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The subject of most of this book is the quantum mechanics of systems with a small

number of degrees of freedom. The book is a mix of descriptions of quantum mechanics itself,

of the general properties of systems described by quantum mechanics, and of techniques for

describing their behavior. The examples illustrating quantum mechanical properties are

often presented as specific physical systems. They will be drawn from many areas of physics,

just to illustrate the fact that many apparently different physical systems naturally behave

quite similarly.

Ehrenfest famously said that “Physics is simple but subtle,” but he did not mean that it

was easy. You cannot learn quantum mechanics out of one book, nor out of these notes. You

will have to compare the explanations from many sources and integrate them together into

your own whole. You should not be surprised to find that any two books are likely to present

completely contradictory explanations for the same topic, and that both explanations are at

least partially true.

The quantum mechanical description of nature is fundamentally different from a classical

description, in that it involves probabilistic statements. The usual causal story of classical

mechanics is that in specifying a set of initial conditions, one completely specifies the evolu-

tion of the system for all time. That is not possible in quantum mechanics, simply because it

is not possible to completely specify all the initial conditions. For example, the uncertainty

principle ∆p∆x ≥ ~ forbids us from simultaneously knowing the coordinates and momentum

of a particle at any time. However, the evolution of the probability itself is causal, and is

encoded in the time-dependent Schrödinger equation

i~
∂ψ(t)

∂t
= Ĥψ(t). (1.1)

Once we specify the wave function (probability amplitude) ψ(t) at some time t0, we know it

for all later times. This is of course difficult for us, macroscopic beings that we are, to deal

with.

Once we have gotten over our classical discomfort with the quantum world, we notice

several striking features which recur again and again:

• The wide applicability of the same ideas, or the same physical systems, to many areas

of physics.

• The presence of symmetries and their consequences for dynamics.
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I like to take advantage of the first of these features and think about applications of

quantum mechanics in terms of a few paradigmatic systems, which are approximations to

nearly all physical systems you might encounter. It is worthwhile to understand these systems

completely and in many different ways. The two most important such systems are

• The simple harmonic oscillator. Most weakly coupled systems behave like a set of

coupled harmonic oscillators. This is easiest to visualize classically, for a system of

particles interacting with a potential. If the system has some equilibrium structure,

and if the energy of the system is small, then the particles will be found close to their

equilibrium locations. This means that the potential energy is close to its minimum.

We can do a Taylor expansion about the minimum, and then

V (x) ≃ V (x0) +
1

2
V ′′(x0)(x− x0)

2 + . . . (1.2)

which is the potential of an oscillator. The same situation will happen for a quantum

mechanical system. An obvious example would be the motion of nuclear degrees of

freedom in a molecule, the origin of the “vibrational spectrum” of molecular excitations,

typically seen in the infrared. But there are many other less-obvious examples.

Classical systems described by a set of equations of motion

d2yi
dt2

= −ω2
i yi (1.3)

can be thought of as collections of harmonic oscillators. Classical wave systems have

such equations of motion. Their quantum analogues are also oscillators, and so their

quantum descriptions will involve oscillator-like energies and degrees of freedom. Do

you recall that the quantum mechanical energy spectrum for an oscillator is a set of

equally spaced levels, E = nǫ (up to an overall constant) where ǫ is an energy scale,

ǫ = ~ωi in Eq. 1.3, for example, and n is an integer 0, 1, 2, . . ..? Do you also recall the

story of the photon, that the quantum electromagnetic field is labeled by an integer,

the number of photons in a particular allowed state? This integer is the n of the

harmonic oscillator. We can take the analogy between “counting” and oscillator states

still further. Imagine that we had a system which seemed to have nothing to do with

an oscillator, like a hydrogen atom. It has an energy spectrum E = ǫi, where i labels

the quantum number of the state. Now imagine that we have a whole collection of

hydrogen atoms, and imagine also that these atoms do not interact. The energy of the

collection is E =
∑

niǫi, where again ni, the number of particles in the collection with
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energy ǫi, is an integer. If we forget about where the numbers ǫi came from, we will

be making an oscillator-like description of the collection.

• The two state system. In an undergraduate textbook, the paradigm for this system is

the spin-1/2 particle in an external magnetic field. The electron is either spin-up or

spin-down, and energy eigenstates are states where the spin aligns along the magnetic

field. But this description is often used in situations not involving spin, typically as a

way of approximating some complicated dynamics. For example, it often happens that

a probe can excite a system from one state to a single different state, or that the probe

can excite the state to many different ones, but that there is only one strong transition,

and all other ones are small. Then it makes sense to replace the more complicated

system by one which contains only two states, and assume that the system is confined

only to those states. These states could be different atomic levels (perhaps interacting

with a radiation field), different kinds of elementary particles which can exchange roles

(neutrino oscillations are a recent example) or could even be systems which are naively

very different (cold gases, which can condense as either molecules or as individual

atoms, for another recent example). And of course the “qubit” of quantum computing

jargon is a two state system.

There are other paradigmatic systems. Often, we study collections of particles which

are weakly interacting. A good approximate starting point for these systems is to ignore

the interactions, giving a set of free particles as zeroth order states. This is often how we

describe scattering.

Hydrogen, despite its appearance in every undergraduate quantum mechanics course, is

not so paradigmatic. Hydrogen is not even a very typical atom and its “1/n2” Rydberg

spectrum is unique, a consequence of a particular special symmetry. It is useful to know

about it, though, because it is simple enough that we can solve for its properties completely.

The second feature – physics arising from symmetry – appears again and again in these

notes. If a physical system has an underlying symmetry, seemingly different processes can

be related. An example is the relative intensity of spectral lines of families of states with the

same total angular momentum and different z-components: the pattern of spectral lines for

an atom decaying from an excited state, placed in an external magnetic field. Often, without

knowing anything about a dynamical system other than the symmetries it obeys, one can

determine what processes are forbidden. (People speak of “selection rules” as a shorthand

for these consequences; “forbidden” means that the rate is zero.) Such predictions are more
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reliable than ones of the absolute rates for processes actually occur. Knowing how to use

symmetry to make predictions is at the bottom of most of the technical parts of this course.

There is a deep connection between symmetry and conservation laws. We usually describe

this in quantum mechanics by saying that the Hamiltonian possess a symmetry and the

presence of a symmetry of the Hamiltonian directly leads to a conservation law. And most of

the time we say “Here is a Hamiltonian, what are the consequences?” This is a perfectly good

question, except that it may be putting the cart before the horse. Where do Hamiltonians

come from, anyway? I think most people would say that it is the symmetries which are at the

bottom; a Hamiltonian is a construct which builds the symmetries into the dynamics from

the beginning. And one should use dynamical variables that naturally encode the symmetry,

or transform in some simple way under the symmetry. Figuring out an appropriate set of

variables for dealing with perhaps the most important symmetry transformation – rotational

invariance – will be a big part of the course. It would not be an exaggeration to say that

the job of the physicist is to recognize some symmetry, write down a mathematical system

which encodes it, and then look for the consequence of the symmetry in new places.

I’ve wandered away from remarks about the content of the course, to try to disturb you.

Let me say one more disturbing thing, before we get to work: Typically, physics at different

energy scales decouples. To study atoms, one generally needs to know little about nuclei

other than their charge and mass – even though nuclei themselves are complicated bound

states of protons and neutrons, which are themselves complicated bound states of quarks

and gluons. Atoms themselves are complicated, and the interactions of atoms – atom - atom

scattering – is even more complicated. However, to describe the properties of condensed

atom gases, all that is needed from the complicated scattering of atoms is a single number,

the scattering length. Perhaps this is not so strange. After all, atomic physics happens over

length scales of Angstroms and typical energies are electron volts. Nuclei have sizes of a

few fermis, 10−5 times smaller, and typical excitation energies of KeV or MeV. So nuclear

levels can’t be excited in ordinary “atomic - scale” processes. There is a similar hierarchy of

energy scales in condensed atom gases, where the energy scale associated with their collective

behavior is much much smaller than a fraction of an electron volt.

But perhaps this explanation is a little too simple: when we learn about perturbation

theory, we will discover that arbitrarily high energy states can exist as so-called “virtual

states,” and that physical systems can fluctuate in and out of these virtual states during

their evolution. The states are present in the formulas. Nevertheless, most of what is

happening at high energies and short distances usually has little effect on low energy, long
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distance phenomena. When we are doing a typical calculation of the spectrum of an atom,

it is still the case all that we need to know about the nucleus is its charge. There is an

interesting story here, apparently! And a practical one – you have a system whose dynamics

occurs at some far away scale from where you are working. What do you need to know about

it? How could you calculate what you need to know (and nothing else)?

These notes are based on my graduate quantum mechanics course at the University of

Colorado. The started as a set of real class notes: what I taught, no more. They have

grown as I found more applications of quantum mechanics that I thought could potentially

be interesting to a reader. So there is too much material to lecture about.

The first semester of this course used the text by Sakurai as background. Some attempt

was made to make my notation coincide with its conventions. But I am not trying to provide

an outline of any specific text. Like anyone who teaches a quantum mechanics course, I have

my own prejudices about what is important and how it should be presented. These notes

had their genesis from many sources. When I was learning quantum mechanics, I was

particularly influenced by the books by Schiff and Baym, for practical applications, and by

the text of Dirac for its poetry. I also want to specifically acknowledge two of my teachers:

at the University of Tennessee, Edward Harris, and at MIT, John Negele. Finally, I owe

a considerable debt of gratitude to Joseph Seele, a student in my class in 2003-2004, who

made the first electronic version of these notes. If he hadn’t typed in all the equations, this

book would not exist.
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Wave mechanics

Let’s begin by recalling what we were taught about wave mechanics in our introductory

class. All the properties of a system of N particles are contained in a wave function

Ψ( ~x1, ~x2, · · · ~xN , t). The probability that the system is found between some differential N-

volume element ~x and ~x+ ~dx is proportional to the modulus squared of the amplitude of the

wave function.

Prob(~x) ∝ |Ψ(~x, t)|2 d3x (2.1)

In practice, one usually defines Ψ(~x, t) such that its integrand over the entire space in question

is unity,
∫

d3x|Ψ(~x, t)|2 = 1. (2.2)

With this normalization convention, the definition that the square modulus is proportional to

the probability can be replaced by the statement that it is equal to the probability. To have

a probabilistic interpretation, the un-normalized |Ψ(x, t)|2 should be a bounded function, so

that the integral is well defined. This usually means that the wave function must die away

to zero at spatial infinity.

In quantum mechanics, all information about the state is contained in Ψ(x, t). Dynamical

variables are replaced by operators, quantities which act on the state. For a quantum analog

of a non-relativistic particle in a potential, the dynamical variables at the heart of any

physical description are the coordinate x and the momentum p. The operators corresponding

to x and p obey a fundamental commutation relation

x̂p̂− p̂x̂ = i~. (2.3)

One can pick a basis where either p or x is “diagonal,” meaning that the operator is just the

variable itself. In the coordinate-diagonal basis implicitly taken at the start of this section,

we satisfy the commutation relation with the identifications

x̂ = x p̂ =
~

i

∂

∂x
. (2.4)

Quantum mechanics is probabilistic, so we can only talk about statistical averages of ob-

servables. The expectation value or average value of an observable O(p, x) represented by

an operator Ô is

〈Ô〉 =
∫

d3xψ∗(x, t)Ôψ(x, t). (2.5)



Quantum Mechanics 13

〈Ô〉 represents the average of a set of measurements on independent systems of the observable

O(p, x).

While the motion of particles can only be described probabilistically, the evolution of

the probability itself evolves causally, through the Schrödinger equation (or ‘time-dependent

Schrödinger equation” )

ĤΨ(x, t) = i~
∂Ψ(x, t)

∂t
. (2.6)

The quantity Ĥ is the Hamiltonian operator.

If Ĥ is not an explicit function of time, the solution for time evolution of the wave

function can be written as a superposition of energy eigenfunctions,

ψ(x, t) =
∑

n

cnψn(x)e
− iEnt

~ (2.7)

where the energies En are given by solving the eigenvalue equation (called the “time-

independent Schrödinger equation,” )

Ĥψn(x) = Enψn(x). (2.8)

In the case of a system described by a classical Hamiltonian H(x, p) the quantum Hamil-

tonian operator is constructed by replacing the classical variables by their the operator

expressions, so that the Hamiltonian for a single non-relativistic particle in an external po-

tential is

H =
p2

2m
+ V (x)

= − ~
2

2m
∇2 + V (x).

(2.9)

In this case the time-independent Schrödinger equation is a partial differential eigenvalue

equation. Hence the title of Schrödinger’s papers – “Quantization as an eigenvalue problem.”

However, this is far from the whole story. Where did the transcription of observable to

operator come from? Many of the interesting problems in quantum mechanics do not have

classical analogues. We need a more general formalism.

As an example of a physical system which is difficult to describe with wave mechanics,

consider the Stern-Gerlach experiment. (I am borrowing this story from Volume III of the
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S

N

plate

oven
B

Figure 2.1: A Stern-Gerlach apparatus.

classical QM

Figure 2.2: A cartoon of the spots in a detector, for classical or quantum spins in a Stern-

gerlach apparatus.

Feynman lectures, so you should really read it there.) The experimental apparatus is shown

schematically in the figure. Atoms are heated in the oven and emerge collimated in a beam;

they pass along the axis of a magnet and are detected by striking a plate. Imagine that we

use an atom with 1 valence electron so that to a good approximation the magnetic moment of

the atom is that of the electron. Then the potential energy is U = −~µ · ~B and if the magnetic

field is inhomogeneous, there is a force acting on the atom along the direction of the field

derivative Fz = −∂U/∂z = µz
∂Bz

∂z
. We know that the magnetic moment is connected to the

spin, µz = e~
mc
Sz, and quantum mechanically, the spin is quantized, Sz = ±1

2
~. We can see

what we expect both classically and quantum mechanically in Fig. 2.2, labeling the intensity

of the spots of atoms deposited on the plate. Classically we would expect a continuous

distribution, but in real life we find that we get only two different values (this is a signature

of the quantization of spin, and was regarded as such as soon as the experiments were first

done). Apparently the magnetic field has separated the beam into two states, one of which

has its spin pointed along the direction of the magnetic field, and the other state with an
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Figure 2.3: A series of Stern-Gerlach apparatuses, with and without beam stops.

opposite orientation.

Now imagine sequential Stern-Gerlach apparatuses. We label the orientation of the mag-

netic fields with the letter in the box, and we either stop one of the emerging beams (the

black box) or let them continue on into the next magnet. If we allow the +1/2 spin com-

ponent of a beam emerging from a magnetic field pointing in the z direction pass through a

second z magnet, only a +1/2 spin component reappears. However, if we rotate the second

magnet, two spin states emerge, aligned and anti-aligned (presumably, since the spots are

aligned with its direction) with the magnetic field in the second apparatus. See Fig. 2.3. If

we now consider the third picture, we produce a +z beam, split it into a +x and −x beams,

and then convert the +x beam into a mixture of +z and −z beams. Apparently from the

experiment the S+
z state is “like” a superposition of the S+

x and S−
x states and the S+

x state

is “like” a superposition of the S+
z and S−

z states.

Next consider in Fig. 2.4 an “improved” Stern-Gerlach device, which actually appears to

do nothing: In this device the beams are recombined at the end of the apparatus. In cases

(a) and (b), we again insert beam stops to remove spin components of the beam. However,

in case (c) we let both beams propagate through the middle apparatus. See Fig. 2.5. We
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Figure 2.4: An “improved” Stern-Gerlach apparatus.

discover that only the +z state is present in the rightmost magnetic field!

Quantum mechanics and Hilbert space

We now begin a more formal discussion of quantum mechanics., which will encode the physics

we saw in our example. We start by defining (rather too casually) a Hilbert space: a complex

linear vector space whose dimensionality could be finite or infinite. We postulate that all

quantum mechanical states are represented by a ray in a Hilbert space. Rays are presented

in print as “ket vectors” (labeled |a〉). Corresponding to, but not identical to, the ket vectors

are the “bra vectors” 〈a| which lie in a dual Hilbert space.

Vectors in a Hilbert space obey the following relations: (We quote them without proof,

but the proofs can easily be obtained from the axioms of linear algebra and vector spaces.)

Rays obey commutativity

|a〉+ |b〉 = |b〉+ |a〉 , (2.10)

and associativity properties:

(|a〉+ |b〉) + |c〉 = |a〉+ (|b〉+ |c〉). (2.11)

There is a null vector |0〉 such that

|0〉+ |a〉 = |a〉 . (2.12)
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Figure 2.5: Particle trajectories through the “improved” Stern-Gerlach apparatus.
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Each element has an inverse

|a〉+ |−a〉 = |0〉 . (2.13)

Finally, lengths of rays may be rescaled by multiplication by complex constants:

λ(|a〉+ |b〉) = λ |a〉+ λ |b〉
(λ+ µ) |a〉 = λ |a〉+ µ |a〉

λµ |a〉 = λ(µ |a〉) = (λµ) |a〉
(2.14)

and so on. One defines the inner product of two kets |a〉 , |b〉 using the bra vector for one of

them,

(|a〉 , |b〉) ≡ 〈a|b〉 (2.15)

The quantity 〈a|b〉 is postulated to be a complex number C.

