
CHAPTER II
THE LIMIT OF A SEQUENCE OF NUMBERS

DEFINITION OF THE NUMBER e.

This chapter contains the beginnings of the most important, and probably the
most subtle, notion in mathematical analysis, i.e., the concept of a limit. Though
Newton and Leibniz discovered the calculus with its tangent lines described as limits
of secant lines, and though the Greeks were already estimating areas of regions by
a kind of limiting process, the precise notion of limit that we use today was not
formulated until the 19th century by Cauchy and Weierstrass.

The main results of this chapter are the following:

(1) The definition of the limit of a sequence,
(2) The definition of the real number e (Theorem 2.3),
(3) The Squeeze Theorem (Theorem 2.5),
(4) the Bolzano Weierstrass Theorem (Theorems 2.8 and 2.10),
(5) The Cauchy Criterion (Theorem 2.9),
(6) the definition of an infinite series,
(7) the Comparison Test (Theorem 2.17), and
(8) the Alternating Series Test (Theorem 2.18).

These are powerful basic results about limits that will serve us well in later
chapters.

SEQUENCES AND LIMITS

DEFINITION. A sequence of real or complex numbers is defined to be a function
from the set N of natural numbers into the setR or C. Instead of referring to such a
function as an assignment n→ f(n), we ordinarily use the notation {an}, {an}∞1 ,
or {a1, a2, a3, . . . }. Here, of course, an denotes the number f(n).

REMARK. We expand this definition slightly on occasion to make some of our
notation more indicative. That is, we sometimes index the terms of a sequence
beginning with an integer other than 1. For example, we write {an}∞0 , {a0, a1, . . . },
or even {an}∞−3.

We give next what is the most significant definition in the whole of mathematical
analysis, i.e., what it means for a sequence to converge or to have a limit.

DEFINITION. Let {an} be a sequence of real numbers and let L be a real
number. The sequence {an} is said to converge to L, or that L is the limit of {an},
if the following condition is satisfied. For every positive number ε, there exists a
natural number N such that if n ≥ N, then |an − L| < ε.

In symbols, we say L = lim an or

L = lim
n→∞

an.

We also may write an 7→ L.
If a sequence {an} of real or complex numbers converges to a number L, we say

that the sequence {an} is convergent.
We say that a sequence {an} of real numbers diverges to +∞ if for every positive

number M, there exists a natural number N such that if n ≥ N, then an ≥ M.
Note that we do not say that such a sequence is convergent.
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28 II. THE LIMIT OF A SEQUENCE OF NUMBERS

Similarly, we say that a sequence {an} of real numbers diverges to −∞ if for
every real number M, there exists a natural number N such that if n ≥ N, then
an ≤M.

The definition of convergence for a sequence {zn} of complex numbers is exactly
the same as for a sequence of real numbers. Thus, let {zn} be a sequence of complex
numbers and let L be a complex number. The sequence {zn} is said to converge
to L, or that L is the limit of {zn}, if the following condition is satisfied. For
every positive number ε, there exists a natural number N such that if n ≥ N, then
|zn − L| < ε.

REMARKS. The natural number N of the preceding definition surely depends on
the positive number ε. If ε′ is a smaller positive number than ε, then the corre-
sponding N ′ very likely will need to be larger than N. Sometimes we will indicate
this dependence by writing N(ε) instead of simply N. It is always wise to remember
that N depends on ε. On the other hand, the N or N(ε) in this definition is not
unique. It should be clear that if a natural number N satisfies this definition, then
any larger natural number M will also satisfy the definition. So, in fact, if there
exists one natural number that works, then there exist infinitely many such natural
numbers.

It is clear, too, from the definition that whether or not a sequence is convergent
only depends on the “tail” of the sequence. Specifically, for any positive integer K,
the numbers a1, a2, . . . , aK can take on any value whatsoever without affecting the
convergence of the entire sequence. We are only concerned with an’s for n ≥ N,
and as soon as N is chosen to be greater than K, the first part of the sequence is
irrelevant.

The definition of convergence is given as a fairly complicated sentence, and there
are several other ways of saying the same thing. Here are two: For every ε > 0,
there exists a N such that, whenever n ≥ N, |an − L| < ε. And, given an ε > 0,
there exists a N such that |an−L| < ε for all n for which n ≥ N. It’s a good idea to
think about these two sentences and convince yourself that they really do “mean”
the same thing as the one defining convergence.

It is clear from this definition that we can’t check whether a sequence converges
or not unless we know the limit value L. The whole thrust of this definition has to
do with estimating the quantity |an − L|. We will see later that there are ways to
tell in advance that a sequence converges without knowing the value of the limit.

EXAMPLE 2.1. Let an = 1/n, and let us show that lim an = 0. Given an ε > 0,
let us choose a N such that 1/N < ε. (How do we know we can find such a N?)
Now, if n ≥ N, then we have

|an − 0| = | 1
n
| = 1

n
≤ 1

N
< ε,

which is exactly what we needed to show to conclude that 0 = lim an.

EXAMPLE 2.2. Let an = (2n+ 1)/(1− 3n), and let L = −2/3. Let us show
that L = lim an. Indeed, if ε > 0 is given, we must find a N, such that if n ≥ N
then |an + (2/3)| < ε. Let us examine the quantity |an + 2/3|. Maybe we can make
some estimates on it, in such a way that it becomes clear how to find the natural
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number N.

|an + (2/3)| = |2n+ 1

1− 3n
+

2

3
|

= |6n+ 3 + 2− 6n

3− 9n
|

= | 5

3− 9n
|

=
5

9n− 3

=
5

6n+ 3n− 3

≤ 5

6n

<
1

n
,

for all n ≥ 1. Therefore, if N is an integer for which N > 1/ε, then

|an + 2/3| < 1/n ≤ 1/N < ε,

whenever n ≥ N, as desired. (How do we know that there exists a N which is larger
than the number 1/ε?)

EXAMPLE 2.3. Let an = 1/
√
n, and let us show that lim an = 0. Given an

ε > 0, we must find an integer N that satisfies the requirements of the definition.
It’s a little trickier this time to choose this N. Consider the positive number ε2. We
know, from Exercise 1.16, that there exists a natural number N such that 1/N < ε2.
Now, if n ≥ N, then

|an − 0| = 1√
n
≤ 1√

N
=

√
1

N
<
√
ε2 = ε,

which shows that 0 = lim 1/
√
n.

REMARK. A good way to attack a limit problem is to immediately examine the
quantity |an−L|, which is what we did in Example 2.2 above. This is the quantity
we eventually wish to show is less than ε when n ≥ N, and determining which N
to use is always the hard part. Ordinarily, some algebraic manipulations can be
performed on the expression |an − L| that can help us figure out exactly how to
choose N. Just know that this process takes some getting used to, so practice!

Exercise 2.1. (a) Using the basic definition, prove that lim 3/(2n+ 7) = 0.
(b) Using the basic definition, prove that lim 1/n2 = 0.
(c) Using the basic definition, prove that lim(n2 + 1)/(n2 + 100n) = 1.

HINT: Use the idea from the remark above; i.e., examine the quantity |an − L|.
(d) Again, using the basic definition, prove that

lim
n+ n2i

n− n2i
= −1.

Remember the definition of the absolute value of a complex number.
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(e) Using the basic definition, prove that

lim
n3 + n2i

1− n3i
= i.

(f) Let an = (−1)n. Prove that 1 is not the limit of the sequence {an}.
HINT: Suppose the sequence {an} does converge to 1. Use ε = 1, let N be the
corresponding integer that exists in the definition, satisfying |an − 1| < 1 for all
n ≥ N, and then examine the quantity |an−1| for various n’s to get a contradiction.

Exercise 2.2. (a) Let {an} be a sequence of (real or complex) numbers, and let L
be a number. Prove that L = lim an if and only if for every positive integer k there
exists an integer N, such that if n ≥ N then |an − L| < 1/k.

(b) Let {cn} be a sequence of complex numbers, and suppose that cn 7→ L. If
cn = an + bni and L = a + bi, show that a = lim an and b = lim bn. Conversely, if
a = lim an and b = lim bn, show that a + bi = lim(an + bni). That is, a sequence
{cn = an + bni} of complex numbers converges if and only if the sequence {an} of
the real parts converges and the sequence {bn} of the imaginary parts converges.
HINT: You need to show that, given some hypotheses, certain quantities are less
than ε. Part (c) of Exercise 1.25 should be of help.

