whose elements are the set of equivalence
classes of Dedekind cuts. We will call this field the Dedekind field. To make this
construction, we must define addition and multiplication of equivalence classes of
cuts, and verify the six required field axioms. Then, we must define the set P that
is to be the positive elements of the Dedekind field F, and then verify the required
properties of an ordered field. Finally, we must prove that this field is a complete
ordered field; i.e., that every nonempty set that is bounded above has a least upper
bound. First things first.

DEFINITION. If (A1, B1) and (A2, B2) are Dedekind cuts, define the sum of
(A1, B1) and (A2, B2) to be the cut (A3, B3) described as follows: B3 is the set of
all rational numbers b3 that can be written as b1 +b2 for some b1 ∈ B1 and b2 ∈ B2,
and A3 is the set of all rational numbers r such that r < b3 for all b3 ∈ B3.

Several things need to be checked. First of all, the pair (A3, B3) is again a Dedekind
cut. Indeed, it is clear from the definition that every element of A3 is less than
or equal to every element of B3, so that Condition (2) is satisfied. To see that
Condition (1) holds, let r be a rational number, and suppose that it is not in A3.
We must show that r belongs to B3. Now, since r /∈ A3, there must exist an element
b3 = b1 + b2 ∈ B3 for which r > b3. Otherwise, r would be in A3. But this means
that r − b2 > b1, and so by part (2) of Theorem A.1, we have that r − b2 is an
element b′1 of B1. Therefore, r = b′1 + b2, implying that r ∈ B3, as desired.
We define the 0 cut to be the pair A0 = {r : r ≤ 0} and B0 = {r : r > 0}. This cut
is one of the three determined by the rational number 0.

bf Exercise A.2. (a) Prove that addition of Dedekind cuts is commutative and
associative.
(b) Prove that if (A1, B1) ≡ (C1, D1) and (A2, B2) ≡ (C2, D2), then (A1, B1) +
(A2, B2) ≡ (C1, D1) + (C2, D2).
(c) Find an example of a cut (A,B) such that (A,B) + 0 6= (A,B).
(d) Prove that (A,B) + 0 ≡ (A,B) for every cut (A,B).

We define addition in the set F of all equivalence classes of Dedekind cuts as follows:

DEFINITION. If x is the equivalence class of a cut (A, b) and y is the equivalence
class of a cut (C,D), then x+ y is the equivalence class of the cut (A,B) + (C,D).

It follows from the previous exercise, that addition in F is well-defined, commuta-
tive, and associative. We are on our way.
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We define the element 0 of F to be the equivalence class of the 0 cut. The next
theorem establishes one of the important field axioms for F, namely, the existence
of an additive inverse for each element of F.

THEOREM A.2. If (A,B) is a Dedekind cut, then there exists a cut (A′, B′)
such that (A,B) + (A′, B′) is equivalent to the 0 cut. Therefore, if x is an element
of F, then there exists an element y of F such that x+ y = 0.

PROOF. Let A′ = −B, i.e., the set of all the negatives of the elements of B, and
let B′ = −A, i.e., the set of all the negatives of the elements of A. It is immediate
that the pair (A′, B′) is a Dedekind cut. Let us show that (A,B) + (A′, B′) is
equivalent to the zero cut. Let (C,D) = (A,B) + (A′, B′). Then, by the definition
of the sum of two cuts, we know that D consists of all the elements of the form
d = b + b′ = b − a, where b ∈ B and a ∈ A. Since a ≤ b for all a ∈ A and b ∈ B,
we see then that the elements of D are all greater than or equal to 0. To see that
(C,D) is equivalent to the 0 cut, it will suffice to show that D contains all the
positive rational numbers. (Why?) Hence, let ε > 0 be given, and choose an a ∈ A
and a b ∈ B such that b − a < ε. This can be done by Condition (3) of Theorem
A.1. Then, the number b− a ∈ D, and hence, by part (2) of Theorem A.1, ε ∈ D.
It follows then that the cut (C,D) is equivalent to the zero cut (A0, B0), as desired.

We will write −(A,B) for the cut (A′, B′) of the preceding proof.

bf Exercise A.3. (a) Suppose (A,B) is a cut, and let (C,D) be a cut for which
(A,B) + (C,D) is equivalent to the 0 cut. Show that (C,D) ≡ (A′, B′) = −(A,B).
(b) Prove that the additive inverse of an element x of the Dedekind field F is unique.

The definition of multiplication of cuts, as well as multiplication in F, is a bit more
tricky. In fact, we will first introduce the notion of positivity among Dedekind cuts.