We next postulate that 〈a|b〉 = 〈b|a〉∗. (Notice that 〈a|a〉, essentially the squared length

of the vector, is thus always real.) From a practical point of view we can do all calculations

involving a bra vector 〈b| using the ket vector |b〉, by using inner products. Begin with

|c〉 = A |a〉+B |b〉 A,B ∈ C (2.16)

then

〈c| = A∗ 〈a|+B∗ 〈b| . (2.17)

It is convenient (but not necessary) to require that kets labeling physical states be nor-

malized. We define a normalized vector by

|ā〉 = 1
√

〈a|a〉
|a〉 . (2.18)

Two vectors are said to be orthogonal if 〈a|b〉 = 0 and similarly a set of vectors are said to

be orthonormal if they satisfy 〈a|a〉 = 1 as well as obeying the orthogonality condition. If a

state can be written as a superposition of a set of (normalized, orthogonal) basis states

|ψ〉 =
∑

i

ci |ψi〉 ci ∈ C, (2.19)

and
∑

i

|ci|2 = 1, (2.20)
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then we interpret the squared modulus of the coefficient ci as the probability that the system

(represented by ket |ψ〉) is to be found (measured to be in) the state represented by |ψi〉.
As an example, suppose we had a Hilbert space consisting of two states, |+〉 and |−〉. The

electron is a spin 1/2 particle, so the states could correspond to the two states of an electron’s

spin, up or down. Imagine that we could prepare a large number of electrons as an identical

superposition of these two states,

|ψ〉 =
∑

i=±
ci |ψi〉 . (2.21)

We then perform a set of measurements of the spin of the electron. The probability (over

the ensemble of states) that we find the spin to be up will be |c+|2.

Observables in quantum mechanics

Observables in quantum mechanics are represented by operators in Hilbert space. Operators

(here denoted Ô) transform a state vector into another state vector.

Ô |a〉 = |b〉 (2.22)

As a conventional definition, operators only act to the right on kets. Some states are eigen-

vectors or eigenstates of the operators; the action of the operator rescales the state:

Â |a〉 ∝ |a〉 (2.23)

We usually say

Â |a〉 = a |a〉 a ∈ C (2.24)

where the number a (the prefactor) is the eigenvalue of the operator. Two operators Â and

B̂ are equal if

Â |a〉 = B̂ |a〉 (2.25)

for all ket vectors |a〉 in a space. Most operators we encounter are also linear; that is, they

satisfy the following relation:

Â(α |a〉+ β |b〉) = αÂ |a〉+ βÂ |b〉 . (2.26)

An operator A is null if A |a〉 = |0〉 for all |a〉. Operators generally do not commute:

ÂB̂ 6= B̂Â (2.27)
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(meaning that ÂB̂ |ψ〉 6= B̂Â |ψ〉). The commutator of two operators is often written as

[A,B] = AB −BA.

The adjoint of an operator Â† is defined through the inner product

(|g〉 , Â |f〉) = (Â† |g〉 , |f〉) = (|f〉 , Â† |g〉)∗. (2.28)

Note that the adjoint also acts to the right. Alternatively, in “bra Hilbert space” the abstract

relation of a bra to a ket |a〉 ↔ 〈a| means that if X |a〉 = |c〉, |c〉 ↔ 〈c| = 〈a|X† (with the

adjoint operator acting on the bra to its left).

The following relations are easily shown to hold for operators:

(αÂ)† = α∗Â†

(Â + B̂)† = Â† + B̂†

(ÂB̂)† = B̂†Â†

(2.29)

Let us make a slightly sharper statement about the relation of operators and observables.

An observable B “corresponds to” – or is identified with – an operator in the sense that any

measurement of the observable B is postulated to yield one of the eigenstates of the operator

B̂,

B̂ |bj〉 = bj |bj〉 . (2.30)

Furthermore, we postulate that, as a result of measurement, a system is localized into the

state |bj〉. (If you like jargon, I am describing the “collapse of the wave function” under

measurement.)

If this is confusing, think of an example: let bj be some value of the coordinate x.

Measuring the coordinate of the particle to be at x at some time t simply means that we

know that the particle is at x at time t – its wave function must be sharply peaked at x.

This is the same statement as to say that the wave function is in an eigenfunction of the

operator x̂ whose eigenvalue – at that instant of time – is x. Notice that this does not say

anything about the location of the particle at later times.

To be honest, I have to say that the previous couple of paragraphs open a big can of

worms called the “measurement problem in quantum mechanics.” The statement that a

measurement collapses the wave function is a postulate associated with what is called the

“Copenhagen interpretation” of quantum mechanics. There are other interpretations of
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what is going on which I will leave for you to discover on your own. (Some of them are more

interesting than other ones.) One the micro level, we can ask “what does it mean to measure

something?” You have a quantum system, you do something to it, you read the result on a

macroscopic instrument which you might want to think of as a classical object – or maybe

not. The micro situation will always have some particular detailed answer which depends

on what you are actually doing, precisely specified.

Let us try to avoid these issues for now and move on.

A consequence of this postulate is that, if the system is known to be in a state |a〉, then
the probability that a measurement of B̂ gives the value bj is | 〈bj|a〉 |2. There could be a

finite discrete set of possibilities for bj ; in that case the Hilbert space is finite dimensional.

(Think of spin up and spin down states for an electron, for a two dimensional Hilbert

space.) However, If B has a continuous spectrum (like a coordinate), we have to say that

the probability that a measurement of B lies in the range b′, b′+ db will be | 〈a|b′〉 |2db. Since
there is a separate ray for every eigenvalue bj , the basis in which a continuous variable is

diagonal must have infinite dimensionality.

Note that if X |a〉 = a |a〉 ≡ |c〉, then 〈c| = a∗ 〈a| = 〈a|X†, i,e, X |a〉 ↔ 〈a|X†. For

arbitrary X there is generally no connection between the ket vector X |a〉 and the bra vector

〈a|X .

Most of the operators we deal with in quantum mechanics are Hermitian operators, for

which Â† = Â. The reason that we deal with Hermitian operators is that their eigenvalues

are real. Physical observables are real numbers, so this identification is natural. The reality

of the eigenvalues of a Hermitian operator follows from the equality

〈a2|Â|a1〉 = 〈a1| Â |a2〉∗ , (2.31)

which implies that

a1 〈a2|a1〉 = a∗2 〈a1|a2〉∗ = a∗2 〈a2|a1〉 (2.32)

or

(a∗2 − a1) 〈a2|a1〉 = 0. (2.33)

This identity can be satisfied in two ways. Suppose that the bra 〈a2| is dual to the ket |a1〉
– 〈a2| = 〈a1|. Then 〈a2|a1〉 is nonzero. However, this duality means that a∗2 = a∗1 = a1, and

of course this says that a1 is real. The other possibility is that a∗2 6= a1. Then we can only

satisfy the equality if the two states are orthogonal. This gives us a second very useful result

– eigenstates of Hermitian operators with different eigenvalues are orthogonal.



Quantum Mechanics 22

It can happen that two or more states yield the same eigenvalue of an operator. We

speak of the states as being “degenerate” or say that the operator has a degeneracy. In

this case one cannot show that 〈a2|a1〉 = 0. But one can construct a basis |a′1〉 , |a′2〉 , . . .
such that 〈a′2|a′1〉 = 0, and recover our previous results. We can do this by Gram-Schmidt

orthogonalization. We outline the first few steps of this process by the following:

|a′1〉 = |a1〉

|a′2〉 = |a2〉+ c |a′1〉 c = −〈a1|a2〉
〈a1|a1〉

(2.34)

Clearly 〈a′2|a1〉 = 0. A normalized second vector can be constructed by defining |a′′2〉 =

|a′2〉 /
√

〈a′2|a′2〉. Thus, for all practical purposes, our statement that the eigenstates of Her-

mitian operators can be regarded as orthogonal still holds.

Note in passing that, because operators transform states into states, we can imagine

constructing an operator from a bra and a ket:

Ô = |b〉 〈a| . (2.35)

This operator acts on any state to transform it into the state |b〉:

Ô |γ〉 = |b〉 〈a|γ〉
= |b〉 × (complex #).

(2.36)

If the possible number of eigenstates of an operator is finite in number, any state can be

written as a linear superposition of the basis states. (If the dimension of the basis is infinite,

one must make this statement as a postulate.) Then we can expand a state as

|α〉 =
∑

n

cn |n〉 . (2.37)

To find the values of the cn’s we simply take the inner product on both sides of the equation

with the ket |m〉 and use orthogonality,

〈m|α〉 =
∑

n

cn 〈m|n〉 = cm (2.38)

so

|α〉 =
∑

n

(〈n|α〉) |n〉 =
∑

n

|n〉 〈n|α〉 . (2.39)
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We see that

|α〉 = {
∑

n

|n〉 〈n|} |α〉 . (2.40)

We have discovered the very useful “identity operator”

1̂ =
∑

n

|n〉 〈n| . (2.41)

The operator Λa = |a〉 〈a| is called a projection operator. Applied to any state |ψ〉, it
projects out the part of the state which is aligned along |a〉: Λa |ψ〉 = |a〉 〈a|ψ〉. If the |a〉’s
form a complete basis then summing over all projectors gives the state itself back again: a

physical realization of our identity operator.

hat1 =
∑

Λa =
∑

|a〉 〈a| . (2.42)

From our definition of the projection operator it is fairly easy to see that a product of

projection operators is also a projection operator,

ΛaΛa′ = δaa′Λa. (2.43)

Bras, kets, vectors, and matrices

It is useful to make an analogy between the rays of an abstract Hilbert space and their

operators, and ordinary vectors and matrices. We can think of ψ as a column vector in an

n-dimensional vector space.

|ψ〉 =
∑

n

cn |n〉 (2.44)

where the |n〉’s are the rays along the axes of the space. Then we can think of writing the

states as

|ψ〉 →





















c1

c2

c3

.

.

cn





















.

〈ψ| is associated with the row vector whose elements are the complex conjugates of |ψ〉’s:

〈ψ| →
(

c∗1 c
∗
2 c

∗
3 . . . c∗n

)

.



Quantum Mechanics 24

Thus 〈ψ|ψ〉 = c∗1c1 + c∗2c2 + . . . is an ordinary vector product. The projection operator is a

matrix (a dyadic)

Λ1 = |1〉 〈1| =

















1

0

.

.

0

















(

1 0 . . . 0
)

=

















1 0 . . 0

0 .

. .

. .

0 0

















The action of a projection operator on a state |ψ〉 is

Λ1 |ψ〉 =

















c1

0

.

.

0

















Linear operators are then represented as matrices in the space: if |ψ〉 =
∑

n αn |n〉 then

Ô |ψ〉 = |ψ′〉 =
∑

n

αnÔ |n〉 =
∑

m

βm |m〉 (2.45)

where the expansion coefficient is

βm =
∑

n

〈m|Ô|n〉αn =
∑

n

Omnαn (2.46)

Thus we have a relation between the coefficients for Ô |ψ〉 and the coefficients for |ψ〉.
















β1

β2

.

.

βn

















=

















O11 O12 . . O1n

O21 .

. .

. .

On1 Onn

































α1

α2

.

.

αn

















We can interpret the equation |ψ′〉 = Ô |ψ〉 as one where Ô is a matrix and the kets are

vectors. The complex numbers Ônm = 〈n| Ô |m〉 are called “matrix elements.” Of course,

the matrix elements of Hermitian operators form Hermitian matrices, Ôij = Ô∗
ji.
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Transformation of basis

Suppose we have a state written in some orthonormal basis as |j′〉. We can write the state

in another basis |j〉 as
|j′〉 =

∑

j

|j〉 〈j|j′〉 ≡
∑

j

U †
jj′ |j〉 . (2.47)

(Note 〈j|j′〉 = U †
jj′ – the dagger is a convention.) This transformation must leave the norm

of the state unchanged, and so U must obey the constraint

〈i′|j′〉 = δi′j′ =
∑

i

〈i′|i〉 〈i|j′〉 =
∑

i

Ui′iU
†
ij′. (2.48)

This implies that U † = U−1. Such norm-preserving transformations are called unitary trans-

formations, and they are realized as unitary matrices.

Now consider how an arbitrary state |ψ〉 is expanded in either basis:

〈j|ψ〉 =
∑

j′

〈j|j′〉 〈j′|ψ〉 (2.49)

or, writing ψj = 〈j|ψ〉,
ψj =

∑

j′

U †
jj′ψ

′
j . (2.50)

It is also useful to see how operators transform under unitary transformations:

〈i|Ô|j〉 =
∑

i′j′

〈i|i′〉 〈i′|Ô|j′〉 〈j′|j〉 (2.51)

or

Ôij =
∑

i′j′

U †
ii′′Ôi′j′Uj′j. (2.52)

Thus an operator represented in one basis is related to the same operator in another basis

by a similarity transformation. (Note the identical order of U and U † – U † always to the left

– for ψ and Ô!)

Finally, suppose that we want to find the eigenfunctions and eigenvalues of an operator.

Call the operator Q̂. We want a vector |a〉 for which

Q̂ |a〉 = λ |a〉 . (2.53)

We assume that we have some complete basis |n〉 and expand our state in it,

|a〉 =
∑

n

αn |n〉 αn ≡ 〈n|a〉 , (2.54)
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and then the eigenvalue equation becomes

Q̂ |a〉 =
∑

n

αnQ̂ |n〉 =
∑

n

αnλ |n〉 . (2.55)

We now take the inner product of both sides of this equation with one member of the basis,

〈i|. Orthogonality forces 〈i|m〉 = δim, so
∑

n

〈i|Q̂|n〉αn =
∑

n

Q̂inαn =
∑

n

αnλδin (2.56)

or
∑

n

(Q̂in − δinλ)αn = 0. (2.57)

This set of linear equations has a solution only if det(Q̂in − λδin) = 0. This equation is

called the “characteristic equation,” and if the dimension of the space is N , this is an N th

order polynomial equation. There will be N values for λ. The similarity transform which

diagonalizes the matrix has a transformation matrix which is composed of the eigenvectors.

(Note, though, the eigenvalues need not be distinct – this is the signal of degeneracy.)

Eigenvalues are basis-independent, though eigenvectors are obviously not. To see this

fact, we begin with the characteristic equation

det(Q̂− λ1) = 0 (2.58)

We then transform our system to a new basis

det(Û †(Q̂− λ1)Û) = det(Û †) det(Q̂− λ1) det(Û)

= det(Û) det(Û †) det(Q̂− λ1)

= det(Û Û †) det(Q̂− λ1)

= det(Q̂− λ1).

(2.59)

We still obtain the same characteristic equation, with same eigenvalues as its solutions.

Thus the two operators Q and U−1QU , where U is any unitary transformation, have the

same spectra.

More about operators

We appear to have gotten rather deeply into quantum mechanics without making any contact

with classical mechanics. Let us rectify that omission, by writing down two last postulates.
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Suppose we have two operators Â and B̂ which correspond to the classical variables A and

B. We postulate that they will obey the following commutation relation.

ÂB̂ − B̂Â = [Â, B̂] = i~{A,B}op (2.60)

where {A,B}op is the operator corresponding to the classical Poisson bracket of the two

dynamical variables

{A,B} =
∑

i

(

∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)

. (2.61)

qi and pi correspond to the canonically conjugate coordinates and momenta of the classical

Hamiltonian, and thus

[q̂i, p̂j] = i~δij , (2.62)

that is, different components of ~p and ~q commute, but the p and q of identical components

have a commutator which is equal to i~.

Time dependence of states

We arrive at our final postulate of quantum mechanics, stated cautiously. It is possible to

make a choice of states, called the Schrödinger Representation, in which a state changes with

time according to the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 . (2.63)

In this expression, Ĥ is the Hamiltonian operator. The reason for caution is that there are

many equivalent ways of describing time evolution in quantum mechanics: the states may

evolve in time, while the operators do not, or the operators may evolve in time while at least

some of the states do not, or both states and operators may evolve in time. We will return

to this point in the next chapter.

The two-state system

The two-state system is a very important object in quantum mechanics, possibly the simplest

one which exhibits interesting quantum mechanical behavior. It is one of the few systems

which we can almost always solve exactly. It also has many apparently quite different physical
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applications. Let’s consider it “on its own,” before connecting it to some experimentally

realizable situations. Suppose we have a Hamiltonian

Ĥ =

(

ǫ1 ∆

∆∗ ǫ2

)

. (2.64)

The off diagonal elements are complex conjugates of each other because Ĥ is Hermitian.

To find the eigenvalues of the Hamiltonian (i.e. the energy eigenvalues) we evaluate the

determinant
∣

∣

∣

∣

∣

ǫ1 − λ ∆

∆∗ ǫ2 − λ

∣

∣

∣

∣

∣

= (ǫ1 − λ)(ǫ2 − λ)− |∆|2 = 0 (2.65)

and a little algebra gives us the following very useful formula, well worth memorizing:

λ =
ǫ1 + ǫ2

2
±

√

(

ǫ1 − ǫ2
2

)2

+ |∆|2 ≡ ǫ1 + ǫ2
2

± ~ω (2.66)

The eigenvalues are equal to the average of the two energy levels (ǫ1 and ǫ2) plus a splitting

term which is the sum of the squares of the variance in the diagonal term and of the norm

of the off-diagonal term.

There is no universally useful formula for the eigenfunctions, and when Ĥ is simple, it

is often easiest just to proceed “from scratch.” Let’s look at the general case with language

whose use will become more apparent shortly. To simplify our discussion, let us alter our

notation slightly and replace the complex ∆ in Eq. 2.64 by ∆ exp(iχ) where now ∆ is real.