Exercise 2.3. (a) Prove that a constant sequence (an ≡ c) converges to c.

(b) Prove that the sequence { 2n
2+1

1−3n } diverges to −∞.
(c) Prove that the sequence {(−1)n} does not converge to any number L.

HINT: Argue by contradiction. Suppose it does converge to a number L. Use
ε = 1/2, let N be the corresponding integer that exists in the definition, and then
examine |an − an+1| for n ≥ N. Use the following useful add and subtract trick:

|an − an+1| = |an − L+ L− an+1| ≤ |an − L|+ |L− an+1|.

EXISTENCE OF CERTAIN FUNDAMENTAL LIMITS

We have, in the preceding exercises, seen that certain specific sequences con-
verge. It’s time to develop some general theory, something that will apply to lots
of sequences, and something that will help us actually evaluate limits of certain
sequences.

DEFINITION. A sequence {an} of real numbers is called nondecreasing if an ≤
an+1 for all n, and it is called nonincreasing if an ≥ an+1 for all n. It is called
strictly increasing if an < an+1 for all n, and strictly decreasing if an > an+1 for
all n.

A sequence {an} of real numbers is called eventually nondecreasing if there exists
a natural number N such that an ≤ an+1 for all n ≥ N, and it is called eventually
nonincreasing if there exists a natural number N such that an ≥ an+1 for all n ≥ N.
We make analogous definitions of “eventually strictly increasing” and “eventually
strictly decreasing.”

It is ordinarily very difficult to tell whether a given sequence converges or not;
and even if we know in theory that a sequence converges, it is still frequently difficult
to tell what the limit is. The next theorem is therefore very useful. It is also very
fundamental, for it makes explicit use of the existence of a least upper bound.
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THEOREM 2.1. Let {an} be a nondecreasing sequence of real numbers. Suppose
that the set S of elements of the sequence {an} is bounded above. Then the sequence
{an} is convergent, and the limit L is given byL = supS = sup an.

Analogously, if {an} is a nonincreasing sequence that is bounded below, then {an}
converges to inf an.

PROOF. We prove the first statement. The second is done analogously, and we
leave it to an exercise. Write L for the supremum sup an. Let ε be a positive number.
By Theorem 1.5, there exists an integer N such that aN > L − ε, which implies
that L− aN < ε. Since {an} is nondecreasing, we then have that an ≥ aN > L− ε
for all n ≥ N. Since L is an upper bound for the entire sequence, we know that
L ≥ an for every n, and so we have that

|L− an| = L− an ≤ L− aN < ε

for all n ≥ N. This completes the proof of the first assertion.

Exercise 2.4. (a) Prove the second assertion of the preceding theorem.
(b) Show that Theorem 2.1 holds for sequences that are eventually nondecreasing

or eventually nonincreasing. (Re-read the remark following the definition of the
limit of a sequence.)

The next exercise again demonstrates the “denseness” of the rational and irra-
tional numbers in the set R of all real numbers.

Exercise 2.5. (a) Let x be a real number. Prove that there exists a sequence {rn}
of rational numbers such that x = lim rn. In fact, show that the sequence {rn} can
be chosen to be nondecreasing.
HINT: For example, for each n, use Theorem 1.8 to choose a rational number rn
between x− 1/n and x.

(b) Let x be a real number. Prove that there exists a sequence {r′n} of irrational
numbers such that x = lim r′n.

(c) Let z = x + iy be a complex number. Prove that there exists a sequence
{αn} = {βn + iγn} of complex numbers that converges to z, such that each βn and
each γn is a rational number.

Exercise 2.6. Suppose {an} and {bn} are two convergent sequences, and suppose
that lim an = a and lim bn = b. Prove that the sequence {an + bn} is convergent
and that

lim(an + bn) = a+ b.

HINT: Use an ε/2 argument. That is, choose a natural number N1 so that |an−a| <
ε/2 for all n ≥ N1, and choose a natural number N2 so that |bn − b| < ε/2 for all
n ≥ N2. Then let N be the larger of the two numbers N1 and N2.

The next theorem establishes the existence of four nontrivial and important
limits. This time, the proofs are more tricky. Some clever idea will have to be used
before we can tell how to choose the N.

THEOREM 2.2.

(1) Let z ∈ C satisfy |z| < 1, and define an = zn. then the sequence {an}
converges to 0. We write lim zn = 0.
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(2) Let b be a fixed positive number greater than 1, and define an = b1/n. See
Theorem 1.11. Then lim an = 1. Again, we write lim b1/n = 1.

(3) Let b be a positive number less than 1. Then lim b1/n = 1.
(4) If an = n1/n, then lim an = limn1/n = 1.

PROOF. We prove parts (1) and (2) and leave the rest of the proof to the exercise
that follows. If z = 0, claim (1) is obvious. Assume then that z 6= 0, and let ε > 0
be given. Let w = 1/|z|, and observe that w > 1. So, we may write w = 1 + h for
some positive h. (That step is the clever idea for this argument.) Then, using the
Binomial Theorem, wn > nh, and so 1/wn < 1/(nh). See part (a) of Exercise 1.20.
But then

|zn − 0| = |zn| = |z|n = (1/w)n = 1/wn < 1/(nh).

So, if N is any natural number larger than 1/(εh), then

|zn − 0| = |zn| = |z|n < 1

nh
≤ 1

Nh
< ε

for all n ≥ N. This completes the proof of the first assertion of the theorem.
To see part (2), write an = b1/n = 1 + xn, i.e., xn = b1/n − 1, and observe first

that xn > 0. Indeed, since b > 1, it must be that the nth root b1/n is also > 1.
(Why?) Therefore, xn = b1/n − 1 > 0. (Again, writing b1/n as 1 + xn is the clever

idea.) Now, b = b1/n
n

= (1 +xn)n, which, again by the Binomial Theorem, implies
that b > 1 + nxn. So, xn < (b− 1)/n, and therefore

|b1/n − 1| = b1/n − 1 = xn <
b− 1

n
< ε

whenever n > ε/(b− 1), and this proves part (2).

Exercise 2.7. (a) Prove part (3) of the preceding theorem.
HINT: For b ≤ 1, use the following algebraic calculation:

|b1/n − 1| = b1/n|1− (1/b)1/n| ≤ |1− (1/b)1/n|,

and then use part (2) as applied to the positive number 1/b.
(b) Prove part (4) of the preceding theorem. Explain why it does not follow

directly from part (2).
HINT: Write n1/n = 1 + hn. Observe that hn > 0. Then use the third term of the
binomial theorem in the expansion n = (1 + hn)n.

(c) Construct an alternate proof to part (2) of the preceding theorem as follows:
Show that the sequence {b1/n} is nonincreasing and bounded below by 1. Deduce,
from Theorem 2.1, that the sequence converges to a number L. Now prove that L
must be 1.

DEFINITION OF e

Part (4) of Theorem 2.2 raises an interesting point. Suppose we have a sequence
{an}, like {n}, that is diverging to infinity, and suppose we have another sequence
{bn}, like {1/n}, that is converging to 0. What can be said about the sequence
{abnn }? The base an is blowing up, while the exponent bn is going to 0. In other
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words, there are two competing processes going on. If an is blowing up, then its
powers ought to be blowing up as well. On the other hand, anything to the 0 power
should be 1, so that, as the exponents of the elements of a sequence converge to 0,
the sequence ought to converge to 1. This competition between the convergence of
the base to infinity and the convergence of the exponent to 0 makes it subtle, if not
impossibly difficult, to tell what the combination does. For the special case of part
(4) of Theorem 2.2, the answer was 1, indicating that, in that case at least, the
exponents going to 0 seem to be more important than the base going to infinity.

One can think up all kinds of such examples: {(2n)1/n}, {(n!)1/n}, {(n!)1/n
2}, and

so on. We will see later that all sorts of things can happen.

Of course there is the reverse situation. Suppose {an} is a sequence of numbers
that decreases to 1, and suppose {bn} is a sequence of numbers that diverges to
infinity. What can we say about the sequence {anbn}? The base is tending to 1,
so that one might expect that the whole sequence also would be converging to 1.
On the other hand the exponents are blowing up, so that one might think that the
whole sequence should blow up as well. Again, there are lots of examples, and they
don’t all work the same way. Here is perhaps the most famous such example.

THEOREM 2.3. (Definition of e.) For n ≥ 1, define an = (1 + 1/n)n. Then the
sequence {an} is nondecreasing and bounded above, whence it is convergent. (We
will denote the limit of this special sequence by the letter e.)