DEFINITION. A Dedekind cut x = (A,B) is called positive if A contains at
least one positive rational number.

bf Exercise A.4. (a) Suppose (A,B) and (C,D) are equivalent cuts, and assume that
(A,B) is positive. Prove that (C,D) also is positive. Make the obvious definition
of positivity in the set F.
(b) Show that the sum of two positive cuts is positive. Conclude that the sum of
two positive elements of F, i.e., the sum of two equivalence classes of positive cuts,
is positive.
(c) Let (A,B) be a Dedekind cut. Show that one and only one of the following three
properties holds for (A,B). (i) (A,B) is a positive cut, (ii) −(A,B) is a positive
cut, or (iii) (A,B) is equivalent to the 0 cut.
(d) Establish the law of tricotomy for F : That is, show that one and only one of
the following three properties holds for an element x ∈ F. (i) x is positive, (ii) −x
is positive, or (iii) x = 0.

We first define multiplication of cuts when one of them is positive.

DEFINITION. Let (A1, B1) and (A2, B2) be two Dedekind cuts, and suppose
that one of these cuts is a positive cut. We define the product (A3, B3) of (A1, B1)
and (A2, B2) as follows: Set B3 equal to the set of all b3 that can be written as
b1b2 for some b1 ∈ B1 and b2 ∈ B2. Then set A3 to be all the rational numbers r
for which r < b3 for all b3 ∈ B3.
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Again, things need to be checked.
bf Exercise A.5. (a) Show that the pair (A3, B3) of the preceding definition for the
product of positive cuts is in fact a Dedekind cut.
(b) Prove that multiplication of Dedekind cuts, when one of them is positive, is
commutative.
(c) Suppose (A1, B1) is a positive cut. Prove that

(A1, B1)((A2, B2) + (A3, B3)) = (A1, B1)(A2, B2) + (A1, B1)(A3, B3)

for any cuts (A2, B2) and (A3, B3).
(d) Show that, if (A1, B1) ≡ (A2, B2) and (C1, D1) ≡ (C2, D2) and (a1, B1) and
(A2, B2) are positive cuts, then (A1, B1)(C1, D1) ≡ (A2, B2)(C2, D2).
(e) Show that the product of two positive cuts is again a positive cut.

We are ready to define multiplication in F.

DEFINITION. Let x and y be elements of F.
If either x or y is positive, define the product x×y to be the equivalence class of the
cut (A,B)(C,D), where x is the equivalence class of (A,B) and y is the equivalence
class of (C,D).
If either x or y is 0, define x× y to be 0.
If both x and y are negative, i.e., both −x and −y are positive, define x × y =
(−x)× (−y).

The next exercise is tedious. It amounts to checking a bunch of cases.
bf Exercise A.6. (a) Prove that multiplication in F is commutative.
(b) Prove that multiplication in F is associative.
(c) Prove that multiplication in F is distributive over addition.
(d) Prove that the product of two positive elements of F is again positive.

We define the element 1 of F to be the equivalence class of the cut (A1, B1), where
A1 = {r : r ≤ 1} and B1 = {r : r > 1}.
bf Exercise A.7. (a) Prove that the elements 0 and 1 of F are not equal.
(b) Prove that x× 1 = x for every element x ∈ F.
(c) Use the associative law and part (b) to prove that if xy = 1 and xz = 1, then
y = z.

THEOREM A.3. With respect to the operations of addition and multiplication
defined above, together with the definition of positive elements, F is an ordered field.

PROOF. The first five axioms for a field, given in Chapter I, have been established
for F in the preceding exercises, so that we need only verify axiom 6 to complete
the proof that F is a field. Thus, let x ∈ F be a nonzero element. We must show
the existence of an element y of F for which x × y = 1. Suppose first that x is a
positive element of F. Then x is the equivalence class of a positive cut (A,B), and
therefore A contains some positive rational numbers. Let a0 be a positive number
that is contained in A. It follows then that every element of B is greater than or
equal to a0 and hence is positive. Define B̂ to be the set of all rational numbers r
for which r ≥ 1/b for every b ∈ B. Then define Â to be the set of all rationals r for
which r ≤ b̂ for every b̂ ∈ B̂. It follows directly that the pair (Â, B̂) is a Dedekind
cut.
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Let (C,D) = (A,B) × (Â, B̂), and note that every element d ∈ D is of the form
d = bb̂, and hence is greater than or equal to 1. We claim that (C,D) is equivalent
to the cut (A1, B1) that determines the element 1 of F. To see this we must verify
that D contains every rational number r that is greater than 1. Thus, let r > 1 be
given, and set ε = a0(r− 1). From Condition (3) of Theorem A.1, choose an a′ ∈ A
and a b′ ∈ B such that b′ − a′ < ε. Without loss of generality, we may assume that
a′ ≥ a0. Finally, set b̂ = 1/a′. Clearly b̂ ≥ 1/b for all b ∈ B, so that b̂ ∈ B̂. Also
d = b′b̂ ∈ D, and