We wish to find eigenfunctions, solving

Ĥψ± = λ±ψ±. (2.67)

We write a parameterization which automatically preserves unitarity

|ψ+〉 =
(

cos θ
2

sin θ
2
eiφ

)

|ψ−〉 =
(

− sin θ
2
e−iφ

cos θ
2

)

, (2.68)

and then the upper eigenvector equation corresponding to λ+ is

(Ĥ − λ+)ψ+ = (ǫ1 − λ+) cos
θ

2
+ ∆ sin

θ

2
ei(χ+φ) = 0. (2.69)

Clearly, a solution to this equation is φ = −χ and

tan
θ

2
=
λ+ − ǫ1

∆
=

ǫ2−ǫ1
2

+
√

(

ǫ1−ǫ2
2

)2
+∆2

∆
. (2.70)
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Note that the amount of mixing between the two states only depends on the difference

of the energies. We could have seen this more easily had we written

Ĥ =
ǫ1 + ǫ2

2

(

1 0

0 1

)

+

(

ǫ ∆

∆∗ −ǫ

)

(2.71)

where ǫ = (ǫ1 − ǫ2)/2. This way of writing the Hamiltonian shows us that its first part only

corresponds to an overall energy shift, while the second part gives us the interesting physics.

Let us call δ = ∆/ǫ. Then we can write

tan
θ

2
= −1

δ
+

√

1 +
1

δ2
(2.72)

or, after invoking a trigonometric identity,

tan θ =
2 tan θ

2

1− tan2 θ
2

= δ =
∆

ǫ
. (2.73)

We could have written

Ĥ =

(

ǫ ∆

∆∗ −ǫ

)

= ~ω

(

cos θ sin θe−iφ

sin θeiφ − cos θ

)

(2.74)

if we wanted to encode this solution into the definition of Ĥ from the beginning. (This is

sometimes useful, but not always!) Now we are equipped with a general formula for the

mixing as well one for the energies. Let’s consider some limiting cases, further assuming the

ordering ǫ1 > ǫ2, or ǫ > 0.

1. ∆ ≪ ǫ : In this case we can Taylor expand the square root factor

λ± =
ǫ1 + ǫ2

2
± |ǫ1 − ǫ2|

2

(

1 +
1

2

∆2

ǫ
+ · · ·

)

≃ ǫ1 + ǫ2
2

± |ǫ1 − ǫ2|
2

± ∆2

|ǫ1 − ǫ2|
(2.75)

and thus

λ+ = ǫ1 +
∆2

ǫ1 − ǫ2
λ− = ǫ2 −

∆2

ǫ1 − ǫ2
. (2.76)

If ∆/ǫ is small, λ+ ≃ ǫ1 and λ− ≃ ǫ2 with

ψ+ ≃
(

1

0

)

ψ− ≃
(

0

1

)

. (2.77)

When ∆ is small the gap varies varies quadratically with ∆. The behavior is shown in

Fig. 2.6.
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∆
ε1

ε2

Figure 2.6: Eigenvalue spectrum for small ∆.

∆
ε1

ε2

Figure 2.7: The full spectrum of the two-state system.

2. ∆ ≫ ǫ : In this case

λ± ≃ ǫ1 + ǫ2
2

± |∆|. (2.78)

Thus the two energies are just the average of our two diagonal terms plus or minus the

off diagonal term. See Fig. 2.7. In this case tan θ = ∆/ǫ diverges, so the mixing angle

θ → π
2
. The eigenfunctions are as non-diagonal in our eigenstate basis as they could

possibly be: if the phase of complex ∆ is χ = 0, then for large positive ∆

ψ+ →
(

1√
2
1√
2

)

ψ− →
(

− 1√
2

1√
2

)

. (2.79)

Notice the situation for large negative ∆: up to overall phase factors

ψ+ →
(

− 1√
2

1√
2

)

ψ− →
(

1√
2
1√
2

)

. (2.80)
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That is, the wave functions have exchanged places. It is as if the system actually

followed the dotted lines in Fig. 2.7 as ∆ was tuned from a large positive value to a

large negative value. But the dotted lines show the energy levels crossing; in reality,

they do not. This is the iconic example of what is called an “avoided level crossing.”

In the absence of a coupling between two levels (that is the ǫ term in Ĥ) the levels

could pass through each other and there would be a point of degeneracy at ∆ = 0.

The coupling between the levels means that this degeneracy cannot occur. Avoided

level crossings and the “swapping” of the wave functions of the would-be crossing pairs

have many practical uses in quantum mechanics.

Any system with two states whose coupling to each other is large and whose coupling

to other states is small can be approximated by a two-state system – independent of how

complicated the states actually are. Many examples come to mind: neutrinos (in the context

of neutrino oscillations) or pairs of atomic states, perhaps isolated from their neighbors by

a clever experimentalist. But the “classic” two state system is the spin-1/2 particle in

an external magnetic field. The Pauli matrices form a standard basis notation for the

Hamiltonian:

σz =

(

1 0

0 −1

)

σx =

(

0 1

1 0

)

σy =

(

0 −i
i 0

)

. (2.81)

Any traceless 2× 2 Hermitian matrix can be written as a linear combination of these three

Pauli matrices, and if the matrix is not traceless, it can be written as a linear combination

of the three Pauli matrices and the identity. By inspection, the eigenfunctions of σz, and

their corresponding eigenvalues, are

λ = +1 →
(

1

0

)

λ = −1 →
(

0

1

)

. (2.82)

(All the Pauli matrices have eigenvalues ±1; stop reading and work out the eigenfunctions

of σx and σy.) A spin-1
2
particle has a magnetic moment ~µ = e

mc
~S where ~S = ~

2
~σ. (We

will make this connection more formally, later.) The interaction Hamiltonian for a magnetic

moment in an external magnetic field is

Ĥ = −~µ · ~B. (2.83)

It has the matrix representation

Ĥ = −~µ · ~B = − e~

2mc

(

Bz Bx − iBy

Bx + iBy −Bz

)

. (2.84)
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The reader is encouraged to work out the eigenfunctions for the spin for various limiting

orientations of the magnetic field. (We will return to this problem in the next chapter, if

you want to look ahead.)

The Pauli matrices obey the following algebra (1̂ is the identity matrix)

σ̂iσ̂j = δij 1̂ + iǫijkσ̂k (2.85)

or equivalently

[σ̂i, σ̂j] = 2iǫijkσ̂k. (2.86)

The anti-commutator of two Pauli matrices is simple, too:

σ̂iσ̂j + σ̂j σ̂i ≡ {σ̂i, σ̂j} = 2δij 1̂. (2.87)

Check these relations and remember them!

We often encounter complicated expressions made of several Pauli matrices. They can be

simplified by repeatedly invoking appropriate commutation and anti-commutation relations.

As an example let us consider

(~σ · a)(~σ · b) = σ̂iaiσ̂jbj

= σ̂iσ̂jaibj

= (δij 1̂ + iǫijkσ̂k)aibj

= 1̂aibj + iǫijkaibj σ̂k

= a · b1̂ + i~σ · (a× b).

(2.88)

The final answer is a linear combination of terms proportional to the identity and to the

three Pauli matrices, because that is all there is for a two dimensional Hilbert space.

Simultaneous observables and the uncertainty principle

Suppose we have a state |a, b, . . .〉 which is an eigenfunction of several operators, that is,

Â |a, b, . . .〉 = a |a, b, . . .〉 B̂ |a, b, . . .〉 = b |a, b, . . .〉 . (2.89)

This is a very desirable situation, since it means that we have precise information about the

quantities represented by the operators for the state. But, can this happen for arbitrary
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operators? No, it can only occur if the commutators of all pairs of operators are zero, for

then (specialize to two operators)

(ÂB̂ − B̂Â) |a, b, . . .〉 = (ab− ba) |a, b, . . .〉 = 0. (2.90)

A mathematical way of expressing the physical question, “How completely can I characterize

a state?” is to ask “What is the complete set of commuting operators for the system?”

We can invert the discussion and ask, if A,B 6= 0, how precisely can one simultaneously

observe 〈Â〉 and 〈B̂〉? We will restrict ourselves the case where both of the operators are

Hermitian operators, since that is what is most commonly seen in practice. Let us consider

an arbitrary state |ψ〉 and consider the shifted operator

∆Â = Â− 〈Â〉 (2.91)

where 〈Â〉 = 〈ψ| Â |ψ〉. The expectation value of the square of this operator is

〈(∆Â)2〉 = 〈Â2 − 2Â 〈Â〉+ 〈Â〉2〉
= 〈Â2〉 − 〈Â〉2 .

(2.92)

It is known as the dispersion of the expectation value of the operator in the state, since that

is the definition of the variance of a quantity in statistics. Now we shall show that

〈(∆Â)2〉 〈(∆B̂)2〉 ≥ 1

4

∣

∣

∣
〈[Â, B̂]〉

∣

∣

∣

2

. (2.93)

This result is called the Uncertainty Principle.

The norm of any vector is always greater than or equal to zero, so for any λ

(|α〉+ λ |β〉 , |α〉+ λ |β〉) ≥ 0. (2.94)

A direct evaluation of this expression gives

〈α|α〉+ λ 〈α|β〉+ λ∗ 〈β|α〉+ |λ|2 〈β|β〉 ≥ 0. (2.95)

Setting λ = iǫ, |α〉 = (∆Â) |ψ〉, and |β〉 = (∆B̂) |ψ〉,

〈ψ|(∆Â)2|ψ〉+ iǫ 〈ψ|∆Â∆B̂ −∆B̂∆Â|ψ〉+ ǫ2 〈ψ|(∆B̂)2|ψ〉 ≥ 0. (2.96)
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We minimize this equation with respect to ǫ. The minimum occurs when 2ǫ 〈(∆B̂)2〉 =

−i 〈[Â, B̂]〉. Notice, by the way, that if Â and B̂ are Hermitian then their commutator is

anti-Hermitian and i[Â, B̂] is Hermitian:

[Â, B̂]† = B̂†Â† − Â†B̂† = [B̂†, Â†] = [B̂, Â] = −[Â, B̂]. (2.97)

Inserting the result of the minimization into our original equation, we learn that

〈(∆Â)2〉 − | 〈[Â, B̂]〉 |2

2 〈(∆B̂)2〉
+

| 〈[Â, B̂]〉 |2

4 〈(∆B̂)2〉
≥ 0 (2.98)

and so

〈(∆Â)2〉 〈(∆B̂)2〉 ≥ 1

4

∣

∣

∣
〈[Â, B̂]〉

∣

∣

∣

2

. (2.99)

The uncertainty principle is a deep statement about what can and cannot be measured

in quantum mechanics. The most-seen case of the uncertainty principle is A = x, B = p,

C = ~, yielding the familiar result ∆x∆p ≥ ~/2.

Again, if [A,B] = 0 one can in principle have simultaneous eigenstates of A and B, states

in which we can determine expectation values of both operators to arbitrary precision.

We often encounter the uncertainty principle in casual situations, where it allows us

to make back of the envelope calculations about the typical sizes of bound states and their

energies. (In this context, it is basically a poor man’s variational calculation.) As an example,

consider the one body Hamiltonian

Ĥ =
p̂2

2m
+ V̂ (r) (2.100)

and suppose that we want to guess the eigenvalues of this operator. We know that ∆p ≥
~/∆x and so we assume that in Ĥ, p ≃ ∆p ≃ ~/∆x, r ≃ ∆x. Thus our Hamiltonian

becomes

Ĥ =
~
2

2m(∆x)2
+ V (∆x). (2.101)

To estimate the smallest possible bound state energy consistent with the uncertainty prin-

ciple, minimize Hamiltonian with respect to ∆x. For hydrogen we have

E(r) =
~
2

2m∆x2
− e2

∆x
. (2.102)

Setting ∂E/∂∆x = 0 gives ∆x = ~
2/(me2) which upon insertion into the energy equation

gives E(∆x) = −1
2

(

e2

~c

)2

mc2 or -13.6 eV – a familiar result.
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Operators with continuous spectra

Many operators – the coordinate x is a familiar example – have a continuous spectrum. We

can treat operators with continuous spectra in a very similar fashion to those with discrete

spectra, at the cost of generalizing the Kronecker delta 〈A|A′〉 = δA,A′ to the Dirac delta

function δ(A−A′). At the slender level of rigor seen in most physics books, the generalization

is merely notational. We record it in this table:

discrete continuous

|ψ〉 =
∑

A |A〉 〈A|ψ〉 |ψ〉 =
∫

dA |A〉 〈A|ψ〉
1̂ =

∑

A |A〉 〈A| 1̂ =
∫

dA |A〉 〈A|
〈A|A′〉 = δAA′ 〈A|A′〉 = δ(A− A′)

〈A1|Â|A2〉 = A2δA1A2 〈A1|Â|A2〉 = A2δ(A1 − A2)

The Dirac delta function obeys
∫

dxδ(x) = 1;

∫

dxδ(x− x0)f(x) = f(x0). (2.103)

There is, however, one important point, which requires caution: Dirac delta functions are

not functions, but distributions. A distribution can be defined as a limit of a good function

or defined as an operator under an integral. Working with delta functions in “stand-alone”

mode can be quite hazardous.

Practical definitions of delta functions (as limits) are quite useful. A familiar one is

δ(k1 − k2) = lim
X→∞

1

2π

∫ X

−X

ei(k1−k2)xdx

= lim
X→∞

2

2π

sin((k1 − k2)X)

k1 − k2
(2.104)

Plotting this function, you will find that as X → ∞ it has a peak at x = 0 that diverges as

X/π, while its width falls to zero as π/X . Thus the area under the peak remains constant

in the limit. The factor 1/2π assures that
∫

dk1δ(k1 − k2) = 1.

Another example of a delta function is the limit of a very narrow Gaussian

δ(x) = lim
a→0

1√
πa

exp

(

−x
2

a2

)

(2.105)
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The prefactor normalizes the integral of the delta function to unity.

More useful properties of the delta function (all defined under an integral) are

δ(x) = δ(−x)
δ′(x) = −δ′(−x)
xδ(x) = 0

δ(ax) =
1

|a|δ(x)

δ(f(x)) =
∑

j

δ(x− xj)

|f ′(xj)|
(2.106)

where the xj ’s are the zeros of the function in the argument of the delta function. Let us

check the last of these identities, taking the limit of a Gaussian, Eq. 2.105, for our delta

function:

δ(f(x)) = lim
a→0

1√
πa

exp

(

−f(x)
2

a2

)

. (2.107)

We Taylor expand f(x) as

f(x) ≃ f(x0) + (x− x0)f
′(x0) (2.108)

and if x0 is the place where f(x0) = 0, the delta function is

δ(f(x)) =
1√
πa

exp

(

−(x− x0)
2f ′(x0)

2

a2

)

. (2.109)

To evaluate the integral
∫

dxδ(f(x))g(x), we Taylor expand both f(x) and g(x) about x0:

∫

dxδ(f(x))g(x) =

∫

dx
1√
πa

exp

(

−(x− x0)
2f ′(x0)

2

a2

)

×(g(x0) + (x− x0)g
′(x0) + . . .)

=
g(x0)√
πa

√
πa

√

f ′(x0)2
+ 0 +O(a2)

=
g(x0)

|f ′(x0)|
,

(2.110)

where we take the a → 0 limit in the last step. This shows the origin of the extra factor in

the denominator.
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Parenthetically, this exercise illustrates that the simplest representation of a delta func-

tion as a tall, narrow step function, say of width ǫ and height 1/ǫ, is not optimal: it is

not differentiable, and it is hard to retain the identities of delta functions of functions given

above.

More about the coordinate operator

The coordinate operator x̂ gives the location of the particle in Cartesian space. A state

which is diagonal in coordinate space is an eigenstate of x̂ with

x̂ |x′〉 = x′ |x′〉 (2.111)

and the matrix element of x̂ is

〈x′′|x̂|x′〉 = x′δ(x′′ − x′) = x′ 〈x′′|x′〉 . (2.112)

We assume that the kets, |x′〉, form a complete basis. This means that the completeness

relation allows us to write the state as

|α〉 =
∫

dx |x〉 〈x|α〉 . (2.113)

Now suppose that we have an operator that records the location of a particle in an interval

x ∈ [−∆,∆]. We can write this operator as

M̂(x,∆) = Θ(x+∆)Θ(x−∆). (2.114)

The expectation value of this operator in a state |α〉 is

〈α|M̂ |α〉 =
∫

dxdx′ 〈α|x〉 〈x|M̂ |x′〉 〈x′|α〉 . (2.115)

We insert the matrix element of the operator in states |x〉

〈x|M̂ |x′〉 = δ(x− x′)Θ(x+∆)Θ(x−∆) (2.116)

to give

〈α|M̂ |α〉 =

∫

dxdx′ 〈α|x〉 δ(x− x′)Θ(x+∆)Θ(x−∆) 〈x′|α〉

=

∫ ∆

−∆

dx 〈α|x〉 〈x|α〉

=

∫ ∆

−∆

dx| 〈α|x〉 |2.

(2.117)
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If our states are normalized, this is just the probability to find a particle in the region [−∆,∆].

Thus the function 〈x|α〉 is just what we would have identified using wave mechanics as the

coordinate space wave function of the system, 〈x|α〉 = ψα(x). If we expand the region to

[−∞,∞] then the integral must equal unity – that is just the normalization constraint.

We can then write the following identities, which allow us to recover our wave-mechanical

formulas as special cases of our Hilbert-space description,

〈β|α〉 =
∫

dx 〈β|x〉 〈x|α〉 =
∫

dxψ∗
β(x)ψα(x) (2.118)

and we have the further useful transcriptions

|α〉 =
∑

j

|j〉 〈j|α〉 =
∑

j

|j〉 cj(α),

〈x|α〉 =
∑

j

〈x|j〉 〈j|α〉 =
∑

j

ψj(x)cj(α) = ψα(x).