PROOF. To see that {an} is nondecreasing, it will suffice to prove that an+1/an ≥ 1
for all n. In the computation below, we will use the fact (part (c)of Exercise 1.20)
that if x > −1 then (1 + x)n ≥ 1 + nx. So,

an+1

an
=

(1 + 1
n+1 )n+1

(1 + 1
n )n

=
(n+2
n+1 )n+1

(n+1
n )n

=
n+ 1

n

n+2
n+1 )n+1

(n+1
n )n+1

=
n+ 1

n
(

n2 + 2n

n2 + 2n+ 1
)n+1

=
n+ 1

n
(1− 1

(n+ 1)2
)n+1

≥ n+ 1

n
(1− (n+ 1)(

1

n+ 1
)2)

=
n+ 1

n
(1− 1

n+ 1
)

=
n+ 1

n

n

n+ 1

= 1,

as desired.

We show next that {an} is bounded above. This time, we use the binomial
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theorem, the geometric progression, and Exercise 1.19.

an = (1 +
1

n
)n

=

n∑
k=0

(
n

k

)
(

1

n
)k

<

n∑
k=0

2
nk

2k
(

1

n
)k

= 2

n∑
k=0

(
1

2
)k

= 2
1− ( 1

2 )n+1

1− 1
2

< 4,

as desired.
That the sequence {an} converges is now a consequence of Theorem 2.1.

REMARK. We have now defined the real number e. Its central role in mathematics
is not at all evident yet; at this point we have no definition of exponential function,
logarithm, or trigonometric functions. It does follow from the proof above that e is
between 2 and 4, and with a little more careful estimates we can show that actually
e ≤ 3. For the moment, we will omit any further discussion of its precise value.
Later, in Exercise 4.19, we will show that it is an irrational number.

PROPERTIES OF CONVERGENT SEQUENCES

Often, our goal is to show that a given sequence is convergent. However, as we
study convergent sequences, we would like to establish various properties that they
have in common. The first theorem of this section is just such a result.

THEOREM 2.4. Suppose {an} is a convergent sequence of real or complex num-
bers. Then the sequence {an} forms a bounded set.

PROOF. Write L = lim an. Let ε be the positive number 1. Then, there exists a
natural number N such that |an − L| < 1 for all n ≥ N. By the backward triangle
inequality, this implies that ||an| − |L|| < 1 for all n ≥ N, which implies that
|an| ≤ |L| + 1 for all n ≥ N. This shows that at least the tail of the sequence is
bounded by the constant |L|+ 1.

Next, let K be a number larger than the finitely many numbers |a1|, . . . , |aN−1|.
Then, for any n, |an| is either less than K or |L| + 1. Let M be the larger of the
two numbers K and |L|+ 1. Then |an| < M for all n. Hence, the sequence {an} is
bounded.

Note that the preceding theorem is a partial converse to Theorem 2.1; i.e., a
convergent sequence is necessarily bounded. Of course, not every convergent se-
quence must be either nondecreasing or nonincreasing, so that a full converse to
theorem 2.1 is not true. For instance, take z = −1/2 in part (1) of Theorem 2.2.
It converges to 0 all right, but it is neither nondecreasing nor nonincreasing.
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Exercise 2.8. (a) Suppose {an} is a sequence of real numbers that converges to a
number a, and assume that an ≥ c for all n. Prove that a ≥ c.
HINT: Suppose not, and let ε be the positive number c − a. Let N be a natural
number corresponding to this choice of ε, and derive a contradiction.

(b) If {an} is a sequence of real numbers for which lim an = a, and if a 6= 0, then
prove that an 6= 0 for all large enough n. Show in fact that there exists an N such
that |an| > |a|/2 for all n ≥ N.
HINT: Make use of the positive number ε = |a|/2.
Exercise 2.9. (a) If {an} is a sequence of positive real numbers for which lim an =
a > 0, prove that lim

√
an =

√
a.

HINT: Multiply the expression
√
an −

√
a above and below by

√
an +

√
a.

(b) If {an} is a sequence of complex numbers, and lim an = a, prove that
lim |an| = |a|.
HINT: Use the backward triangle inequality.

Exercise 2.10. Suppose {an} is a sequence of real numbers and that L = lim an.
Let M1 and M2 be real numbers such that M1 ≤ an ≤ M2 for all n. Prove that
M1 ≤ L ≤M2.
HINT: Suppose, for instance, that L > M2. Make use of the positive number L−M2

to derive a contradiction.

We are often able to show that a sequence converges by comparing it to another
sequence that we already know converges. The following exercise demonstrates
some of these techniques.

Exercise 2.11. Let {an} be a sequence of complex numbers.
(a) Suppose that, for each n, |an| < 1/n. Prove that 0 = lim an.
(b) Suppose {bn} is a sequence that converges to 0, and suppose that, for each

n, |an| < |bn|. Prove that 0 = lim an.

The next result is perhaps the most powerful technique we have for showing that
a given sequence converges to a given number.

THEOREM 2.5. {Squeeze Theorem) Suppose that {an} is a sequence of real
numbers and that {bn} and {cn} are two sequences of real numbers for which
bn ≤ an ≤ cn for all n. Suppose further that lim bn = lim cn = L. Then the
sequence {an} also converges to L.

PROOF. We examine the quantity |an−L, | employ some add and subtract tricks,
and make the following computations:

|an − L| ≤ |an − bn + bn − L|
≤ |an − bn|+ |bn − L|
= an − bn + |bn − L|
≤ cn − bn + |bn − L|
= |cn − bn|+ |bn − L|
≤ |cn − L|+ |L− bn|+ |bn − L|.

So, we can make |an − L| < ε by making |cn − L| < ε/3 and |bn − L| < ε/3. So,
let N1 be a positive integer such that |cn − L| < ε/3 if n ≥ N1, and let N2 be
a positive integer so that |bn − L| < ε/3 if n ≥ N2. Then set N = max(N1, N2).
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Clearly, if n ≥ N, then both inequalities |cn − L| < ε/3 and |bn − L| < ε/3, and
hence |an − L| < ε. This finishes the proof.

The next result establishes what are frequently called the “ limit theorems.”
Basically, these results show how convergence interacts with algebraic operations.

THEOREM 2.6. Let {an} and {bn} be two sequences of complex numbers with
a = lim an and b = lim bn. Then

(1) The sequence {an + bn} converges, and

lim(an + bn) = lim an + lim bn = a+ b.

(2) The sequence {anbn} is convergent, and

lim(anbn) = lim an lim bn = ab.

(3) If all the bn’s as well as b are nonzero, then the sequence {an/bn} is con-
vergent, and

lim(
an
bn

=
lim an
lim bn

=
a

b
.

PROOF. Part (1) is exactly the same as Exercise 2.6. Let us prove part (2).
By Theorem 2.4, both sequences {an} and {bn} are bounded. Therefore, let M

be a number such that |an| ≤ M and |bn| ≤ M for all n. Now, let ε > 0 be given.
There exists an N1 such that |an− a| < ε/(2M) whenever n ≥ N1, and there exists
an N2 such that |bn − b| < ε/(2M) whenever n ≥ N2. Let N be the maximum of
N1 and N2. Here comes the add and subtract trick again.

|anbn − ab| = |anbn − abn + abn − ab|
≤ |anbn − abn|+ |abn − ab|
= |an − a||bn|+ |a||b− bn|
≤ |an − a|M +M |bn − b|
< ε

if n ≥ N, which shows that lim(anbn) = ab.
To prove part (3), let M be as in the previous paragraph, and let ε > 0 be given.

There exists an N1 such that |an − a| < (ε|b|2)/(4M) whenever n ≥ N1; there also
exists an N2 such that |bn − b| < (ε|b|2)/(4M) whenever n ≥ N2; and there exists
an N3 such that |bn| > |b|/2 whenever n ≥ N3. (See Exercise 2.8.) Let N be the
maximum of the three numbers N1, N2 and N3. Then:

|an
bn
− a

b
| = |anb− bna

bnb
|

= |anb− bna|
1

|bnb|

< |anb− bna|
1

|b|2/2

≤ (|an − a||b|+ |a||bn − b|)
2

|b|2

< (M |an − a|+M |bn − b|)
2

|b|2

< ε
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if n ≥ N. This completes the proof.

