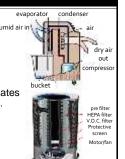
REU Summer 2011

Analysis of formaldehyde transport from porous solid-sorbent media to hydroponic growth media

Alexander Archuleta

Outline

- Background:
 - Research
 - Materials
- Research Objective & Questions
- Experiments
 - Materials
 - Conditions
 - Set-Up
 - Problems
- Lab Experience



Background: Indoor Air Quality (IAQ)

- Sick Building Syndrome
 - occupants experience acute health and comfort effects that appear to be linked to time spent in a building
- Building Related Illness
 - symptoms of diagnosable illness are identified and can be attributed directly to airborne building contaminants
- Contributing factors:
 - Inadequate ventilation, contamination from indoor, outdoor, and biological sources. (copy machines, outdoor, and biological sources. (007, motor vehicle exhausts, bacteria and viruses).

Background: Approaches to IAQ

- Dehumidifiers
- Prevention Ventilation
- Prevention
- Air Filters
 - remove: sub-micron particulates dust mites, dust, pollens, mold spores,
 - pet dander, and other allergens
 - Need to be replaced
- Media (activated carbon)
 - Removal?

Background: Formaldehyde (HCHO)

- Adverse health effects vary at levels > 0.1ppm:
 - watery eyes, burning sensations in the eyes and throat, nausea, difficulty breathing, coughing, fatigue, skin rash, severe allergic reactions, cancer, death.
- Formaldehyde is one of the most well known volatile organic compounds and is readily identified, measured, and removed. (EPA, 2010)

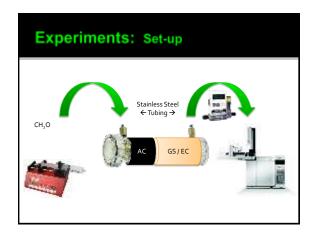
Background: HCHO & IAQ

- Katrina and Rita aftermath:
 - 519 random sample travel trailers
 - 0.003-0.59 ppm (avg. 0.077ppm)
- 0.01-0.02 ppm (Normal indoor levels) (FEMA, 2009)
- Known human carcinogen (National Toxicology Program, 2011)
- Regulations:
- < 2 ppm as a 15-minute short term exposure limit</p>
- < 0.75 ppm as an 8-hour time weighted avg (OSHA)

Active Phytoremediation Wall System (APWS) Replicable ceramic pods Watering system HVAC system Media Plant

Backgro	und: AP	WS resea	rch
Table 1:		Table 2	
HCHO % reduction by aureum (arial parts, rh region, entire plant).		<u>Media</u>	% Reduction
region, entire planty.		AC	97.6 ±3
Table 2: HCHO % reduction by media under various conditions (alone, dry in a pot,		AC/Dry/Pot	94.1 ±2
		AC/Wet/Pot	88.9 ±1
wet in a pot).	5.10, d.y d pot,	EC	26.4 ±5
Table 1	(Aydogan, 2011)	EC/Dry/Pot	47.5 ±4
Table I	%	EC/Wet/Pot	62.6 ±6
Golden Pothos	Reduction	GS	17.4 ±1
Arial	95 ±1	GS/Dry/Pot	39.3 ±3
Rhizoshpere	93 ±1	GS/Wet/Pot	62.3 ±11
Plant	94 ±2		-

Background: Why Transportation?


- Transportation of contaminants (such as HCHO) is important for phytoremediation.
 - Bioremediation—Processes that use living organisms such as plants, bacteria, yeast, and fungi to break down hazardous substances into less toxic or nontoxic substances.
 - Phytoremediation—bioremediation process; uses various types of plants to remove, transfer and destroy contaminants in the media.
 - Rhizosphere biodegradation—In this process, the plant releases natural substances through its roots, supplying nutrients to microorganisms in the soil. The microorganisms enhance biological degradation.

Research: Objective & Questions

- Objective:
 - Evaluate the transportation rate of HCHO through the media
- Questions:
 - Does moisture in media affect VOC transportation?
 - Does the quantity of media affect transportation?
 - Activated carbon: minimum for max efficiency?
 - Are the media quantities proportional?

		Condition	
Exp	periment Set-Up	Dry	Wet
	AC	AC/Dry	AC/Wet
M	GS	GS/Dry	GS/Wet
e	EC	EC/Dry	EC/Wet
d			
i	AC/GS	AC/GS/Dry	AC/GS/Wet
a	AC/EC	AC/EC/Dry	AC/EC/Wet
	AC/GS&EC	AC/GS&EC/Dry	AC/GS&EC/We

Experiments: Problems

- Experience
- Communication & training
- Learning equipment (syringe pump, mass flow controller, etc.)
- Materials
 - Identifying & ordering
 - Stainless steel tubing & fittings
 - GC equipment
 - Gas tanks
 - Column
 - Vials

In the lab: working with Sydney

- Autoclave
- Spiral Plater
- TOC Analysis
- Plate Counting
- Plate preparing (agar)
- Microwave Sterilization

Questions?