(2.119)

Matrix elements can be constructed in coordinate basis:

〈β|Â|α〉 =

∫

dxdx′ 〈β|x〉 〈x|Â|x′〉 〈x|α〉

=

∫

dxdx′ψ∗
β(x) 〈x|Â|x′〉ψα(x

′).

(2.120)

We must now analyze coordinate space matrix elements 〈x|Â|x′〉. If Â is just a function

of the position operator, we merely have

〈x|Â|x′〉 = A(x′)δ(x− x′), (2.121)

so

〈β|Â|α〉 =
∫

dxψβ(x)
∗A(x)ψα(x). (2.122)

More complicated operators require more thought. Consider the case of 〈x|p̂|x′〉. To evaluate
it, consider the fundamental commutation relation expanded in coordinate space states

〈α|[p̂, x̂]|β〉 =
~

i
〈α|β〉

=

∫

dxdx′ 〈α|x〉 〈x|p̂x̂− x̂p̂|x′〉 〈x′|β〉

=

∫

dxdx′[〈α|x〉 〈x|p̂|x′〉x′ 〈x′|β〉 − 〈α|x〉x 〈x|p̂|x′〉 〈x′|β〉]

(2.123)
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The reader can check that the following substitution solves the equation:

〈x|p̂|x′〉 = δ(x− x′)
~

i

∂

∂x
. (2.124)

It follows, then, that

〈x|p̂|α〉 =

∫

dx′ 〈x|p̂|x′〉 〈x′|α〉

=

∫

dx′δ(x− x′)
~

i

∂

∂x
〈x′|α〉

=
~

i

∂

∂x
ψα(x).

(2.125)

Moreover, higher powers of the momentum can also be expressed as differential operators:

〈β|p̂|α〉 =
∫

dxψ∗
β(x)

~

i

∂

∂x
ψα(x) (2.126)

and

〈β|p̂n|α〉 =
∫

dxψ∗
β(x)

(

~

i

∂

∂x
)

)n

ψα(x) (2.127)

and so on.

Let us complete our re-derivation of the equations of wave mechanics. The typical classical

non-relativistic Hamiltonian of a particle in an external potential is

Ĥ =
p̂2

2m
+ V (x) (2.128)

We consider the operator equation

〈x|Ĥ|ψ〉 = E 〈x|ψ〉 = Eψ(x)

=

∫

dx′ 〈x|Ĥ|x′〉 〈x′|ψ〉

=

∫

dx′[〈x| p̂
2

2m
|x′〉+ δ(x− x′)V (x′)]ψ(x′)]

=

∫

dx′[δ(x− x′)
1

2m

(

~

i

∂

∂x

)2

+ δ(x− x′)V (x′)]ψ(x′)]

(2.129)

which gives us the usual Schrödinger differential equation
[

1

2m

(

~

i

∂

∂x

)2

+ V (x)

]

ψ(x) = Eψ(x). (2.130)
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The simple harmonic oscillator

Almost everything in Nature can be approximated by a simple harmonic oscillator. Its

Hamiltonian is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2. (2.131)

We wish to find the energy eigenvalues and construct the eigenstates, by solving

Ĥ |n〉 = En |n〉 . (2.132)

We will do this algebraically, through the construction of so-called “ladder operators”

â =

√

mω

2~

(

x̂+
ip̂

mω

)

â† =

√

mω

2~

(

x̂− ip̂

mω

)

(2.133)

which are (non-Hermitian) combinations of the coordinate and the momentum,

x̂ =

√

~

2mω
(â+ â†) p̂ = i

√

~mω

2
(â† − â). (2.134)

For reasons which will shortly be apparent, we will call the operator â the “lowering operator”

and the operator â† the “raising operator.” The commutator of these operators is

[â, â†] = 1; [â, â] = 0 = [â†, â†]. (2.135)

The arbitrary normalization in Eq. 2.134 is chosen to make the first commutator simple.

We also introduce the (obviously Hermitian) “number operator” N = â†â. This is just the

Hamiltonian, rescaled:

N̂ =
mω

2~

(

x̂2 +
p̂2

m2ω2

)

+
i

2~
[x̂, p̂]

=
Ĥ

~ω
− 1

2
(2.136)

and so

Ĥ = ~ω

(

N̂ +
1

2

)

. (2.137)

Obviously, eigenstates of the Hamiltonian will also be eigenstates of N̂ .

N̂ |n〉 = n |n〉 → Ĥ |n〉 = ~ω

(

n+
1

2

)

|n〉 . (2.138)
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To proceed, we consider commutators of the number operator with the raising and lowering

operators:

[N̂ , â] = [â†â, â] = â†[â, â] + [â†, â]â = −â (2.139)

and

[N̂ , â†] = â†. (2.140)

What do raising and lowering operators do to eigenstates of N̂? Consider

N̂ â† |n〉 = ([N̂ , â†] + â†N̂) |n〉
= (â† + â†N̂) |n〉
= (n+ 1)â† |n〉

(2.141)

This shows us that a† |n〉 is an un-normalized eigenstate of N̂ with eigenvalue n + 1,

â† |n〉 = C
(+)
n+1 |n+ 1〉 . (2.142)

The lowering operator behaves similarly:

N̂ â |n〉 = ([N̂, â] + âN̂) |n〉 = (n− 1)â |n〉 (2.143)

so

â |n〉 = C
(−)
n−1 |n− 1〉 . (2.144)

To find the constants, consider the norm of the state â |n〉:

〈n|â†â|n〉 = (〈n| â†)(â |n〉) = |C(−)
n−1|2 〈n− 1|n− 1〉 (2.145)

= n 〈n|n〉 = n.

Therefore, (choosing a phase) the normalization factor is

C
(−)
n−1 =

√
n. (2.146)

An analogous calculation for the raising operator gives

â |n〉 =
√
n |n− 1〉 (2.147)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.148)

Observe that we cannot lower the state forever, because the norm of the state (the inner

product of bra and ket) must always be greater than 0. From Eq. 2.146, this norm is n.



Quantum Mechanics 42

Therefore, the minimum n must then be 0, and all the n’s must be integers (otherwise one

could lower states to negative values of n). This tells us that the spectrum of the oscillator

is set of equally spaced levels labeled by a single integer n whose value is n ≥ 0

Ĥ |N〉 = En |n〉 En = ~ω

(

n +
1

2

)

n = 0, 1, 2, . . . . (2.149)

Given the ground state |0〉, we can construct the rest of the states using raising operators:

â† |0〉 = |1〉

â† |1〉 =
√
2 |2〉 → (â†)2√

2 · 1
|0〉 = |2〉

|3〉 =
â†√
3
|2〉 = (â†)3√

3 · 2 · 1
|0〉

(2.150)

and so

|n〉 = (â†)n√
n!

|0〉 . (2.151)

This construction can be used to find the coordinate space wave functions 〈x|n〉 ≡ ψn(x).

To do this, use use the differential form of the lowering operator acting on the ground state,

â |0〉 = 0 → 〈x|â|0〉 =
√

mω

2~
〈x|x̂+ ip̂

mω
|0〉 = 0 (2.152)

or
(

x+
~

mω

∂

∂x

)

〈x|0〉 = 0 (2.153)

This is just a differential equation for 〈x|0〉, whose solution is

〈x|0〉 =
(mω

π~

)1/4

exp

[

−1

2

mω

~
x2
]

. (2.154)

The rest of the states can be constructed using the raising operator. For example,

〈x|1〉 = 〈x|â†|0〉 =
√

mω

2~

(

x− ~

mω

∂

∂x

)

〈x|0〉 . (2.155)

This construction will give the usual coordinate space wave functions which arose from a

direct attack on H as a differential operator.
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We can find the matrix elements of x̂ and p̂ with the help of the raising and lowering

operators. (This is of enormous practical utility!) We first note that

〈n′|â|n〉 =
√
nδn′,n−1 (2.156)

〈n′|â†|n〉 =
√
n+ 1δn′,n+1 (2.157)

Then we write

〈n′|x̂|n〉 =
√

~

2mω
(
√
nδn′,n−1 +

√
n + 1δn′,n+1) (2.158)

The matrix form of this expression is

x̂ =

√

~

2mω

















0 1 0 0 . . .

1 0
√
2 0

0
√
2 0

√
3

0 0
√
3 0

...
. . .

















(2.159)

Powers of x̂ or p̂ are equally simple to construct.

Applications of oscillators

Many systems share this algebraic structure. Let us consider a few examples:

1. Two simple harmonic oscillators : The Hamiltonian is

Ĥ =
p̂21
2m

+
1

2
mω2x̂21 +

p̂22
2m

+
1

2
mω2x̂22 (2.160)

To solve this system, we note that coordinates and momenta for different oscillators

commute, [x1, p2] = 0. This means that we can use two sets of commuting ladder

operators, one for each oscillator: [a†1, a2] = 0 States are labeled by two n’s, one for

each oscillator, and E |n1, n2〉 = (~ω1(n1 +
1
2
) + ~ω2(n2 +

1
2
)) |n1, n2〉.

2. N uncoupled simple harmonic oscillators: Just let the subscript (xi, pi) be N -fold, and

repeat the previous case.

3. Coupled oscillators: Suppose that

H =
1

2

∑

k

p2k +
∑

i,j

Cijxixj . (2.161)
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Perform a canonical transformation, or a simple change of variables, to diagonalize the

potential: V ({xi}) =
∑

i,j Cijxixj →
∑

k
1
2
Ωkz

2
k. The canonically conjugate pairs will

be {zk, Pk}. The Hamiltonian is now diagonal in the new basis, E =
∑

k ~Ωk(nk +
1
2
).

We introduce ladder operators in the {zk, Pk} basis. States are labeled |n1, n2 . . .〉.

4. Classical systems obeying the differential equation

d2yk
dt2

+ Ω2
kyk = 0 : (2.162)

These systems can be defined through a Hamiltonian H = 1
2

∑

k(p
2
k + Ω2

ky
2
k) and are

obviously also oscillators, with states labeled by an integer for each oscillator.

5. Photons: Each mode of the classical electromagnetic field (working with the vector

potential in Coulomb gauge) obeys an equation of motion

d2 ~A(~k,~ǫ)

dt2
+ ω2

k
~A(~k,~ǫ) = 0 (2.163)

From what we have done so far, the quantum mechanical state of each mode of the

electromagnetic field must be characterized by a ket |n~k,~ǫ〉. The extra letters ~k and ~ǫ

label the wave number and polarization of the mode.

The energy of the mode is given by an integer multiple of ~ωk, En = n~ωk up to an

overall constant. In the usual language of Planck and Einstein, the integer n counts

the number of photons in the mode. We do not have to restrict ourselves to a single

mode. In complete analogy with the case of coupled oscillators, we can also have a

state with many photons in many modes.

|n1, n2, n3, . . .〉 (2.164)

with energy
∑

~k~ǫ ~ωk(n~k,~ǫ +
1
2
). (In contrast to the two-oscillator problem, the labels ~k

and ~ǫ can vary continuously.)

The quantum mechanical analogs of coordinates and momenta are operators. Coor-

dinates and momenta are the canonically conjugate variables describing the classical

system’s Hamiltonian dynamics. One can construct a Hamiltonian description of the

classical electromagnetic field. Not surprisingly, its canonical coordinates are the vector

potential and the electric field. Thus in the quantum description of the electromagnetic

field, the vector potential is an operator which acts on the many-photon wave function.
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Again, it is no surprise, the vector potential is a linear superposition of raising and

lowering operators. The raising operator increases the number of photons in the state

â†~k,~ǫ |n~k,~ǫ〉 =
√

n~k,~ǫ + 1 |n~k,~ǫ + 1〉 (2.165)

while the lowering operator decreases the number of photons in the state,

â~k,~ǫ |n~k,~ǫ〉 =
√

n~k,~ǫ |n~k,~ǫ − 1〉 (2.166)

We will use these results when we consider the fully quantum mechanical problem of

the emission and absorption of electromagnetic radiation from matter.

A few words about eigenfunctions of momentum

Our final example of the chapter is the free particle,

H =
p2

2m
. (2.167)

Obviously, the momentum operator itself commutes with H , so energy eigenstates will also

be momentum eigenstates. Consider, then, eigenstates of the momentum operator (in one

dimension, to simplify notation)

p̂ |p′〉 = p′ |p′〉 . (2.168)

They occupy, of course, an infinite-dimensional Hilbert space. In complete analogy with

coordinate space expansions, any abstract state can be expanded in momentum eigenstates

|α〉 =

∫

dp′ |p′〉 〈p′|α〉

=

∫

dp′ |p′〉ψα(p
′)

(2.169)

where ψα(p
′) is the momentum space wave function. Repeating an earlier construction, it is

straightforward to show that the position operator in momentum space is

〈p′|x̂|p〉 = −~

i
δ(p′ − p)

∂

∂p
. (2.170)

Now we want to find the wave function 〈x|p〉, a momentum eigenfunction in coordinate space

representation. We start with p̂ |p〉 = p′ |p〉 and take the inner product with 〈x|:

〈x|p̂|p〉 = p 〈x|p〉 . (2.171)
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We process the left hand side using

∫

dx′ 〈x|p̂|x′〉 〈x′|p〉 =
∫

dx′δ(x− x′)
~

i

∂

∂x
〈x′|p〉 . (2.172)

This gives
~

i

∂

∂x
〈x|p〉 = p 〈x|p〉 (2.173)

or

〈x|p〉 = 1√
2π~

exp
ipx

~
. (2.174)

The normalization factor is chosen so that 〈x|x′〉 = δ(x− x′) =
∫

dp 〈x|p〉 〈p|x′〉. This result
is used to pass between position space wave functions and momentum space ones. We find

ψα(x) = 〈x|α〉 =
∫

dp 〈x|p〉 〈p|α〉 =
∫

dp
1√
2π~

exp(
ipx

~
)ψα(p) (2.175)

The switch between ψα(x) and ψα(p) is a simple Fourier transformation.
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Quantum dynamics

So far, we have dealt with three kinds of quantum mechanical objects:

• Vectors, which specify the state of the system.

• Dynamical variables, which correspond to operators acting on the state vectors, trans-

forming them into new state vectors

• Unitary transformations, which, at least as far as we have discussed them, do not

change the state of the system, but change how we look at the state of the system.

So far, we have not discussed time evolution in quantum mechanics. While the motion

of particles can only be described probabilistically, the evolution of the probability itself

evolves causally. There are several equivalent ways of describing this causal evolution. We

can equivalently regard the states as changing with time, or the dynamical variables as

changing with time, or make a combination of the two pictures. In the case that we put all

the time evolution onto the states, we can describe the evolution of the state directly, or we

can encode the time evolution into the action of a unitary operator, acting on the states.

Schrödinger picture

We begin by assuming that the state vectors are the fundamental quantities which evolve in

time. How they do so is governed by the time-dependent Schrödinger equation

i~
∂

∂t
|αs(t)〉 = Ĥ |αs(t)〉 . (3.1)

There is a dual equation for the bra vectors,

−i~ ∂
∂t

〈αs(t)| = 〈αs(t)| Ĥ† = 〈αs(t)| Ĥ. (3.2)

Again, the last equality is true only if the Hamiltonian is Hermitian.

Eq. 3.1 may be formally integrated to give

ψ(x, t) = exp(−iĤ
~
(t− t0))ψ(t0). (3.3)
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However, the reader ought to treat this formal integration with great caution. The Hamil-

tonian is an operator, and the exponential of an operator is also an operator. In principle,

the exponential is only well defined as a power series,

exp−iĤ
~
t = 1̂− iĤ

~
t− 1

2!

Ĥ2

~2
t2 + · · · . (3.4)

It may be quite difficult to evaluate this series in a useful way, especially if H has explicit

time dependence.

There is one extremely useful special case of time evolution. If the Hamiltonian is time-

independent, and if |ψ〉 can be written as a superposition of eigenfunctions of the Hamiltonian

Ĥ |ψ〉 =
∑

n

cnEn |En〉 , (3.5)

then the solution of Eq. 3.1 is very simple:

|ψ(t)〉 =
∑

n

cne
− iEnt

~ |En〉 (3.6)

Each of the different energy eigenfunctions composing |ψ〉 evolves independently in time, and

its evolution is a pure change of phase. Note that in this case, the probability of observing

the state to be in any particular energy eigenstate is a time-independent constant. Projecting

|ψ(t)〉 onto a state which is not an energy eigenstate will reveal interesting interference effects

between the different energy eigenstates.

A general (but formal) way to rewrite the time-dependent Schrödinger equation can be

given by introducing an “evolution operator”, Û(t, t0). The action of this operator is to move

a state forward in time by a specified amount

|αs(t)〉 = Û(t, t0) |αs(t0)〉 (3.7)

Inserting this into the Schrödinger equation, we have

i~
∂

∂t
|αs(t)〉 =

[

i~
∂

∂t
Û(t, t0)

]

|αs(t0)〉 = ĤÛ(t, t0) |αs(t0)〉 (3.8)

or

i~
∂Û (t, t0)

∂t
= ĤÛ(t, t0). (3.9)

The utility of this formalism is that if we can once evaluate Û(t, t0), any state may be carried

forward in time. Formally, of course,

Û(t, t0) = exp(−iĤ
~
(t− t0)) (3.10)

and if Ĥ is Hermitian, Û is unitary.
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Spin-1
2
particle in a magnetic field

Let us consider a simple example of time evolution, the two-state system with a time-

independent Hamiltonian. We will specifically consider the spin-1/2 electron in an external

magnetic field. The Hamiltonian is

Ĥ = −~µ · ~B =
e~

2mc
~σ · ~B (3.11)

and the negative charge of the electron flips the sign in the rightmost expression. The dot

product has the explicit expansion

~σ · ~B =

(

Bz Bx − iBy

Bx + iBy −Bz

)

. (3.12)

Let us compute the time evolution of states under this Hamiltonian, in several different ways.