REMARK. The proof of part (3) of the preceding theorem may look mysterious.
Where, for instance, does this number ε|b|2/4M come from? The answer is that
one begins such a proof by examining the quantity |an/bn − a/b| to see if by some
algebraic manipulation one can discover how to control its size by using the quan-
tities |an − a| and |bn − b|. The assumption that a = lim an and b = lim bn mean
exactly that the quantities |an− a| and |bn− b| can be controlled by requiring n to
be large enough. The algebraic computation in the proof above shows that

|an
bn
− a

b
| ≤ (M |an − a|+M |bn − b|)

2

|b|2
,

and one can then see exactly how small to make |an − a| and |bn − b| so that
|an/bn − a/b| < ε. Indeed, this is the way most limit proofs work.

Exercise 2.12. If possible, determine the limits of the following sequences by using
Theorems 2.2, 2.3, 2.6, and the squeeze theorem 2.5.

(a) {n1/n2}.
(b) {(n2)1/n}.
(c) {(1 + n)1/n}.
(d) {(1 + n2)1/n

3}.
(e) {(1 + 1/n)2/n}.
(f) {(1 + 1/n)2n}.
(g) {(1 + 1/n)n

2}.
(h) {(1− 1/n)n}.

HINT: Note that

1− 1/n =
n− 1

n
=

1
n
n−1

=
1

n−1+1
n−1

=
1

1 + 1
n−1

.

(i) {(1− 1/(2n))3n}.
(j) {(n!)1/n}.

SUBSEQUENCES AND CLUSTER POINTS

DEFINITION. Let {an} be a sequence of real or complex numbers. A subse-
quence of {an} is a sequence {bk} that is determined by the sequence {an} together
with a strictly increasing sequence {nk} of natural numbers. The sequence {bk} is
defined by bk = ank

. That is, the kth term of the sequence {bk} is the nkth term
of the original sequence {an}.

Exercise 2.13. Prove that a subsequence of a subsequence of {an} is itself a
subsequence of {an}. Thus, let {an} be a sequence of numbers, and let {bk} = {ank

}
be a subsequence of {an}. Suppose {cj} = {bkj} is a subsequence of the sequence
{bk}. Prove that {cj} is a subsequence of {an}. What is the strictly increasing
sequence {mj} of natural numbers for which cj = amj

?

Here is an interesting generalization of the notion of the limit of a sequence.
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DEFINITION. Let {an} be a sequence of real or complex numbers. A number
x is called a cluster point of the sequence {an} if there exists a subsequence {bk} of
{an} such that x = lim bk. The set of all cluster points of a sequence {an} is called
the cluster set of the sequence.

Exercise 2.14. (a) Give an example of a sequence whose cluster set contains two
points. Give an example of a sequence whose cluster set contains exactly n points.
Can you think of a sequence whose cluster set is infinite?

(b) Let {an} be a sequence with cluster set S. What is the cluster set for the
sequence {−an}? What is the cluster set for the sequence {a2n}?

(c) If {bn} is a sequence for which b = lim bn, and {an} is another sequence,
what is the cluster set of the sequence {anbn}?

(d) Give an example of a sequence whose cluster set is empty.
(e) Show that if the sequence {an} is bounded above, then the cluster set S is

bounded above. Show also that if {an} is bounded below, then S is bounded below.
(f) Give an example of a sequence whose cluster set S is bounded above but not

bounded below.
(g) Give an example of a sequence that is not bounded, and which has exactly

one cluster point.

THEOREM 2.7. Suppose {an} is a sequence of real or complex numbers.

(1) (Uniqueness of limits) Suppose lim an = L, and lim an = M. Then L = M.
That is, if the limit of a sequence exists, it is unique.

(2) If L = lim an, and if {bk} is a subsequence of {an}, then the sequence {bk}
is convergent, and lim bk = L. That is, if a sequence has a limit, then every
subsequence is convergent and converges to that same limit.

PROOF. Suppose lim an = Land lim an = M. Let ε be a positive number, and
choose N1 so that |an −L| < ε/2 if n ≥ N1, and choose N2 so that |an −M | < ε/2
if n ≥ N2. Choose an n larger than both N1andN2. Then

|L−M | = |L− an + an −M | ≤ |L− an|+ |an −M | < ε.

Therefore, since |L −M | < ε for every positive ε, it follows that L −M = 0 or
L = M. This proves part (1).

Next, suppose lim an = L and let {bk} be a subsequence of {an}. We wish to
show that lim bk = L. Let ε > 0 be given, and choose an N such that |an − L| < ε
if n ≥ N. Choose a K so that nK ≥ N . (How?) Then, if k ≥ K, we have
nk ≥ nK ≥ N, whence |bk − L| = |ank

− L| < ε, which shows that lim bk = L. This
proves part (2).

REMARK. The preceding theorem has the following interpretation. It says that if
a sequence converges to a number L, then the cluster set of the sequence contains
only one number, and that number is L. Indeed, if x is a cluster point of the
sequence, then there must be some subsequence that converges to x. But, by part
(2), everysubsequence converges to L. Then, by part (1), x = L. Part (g) of Exercise
2.14 shows that the converse of this theorem is not valid. that is, the cluster set
may contain only one point, and yet the sequence is not convergent.

We give next what is probably the most useful fundamental result about se-
quences, the Bolzano-Weierstrass Theorem. It is this theorem that will enable
us to derive many of the important properties of continuity, differentiability, and
integrability.
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THEOREM 2.8. (Bolzano-Weierstrass) Every bounded sequence {an} of real or
complex numbers has a cluster point. In other words, every bounded sequence has
a convergent subsequence.

The Bolzano-Weierstrass Theorem is, perhaps not surprisingly, a very difficult
theorem to prove. We begin with a technical, but very helpful, lemma.

LEMMA. Let {an} be a bounded sequence of real numbers; i.e., assume that there
exists an M such that |an| ≤ M for all n. For each n ≥ 1, let Sn be the set whose
elements are {an, an+1, an+2, . . . }. That is, Sn is just the elements of the tail of the
sequence from n on. Define xn = supSn = supk≥n ak. Then

(1) The sequence {xn} is bounded (above and below).
(2) The sequence {xn} is non-increasing.
(3) The sequence {xn} converges to a number x.
(4) The limit x of the sequence {xn} is a cluster point of the sequence {an}.

That is, there exists a subsequence {bk} of the sequence {an} that converges
to x.

(5) If y is any cluster point of the sequence {an}, then y ≤ x, where x is the
cluster point of part (4). That is, x is the maximum of all cluster points of
the sequence {an}.

PROOF OF THE LEMMA. Since xn is the supremum of the set Sn, and since
each element of that set is bounded between −M and M, part (1) is immediate.

Since Sn+1 ⊆ Sn, it is clear that

xn+1 = supSn+1 ≤ supSn = xn,

showing part (2).
The fact that the sequence {xn} converges to a number x is then a consequence

of Theorem 2.1.
We have to show that the limit x of the sequence {xn} is a cluster point of

{an}. Notice that {xn} may not itself be a subsequence of {an}, each xn may or
may not be one of the numbers ak, so that there really is something to prove. In
fact, this is the hard part of this lemma. To finish the proof of part (4), we must
define an increasing sequence {nk} of natural numbers for which the corresponding
subsequence {bk} = {ank

} of {an} converges to x. We will choose these natural
numbers {nk} so that |x − ank

| < 1/k. Once we have accomplished this, the fact
that the corresponding subsequence {ank

} converges to x will be clear. We choose
the nk’s inductively. First, using the fact that x = limxn, choose an n so that
|xn − x| = xn − x < 1/1. Then, because xn = supSn, we may choose by Theorem
1.5 some m ≥ n such that xn ≥ am > xn − 1/1. But then |am − x| < 1/1. (Why?)
This m we call n1. We have that |an1 − x| < 1/1.

Next, again using the fact that x = limxn, choose another n so that n > n1 and
so that |xn − x| = xn − x < 1/2. Then, since this xn = supSn, we may choose
another m ≥ n such that xn ≥ am > xn − 1/2. This m we call n2. Note that we
have |an2

− x| < 1/2.
Arguing by induction, if we have found an increasing set n1 < n2 < ... < nj ,

for which |ani − x| < 1/i for 1 ≤ i ≤ j, choose an n larger than nj such that
|xn−x| < 1/(j+ 1). Then, since xn = supSn, choose an m ≥ n so that xn ≥ am >
xn − 1/(j + 1). Then |am − x| < 1/(j + 1), and we let nj+1 be this m. It follows
that |anj+1

− x| < 1/(j + 1).