d = b′b̂ =
b′

a′
=
a′ + b′ − a′

a′
< 1 +

ε

a′
≤ 1 +

ε

a0
= r,

implying that r ∈ D. Therefore, (C,D) is equivalent to the cut (A1, B1), implying
that (A,B)× (Â, B̂) is equivalent to the cut (A1, B1). Therefore, if y is the element
of F that is the equivalence class of the cut (Â, B̂), then x× y = 1, as desired.
If x is negative, then −x is positive. If we write z for the multiplicative inverse
of the positive element −x, then −z is the multiplicative inverse of the element x.
Indeed, by the definition of the product of two negative elements of F, x× (−z) =
(−x)× z = 1.
The properties that guarantee that F is an ordered field also have been established
in the preceding exercises, so that the proof of this theorem is complete.

So, the Dedekind field is an ordered field, but we have left to prove that it is
complete. This means we must examine upper bounds of sets, and that requires us
to understand when one cut is less than another one. We say that a cut (A,B) is
less than or equal to a cut C,D) if a ≤ d for every a ∈ A and d ∈ D. We say that
an element x in the ordered field F is less than or equal to an element y if y − x is
either positive or 0.

THEOREM A.4. Let x and y be elements of F, and suppose x is the equivalence
class of the cut (A,B() and y is the equivalence class of the cut (C,D). Then x ≤ y
if and only if (A,B) ≤ (C,D).

PROOF. We have that x ≤ y if and only if the element y − x = y +−x is positive
or 0. Writing, as before, (A′, B′) for the cut −(A,B), we have that y − x is the
equivalence class of the cut (C, d) − (A,B) = (C,D) + (A′, B′), so we need to
determine when the cut (G,H) = (C,D) + (A′, B′) is a positive cut or the 0 cut;
which is the case when the set H only contains nonnegative numbers. By definition
of addition, the set H contains all numbers of the form h = d+ b′ for some d ∈ D
and some b′ ∈ B′. Since B′ = −A, this means that H consists of all elements of the
form h = d − a for some d ∈ D and a ∈ A. Now these numbers h are all greater
than or equal to 0 if and only if each a ∈ A is less than or equal to each d ∈ D, i.e.,
if and only if (A,B) ≤ (C,D). This proves the theorem

We are now ready to present the first of the two main theorems of this appendix,
that is Theorem 1.1 in Chapter I.

THEOREM A.5. There exists a complete ordered field. Indeed, the Dedekind
field F is a complete ordered field.

PROOF. Let S be a nonempty subset of F, and suppose that there exists an upper
bound for S; i.e., an element M of F such that x ≤ M for all x ∈ S. Write (A,B)
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for a cut such that M is the equivalence class of (A,B). We must show that there
exists a least upper bound for S.
For each x ∈ S, let (Ax, Bx) be a Dedekind cut for which x is the equivalence class
of (Ax, Bx), and note that ax ≤ b for all ax ∈ Ax and all b ∈ B. Let A0 be the
union of all the sets Ax for x ∈ S. Let B0 be the set of all rational numbers r for
which r ≥ a0 for every a0 ∈ A0. we claim first that the pair (A0, B0) is a Dedekind
cut. Both sets are nonempty; A0 because it is the union of nonempty sets, and B0

because it contains all the elements of the nonempty set B. Clearly Condition (2)
for a cut holds from the very definition of this pair. To see Condition (1), let r be
a rational number that is not in B0. We must show that it is in A0. Now, since r is
not in B0, there must exist some a0 ∈ A0 for which r < a0. But a0 ∈ ∪x∈SAx, so
that there must exist an x ∈ S such that a0 ∈ Ax, and hence r is also in Ax. But
then r ∈ A0, and this proves that (A0, B0) is a Dedekind cut.
Let M0 be the equivalence class determined by the cut (A0, B0). Since each Ax ⊆
A0, we see that ax ≤ b0 for every ax ∈ Ax and every b0 ∈ B0. Hence, (Ax, Bx) ≤
(A0, B0) for every x ∈ S, and therefore, by Theorem A.4, x ≤ M0 for all x ∈ S.
This shows that M0 is an upper bound for S.
Finally, suppose M ′ is another upper bound for S, and let (A′, B′) be a cut for
which M ′ is the equivalence class of (A′, B′). Then ax ≤ b′ for every ax ∈ Ax and
every b′ ∈ B′, implying that a0 ≤ b′ for every a0 ∈ A0 and every b′ ∈ B′. Therefore,
(A0, B0) ≤ (A′, B′), implying that M0 ≤M ′. This shows that M0 is the least upper
bound for S, and the theorem is proved.