It is useful to introduce the unit vector ~n = (sin θ cosφ, sin θ sin φ, cos θ) and to rewrite

the Hamiltonian as

Ĥ =
e~

2mc
~σ · ~B = ~ω~σ · ~n. (3.13)

Because the Hamiltonian has no explicit time dependence, we can straightforwardly write

the time evolution operator as

Û = e−
iĤt
~ = e−iω~σ·~nt (3.14)

To evaluate this expression, we expand in a Taylor series

e−iω~σ·~nt = 1̂− iωt~σ · ~n +
1

2
(iωt2)σ̂iniσ̂jnj + · · · (3.15)

Recalling that σ̂iσ̂j = iǫijkσ̂k + 1̂δij , we write

e−iω~σ·~nt = 1̂− iωt~σ · ~n+
1

2
(iωt)2(iǫijkσ̂k + 1̂δij)ninj + · · · . (3.16)

Since ǫijKninj = 0, this is

= 1̂− iωt~σ · ~n +
1

2
(iωt)2 + · · · . (3.17)

The next term in the series as 1
3!
(−iωt)3(~σ · ~n)3 = 1

3!
(−iωt)3(~σ · ~n). Thus the time evolution

operator is

Û = 1̂

(

1− 1

2
ω2t2 + · · ·

)

+ ~σ · n̂
(

−iωt+ (−iωt)3
3!

+ · · ·
)

= 1̂ cos(ωt)− i~σ · n̂ sin(ωt).
(3.18)
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Expressing our result in matrix form, we have

Û =

(

cosωt− inz sinωt sinωt(−inx − ny)

sinωt(−inx + ny) cosωt+ inz sinωt

)

(3.19)

=

(

cosωt− i cos θ sinωt −i sinωt sin θe−iφ

−i sinωt sin θeiφ cosωt+ i cos θ sinωt

)

.

This result can be used to compute the time evolution of any state. For example, suppose

that at time t = 0 the electron is spin-up. Then |ψ(t = 0)〉 =
(

1

0

)

, and at a later time t

|ψ(t)〉 =
(

cosωt− i cos θ sinωt

−i sinωt sin θeiφ

)

. (3.20)

The amplitude for the particle to be spin up at a later time t is

〈ψ+|ψ(t)〉 = cosωt− i cos θ sinωt (3.21)

and the resulting probability is

| 〈ψ+|ψ(t)〉 |2 = cos2 ωt+ cos2 θ sin2 ωt = 1− sin2 θ sin2 ωt. (3.22)

Notice how the probability oscillates with time, if θ 6= 0. This oscillation occurs because

the state |ψ(+)〉 is not an energy eigenstate unless θ = 0; it is a mixture of the two energy

eigenstates. The fraction of the amplitude associated with each eigenstate is varying with

time, and the two components’ interference is time-dependent.

We can also evaluate the evolution operator a second way: use completeness twice and

write the evolution operator as

Û = e
−iĤt

~ =
∑

i,j

|i〉 〈i| e−iĤt
~ |j〉 〈j| . (3.23)

In the sums, pick the |i〉’s and the |j〉’s to be energy eigenfunctions. In that case,

Û(t) =
∑

i

|i〉 e
−iEit

~ 〈i| . (3.24)

To proceed, we need the eigenfunctions and eigenvalues of the Hamiltonian. The Hamiltonian

matrix is

H = ~ω

(

nz nx − iny

nx + iny −nz

)

= ~ω

(

cos θ sin θe−iφ.

sin θeiφ − cos θ

)

(3.25)
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where on the second line we re-introduce the direction vector ~n of the magnetic field in

spherical coordinates. Recalling our discussion in the previous chapter, we discover quickly

that our eigenvalues are λ± = ±~ω and our eigenstates are

|ψ+〉 =
(

cos θ
2

sin θ
2
eiφ

)

(3.26)

and

|ψ−〉 =
(

− sin θ
2
e−iφ

cos θ
2

)

. (3.27)

A parenthetical remark: We used Eq. 3.26 with its funny half angle for θ in our discussion

in Chapter 2. Now we see that this choice actually contained physics: The angles θ and φ

parameterize the direction of the magnetic field – or, more generally, the “direction” of the

Hamiltonian in our two dimensional Hilbert space. Eq. 3.26 is called the “Bloch sphere”

parameterization of the spinor wave function. In fact, one can define a vector (the “Bloch

vector”)

~p = 〈ψ+|~σ|ψ+〉 = ẑ cos θ + x̂ sin θ cosφ+ ŷ sin θ sinφ (3.28)

to label the orientation of the state in the Bloch sphere. To visualize it, return to Eq. 3.25

and look at the direction vector ~n. When ~n points along the positive z direction (the north

pole of the sphere) the positive energy eigenstate is

|ψ+〉 =
(

1

0

)

(3.29)

and when ~n points to the south pole, θ = π and

|ψ+〉 =
(

0

1

)

. (3.30)

When the field has no ẑ component the state is an equal (up to a phase) superposition of

“up” and “down” states and the Bloch vector points along the equator.

We then reconstruct Û entry by entry. For example, we can recover the solution to our

first example by taking the matrix element of Û between |ψ(+)〉 (the value of the state at

t = 0) and |ψ(+)〉 (the observed state at time t):

〈↑ |Û | ↑〉 = ( 1 0 )Û

(

1

0

)

(3.31)
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=
∑

i

〈↑ |i〉 e
iEit

~ 〈i| ↑〉

= cos2(
θ

2
)e−iωt + sin2(

θ

2
)eiωt

= cosωt− i sinωt cos θ

as before.

Magnetic resonance

In many physical situations, the Hamiltonian is time dependent. In these cases it can be

quite difficult to solve the equation of motion exactly. An exception is (again) the two state

system. As an example of interesting dynamics, consider the situation of magnetic resonance.

We have a spin-1/2 particle (we will call it an electron) in an external magnetic field which

consists of a large constant term pointing in the ẑ direction and a small component which

rotates in the x− y plane , with an angular frequency ν. Explicitly, the magnetic field is

Bz = B Bx = b cos(νt) By = b sin(νt). (3.32)

Then our Hamiltonian is

Ĥ = ~ωσ̂z + ~Ω0(σ̂x cos(νt) + σ̂y sin(νt)) = ~

(

ω Ω0e
−iνt

Ω0e
iνt −ω

)

(3.33)

where we have defined ~ω = eB~/(2mc) and ~Ω0 = eb~/(2mc). In the magnetic resonance

literature, Ω0 is called the Rabi frequency. A general solution can be written as

|ψ(t)〉 =
(

a+(t)

a−(t)

)

(3.34)

and the corresponding equations of motion are

iȧ+ = ωa+ + Ω0e
−iωta− (3.35)

iȧ− = Ω0e
iωta+ − ωa−. (3.36)

To find a solution, we assume that

a± = A±e
−iλ±t (3.37)

so that
(

ω − λ+ Ω0e
−i(ν−λ++λ−)t

Ω0e
i(ν−λ++λ−)t −ω − λ−

)(

A+

A−

)

= 0. (3.38)
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We eliminate the time dependence entirely by making the ansatz that λ+ = λ− + ν. Then

we are left with a simple matrix equation

(

ω − λ− − ν Ω0

Ω0 −ω − λ−

)(

A+

A−

)

= 0. (3.39)

Let us split this equation apart to write it in a more familiar way:

(

ω − ν Ω0

Ω0 −ω

)(

A+

A−

)

= λ−

(

A+

A−

)

(3.40)

or

H

(

A+

A−

)

= E

(

A+

A−

)

(3.41)

with E = ~λ− and

H = −~ν

2
1 + ~(ω − 1

2
ν)σz + ~Ω0σx. (3.42)

This is the eigenvalue equation we found for a two state system when its Hamiltonian was

constant in time. The solution is the same: the determinant of Eq. 3.39 must vanish, giving

λ− = −ν
2
±∆ ∆ ≡

√

(

ω − 1

2
ν

)2

+ Ω2
0. (3.43)

Because there are two possible λ−’s, the most general solution to the equation will be a

linear combination of the energy eigenfunctions. Thus we have two unknown coefficients to

determine,

a−(t) = A
(1)
− e−i(− ν

2
+∆)t + A

(2)
− e−i(− ν

2
−∆)t. (3.44)

We can fix A
(1)
− and A

(2)
− from the boundary conditions at t = 0 plus the normalization

condition. Suppose, for example, that at t = 0 the electron has spin up:

|ψ(t = 0)〉 =
(

1

0

)

(3.45)

This implies

a−(t = 0) = 0 → A
(1)
− = A

(2)
− (3.46)

or

a−(t) = Ae
iνt
2 sin(∆t). (3.47)
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P

t

ν=2ω

ν>2ω

Figure 3.1: Variation of probability P (↓) with time in nuclear magnetic resonance.

An easy way to determine A is to return to our original equations and evaluate them at

t = 0. We had

iȧ−(0) = Ω0a+(0) + iωa−(0) (3.48)

and since a−(t = 0) = 0 and a+(t = 0) = 1, ∆A = Ω0 and

a−(t) =
Ω0

∆
sin(∆t)e

iνt
2 . (3.49)

Thus the probability that the spin of the electron is down at any time t is

P (↓) = |a−(t)|2 =
Ω2

0

∆2
sin2(∆t). (3.50)

This result is usually written as

P (↓) = Ω2
0

Ω2
sin(Ωt), Ω =

√

(

ω − 1

2
ν

)2

+ Ω2
0. (3.51)

Notice the behavior of P (↓) – especially its maximum value – on the frequency ν and strength

of rotating field. See Fig. 3.1. The functional form of Ω2
0/Ω

2 is called a “Lorentzian”

Ω2
0

Ω2
=

1

(ν − ν0)2 + Γ2/4
(3.52)

and is shown in Fig. 3.2. The quantity Γ is called the “full width at half maximum” of the

curve. Notice that as the strength of the rotating field falls to zero, the transition probability

becomes very very tightly peaked as a function of frequency. It becomes vanishingly small

unless the driving frequency corresponds to the frequency difference of the two states. This
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P

ν2ω

Figure 3.2: The Lorentzian line shape.

“resonance behavior” occurs at ~ν = 2~ω. Physically, the rotating field must supply the

right energy ~ν = ~ω− (−~ω) to carry the electron from the lower state to the upper state,

and then it can return the energy to the oscillating field as it falls back to the ground state.

Magnetic resonance has many analogs. One commonly-seen example is the case of a two-

state atom in an external electromagnetic field. The electromagnetic field oscillates with

frequency ν. The Hamiltonian has two parts. One term (Ĥ1) specifies the energy levels of

the atom and the other parameterizes the interaction of the electron and the electromagnetic

field (Ĥ2). Obviously, the first term can be written as

Ĥ1 =

(

ǫ1 0

0 ǫ2

)

. (3.53)

The interaction between the electron and the external electric field is a dipole interaction

−~p· ~E between the atom and the field. Most systems do not have permanent dipole moments,

so 〈i|~p|i〉 = 0. However, the off-diagonal terms need not vanish. We can parametrize this

situation as

Ĥ2 =

(

0 ∆e−iνt

∆∗eiνt 0

)

(3.54)

This Hamiltonian is exactly what we have just analyzed, but with the substitutions

Ω0 ↔ ∆ ω ↔ ǫ1 − ǫ2
2

. (3.55)



Quantum Mechanics 57

Heisenberg picture

In the Schrödinger picture, states evolve as

|αs(t)〉 = e−
iĤt
~ |αs(0)〉 , (3.56)

while operators without explicit time dependence remain constant in time. For example,

x(t) is just x. How then, do matrix elements of operators change in the Schrödinger picture?

Just compute the time derivative of the matrix element of an arbitrary operator

∂

∂t
〈αs(t)|Ô|βs(t)〉 =

(

∂ 〈α|
∂t

)

|Ô|β〉+ 〈α|∂Ô
∂t

|β〉+ 〈α|Ô|
(

∂ |β〉
∂t

)

= −〈α|ĤÔ
i~

|β〉+ 〈α|∂Ô
∂t

|β〉+ 〈α|ÔĤ
i~

|β〉

= − 1

i~
〈α|[Ĥ, Ô]|β〉+ 〈α|∂Ô

∂t
|β〉

(3.57)

The time dependence arises first because the states themselves evolve with time, and second,

because the operator itself might have explicit time dependence. We observe from this

calculation a very important special case: if Ô has no explicit time dependence and if it

commutes with the Hamiltonian, its matrix elements are time independent. The operator

Ô is a constant of motion. This has important practical applications in terms of how we

characterize states: they can be simultaneous eigenstates of the energy and of all dynamical

variables which commute with Ĥ.

Notice that we can re-write the operator equation as

d

dt
〈αs(t)|Ô|βs(t)〉 =

d

dt
〈αs(0)|e

iĤt
~ Ôe−

iĤt
~ |βs(0)〉

= 〈αs(0)|e
iĤt
~

dÔ

dt
e−

iĤt
~ |βs(0)〉+

1

i~
〈αs(0)|[|e

iĤt
~ Ôe−

iĤt
~ , Ĥ ]|βs(0)〉 .

(3.58)

We regroup the expression by defining time independent states

|αH(t)〉 = |αs(0)〉 (3.59)

and time dependent dynamical variables,

ÔH = e
iĤt
~ Ôe−

iĤt
~ (3.60)
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These definitions express the “Heisenberg representation” of quantum mechanics in which

the states are time-independent, but the operators are explicitly time-dependent. Then Eq.

3.58 becomes

d

dt
〈αH |ÔH |βH〉 = 〈αH |

dÔH

dt
|βH〉

= 〈αH |
∂ÔH

∂t
|βH〉+

1

i~
〈αH |[ÔH , Ĥ]|βH〉

(3.61)

This result holds for any states |α〉, |β〉, so it must be true for the operators themselves that

their time evolution is given by

dÔH

dt
=
∂ÔH

∂t
+

1

i~
[ÔH , Ĥ]. (3.62)

Taking the states to be time-independent and pushing all the time evolution onto the oper-

ators produces the Heisenberg representation, and the operator equation of motion is called

the “Heisenberg equation of motion.” It closely resembles the Poisson bracket formalism of

classical mechanics, where dynamical variables evolve through

dA

dt
= {A,H} ⇋

1

i~
[ÔH , Ĥ] (3.63)

(and we remind the reader of the transcription between Poisson bracket and commutator).

Note, however, that Heisenberg equations of motion will also govern object without classical

analogues (for example, spin).

As a useful example, suppose our Hamiltonian is that of a non-relativistic particle in an

external potential

Ĥ =
p̂2

2m
+ V (x̂) (3.64)

The Heisenberg equations of motion for the momentum and position operators are

dp̂

dt
=

1

i~
[p̂, Ĥ ] = −∂V

∂x
dx̂

dt
=

1

i~
[x̂, Ĥ] =

p̂

m
d2x̂

dt2
=

1

i~
[
dx̂

dt
, Ĥ] =

1

m

dp̂

dt
.

(3.65)

We can take an expectation value of the last expression. When we do so, we discover

Ehrenfest’s theorem,

m
d2 〈x̂〉
dt2

=
d 〈p̂〉
dt

= −〈∇V 〉 (3.66)
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Expectation values of the operators must be picture independent, so this result will be true

regardless of whether we evaluate it in Heisenberg or in Schrödinger representation.

Now we understand how the states and operators evolve in time in both pictures, but we

need to determine the time evolution of the base kets (the axes in Hilbert space). Suppose

we choose the base kets at t = 0 to be the eigenstates of some operator Â.

Â |a〉 = a |a〉 (3.67)

In the Schrödinger picture, the operators do not change with time so the base kets must also

not change with time. But in the Heisenberg picture the operators evolve in time according

to

ÂH(t) = e
iĤt
~ Âse

− iĤt
~ . (3.68)

Multiplying our eigenvalue equation on the left hand side by e
iĤt
~ , we observe that

e
iĤt
~ Â |a〉 = e

iĤt
~ a |a〉

= e
iĤt
~ Âe−

iĤt
~ e

iĤt
~ |a〉 = ae

iĤt
~ |a〉

ÂH

(

e
iĤt
~ |a〉

)

= a
(

e
iĤt
~ |a〉

)

(3.69)

Thus in the Heisenberg picture the base kets must evolve “backward” in time as e
iĤt
~ |a〉.

Regardless of picture, we can expand a state in terms of its base kets as

|ψ(t)〉 =
∑

n

cn(t) |n〉 . (3.70)

In the Schrödinger picture we can write this as

cn(t) = 〈n|
(

e−
iĤt
~ |ψ(t = 0)〉

)

, (3.71)

putting the time dependence onto the state |ψ(t)〉. To work in the Heisenberg picture, we

group terms differently,

cn(t) =
(

〈n| e− iĤt
~

)

|ψ(t = 0)〉 (3.72)

In the Heisenberg picture, the state does not change, |ψ(t = 0)〉 = |ψ(t)〉, but the base kets

change. The expansion coefficients are the same in both the Schrödinger and Heisenberg

pictures.
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The calculation of matrix elements is also the same in either basis. Assume that the

system is in state |a〉 at t = 0. What is the amplitude to be in an eigenstate of an operator

B̂ with eigenvalue b at a later time? In the Schrödinger picture this is

〈b|
(

e−
iĤt
~ |a〉

)

(3.73)

while in the Heisenberg picture we have
(

〈b| e− iĤt
~

)

|a〉 (3.74)

We have merely regrouped terms.