40 II. THE LIMIT OF A SEQUENCE OF NUMBERS

So, by recursive definition, we have constructed a subsequence of {an} that
converges to x, and this completes the proof of part (4) of the lemma.

Finally, if y is any cluster point of {an}, and if y = lim ank
, then nk ≥ k, and

so ank
≤ xk, implying that xk − ank

≥ 0. Hence, taking limits on k, we see that
x− y ≥ 0, and this proves part (5).

Now, using the lemma, we can give the proof of the Bolzano-Weierstrass Theo-
rem.

PROOF OF THEOREM 2.8. If {an} is a sequence of real numbers, this theorem
is an immediate consequence of part (4) of the preceding lemma.

If an = bn + cni is a sequence of complex numbers, and if {an} is bounded, then
{bn} and {cn} are both bounded sequences of real numbers. See Exercise 1.27. So,
by the preceding paragraph, there exists a subsequence {bnk

} of {bn} that converges
to a real number b. Now, the subsequence {cnk

} is itself a bounded sequence of real
numbers, so there is a subsequence {cnkj

} that converges to a real number c. By

part (2) of Theorem 2.7, we also have that the subsequence {bnkj
} converges to

b. So the subsequence {ankj
} = {bnkj

+ cnkj
i} of {an} converges to the complex

number b+ ci; i.e., {an} has a cluster point. This completes the proof.

There is an important result that is analogous to the Lemma above, and its proof
is easily adapted from the proof of that lemma.

Exercise 2.15. Let {an} be a bounded sequence of real numbers. Define a sequence
{yn} by yn = infk≥nak. Prove that:

(a) {yn} is nondecreasing and bounded above.

(b) y = lim yn is a cluster point of {an}.
(c) If z is any cluster point of {an}, then y ≤ z. That is, y is the minimum of all

the cluster points of the sequence {an}.
HINT: Let {αn} = {−an}, and apply the preceding lemma to {αn}. This exercise

will then follow from that.

The Bolzano-Wierstrass Theorem shows that the cluster set of a bounded se-
quence {an} is nonempty. It is also a bounded set itself.

The following definition is only for sequences of real numbers. However, like
the Bolzano-Weierstrass Theorem, it is of very basic importance and will be used
several times in the sequel.

DEFINITION. Let {an} be a sequence of real numbers and let S denote its
cluster set.

If S is nonempty and bounded above, we define lim sup an to be the supremum
supS of S.

If S is nonempty and bounded below, we define lim inf an to be the infimum
infS of S.

If the sequence {an} of real numbers is not bounded above, we define lim sup an
to be ∞, and if {an} is not bounded below, we define lim inf an to be −∞.

If {an} diverges to ∞, then we define lim sup an and lim inf an both to be ∞.
And, if {an} diverges to −∞, we define lim sup an and lim inf an both to be −∞.

We call lim sup an the limit superior of the sequence {an}, and lim inf an the
limit inferior of {an}.
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Exercise 2.16. (a) Suppose {an} is a bounded sequence of real numbers. Prove
that the sequence {xn} of the lemma following Theorem 2.8 converges to lim sup an.
Show also that the sequence {yn} of Exercise 2.15 converges to lim inf an.

(b) Let {an} be a not necessarily bounded sequence of real numbers. Prove that

lim sup an = inf
n

sup
k≥n

ak = lim
n

sup
k≥n

ak.

and
lim inf an = sup

n
inf
k≥n

ak = lim
n

inf k ≥ nak.

HINT: Check all cases, and use the lemma following Theorem 2.8 and Exercise 2.15.
(c) Let {an} be a sequence of real numbers. Prove that

lim sup an = − lim inf(−an).

(d) Give examples to show that all four of the following possibilities can happen.

(1) lim sup an is finite, and lim inf an = −∞.
(2) lim sup an =∞ and lim inf an is finite.
(3) lim sup an =∞ and lim inf an = −∞.
(4) both lim sup an and lim inf an are finite.

The notions of limsup and liminf are perhaps mysterious, and they are in fact
difficult to grasp. The previous exercise describes them as the resultof a kind of
two-level process, and there are occasions when this description is a great help.
However, the limsup and liminf can also be characterized in other ways that are
more reminiscent of the definition of a limit. These other ways are indicated in the
next exercise.

Exercise 2.17. Let {an} be a bounded sequence of real numbers with
lim sup an = L and lim inf an = l. Prove that L and l satisfy the following properties.

(a) For each ε > 0, there exists an N such that an < L+ ε for all n ≥ N.
HINT: Use the fact that lim sup an = L is the number x of the lemma following
Theorem 2.8, and that x is the limit of a specific sequence {xn}.

(b) For each ε > 0, and any natural number k, there exists a natural number
j ≥ k such that aj > L− ε. Same hint as for part (a).

(c) For each ε > 0, there exists an N such that an > l − ε for all n ≥ N.
(d) For each ε > 0, and any natural number k, there exists a natural number

j > k such that aj < l + ε.
(e) Suppose L′ is a number that satisfies parts (a) and (b). Prove that L′ is the

limsup of {an}.
HINT: Use part (a) to show that L′ is greater than or equal to every cluster point
of {an}. Then use part (b) to show that L′ is less than or equal to some cluster
point.

(f) If l′ is any number that satisfies parts (c) and (d), show that l′ is the liminf
of the sequence {an}.
Exercise 2.18. (a) Let {an} and {bn} be two bounded sequences of real numbers,
and write L = lim sup an and M = lim sup bn. Prove that lim sup(an + bn) ≤
lim sup an + lim sup bn.
HINT: Using part (a) of the preceding exercise, show that for every ε > 0 there
exists a N such that an + bn < L + M + ε for all n ≥ N, and conclude from this
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that every cluster point y of the sequence {an + bn} is less than or equal to L+M.
This will finish the proof, since lim sup(an + bn) is a cluster point of that sequence.

(b) Again, let {an} and {bn} be two bounded sequences of real numbers, and
write l = lim inf an and m = lim inf bn. Prove that lim inf(an + bn) ≥ lim inf an +
lim inf bn.
HINT: Use part (c) of the previous exercise.

(c) Find examples of sequences {an} and {bn} for which lim sup an = lim sup bn =
1, but lim sup(an + bn) = 0.

We introduce next another property that a sequence can possess. It looks very
like the definition of a convergent sequence, but it differs in a crucial way, and that
is that this definition only concerns the elements of the sequence {an} and not the
limit L.

DEFINITION. A sequence {an} of real or complex numbers is a Cauchy sequence
if for every ε > 0, there exists a natural number N such that if n ≥ N and m ≥ N
then |an − am| < ε.

REMARK. No doubt, this definition has something to do with limits. Any time
there is a positive ε and an N, we must be near some kind of limit notion. The
point of the definition of a Cauchy sequence is that there is no explicit mention
of what the limit is. It isn’t that the terms of the sequence are getting closer and
closer to some number L, it’s that the terms of the sequence are getting closer and
closer to each other. This subtle difference is worth some thought.

Exercise 2.19. Prove that a Cauchy sequence is bounded. (Try to adjust the
proof of Theorem 2.4 to work for this situation.)

The next theorem, like the Bolzano-Weierstrass Theorem, seems to be quite
abstract, but it also turns out to be a very useful tool for proving theorems about
continity, differentiability, etc. In the proof, the completeness of the set of real
numbers will be crucial. This theorem is not true in ordered fields that are not
complete.

THEOREM 2.9. (Cauchy Criterion) A sequence {an} of real or complex numbers
is convergent if and only if it is a Cauchy sequence.

PROOF. If liman = a then given ε > 0, choose N so that |ak − a| < ε/2 if k ≥ N.
From the triangle inequality, and by adding and subtracting a, we obtain that
|an − am| < ε if n ≥ N and m ≥ N. Hence, if {an} is convergent, then {an} is a
Cauchy sequence.

Conversely, if {an} is a cauchy sequence, then {an} is bounded by the previous
exercise. Now we use the fact that {an} is a sequence of real or complex numbers.
Let x be a cluster point of {an}.We know that one exists by the Bolzano-Weierstrass
Theorem. Let us show that in fact this number x not only is a cluster point but that
it is in fact the limit of the sequence {an}. Given ε > 0, choose Nso that |an−am| <
ε/2 whenever both n and m ≥ N. Let {ank

} be a subsequence of {an} that converges
to x. Because {nk} is strictly increasing, we may choose a k so that nk > N and
also so that |ank

− x| < ε/2. Then, if n ≥ N, then both n and this particular nk
are larger than or equal to N. Therefore, |an − x| ≤ |an − ank

|+ |ank
− x| < ε. this

completes the proof that x = lim an.