We come now to the second major theorem of this appendix, i.e., Theorem 1.2 of
Chapter I. This one asserts the uniqueness, up to isomorphism, of complete ordered
fields.

THEOREM A.6. Let F̂ be a complete ordered field. Then there exists an isomor-
phism of F̂ onto the Dedekind field F. That is, there exists a one-to-one function
J : F̂ → F that is onto all of F, and that satisfies

(1) J(x+ y) = J(x) + J(y).
(2) J(xy) = J(x)J(y).
(3) If x > 0, then J(x) > 0.

PROOF. We know from Chapter I that, inside any ordered field, there is a subset
that is isomorphic to the field Q of rational numbers. We will therefore identify
this special subset of F̂ with Q.
If x is an element of F̂ , let Ax = {r ∈ Q : r ≤ x} and let Bx = {r ∈ Q : r > x}. We
claim first that the pair (Ax, Bx) is a Dedekind cut. Indeed, from the definition of
Ax and Bx, we see that Condition (2), i.e., that each ax ∈ Ax is less than or equal
to each bx ∈ Bx, holds. To see that Condition (1) also holds, let r be a rational
number in F̂ . Then, because F̂ is an ordered field, either r ≤ x or r > x, i.e., r ∈ Ax
or r ∈ Bx. Hence, (Ax, Bx) is a Dedekind cut.
We define a function J from F̂ into F by setting J(x) equal to the equivalence class
determined by the cut (Ax, Bx). We must check several things.
First of all, J is one-to-one. Indeed, let x and y be elements of F̂ that are not
equal. Assume without loss of generality that x < y. Then, according to Theorem
1.8, which is a theorem about complete ordered fields and hence applicable to F̂ ,,
there exist two rational numbers r1 and r2 such that x < r1 < r2 < y, which implies
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that r1 ∈ Bx and r2 ∈ Ay. Since r2 > r1, the cut (Ay, By) is not equivalent to the
cut (Ax, Bx), and therefore J(x) 6= J(y).
Next, we claim that the function J is onto all of the Dedekind field F. Indeed, let z
be an element of F, and let (A,B) be a Dedekind cut for which z is the equivalence
class determined by (A,B). Think of A as a subset of the complete ordered field
F̂ . Then A is nonempty and is bounded above. In fact, every element of B is an
upper bound of A. Let x = supA. (Here is another place where we are using the
completeness of the field F̂ .) We claim that the cut (A,B) is equivalent to the cut
(Ax, Bx), which will imply that J(x) = z. Thus, if ax ∈ Ax, then ax ≤ x, and x ≤ b
for every b ∈ B, because x is the least upper bound of A. Similarly, if a ∈ A, then
a ≤ x, and x < bx for every bx ∈ Bx. This proves that the cuts (A,B) and (Ax, Bx)
are equivalent, as desired.
If x and y are elements of F̂ , and bx ∈ Bx and by ∈ By, then bx > x and by > y,
so that bx + by > x + y, and therefore bx + by ∈ Bx+y for every bx ∈ Bx and
by ∈ By. On the other hand, if r ∈ Bx+y, then r > x + y. Therefore, r − x > y,
implying, again by Theorem 1.8, that there exists an element by ∈ By such that
y < by < r − x. But then r − by > x, which means that r − by = bx for some
bx ∈ Bx. So, r = bx + by, and this shows that Bx+y = bx + By. It follows from
this that the cuts (Ax+y, Bx+y) and (Ax, Bx) + (Ay, By) are equal, and therefore
J(x+y) = J(x)+J(y). A consequence of this is that J(−x) = −J(x) for all x ∈ F̂ .
If x and y are two positive elements of F̂ , then an argument just like the one in the
preceding paragraph shows that J(xy) = J(x)J(y). Then, since J(−x) = −J(x),
the fact that J(xy) = J(x)J(y) for all x, y ∈ F̂ follows.
Finally, if x is a positive element of F̂ , then the set Ax must contain some positive
rationals, and hence the cut (Ax, Bx) is a positive cut, implying that J(x) > 0.
We have verified all the requirements for an isomorphism between the two fields F̂
and F, and the theorem is proved.