A specific example has some historical context. Consider a matrix element of the coor-

dinate

x(t)mn = 〈m(t)|x|n(t)〉 = 〈m|x(t)|n〉 , (3.75)

writing it first in Schrödinger and then in Heisenberg language. This matrix element drives

electromagnetic electric dipole transitions (the dipole moment is ~p = e~x). In classical electro-

dynamics we learn that if the dipole moment oscillates in time as ~p exp(−iωt), the frequency
of the emitted radiation is also ω. Quantum mechanically, however, we have the Bohr condi-

tion that the radiation emitted in a transition from state n to state m is ω = (En −Em)/~.

Taking |n〉 and |m〉 to be energy eigenstates, we see that the time dependence of our “coor-

dinate in transition” is

x(t)mn = 〈m|x|n〉 exp(i(Em − En)t/~) (3.76)

which of course gives our desired result. But there is more: If a transition n→ k is allowed

(Ek < En), and if the transition k → m is also allowed, there is often a direct transition

n → m, although it is usually a weak “forbidden” line. (This is called the “Rydberg - Ritz

combination principle” and it dates from 1908 long before quantum mechanics.) The matrix

element would be

x2(t)mn = 〈m|x2|n〉 exp(i(Em −En)t/~) (3.77)

so that the Bohr condition again obtains. In addition,

x2mn(t) =
∑

k

〈m|x(t)|k〉 〈k|x(t)|n〉 =
∑

k

x(t)mkx(t)kn (3.78)

from the fundamental rule for products of operators. Classically, if x(t) ∼ exp(iωt), then

x(t)2 ∼ exp(2iωt) and there is no way to get the Bohr condition. Quantum mechanically,

everything works: note the cancellation exp(−i(Ek−Ek)t/~) in Eq. 3.78. Perhaps Heisenberg

was led to the product rule by a desire to encode the Bohr condition in quantum dynamics

in a natural way.
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Example: Time evolution of the oscillator

The Heisenberg equations of motion of the oscillator are easily seen to mimic the classical

equations of motion

dp̂

dt
= −mω2x̂

dx̂

dt
=

p̂

m
(3.79)

This translates into equations for the time dependence of the raising and lowering operators

of

dâ

dt
=

√

mω

2~

(

p̂

m
− imω2x̂

mω

)

= −iωâ
dâ†

dt
= iωâ†.

(3.80)

These can be easily integrated to find

â(t) = e−iωtâ(0)

â†(t) = eiωtâ†(0).

(3.81)

Regrouping, we discover that the time evolution of the momentum and position operators is

x̂(t) = x̂(0) cosωt+
p̂(0)

mω
sinωt

p̂(t) = −mωx̂ sinωt+ p̂(0) cosωt.

(3.82)

A second derivation of these quantities can be done beginning with the Heisenberg equations

of motion

x̂(t) = e
iĤt
~ x̂(0)e

−iĤt
~

p̂(t) = e
iĤt
~ p̂(0)e

−iĤt
~

(3.83)
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by using the Baker-Hausdorff relation

eiĜλÂe−iĜλ = Â+ iλ[Ĝ, Â] +
(iλ)2

2!
[Ĝ, [Ĝ, Â]] + · · · . (3.84)

This gives

e
iĤt
~ x̂(0)e−

iĤt
~ = x̂(0) +

it

~
[Ĥ, x̂(0)] +

(it)2

2!~2
[Ĥ, [Ĥ, x̂(0)]] + · · · (3.85)

Fortunately, the algebra for the oscillator is simple:

[Ĥ, x̂(0)] = −i~
m
p̂(0) (3.86)

[Ĥ, p̂(0)] = i~mω2x̂(0) (3.87)

and so

e
iĤt
~ x̂(0)e−

iĤt
~ = x̂(0) +

p̂(0)tω

m
− 1

2
t2ω2x̂(0)− 1

3!
t3ω2 p̂(0)

mω
+ · · ·

= x̂(0) cosωt+
p̂(0)

mω
sinωt.

(3.88)

Notice that the operators show oscillatory time dependence. However, their expectation

values in energy eigenstates will not show any time dependence. Only states which are

superpositions of energy eigenstates will have time-varying expectation values of 〈x(t)〉 and
〈p(t)〉.

As a final example of Heisenberg equations of motion, we return to the two-state system.

Here the Pauli matrices are the operators. (Recall that the spin ~S = (~/2)~σ.) The operator

equation of motion will be

i~
∂σ̂i
∂t

= [σ̂i, Ĥ]. (3.89)

Suppose our Hamiltonian is time independent: we write it as Ĥ = ~ω~σ · n̂ = ~ωσ̂jn̂j . Then

the explicit equation of motion is

i~
∂σ̂i
∂t

= [σ̂i, ~ω~σ · n̂] = ~ωnj[σ̂i, σ̂j ]

= 2~ωiǫijknj σ̂k = 2i~ωn̂× ~σ.

(3.90)

This is
∂~σ

∂t
= 2ωn̂× ~σ, (3.91)
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which is identical the classical equation of motion for a magnetic dipole in an external

magnetic field. This is an operator equation: sandwiching it between states turns it into an

equation of motion for the Bloch vector introduced earlier in the chapter.

Let us complete the solution by splitting ~σ into a part parallel to n̂ and a part transverse

to it, ~σ = ~σ‖ + ~σ⊥. The parallel part ~σ‖ will remain constant in time, because

∂~σ‖
∂t

= −2ω(~σ‖ × n̂) = 0 → ~σ‖(t) = ~σ‖(0). (3.92)

We next decompose the transverse vector into two mutually orthogonal vectors σ1 and σ2,

where

n̂× ~σ1 = ~σ2 n̂× ~σ2 = −~σ1 (3.93)

so that
∂~σ1
∂t

= −2ω~σ2
∂~σ2
∂t

= 2ω~σ1 (3.94)

Two new linear combinations of these vectors

~σ+ = ~σ1 + i~σ2 ~σ− = ~σ1 − i~σ2 (3.95)

diagonalize the equations of motion. For σ+, this is

∂

∂t
(~σ1 + i~σ2) = −2ω(~σ2 − i~σ1) = 2iω(~σ1 + i~σ2) (3.96)

and the equation for σ− is similar. The result is

~σ1(t) + i~σ2(t) = e2iωt(~σ1(0) + i~σ2(0))

~σ1(t)− i~σ2(t) = e−2iωt(~σ1(0)− i~σ2(0))

(3.97)

and we have completely specified all time dependence in the problem. The operator precesses

around the direction specified by the Hamiltonian, essentially, this is cyclotron motion.

The interaction picture

Next we briefly consider a “mixed” picture, in which both the states and operators evolve in

time. This picture will prove to be quite convenient later on when we study time-dependent

perturbation theory. Let us suppose we can decompose the Hamiltonian as

Ĥ = Ĥ0 + V̂ (3.98)
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where Ĥ0 is time independent and simple, and V̂ is what is left over in the Hamiltonian. We

define the interaction picture states as

|αI(t)〉 = e
iĤ0t

~ |αs(t)〉 (3.99)

and we define the operators in the interaction picture as

ÔI(t) = e
iĤ0t

~ Ôe
−iĤ0t

~ (3.100)

The idea is, that because H0 is simple, the problem of how states evolve under H0 alone can

be completely specified. We wish remove its effect from the problem in order to continue.

We find that |αI(t)〉 evolves with time only under the influence of the operator V (expressed

in interaction picture)

i~
∂

∂t
|αI(t)〉 = −Ĥ0e

iĤ0t

~ |αs(t)〉+ e
iĤ0t

~ ×
(

i~
∂

∂t
|αs(t)〉

)

= −Ĥ0 |αI(t)〉+ e
iĤ0t

~ (Ĥ0 + V̂ ) |αs(t)〉
= −Ĥ0 |αI(t)〉+

(

Ĥ0 + e
iĤ0t

~ V̂ e−
iĤ0t

~

)

|αI(t)〉

= V̂I |αI(t)〉 .
(3.101)

So much for the states. Operators evolve in time with a Heisenberg-like equation of motion,

which only involves H0. It is easy to show that their interaction picture equation of motion

is
dÔI

dt
=
∂ÔI

∂t
+

1

i~
[ÔI , Ĥ0]. (3.102)

The adiabatic theorem

Suppose you have a time dependent Hamiltonian. At t = 0 your system is in an energy

eigenstate. As time goes on the eigenstates of the Hamiltonian evolve because H(t) changes,

but if the time dependence is very slow, the system will remain in the energy eigenstate. To

illustrate the dynamics, glance back at Fig. 2.7, the two state system, and imagine that the

off-diagonal term in Ĥ, ∆, is large and positive at t = 0 and slowly decreases with time,

eventually becoming negative. The energy of a system placed in the upper eigenvalue at

t = 0 flows along the upper eigenvalue as ∆ is varied. The state vector at any time remains

the eigenstate at the appropriate value of ∆(t). Let’s see how that happens.



Quantum Mechanics 65

We again solve

i~
∂ |ψ(t)〉
∂t

= H(t) |ψ(t)〉 . (3.103)

If Ĥ were time independent, we could expand in a complete set of energy eigenfunctions,

|ψ(t)〉 =
∑

n cn |n〉 exp(−iEnt), and an eigenstate of Ĥ would evolve as a pure phase, |n, t〉 =
|n〉 exp(−iEnt).

In an adiabatic process the Hamiltonian is time dependent, H(t), but we assume it

changes slowly. At any one time we can still solve the eigenvalue equation

H(t) |n, t〉 = En(t) |n, t〉 (3.104)

and it is still the case that 〈n, t|m, t〉 = δmn. We guess a solution to the full equation

ψ(t) =
∑

n

cn(t) |n, t〉 exp(iθn(t)). (3.105)

Inserting our guess in the Schrödinger equation,

i~
∑

n

(ċn(t) |n〉+ cn(t)
d |n〉
dt

+ icn(t)θ̇(t))e
iθn =

∑

n

cn(t)H(t) |n, t〉 eiθn

=
∑

n

cn(t)En(t) |n〉 eiθn

(3.106)

Setting

θn(t) = −1

~

∫ t

0

En(t
′)dt′ (3.107)

makes the right hand side equal to the last term on the left side, leaving

∑

n

ċn(t) |n〉 eiθn = −
∑

n

cn(t)
d |n〉
dt

eiθn (3.108)

and taking an inner product with 〈m| gives us

ċm(t) = −
∑

n

cn(t) 〈m| d
dt

|n〉 ei(θn−θm). (3.109)

Let’s separate the n = m term in the sum.:

ċm(t) = cm(t) 〈m| d
dt

|m〉 −
∑

n 6=m

cn(t) 〈m| d
dt

|n〉 ei(θn−θm). (3.110)
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To deal with the second term, we differentiate Eq: 3.104:

d

dt
(H(t) |n, t〉 = d

dt
(En(t) |n, t〉) (3.111)

or

Ḣ |n〉+H
d

dt
|n〉 = Ėn(t) |n〉+

d

dt
|n〉 (3.112)

Again take an inner product with 〈m(t)|, and remember we will use this for the n 6= m term

–

(Em(t)−En(t) 〈m| d
dt

|n〉 = δmnĖn(t)− 〈m|Ḣ|n〉 . (3.113)

Inserting this result in Eq. 3.109 gives us

ċm(t) = −cm 〈m(t)| d
dt

|m(t)〉 −
∑

n 6=m

cn
〈m|Ḣ|n〉
Em − En

ei(θn−θm). (3.114)

This is exact. Now for adiabaticity. Suppose that Ḣ ∼ ǫ/τ where ǫ is some typical energy

which varies over a typical time τ . The second term scales as ǫ/(τ(Em−En)). If this quantity

is small compared to the 1/dt of the first term, that is, if dt ≪ τ∆E/ǫ,we can neglect the

second term compared to the first term. This says that the cm’s evolve independently. We

can integrate this expression:

cm(t) = cm(0) exp(−
∫ t

0

dt′ 〈m(t′)| d
dt

|m(t′)〉) = cm(0) exp(iγm(t)). (3.115)

(The integral is a pure phase since 〈m(t′)| d
dt
|m(t′)〉 is purely imaginary – the time derivative

is antihermitian.) If we start in the mth eigenstate of H(0), we stay in the mth eigenstate

of H(t). All that happens is that the our wave function picks up an extra phase factor.

Pause for a second: this can have practical applications: if you control the time depen-

dence of H(t), you can tune it very slowly and “walk” your system, effectively, from one

eigenstate of a time independent H to another one. In the case of the two state system,

taking ∆ from a large and positive value transforms the state into what it would be if there

were no avoided level crossing, basically carrying you into the orthogonal spin state.

In this case the phase factor may not be important. But suppose the adiabatic transfor-

mation of the Hamiltonian takes it away from H(0) and brings it back to H(0) at a later

time. The state which went away and came back picks up a phase factor compared to a state

which stayed put. Interesting interference effects can result. In this case the phase factor is

called a Berry phase.
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Often we think of the transformation in H(t) as resulting from moving the state around

in space. We replace the time variable in Eq. 3.115 by a coordinate ~R(t). The chain rule

tells us
d

dt
=
d~R

dt
· ~∇~R. (3.116)

The phase becomes

γ = i

∫ R(t)

R(0)

d~R′ · 〈n(~R′)|~∇~R′ |n(~R′)〉 (3.117)

For a closed path, ]~R(T ) = ~R(0) and the Berry phase is

γ =

∮

d~R′ · 〈n(~R′)|~i∇~R′ |n(~R′)〉 (3.118)

We will see an application of this result in the next chapter when we look at the Arahanov-

Bohm effect.

There is a simpler version of this derivation if we specialize to the two state system.

Begin again with

i~
∂ |ψ(t)〉
∂t

= H(t) |ψ(t)〉 . (3.119)

and assume that |ψ(t)〉 = V (t) |φ0(t)〉 where |φ0(t)〉 is an energy eigenstate of H(t). Rotate

|ψ(t)〉 into a diagonal basis. The Schrödinger equation is

i~(
∂V

∂t
|φ0〉+ V (t)

∂ |φ0〉
∂t

) = HV (t) |φ0〉 . (3.120)

This is

i~
∂ |φ0〉
∂t

= (V †HV ) |φ0〉 − i~V †∂V

∂t
|φ0〉 (3.121)

By construction, V †HV is diagonal – V rotates the state |ψ(t)〉 into an energy eigenstate,

so it rotates the Hamiltonian to be diagonal as well. This means that the first term keeps

an energy eigenfunction an energy eigenfunction. The second term is a mixing term. To

evaluate it, write

V =

(

cos θ(t) sin θ(t)

− sin θ(t) cos θ(t)

)

. (3.122)

(I am assuming that ∆, the off-diagonal entry in the 2 × 2 Hamiltonian, is real, and I am

being careless about conventions for 2’s in the definition of the angle.) A few lines of algebra

give

−iV †∂V

∂t
= −i

(

0 ∂θ(t)/∂t

−∂θ(t)/∂t 0

)

(3.123)

so we recover the adiabatic theorem when ∂θ(t)/∂t is small.
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Neutrino oscillations

Neutrinos are nearly massless, nearly noninteracting particles that “pair” with charged lep-

tons in the weak interactions. Technically, neutrinos and charged leptons form a doublet of

weak isospin

le =

(

νe

e

)

lµ =

(

νµ

µ

)

lτ =

(

ντ

τ

)

(3.124)

and the weak interactions raise or lower the third component of the weak isospin of the

lepton. (It is actually a bit more complicated, but this is all we need to know for now).

Anyway, it happens that the three neutrinos νe, νµ, ντ are not energy (“mass”) eigenstates;

the mass eigenstates (which we will label as ν1, ν2, ν3) are mixtures of these states. Thinking

temporarily about two species of neutrinos, this is a situation we have seen before, there are

two bases for our states, related by a unitary transformation,

(

νe

νµ

)

=

(

cos θ sin θ

− sin θ cos θ

)(

ν1

ν2

)

. (3.125)

The neutrino Hamiltonian is diagonal in the (ν1, ν2) basis. Neutrinos are very light so their

energy is E =
√

p2 +m2 which is approximated as E = p+ 1
2
m2/p (and c = 1 for now). We

can write a rescaled H in the (ν1, ν2) basis as

H =

(

m2
1 0

0 m2
2

)

=
∆m2

2

(

−1 0

0 1

)

+D (3.126)

where D is a diagonal matrix. In the (νe, νµ) basis

H =
∆m2

2

(

− cos 2θ sin 2θ

sin 2θ cos 2θ

)

+D. (3.127)

In a terrestial experiment, neutrinos would be created in a νe, νµ, ντ basis, propagate

in the ν1, ν2, ν3 basis, and are detected in a νe, νµ, ντ basis. The physics – and formulas –

describing the time evolution of a state are exactly those we saw at the start of this chapter;

the probability that, say, an initial νe would be detected as a νe would oscillate in time. The

situation is called “vacuum oscillation” in the literature.