A LITTLE TOPOLOGY
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We now investigate some properties that subsets of R and C may possess. We
will define “closed sets,” “open sets,” and “limit points” of sets. These notions are
the rudimentary notions of what is called topology. As in earlier definitions, these
topological ones will be enlightening when we come to continuity.

DEFINITION. Let S be a subset of C. A complex number x is called a limit
point of S if there exists a sequence {xn} of elements of S such that x = limxn.

A set S ⊆ C is called closed if every limit point of S belongs to S.

Every limit point of a set of real numbers is a real number. Closed intervals [a, b]
are examples of closed sets in R, while open intervals and half-open intervals may
not be closed sets. Similarly, closed disks Br(c) of radius r around a point c in C,
and closed neighborhoods Nr(S) of radius r around a set S ⊆ C, are closed sets,
while the open disks or open neighborhoods are not closed sets. As a first example
of a limit point of a set, we give the following exercise.

Exercise 2.20. Let S be a nonempty bounded set of real numbers, and let M =
supS. Prove that there exists a sequence {an} of elements of S such that M =
lim an. That is, prove that the supremum of a bounded set of real numbers is a
limit point of that set. State and prove an analogous result for infs.
HINT: Use Theorem 1.5, and let ε run through the numbers 1/n.

Exercise 2.21. (a) Suppose S is a set of real numbers, and that z = a + bi ∈ C
with b 6= 0. Show that z is not a limit point of S. That is, every limit point of a set
of real numbers is a real number.
HINT: Suppose false; write a + bi = limxn, and make use of the positive number
|b|.

(b) Let c be a complex number, and let S = Br(c) be the set of all z ∈ C for
which |z − c| ≤ r. Show that S is a closed subset of C.
HINT: Use part (b) of Exercise 2.9.

(c) Show that the open disk Br(0) is not a closed set in C by finding a limit
point of Br(0) that is not in Br(0).

(d) State and prove results analogous to parts b and c for intervals in R.
(e) Show that every element x of a set S is a limit point of S.
(f) Let S be a subset of C, and let x be a complex number. Show that x is

not a limit point of S if and only if there exists a positive number ε such that if
|y − x| < ε, then y is not in S. That is, S ∩Bε(x) = ∅.
HINT: To prove the “ only if” part, argue by contradiction, and use the sequence
{1/n} as ε’s.

(g) Let {an} be a sequence of complex numbers, and let S be the set of all the
an’s. What is the difference between a cluster point of the sequence {an} and a
limit point of the set S?

(h) Prove that the cluster set of a sequence is a closed set.
HINT: Use parts (e) and (f).

Exercise 2.22. (a) Show that the set Q of all rational numbers is not a closed set.
Show also that the set of all irrational numbers is not a closed set.

(b) Show that if S is a closed subset of R that contains Q, then S must equal all
of R.

Here is another version of the Bolzano-Weierstrass Theorem, this time stated in
terms of closed sets rather than bounded sequences.



44 II. THE LIMIT OF A SEQUENCE OF NUMBERS

THEOREM 2.10. Let S be a bounded and closed subset of C. Then every se-
quence {xn} of elements of S has a subsequence that converges to an element of
S.

PROOF. Let {xn} be a sequence in S. Since S is bounded, we know by Theorem
2.8 that there exists a subsequence {xnk

} of {xn} that converges to some number x.
Since each xnk

belongs to S, it follows that x is a limit point of S. Finally, because
S is a closed subset of C, it then follows that x ∈ S.

We have defined the concept of a closed set. Now let’s give the definition of an
open set.

DEFINITION. Let S be a subset of C. A point x ∈ S is called an interior point
of S if there exists an ε > 0 such that the open disk Bε(x) of radius ε around x is
entirely contained in S. The set of all interior points of S is denoted by S0 and we
call S0 the interior of S.

A subset S of C is called an open subset of C if every point of S is an interior
point of S; i.e., if S = S0.

Analogously, let S be a subset of R. A point x ∈ S is called an interior point
of S if there exists an ε > 0 such that the open interval (x − ε, x + ε) is entirely
contained in S. Again, we denote the set of all interior points of S by S0 and call
S0 the interior of S.

A subset S of R is called an open subset of R if every point of S is an interior
point of S; i.e., if S = S0.

Exercise 2.23. (a) Prove that an open interval (a, b) in R is an open subset of R;
i.e., show that every point of (a, b) is an interior point of (a, b).

(b) Prove that any disk Br(c) is an open subset of C. Show also that the punc-
tured disk B′r(c) is an open set, where B′r(c) = {z : 0 < |z− c| < r}, i.e., evrything
in the disk Br(c) except the central point c.

(c) Prove that the neighborhood Nr(S) of radius r around a set S is an open
subset of C.

(d) Prove that no nonempty subset of R is an open subset of C.
(e) Prove that the set Q of all rational numbers is not an open subset of R. We

have seen in part (a) of Exercise 2.22 that Q is not a closed set. Consequently it
is an example of a set that is neither open nor closed. Show that the set of all
irrational numbers is neither open nor closed.

We give next a useful application of the Bolzano-Weierstrass Theorem, or more
precisely an application of Theorem 2.10. This also provides some insight into the
structure of open sets.

THEOREM 2.11. Let S be a closed and bounded subset of C, and suppose S is
a subset of an open set U. Then there exists an r > 0 such that the neighborhood
Nr(S) is contained in U. That is, every open set containing a closed and bounded
set S actually contains a neighborhood of S.

PROOF. If S is just a singleton {x}, then this theorem is asserting nothing more
than the fact that x is in the interior of U, which it is if U is an open set. However,
when S is an infinite set, then the result is more subtle. We argue by contradiction.
Thus, suppose there is no such r > 0 for which Nr(S) ⊆ U. then for each positive
integer n there must be a point xn that is not in U, and a corresponding point
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yn ∈ S, such that |xn − yn| < 1/n. Otherwise, the number r = 1/n would satisfy
the claim of the theorem. Now, because the yn’s all belong to S, we know from
Theorem 2.10 that a subsequence {ynk

} of the sequence {yn} must converge to a
number y ∈ S. Next, we see that

|xnk
− y| ≤ |xnk

− ynk
|+ |ynk

− y|, < 1

nk
+ |ynk

− y|,

and this quantity tends to 0. Hence, the subsequence {xnk
} of the sequence {xn}

also converges to y.
Finally, because y belongs to S and hence to the open set U, we know that

there must exist an ε > 0 such that the entire disk Bε(y) ⊆ U. Then, since the
subsequence {xnk

} converges to y, there must exist ank such that |xnk
− y| < ε,

implying that xnk
∈ Bε(y), and hence belongs to U. But this is our contradiction,

because all of the xn’s were not in U. So, the theorem is proved.

We give next a result that cliarifies to some extent the connection between open
sets and closed sets. Always remember that there are sets that are neither open
nor closed, and just because a set is not open does not mean that it is closed.

THEOREM 2.12. A subset S of C (R) is open if and only if its complement

S̃ = C \ S (R \ S) is closed.

PROOF. First, assume that S is open, and let us show that S̃ is closed. Suppose
not. We will derive a contradiction. Suppose then that there is a sequence {xn} of

elements of S̃ that converges to a number x that is not in S̃; i.e., x is an element
of S. Since every element of S is an interior point of S, there must exist an ε > 0
such that the entire disk Bε(x) (or interval (x − ε, x + ε)) is a subset of S. Now,
since x = limxn, there must exist anN such that |xn − x| < ε for every n ≥ N. In
particular, |xN − x| < ε; i.e., xN belongs to Bε(x) (or (x− ε, x+ ε)). This implies

that xN ∈ S. But xN ∈ S̃, and this is a contradiction. Hence, if S is open, then S̃
is closed.

Conversely, assume that S̃ is closed, and let us show that S must be open. Again
we argue by contradiction. Thus, assuming that S is not open, there must exist a
point x ∈ S that is not an interior point of S. Hence, for every ε > 0 the disk Bε(x)
(or interval (x− ε, x+ ε)) is not entirely contained in S. So, for each positive integer
n, there must exist a point xn such that |xn−x| < 1/n and xn /∈ S. It follows then

that x = limxn, and that each xn ∈ S̃. Since S̃ is a closed set, we must have that
x ∈ S̃. But x ∈ S, and we have arrived at the desired contradiction. Hence, if S̃ is
closed, then S is open, and the theorem is proved.