However, the effects of neutrino oscillations were first noticed in the detection of neutrinos

from the sun, and the physics is quite different. Fusion processes in the sun create νe’s. The

luminosity of the sun tells us the absolute flux of νe’s expected to be seen on Earth. The



Quantum Mechanics 69

“solar neutrino problem” was that when the flux was observed (by Ray Davis and John

Bahcall, in a large tank of cleaning fluid in a mine in South Dakota from 1970 to 1994), the

observed detection rate was about a third of what was expected.

As they propagate through the sun, interactions with matter in the sun induce an

additional term in the νe channel. For example, one could imagine a scattering process

νe+ e→ νe+ e due to exchange of a W boson. No such process occurs in the νµ channel be-

cause it would involve a muon and the energy scales in the sun are too low – KeV, far below

the muon mass of about 100 MeV. So, in a (νe, νµ) basis we have an additional contribution

∆H =

(

A 0

0 0

)

=
A

2

(

1 0

0 1

)

+
A

2

(

1 0

0 −1

)

(3.128)

and the total Hamiltonian becomes

H =
1

2

(

A−∆m2 cos 2θ ∆m2 sin 2θ

∆m2 sin 2θ −A +∆m2 cos 2θ

)

+
1

2
(A+m2

1 +m2
2)

(

1 0

0 1

)

. (3.129)

We have seen this Hamiltonian before, and we can write down its eigenvalues by inspection.

– They are (A+m2
1 +m2

2)/2± E where

E =
1

2

(

(A−∆m2 cos 2θ)2 + (∆m2 sin 2θ)2
)1/2

. (3.130)

Now for some physics: A is proportional to the density of material the neutrino can interact

with, so it is largest at the center of the sun and decreases to zero at the sun’s surface. If A

is large enough (A≫ ∆m2 cos 2θ), it dominates the Hamiltonian,

H =
A

2

(

1 0

0 −1

)

(3.131)

and |νe〉 is an eigenstate of H . A picture of the spectrum is shown in Fig. 3.3. In this

idealized situation the initial |νe〉 state is born on the far right of the picture, at large A,

moves to the left as it exits the Sun, follows the upper eigenvalue’s branch as A varies, and

emerges as the mass eigenstate |ν2〉. There is no oscillation en route from the sun to the

earth since it is the mass eigenstate which propagates; the neutrino detector on the earth

measures the weak eigenstate |νe〉 = cos θ |ν1〉+sin θ |ν2〉 and so the measured flux of electron

neutrinos is reduced by a factor | 〈νe|ν2〉 |2 = sin2 θ.

The Davis - Bahcall experiment detected relatively high energy neutrinos. It happens

that A is energy dependent and proportional to Eν . Without continuing the calculation we
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Figure 3.3: Neutrino energy spectrum in the Sun. Note the “resonance” or avoided level

crossing at A = ∆m2 cos 2θ.
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can observe that the reduction factor will be energy dependent (and indeed if A = 0 we are

back to vacuum oscillations). Later experiments with different energy resolutions measured

different dilution factors.

The situation is called “matter oscillation” or the MSW effect after its discoverers,

Mikheyev, Smirnov, Wolfenstein. Useful references if you want to know more: check out

the “Neutrino masses, mixing and oscillations” article in the Review of Particle Properties

https://pdg.lbl.gov/ and H. A. Bethe, “A Possible Explanation of the Solar Neutrino

Puzzle,” Phys. Rev. Lett. 56, 1305 (1986) doi:10.1103/PhysRevLett.56.1305.

https://pdg.lbl.gov/
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Chapter 4

Propagators and path integrals
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Propagators or Green’s functions

It is often useful to be able to express the behavior of physical quantities in terms of a source

function and a propagator or kernel. This can be done for the Schrödinger equation. We

will first consider the case of a time-independent Hamiltonian. We expand our state as a

superposition of energy eigenfunctions and write the time-dependent state as

|α(t)〉 = e−
iĤ(t−t0)

~ |α(t0)〉
=

∑

a

|a〉 〈a|α(t0)〉 e−
iEa(t−t0)

~ . (4.1)

The most useful way to present the result is to write it in coordinate space basis. We take

the overlap of the state |α(t)〉 with the bra 〈x| and re-label 〈x|α(t)〉 = ψ(x, t), 〈x|a〉 = ua(x).

This gives

ψ(x, t) =
∑

a

ua(x) 〈a|α(t0)〉 e
−iEa(t−t0)

~ (4.2)

where

〈a|α(t0)〉 =

∫

d3x′ 〈a|x′〉 〈x′|α(t0)〉

=

∫

d3x′u∗a(x
′)ψ(x′, t0)

(4.3)

so

ψ(x, t) =
∑

a

ua(x)

∫

d3x′u∗a(x
′)ψ(x′, t0)e

− iEa(t−t0)
~

=

∫

d3x′
∑

a

ua(x)u
∗
a(x

′)e−
iEa(t−t0)

~ ψ(x′, t0)

=

∫

d3x′K(x, t; x′, t0)ψ(x
′, t0).

(4.4)

We have introduced the propagator, K(x, t; x′, t0).

The Schrödinger equation is a wave equation. You may recall a similar object in electro-

magnetism, with a distinction between a “retarded” propagator (t > t0) and an “advanced”

one (t < t0). Generally, because of causality, we are interested in the retarded propagator,

K+(x, t; x′, t0) = K(x, t; x′, t0)θ(t− t0) (4.5)
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where θ(t − t0) is the step function (equal to unity for t > t0 and zero otherwise). We can

derive a familiar expression for the propagator by writing

θ(t− t′)ψ(x, t) =

∫

d3x′a+K(x, t; x′, t0)ψ(x
′, t0) (4.6)

and multiplying through

(i
∂

∂t
− 1

~
H)[θ(t− t0)ψ(x, t)] = iδ(t− t0)ψ(x, t)

=

∫

d3x′(i
∂

∂t
− 1

~
H)K+(x, t; x′, t0)ψ(x

′, t0).

(4.7)

So it must be that

(i~
∂

∂t
−H)K+(x, t; x′, t0) = i~δ3(x− x′)δ(t− t0), (4.8)

that is, like all propagators or Green’s functions, K+(x, t; x′, t0) is the solution of an inho-

mogeneous Schrödinger equation with a delta function source. I will refer interchangeably

to K and K+, always meaning the retarded propagator K+.

A compact expression for the propagator is given simply by expressing the time evolution

operator in a coordinate space basis,

K(x, t; x′, t0) =
∑

a

〈x|a〉 e−
iEa(t−t0)

~ 〈a|x′〉

= 〈x|e−
iĤ(t−t0)

~ |x′〉 .
(4.9)

A useful special case is the free particle, Ĥ = p̂2/2m. It is easy to find the propagator

for a free particle by passing to momentum space:

〈x1|e−
iĤt
~ |x2〉 =

∫

d3p 〈x1|p〉 e−
ip̂2t
2m~ 〈p|x2〉

=

∫

d3p

(2π)3
e

ipx1
~ e−

ip̂2t
2m~ e−

ipx2
~

(4.10)

Performing the integral by completing the square gives us an explicit result for the free

particle propagator,

K(x1, t; x2, 0) =
( m

2πi~t

)
3
2

exp

(

i(x1 − x2)
2m

2~t

)

θ(t). (4.11)
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Now imagine nesting propagators together, by splitting the time interval into two pieces

and inserting a complete set of states
∫

d3x3 |x3〉 〈x3| between the pieces,

K(x, t; x2, t2) =

∫

d3x3 〈x1|e−i
Ĥ(t1−t3)

~ |x3〉 〈x3|e−i
Ĥ(t3−t2)

~ |x2〉 . (4.12)

Clearly, this is just the statement that

K(x, t; x2, t2) =

∫

d3x3K(x1, t1; x3, t3)×K(x3, t3; x2, t2). (4.13)

This result can be iterated as needed. Variations on propagators are also often encountered.

One of them is the quantity

G(t) =

∫

d3xK(x, t; x, 0). (4.14)

By a simple passage of steps, this is

G(t) =

∫

d3x
∑

a

〈x|a〉 〈a|x〉 e− iEat
~

=
∑

a

∫

d3x 〈a|x〉 〈x|a〉 e− iEat
~

=
∑

s

〈a|a〉 e− iEat
~ =

∑

a

e−
iEat
~ .

(4.15)

A variation on G(t) is used extensively in statistical mechanics, as the partition function

Z =
∑

a

e−βEa (4.16)

where β = 1
kT
. Clearly β plays the same role as −it

~
in our equations. One can also Fourier

transform of G(t) into the energy domain

G(t) → G(E) = −i
∫ ∞

0

dtG(t)e
iEt
~

= −i
∫ ∞

0

dt
∑

a

e−
iEat
~ e

iEt
~

= lim
ǫ→0

−i
∫ ∞

0

dt
∑

a

ei(
E−Ea

~
+ iǫ

~
)t

= −i~
∑

a

1

E − Ea + iǫ
.

(4.17)

Variations on this formula appear when one is considering scattering processes.
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Path integrals

What if H varies with time? How can we make sense of the time evolution operator? Let

us begin with the formal expression for the evolution operator

Uαβ(t) = 〈α| exp(−iĤt
~

)|β〉 . (4.18)

In this formula t is some finite quantity, so it might be hard to compute Uαβ(t). We propose

to evaluate the time evolution operator by slicing the time interval into a series of N steps

of infinitesimal time interval ∆t, arranging that t = N∆t. In each time interval ∆t, the

Hamiltonian will be regarded as constant, while of course it will be allowed to vary from

time step to time step. That is,

Uαβ(t) = lim
N→∞;∆t→0

〈α|
N
∏

i=1

exp(−iĤ(ti)∆t

~
)|β〉 . (4.19)

Inserting a complete set of states between each exponential factor, we have

Uαβ(t) =
∑

j1

∑

j2

· · ·
∑

jN

〈α|jN〉 〈jN | exp(−
iĤ(tN)

~
∆t)|jN−1〉

〈jN−1| exp(−
iĤ(tN−1)

~
∆t)|jN−2〉 · · ·

〈j1| exp(−
iĤ(t1)

~
∆t)|β〉 .

(4.20)

Rather than thinking of this expression time slice by time slice, let us link together a partic-

ular set of states |j′1〉, |j′2〉, . . . |j′N〉, and connect them together as a “path” in Hilbert space,

as shown in Fig. 4.1. Each path contributes a complex number to Uβα, the product of each

particular matrix element 〈j′M | exp(−iH(tM )∆t/~)|j′M−1〉. Uβα is the sum of contributions

from all paths: hence the name “path integral” associated with this representation of the

time evolution operator.

Let us suppose that our intermediate states are diagonal in coordinate space, so that we

can interpret each path through Hilbert space as a “real” trajectory, x(t). Then,

Uαβ(t) =

∫

dx0

∫

dxN · · ·
∫

dx1 〈α|xN〉 〈xN | exp(−
iĤ(tN)

~
∆t)|xN〉 × (4.21)
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N−1

2

3

1

α

β

Figure 4.1: Paths in the time-sliced interval.

〈xN | exp(−
iĤ(tN−1)

~
∆t)|xN−1〉 · · · 〈x2| exp(−

iĤ(t1)

~
∆t|x0〉) 〈x0|β〉 .

(4.22)

The time slicing helps us make sense of the evolution operator. Suppose next that the

Hamiltonian is that of a particle in an external potential, Ĥ = Ĥ1+ Ĥ2, where Ĥ1 =
p̂2

2m
and

Ĥ2 = V (x). Then we can break the time evolution operator over a time ∆t (which involves

Ĥ into a product of two terms

exp(−iĤ∆t

~
) = exp(−iĤ1∆t

~
) exp(−iĤ2∆t

~
) +O(∆t2). (4.23)

This means that

〈x1| exp−
iĤ1∆t

~
exp−iĤ2∆t

~
|x2〉 =

∫

dx3 〈x1| exp(−
ip̂2∆t

2m~
)|x3〉

× 〈x3| exp(−
iV (x)∆t

~
)|x2〉

=

∫

dx3 〈x1| exp(−
ip̂2∆t

2m~
)|x3〉

×δ(x3 − x2) exp(−
iV (x2)∆t

~
).

(4.24)

Notice that the term first term is just the propagator for a free particle, and so

〈x1| exp(−
iĤ∆t

~
)|x2〉 =

∫

dx3K(x1,∆t; x3, 0)δ(x3 − x2) exp(−
iV (x2)∆t

~
)

=
( m

2πi~∆t

)
1
2
exp[i

(

m(x1 − x2)
2

2(∆t)2
− V (x2)

)

∆t

~
].

(4.25)
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Thus the path integral will take the form

Uαβ(t) =
( m

2πi~∆t

)
N
2

∫

dxN · · · dx1 〈α|xN〉 〈x1|β〉

exp

(

i∆t

~

N
∑

j=1

(

1

2
m

(

xj+1 − xj
∆t

)2

− V (xj)

))

.

(4.26)

(We have factorized the ∆t term in the expression in a useful way.) In the limit that ∆t→ 0

the exponential factor associated with a single path x(t′) becomes

exp

(

i

~

∫ t

0

dt′
(

1

2
mẋ2(t′)− V (x(t′))

))

. (4.27)

The reader should recognize the integrand as the classical Lagrangian for a nonrelativistic

particle in an external potential., The integral is the classical action associated with its

integral along a path specified by x(t′). This is the expression for the contribution to the

path integral from a single path (a single term in the sum over intermediate states as defined

in Eq. 4.20.) Each contribution is a phase, whose value is the ratio of the classical action

for that particular path divided by ~. The time evolution operator is a sum of contributions

over all possible paths the particle can take from the initial time to the final time.

We can now understand how classical dynamics can arise from quantum mechanical

motion. Suppose that the action for every possible path the particle could take is large,

much greater than ~. Compare two paths (which could correspond to paths which are

similar in the classical sense). An action S0 is associated with one path while the other has

a different action, which we will write as S0 + δS. These two paths combine to produce a

contribution to the evolution operator of

exp
iS0

~
+ exp

i(S0 + δS)

~
= exp

iS0

~

(

1 + exp
iδS

~

)

. (4.28)

If δS/~ is a large number, the phase difference between the paths, exp(iδS/~), will not be

small. There will be destructive interference between the two paths and their contribution

to the transition amplitude will be small. Obviously, the only sets of paths which contribute

will be the ones for which their contributions will add coherently. These will be the ones for

which δS ≃ 0, This is the statement of the principle of least action: the dominant paths are

the ones which extremize the classical action – that is, the particle follows the path which is

the solution to the classical equations of motion.
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As a contrast, it could be the case that all paths have a classical action which is on the

order of, or smaller than ~. Then there are no sets of nearby paths which dominate the

evolution operator. These systems are fully quantum mechanical; attempting to describe a

particle’s motion using the idea of a classical trajectory will not result in correct physics.

Electromagnetism in quantum mechanics

Now let us consider the interaction of a quantum mechanical system with the electromagnetic

field, which we will treat as a classical object for the time being. Recall the connection

between fields and potentials

~B = ~∇× ~A ~E = −~∇φ− 1

c

∂ ~A

∂t
. (4.29)

The classical Hamiltonian for a particle in an electromagnetic field involves the potentials φ

and ~A, not the fields ~E and ~B. The appropriate quantity for the kinetic part of the Hamil-

tonian involves the so-called “covariant derivative” (see Jackson Sec. 12.1 for a derivation),

Hcl =
1

2m

(

~p− e ~A

c

)2

+ eφ.. (4.30)

Promoting dynamical variables (p̂ and x̂) to operators gives us the quantum Hamiltonian

operator

Ĥ =
1

2m

(

p̂2 − e

c

(

~̂p · ~A+ ~A · ~̂p
)

+
e2A2

c2

)

+ eφ̂. (4.31)

We have carefully kept both terms linear in p̂ because in coordinate representation p̂ =

(~/i)∇, and in principle, the derivative can act on the vector potential. The Heisenberg

equation of motion is

i~
d~x

dt
= [~̂x, Ĥ] =

1

m

(

~̂p− e ~A

c

)

(4.32)

and the quantum analog of the Lorentz force law is

m
d2~̂x

dt2
= e ~E +

e

2c

(

d~̂x

dt
× ~B.− ~B × d~̂x

dt

)

. (4.33)

The appearance of ~A rather than ~B seems a bit odd when we remember that electro-

dynamics has a gauge symmetry: the laws of electrodynamics are invariant under gauge

transformations
~A→ ~A+ ~∇χ; φ → φ− 1

c

∂φ

∂t
(4.34)



Quantum Mechanics 81

where χ is any scalar function of x and t. This means that there are many possible choices

for a vector potential which will give the same magnetic field. How do different gauge choices

(choices for ~A) affect the solution of the Schrödinger equation? Let’s consider an example:

a spinless particle moving in an external constant magnetic field, chosen to point in the ẑ

direction for convenience. The classical situation is simple: circular motion around the field

line, rotating at the cyclotron frequency. Let’s make some choices for ~A and see what we

get:

1. ~A = (−yB, 0, 0): In this case the Hamiltonian is

Ĥ =
1

2m

(

(

p̂x −
eBy

c

)2

+ p̂2y + p̂2z

)

. (4.35)

Ĥ has no explicit dependence on x or z, so its commutator with px and pz will be zero.