The theorem below, the famous Heine-Borel Theorem, gives an equivalent and
different description of closed and bounded sets. This description is in terms of
open sets, whereas the original definitions were interms of limit points. Any time
we can find two very different descriptions of the same phenomenon, we have found
something useful.

DEFINITION. Let S be a subset of C (respectively R). By an open cover of S
we mean a sequence {Un} of open subsets of C (respectively R) such that S ⊆ ∪Un;
i.e., for every x ∈ Sthere exists an n such that x ∈ Un.

A subset S of C (respectively R) is called compact, or is said to satisfy the
Heine-Borel property , if every open cover of S has a finite subcover. That is, if
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{Un} is an open cover of S, then there exists an integer N such that S ⊆ ∪Nn=1Un.
In other words, only a finite number of the open sets are necessary to cover S.

REMARK. The definition we have given here for a set being compact is a little less
general from the one found in books on topology. We have restricted the notion
of an open cover to be a sequence of open sets, while in the general setting an
open cover is just a collection of open sets. The distinction between a sequence of
open sets and a collection of open sets is genuine in general topology, but it can be
disregarded in the case of the topological spaces R and C.

THEOREM 2.13. (Heine-Borel Theorem) A subset S of C (respectively R) is
compact if and only if it is a closed and bounded set.

PROOF. We prove this theorem for subsets S of C, and leave the proof for subsets
of R to the exercises.

Suppose first that S ⊆ C is compact, i.e., satisfies the Heine-Borel property. For
each positive integer n, define Un to be the open set Bn(0). Then S ⊆ ∪Un, because
C = ∪Un. Hence, by the Heine-Borel property, there must exist an N such that
S ⊆ ∪Nn=1Un. But then S ⊆ BN (0), implying that S is bounded. Indeed, |x| ≤ N
for all x ∈ S.

Next, still assuming that S is compact, we will show that S is closed by showing
that S̃ is open. Thus, let x be an element of S̃. For each positive integer n, define
Un to be the complement of the closed set B1/n(x). Then each Un is an open set
by Theorem 2.12, and we claim that {Un} is an open cover of S. Indeed, if y ∈ S,
then y 6= x, and |y− x| > 0. Choose an n so that 1/n < |y− x|. Then y /∈ B1/n(x),
implying that y ∈ Un. This proves our claim that {Un} is an open cover of S. Now,
by the Heine-Borel property, there exists an N such that S ⊆ ∪Nn=1Un. But this
implies that for every z ∈ S we must have |z − x| ≥ 1/N, and this implies that

the disk B1/N (x) is entirely contained in S̃. Therefore, every element x of S̃ is an

interior point of S̃. So, S̃ is open, whence S is closed. This finishes the proof that
compact sets are necessarily closed and bounded.

Conversely, assume that S is both closed and bounded. We must show that S
satisfies the Heine-Borel property. Suppose not. Then, there exists an open cover
{Un} that has no finite subcover. So, for each positive integer n there must exist an
element xn ∈ S for which xn /∈ ∪nk=1Uk. Otherwise, there would be a finite subcover.
By Theorem 2.10, there exists a subsequence {xnj

} of {xn} that converges to an
element x of S. Now, because {Un} is an open cover of S, there must exist an N
such that x ∈ UN . Because UN is open, there exists an ε > 0 so that the entire disk
Bε(x) is contained in UN . Since x = limxnj

, there exists a J so that |xnj
− x| < ε

if j ≥ J. Therefore, if j ≥ J, then xnj
∈ UN . But the sequence {nj} is strictly

increasing, so that there exists a j′ ≥ J such that nj′ > N, and by the choice of
the point xnj′ , we know that xnj′ /∈ ∪

N
k=1Uk. We have arrived at a contradiction,

and so the second half of the theorem is proved.

Exercise 2.24. (a) Prove that the union A ∪ B of two open sets is open and the
intersection A ∩B is also open.

(b) Prove that the union A ∪B of two closed sets is closed and the intersection
A ∩B is also closed.
HINT: Use Theorem 2.12 and the set equations Ã ∪B = Ã∩B̃, and Ã ∩B = Ã∪B̃.
These set equations are known as Demorgan’s Laws.
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(c) Prove that the union A ∪ B of two bounded sets is bounded and the inter-
section A ∩B is also bounded.

(d) Prove that the union A ∪ B of two compact sets is compact and the inter-
section A ∩B is also compact.

(e) Prove that the intersection of a compact set and a closed set is compact.
(f) Suppose S is a compact set in C and r is a positive real number. Prove that

the closed neighborhood Nr(S) of radius r around S is compact.
HINT: To see that this set is closed, show that its coplement is open.

INFINITE SERIES

Probably the most interesting and important examples of sequences are those
that arise as the partial sums of an infinite series. In fact, it will be infinite series
that allow us to explain such things as trigonometric and exponential functions.

DEFINITION. Let {an}∞0 be a sequence of real or complex numbers. By the
infinite series

∑
an we mean the sequence {SN} defined by

SN =

N∑
n=0

an.

The sequence {SN} is called the sequence of partial sums of the infinite series
∑
an,

and the infinite series is said to be summable to a number S, or to be convergent, if
the sequence {SN} of partial sums converges to S. The sum of an infinite series
is the limit of its partial sums.

An infinite series
∑
an is called absolutely summable or absolutely convergent

if the infinite series
∑
|an| is convergent.

If
∑
an is not convergent, it is called divergent. If it is convergent but not

absolutely convergent, it is called conditionally convergent.

A few simple formulas relating the an’s and the SN ’s are useful:

SN = a0 + a1 + a2 + . . .+ aN ,

SN+1 = SN + aN+1,

and

SM − SK =

M∑
n=K+1

an = aK+1 + aK+2 + . . .+AM ,

for M > K.

REMARK. Determining whether or not a given infinite series converges is one of
the most important and subtle parts of analysis. Even the first few elementary the-
orems depend in deep ways on our previous development, particularly the Cauchy
criterion.

THEOREM 2.14. Let {an} be a sequence of nonnegative real numbers. Then the
infinite series

∑
an is summable if and only if the sequence {SN} of partial sums

is bounded.

PROOF. If
∑
an is summable, then {SN} is convergent, whence bounded according

to Theorem 2.4. Conversely, we see from the hypothesis that each an ≥ 0 that
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{SN} is nondecreasing (SN+1 = SN + aN+1 ≥ SN ). So, if {SN} is bounded, then
it automatically converges by Theorem 2.1, and hence the infinite series

∑
an is

summable.

The next theorem is the first one most calculus students learn about infinite
series. Unfortunately, it is often misinterpreted, so be careful! Both of the proofs
to the next two theorems use Theorem 2.9, which again is a serious and fundamental
result about the real numbers. Therefore, these two theorems must be deep results
themselves.

THEOREM 2.15. Let
∑
an be a convergent infinite series. Then the sequence

{an} is convergent, and lim an = 0.

PROOF. Because
∑
an is summable, the sequence {SN} is convergent and so is a

Cauchy sequence. Therefore, given an ε > 0, there exists an N0 so that |Sn−Sm| < ε
whenever both n and m ≥ N0. If n > N0, let m = n − 1. We have then that
|an| = |Sn − Sm| < ε, which completes the proof.

REMARK. Note that this theorem is not an “if and only if” theorem. The har-
monic series (part (b) of Exercise 2.26 below) is the standard counterexample. The
theorem above is mainly used to show that an infinite series is not summable. If
we can prove that the sequence {an} does not converge to 0, then the infinite series∑
an does not converge. The misinterpretation of this result referred to above is

exactly in trying to apply the (false) converse of this theorem.

THEOREM 2.16. If
∑
an is an absolutely convergent infinite series of complex

numbers, then it is a convergent infinite series. (Absolute convergence implies con-
vergence.)

PROOF. If {SN} denotes the sequence of partial sums for
∑
an, and if {TN}

denotes the sequence of partial sums for
∑
|an|, then

|SM − SN | = |
M∑

n=N+1

an| ≤
M∑

n=N+1

|an| = |TM − TN |

for all N and M. We are given that {TN} is convergent and hence it is a Cauchy
sequence. So, by the inequality above, {SN} must also be a Cauchy sequence. (If
|TN − TM | < ε, then |SN −SM | < ε as well.) This implies that

∑
an is convergent.

Exercise 2.25. (The Infinite Geometric Series) Let z be a complex number, and
define a sequence {an} by an = zn. Consider the infinite series

∑
an. Show that∑∞

n=0 an converges to a number S if and only if |z| < 1. Show in fact that S =
1/(1− z), when |z| < 1.
HINT: Evaluate explicitly the partial sums SN , and then take their limit. Show

that SN = 1−zN+1

1−z .

Exercise 2.26. (a) Show that
∑∞
n=1

1
n(n+1) converges to 1, by computing explicit

formulas for the partial sums.
HINT: Use a partial fraction decomposition for the an’s.

(b) (The Harmonic Series.) Show that
∑∞
n=1 1/n diverges by verifying that

S2k > k/2.
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HINT: Group the terms in the sum as follows,

1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + (

1

9
+

1

10
+ . . .+

1

16
) + . . . ,

and then estimate the sum of each group. Remember this example as an infinite
series that diverges, despite the fact that is terms tend to 0.

The next theorem is the most important one we have concerning infinite series
of numbers.

THEOREM 2.17. (Comparison Test) Suppose {an} and {bn} are two sequences
of nonnegative real numbers for which there exists a positive integer M and a
constant C such that bn ≤ Can for all n ≥M. If the infinite series

∑
an converges,

so must the infinite series
∑
bn.

PROOF. We will show that the sequence {TN} of partial sums of the infinite series∑
bn is a bounded sequence. Then, by Theorem 2.14, the infinite series

∑
bn must

be summable.
Write SN for the Nth partial sum of the convergent infinite series

∑
an. Because

this series is summable, its sequence of partial sums is a bounded sequence. Let B
be a number such that SN ≤ B for all N. We have for all N > M that

TN =

N∑
n=1

bn

=

M∑
n=1

bn +

N∑
n=M+1

bn

≤
M∑
n=1

bn +

N∑
n=M+1

Can

=

M∑
n=1

bn + C

N∑
n=M+1

an

≤
M∑
n=1

bn + C

N∑
n=1

an

≤
M∑
n=1

bn + CSN

≤
M∑
n=1

bn + CB,

which completes the proof, since this final quantity is a fixed constant.

Exercise 2.27. (a) Let {an} and {bn} be as in the preceding theorem. Show that
if
∑
bn diverges, then

∑
an also must diverge.

(b) Show by example that the hypothesis that the an’s and bn’s of the Compar-
ison Test are nonnegative can not be dropped.

Exercise 2.28. (The Ratio Test) Let {an} be a sequence of positive numbers.
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(a) If lim sup an+1/an < 1, show that
∑
an converges.

HINT: If lim sup an+1/an = α < 1, let β be a number for which α < β < 1. Using
part (a) of Exercise 2.17, show that there exists an N such that for all n > N we
must have an+1/an < β, or equivalently an+1 < βan, and therefore aN+k < βkaN .
Now use the comparison test with the geometric series

∑
βk.

(b) If lim inf an+1/an > 1, show that
∑
an diverges.

(c) As special cases of parts (a) and (b), show that {an} converges if
limn an+1/an < 1, and diverges if limn an+1/an > 1.

(d) Find two examples of infinite series’
∑
an of positive numbers, such that

lim an+1/an = 1 for both examples, and such that one infinite series converges and
the other diverges.

Exercise 2.29. (a) Derive the Root Test: If {an} is a sequence of positive numbers

for which lim sup a
1/n
n < 1, then

∑
an converges. And, if lim inf a

1/n
n > 1, then

∑
an

diverges.
(b) Let r be a positive integer. Show that

∑
1/nr converges if and only if r ≥ 2.

HINT: Use Exercise 2.26 and the Comparison Test for r = 2.
(c) Show that the following infinite series are summable.∑

1/(n2 + 1),
∑

n/2n,
∑

an/n!,

for a any complex number.

Exercise 2.30. Let {an} and {bn} be sequences of complex numbers, and let
{SN} denote the sequence of partial sums of the infinite series

∑
an. Derive the

Abel Summation Formula:

N∑
n=1

anbn = SNbN +

N−1∑
n=1

Sn(bn − bn+1).

The Comparison Test is the most powerful theorem we have about infinite series
of positive terms. Of course, most series do not consist entirely of positive terms,
so that the Comparison Test is not enough. The next theorem is therefore of much
importance.

THEOREM 2.18. (Alternating Series Test) Suppose {a1, a2, a3, . . . } is an alter-
nating sequence of real numbers; i.e., their signs alternate. Assume further that the
sequence {|an|} is nonincreasing with 0 = lim |an|. Then the infinite series

∑
an

converges.

PROOF. Assume, without loss of generality, that the odd terms a2n+1 of the se-
quence {an} are positive and the even terms a2n are negative. We collect some
facts about the partial sums SN = a1 + a2 + . . .+ aN of the infinite series

∑
an.

1. Every even partial sum S2N is less than the following odd partial sum S2N+1 =
S2N + a2N+1, And every odd partial sum S2N+1 is greater than the following even
partial sum S2N+2 = S2N+1 + a2N+2.

2. Every even partial sum S2N is less than or equal to the next even partial sum
S2N+2 = S2N + a2N+1 + a2N+2, implying that the sequence of even partial sums
{S2N} is nondecreasing.
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3. Every odd partial sum S2N+1 is greater than or equal to the next odd partial
sum S2N+3 = S2N+1 + a2N+2 + a2N+3, implying that the sequence of odd partial
sums {S2N+1} is nonincreasing.

4. Every odd partial sum S2N+1 is bounded below by S2. For, S2N+1 > S2N ≥
S2. And, every even partial sum S2N is bounded above by S1. For, S2N < S2N+1 ≤
S1.

5. Therefore, the sequence {S2N} of even partial sums is nondecreasing and
bounded above. That sequence must then have a limit, which we denote by Se.
Similarly, the sequence {S2N+1} of odd partial sums is nonincreasing and bounded
below. This sequence of partial sums also must have a limit, which we denote by
So.

Now

So − Se = limS2N+1 − limS2N = lim(S2N+1 − S2N ) = lim a2N+1 = 0,

showing that Se = So, and we denote this common limit by S. Finally, given an
ε > 0, there exists an N1 so that |S2N − S| < ε if 2N ≥ N1, and there exists an
N2 so that |S2N+1 − S| < ε if 2N + 1 ≥ N2. Therefore, if N ≥ max(N1, N2), then
|SN − S| < ε, and this proves that the infinite series converges.

Exercise 2.31. (a) (The Alternating Harmonic Series) Show that
∑∞
n=1(−1)n/n

converges, but that it is not absolutely convergent.
(b) Let {an} be an alternating series, as in the preceding theorem. Show that

the sum S =
∑
an is trapped between SN and SN+1, and that |S − SN | ≤ |aN |.

(c) State and prove a theorem about “eventually alternating infinite series.”
(d) Show that

∑
zn/n converges if and only if |z| ≤ 1, and z 6= 1.

HINT: Use the Abel Summation Formula to evaluate the partial sums.

Exercise 2.32. Let s = p/q be a positive rational number.
(a) For each x > 0, show that there exists a unique y > 0 such that ys = x; i.e.,

yp = xq.
(b) Prove that

∑
1/ns converges if s > 1 and diverges if s ≤ 1.

HINT: Group the terms as in part (b) of Exercise 2.26.

THEOREM 2.19. (Test for Irrationality) Let x be a real number, and suppose
that {pN/qN} is a sequence of rational numbers for which x = lim pN/qN and
x 6= pN/qN for any N. If lim qN |x− pN/qN | = 0, then x is irrational.

PROOF. We prove the contrapositive statement; i.e., if x = p/q is a rational
number, then lim qN |x− pN/qN | 6= 0. We have

x− pN/qN = p/q − pN/qN =
pqN − qpN

qqN
.

Now the numerator pqN − qpN is not 0 for any N. For, if it were, then x = p/q =
pN/qN , which we have assumed not to be the case. Therefore, since pqN − qpN is
an integer, we have that

|x− pN/qN | = |
pqN − qpN

qqN
| ≥ 1

|qqN |
.

So,

qN |x− pN/qN | ≥
1

|q|
,
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and this clearly does not converge to 0.

Exercise 2.33. (a) Let x =
∑∞
n=0(−1)n/2n. Prove that x is a rational number.

(b) Let y =
∑∞
n=0(−1)n/2n

2

. Prove that y is an irrational number.
HINT: The partial sums of this series are rational numbers. Now use the preceding
theorem and part (b) of Exercise 2.31.