These quantities are conserved or equivalently correspond to good quantum numbers

of our states. (Or: states can be simultaneous eigenstates of H , px and pz: we write

|E〉 = |E, p′z, p′x〉. The Hamiltonian is

Ĥ =
p̂2y
2m

+
1

2m

(

p′x −
eBy

c

)2

+
p2

′

z

2m
(4.36)

where p′x and p′z are c-numbers. Note that this means that the second term in the

Hamiltonian is simply a shifted quadratic function of y, e2B2/(2mc2)
(

y − ep′x
eB

)2

, and

the Hamiltonian is that of a harmonic oscillator,

Ĥ =
p2

′

z

2m
+

p̂2y
2m

+
mω2

c

2
(y − y0)

2, (4.37)

where ωc is just the cyclotron frequency, eB/(mc). Thus the energy levels are those of a

harmonic oscillator superimposed on those of a free particle moving in the ẑ direction,

En = ~ωc

(

n+
1

2

)

+
p2

′

z

2m
, (4.38)

This is the quantum mechanical analog of circular motion at the cyclotron frequency,

an orbit about a field line, combined with uniform motion along the field line. These

levels are called “Landau levels.” Obviously, the states exhibit high degeneracy. When

the quantum mechanical particles are fermions, there are interesting consequences as-

sociated with this degeneracy. This is a story for another day.
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2. We could equally well make another gauge choice

Ax = −By
2

Ay =
Bx

2
. (4.39)

In this gauge, the Hamiltonian becomes

Ĥ =
1

2m

(

p̂2z +

(

p̂x +
eBy

2c

)2

+

(

p̂y −
eBx

2c

)2
)

. (4.40)

Let us now define P̂x = p̂x +
eBy
2c

and P̂y = p̂y − eBx
2c

. The commutator of these two

quantities is

[P̂x, P̂y] =
mωx

2

(

[y, P̂y]− [P̂x, x]
)

= imωc~.. (4.41)

This is almost the commutator of a canonically conjugate pair of dynamical variables.

We can introduce such variables by performing a rescaling, defining Q̂ = −P̂y/(mωc)

and P̂ = P̂x. In that case we have the usual commutation relation [Q̂, P̂ ] = i~. The

Hamiltonian becomes

Ĥ =
p2z
2m

+
P̂ 2

2m
+

1

2
mω2

c Q̂
2. (4.42)

Again, this is a harmonic oscillator, with the same spectrum we found before. The

energy eigenvalues are gauge invariant. That seems like a sensible result! Physical

results should be gauge invariant. The states, however, appear to be quite different.

What is going on?

Let us answer this question by considering a different question: Where did the the ~p− e ~A
c

come from? Can we give an explanation which does not depend on a classical correspondence

argument? Yes, we can.

Quantum mechanics is invariant under a transformation which is a global phase rotation,

that is, if we multiply the wave function by an overall space and time independent phase

factor, no physical predictions are altered. The transformation is

ψ(x, t)′ = eiθψ(x, t). (4.43)

Obviously, both the time dependent and time independent Schrödinger equations are un-

changed by such a transformation. For example,

Ĥψ′(x, t) = i~
∂ψ′(x, t)

∂t
= eiθĤψ(x, t) = eiθi~

∂ψ(x, t)

∂t
. (4.44)
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Can we generalize this invariance to a form in which quantum mechanics is invariant under

local phase transformations (i. e. can we imagine a symmetry transformation where the wave

function can be changed by a different phase everywhere in space)? Such a transformation

is

ψ(x, t) → ψ(x, t)′ = eiθ(x)ψ(x, t) (4.45)

If the phase factor could be pulled back through the Hamiltonian and the ∂/∂t operators,

this transformation would also be a symmetry.

The potential term in the Hamiltonian will allow this: Eψ = V (x)ψ → eiθ(x)(Eψ =

V (x)ψ). However, the momentum term is not invariant under this transformation,

p̂ψ′ =
~

i

∂

∂x

(

eiθ(x)ψ(x)
)

= eiθ(x)
(

~

i

∂ψ

∂x
+ ~

∂θ

∂x
ψ

)

. (4.46)

To preserve the symmetry we must alter the dynamics. (Or, said differently, only a very

particular kind of dynamics will be consistent with our proposed symmetry.) We need a new

kind of momentum variable such that

p̂′ψ′ = eiθ(x)p̂ψ (4.47)

The phase variation will factor out of every term in the Schrödinger equation. Such a new

momentum term is

~̂p
′
= ~̂p− e ~A

c
(4.48)

where ~A(x, t) is a new dynamical variable which must be transformed simultaneously with

ψ. The combined transformation we need is

ψ′ = eiθ(x)ψ; ~A′ = ~A− ~c

e
~∇θ(x). (4.49)

This symmetry transformation is called a “local gauge transformation.” To check that it

indeed is a symmetry, just work it out:

p̂′ψ′ = eiθ(x)
(

~

i

∂

∂x
+ ~

∂θ

∂x

)

ψ − eiθ(x)
e ~A

c
ψ − e

c

~c

e
eiθ(x)

∂θ

∂x
ψ

= eiθ(x)

(

~

i

∂ψ

∂x
− e ~A′

c

)

ψ.

(4.50)

The factor of exp(iθ(x)) factors out, so that that it can be eliminated from the Schrödinger

equation, just as was done in Eq. 4.44. It is slightly more conventional to write the combined
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gauge transformation as

~A → ~A− ~∇χ(x) (4.51)

ψ(x) → exp(
ieχ(x)

~c
)ψ(x). (4.52)

Note that without further dynamics our new theory is trivial. If A can take on any value

we could wash away any interesting behavior in ψ by performing a local gauge transformation:

A could even vary randomly in space. We have to assume some kind of dynamics for

A. In order for the new dynamics to be gauge invariant, it must involve gauge invariant

combinations of A (and φ, once we think about time dependent gauge transformations).

These combinations are the electric and magnetic fields. Thus the new dynamics must involve

Hamiltonians built out of ~E and ~B. Exactly what this dynamics is (i.e. whether there is a

unique Hamiltonian for the electromagnetic field) is not answered by our construction.

The reader will notice that we did not answer the original question, why p − eA/c?

The answer must come by running the argument backward: we have to assume from the

beginning that Nature possesses a dynamics which preserves an invariance under local gauge

invariance. Then the vector potential must enter into the Hamiltonian as we have written it.

Notice that in doing so, we have specified the interaction between systems carrying charge,

which obey Schrödinger dynamics, and the electromagnetic field.

Aharanov-Bohm effect

If you were a classically trained physicist, you might find the appearance of the vector

potential in quantum mechanics disturbing. How can the vector potential be “real” when

one can change it with a gauge transformation? Shouldn’t physics only depend on the

electromagnetic fields, not on the potentials? The following remarkable phenomenon tells us

that we should not be so dogmatic:

Imagine we have an infinitely long cylindrical solenoid of radius a, as shown in Fig. 4.2.

Inside the cylinder, there is a magnetic field running along the axis of the cylinder, but

outside the field is zero. Even though B = 0 outside the cylinder, the vector potential ~A will

not vanish there. Up to gauge transformations, it is

~A = φ̂
Ba2

2r
. (4.53)

Notice for future use that the integral of the vector potential around any closed path which
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constant
B−field

B=0

r=ar=b

Figure 4.2: The solenoid.

encloses the solenoid is equal to the magnetic flux carried by the solenoid,
∮

~A · ~dl =
∫

~B · n̂dS = ΦB. (4.54)

Imagine that we make the solenoid infinitesimally thin, so that classically a particle could

never penetrate into a region of nonzero B, while holding the flux constant.

Schrödinger’s equation involves the momentum operator as

p̂φ → p̂φ −
eAφ

c
(4.55)

or in coordinate basis
1

r

∂

∂φ
→ 1

r

∂

∂φ
− ieBa2

2~cπr
. (4.56)

The Hamiltonian – and thus the energy eigenstates – must depend explicitly on B even

though classically the Lorentz force is zero. This effect is completely quantum mechanical.

The real Aharanov-Bohm effect involves the influence of a solenoid on a diffraction pat-

tern, say on two-slit diffraction. As shown in Fig. 4.3, the solenoid is placed between the

screen with its slits and the plane with our particle detector. The fringes of the pattern

will shift as a function of the B-field even though the B-field is confined within the solenoid.

We can analyze the shift using path integrals. The classical Lagrangian for a particle in an

external electromagnetic field is

L =
1

2
mẋ2 +

e

c
~̇x · ~A (4.57)

Consider the change in the action as we move from (xn−1, tn−1) to (xn, tn) along some path.

S =

∫ tn

tn−1

dtL = S0 +

∫ tn

tn−1

dt
e

c

d~x

dt
· ~A
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B−field
cylinder

Figure 4.3: Experimental setup for the Aharanov-Bohm effect.

= S0 +
e

c

∫ xn

xn−1

~A · ~ds.

(4.58)

Adding up all the little intervals, we discover that there is a phase factor associated with

this path

e
iS
~ = e

iS0
~ e

ie
~c

∫
~A· ~ds. (4.59)

Now let us look at a few of the paths, as in Fig. 4.4. We will group them according to which

side of the solenoid they pass. For the quantum mechanical transition amplitude we need to

add up all the factors of exp
∫

~A · ~ds from all the paths. Group the paths two-by-two, one

from each side of the solenoid, before counting them all up. That is, first combine terms as
∫

path (a)

[dx]e
iS0
~ e

ie
~c

∫ b
a

~A· ~ds +

∫

path (b)

[dx]e
iS0
~ e

ie
~c

∫ b
a

~A· ~ds. (4.60)

The intensity of the diffraction pattern is given by the square of the amplitude, whose

contribution from these paths is

P (b) = |ψ|2 = |
∫

path (a)

[dx]e
iSa
~ |2+|

∫

path (b)

[dx]e
iSb
~ |2+2Re

[
∫

[dx]e
iSa
~

∫

[dx]e
−iSb

~

]

. (4.61)

In the direct terms, the A−dependent pieces square to unity and disappear. In the cross

term, however, they contribute a term proportional to

exp(i/~

∫ (b)

(a)

~A · ~dl|P1 + i/~

∫ (a)

(b)

~A · ~dl|P2) (4.62)
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a
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(b)

Figure 4.4: Representative paths in the Aharanov-Bohm apparatus.

which is the exponential of the line integral around the solenoid. Now recall Eq. 4.54: this is

exp
ieΦB

~c
. (4.63)

The diffraction pattern will be modified by the presence of the solenoid, even though the

particle never traverses a region of nonzero magnetic field. The interference pattern could

be observed by tuning the magnetic flux: the pattern would repeat as ΦB changes by an

amount 2π~c/e.

It seems that the vector potential is “real,” after all. How can we reconcile this fact

with the notion of local gauge invariance? We must think of the vector potential as being

a fundamental quantity, in the sense that it appears in the equations of motion, but it is a

quantity which contains redundant information. The redundancy is expressed through the

invariance of physical observables under local gauge transformations. As far as we know, it

does not make sense to try to reduce this redundancy in any simple way (for example, it

does not make sense to say that one gauge choice is more fundamental than another one).

Notice that the observable (the shift in the diffraction pattern) does depend on a gauge

invariant quantity, the magnetic flux. We expect that physical observables will be gauge

invariant. That is a different statement from the statement that only the fields should

enter into the dynamics. In fact, the statement that only the fields appear in observables is

special to electrodynamics. Only in electrodynamics are the fields gauge invariant while the

potentials are gauge variant. Other interactions, such as the strong or weak interactions,

are described by gauge theories with more complicated internal symmetry. The analogs
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of the field variables in these theories are not gauge invariant; they change under gauge

transformations. Only physically observable quantities, such as the energy density carried

by the field, remain gauge invariant in these more general cases.

Let us conclude this chapter by recalling Max Born: “The world of our imagination is

narrower and more special in its logical structure than the world of physical things.”



Chapter 5

Density matrices

89
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Introduction to density matrices

We often encounter situations in physics where we are only interested in a subset of the

degrees of freedom of a physical system, and we have to deal somehow with the degrees of

freedom we want to leave out. We have already mentioned this in passing – truncating an

atomic system down to a two state system. Sometimes we just ignore the unwanted degrees

of freedom, but this is dangerous, if the part of the system we are studying can interact with

them. What to do next is somewhat process - dependent, but the language is similar across

multiple areas of physics: we talk about “integrating out” the unwanted degrees of freedom,

leaving behind the ones we are interested in, and we aim to find some alteration in their

dynamics due to the variables we have removed.

One of the techniques for doing this involves an object called the density matrix. To

introduce it, we begin with some language: The variables we are interested in are called

the “system,” which communicates with a “reservoir” (in statistical mechanics language),

namely, everything else. We start by thinking about everything (system plus reservoir); we

end with the system. We would like to set things up so that we can apply the formalism to

cases where our knowledge of the reservoir is incomplete or lacking.

We start by assuming that we have a complete set of states of the system, |φi〉, and
a compete set of states for everything else, |θj〉. The most general wave function we can

construct, which includes the system and reservoir, can be written as a superposition of

product states

|ψ〉 =
∑

ij

cij |φi〉 |θj〉 . (5.1)

We can let x be a coordinate of the system, and y label the coordinates of the reservoir

variables, and write the combined wave function in coordinate space as

ψ(x, y) = (〈y| 〈x|) |ψ〉
=

∑

ij

cij 〈x|φi〉 〈y|θj〉

=
∑

i

ci(y)φi(x) (5.2)

where the expansion coefficient is a sum over the reservoir wave functions

ci(y) =
∑

j

cij 〈y|θj〉 . (5.3)
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This expresses the coordinate space wave function of both the system and reservoir as a

superposition of wave functions of the system alone.

Next, suppose that we have a set of operators Â which act only on the system, Â |φi〉 |θj〉 =
(Â |φi〉) |θj〉. We can write these operators as projectors acting on the combined wave function

Â =
∑

i,i′,j

(|φi〉 |θj〉) 〈φi|Â|φi′〉 (〈φi′| 〈θj |)

=
∑

i,i′,j

Aii′ |φi〉 |θj〉 〈θj | 〈φi′| .

(5.4)

An expectation value of the operator can then be expressed as its system expectation value,

via

〈ψ|Â|ψ〉 ≡ 〈Â〉 =
∑

i,j,i′,j′

c∗ijci′j′ 〈θj | 〈φi|Â|φi′〉 |θj′〉

=
∑

i,i′,j

c∗ijci′j 〈φi|Â|φi′〉 ,

(5.5)

the last line arising because of the orthogonality of the |θj〉’s. The final expression can be

written compactly as

〈Â〉 =
∑

i,i′

〈φi|Â|φi′〉 ρi′,i (5.6)

where

ρi′,i =
∑

j

c∗ijci′j (5.7)

is called the “density matrix.” It carries all the information about the reservoir, needed

to evaluate matrix elements of the system. Note that ρi′,i = ρ∗i,i′, which means that ρ is

Hermitian. We can define an operator ρ̂, which only acts on the system or x-variables, as

ρi,i′ = 〈φi|ρ̂|φi′〉 . (5.8)

Then, using completeness, the expectation value of Â becomes

〈ψ|Â|ψ〉 =
∑

i,i′

ρi′,i 〈φi|Â|φi′〉

=
∑

i,i′

〈φi|Â|φi′〉 〈φi′|ρ̂|φi〉
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=
∑

i

〈φi|ρ̂Â|φi〉

= Tr ρ̂Â. (5.9)

Because ρ̂ is Hermitian, its eigenvalues wi are real and it can be diagonalized with a

complete orthonormal set of eigenvectors

ρ̂ =
∑

i

wi |i〉 〈i| . (5.10)

The w′
is have two useful properties: they are all positive, and they sum to unity. We can

discover these properties by considering two examples.

First, if Â is equal to the identity operator

1 = 〈ψ|1|ψ〉 = Tr ρ̂1 = Tr ρ̂ =
∑

i

wi. (5.11)

Next, if Â is a projector, Â = |j〉 〈j|, then

Tr ρ̂Â = wj = 〈ψ|Â|ψ〉 . (5.12)

We recall that this quantity is the norm of a state, and hence it is always positive or zero:

〈ψ|Â|ψ〉 =
∑

k

[〈ψ|j〉 |θk〉] 〈θk| 〈j|ψ〉

=
∑

k

| 〈ψ|j〉 |θk〉 |2 ≥ 0..

(5.13)

That is, wj ≥ 0 and
∑

j wj = 1.

Quantum mechanics using density matrices

Let us think about quantum mechanics in terms of ρ̂. Any system can be described by a

density matrix ρ̂ =
∑

i wi |i〉 〈i|, where

• |i〉 is complete and orthonormal

• wi ≥ 0
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•
∑

i wi = 1

• 〈Â〉 = Tr ρ̂Â

.

We can expand 〈Â〉 in eigenstates of ρ̂. This gives 〈Â〉 =
∑

j wj 〈j|Â|j〉. Because 〈j|Â|j〉
is the expectation value of the operator Â in state |j〉, we can interpret wj as the probability

that the system is in the density matrix eigenstate |j〉.

If all wi = 0, except for one wj = 1 (recall the sum rule), then we say that the system is

in a “pure state.” In all other cases, we say that the system is in a “mixed state.” In a pure

state, ρ̂ = |ipure〉 〈ipure|, and its matrix element in any other basis is

ρij = 〈φi|ipure〉 〈ipure|φj〉 = 〈φi|ipure〉 〈φj|ipure〉∗ . (5.14)

Otherwise, we must use the full expression

ρij =
∑

k

wk 〈φi|k〉 〈φj|k〉∗ . (5.15)

Notice that for a pure state ρ̂2 = |ipure〉 〈ipure| |ipure〉 〈ipure|ipure〉 〈ipure| = ρ̂. In situations

where you are not sure whether you have a mixed state or a pure one, ρ̂2 = ρ̂ is a useful

diagnostic.

When we have a pure state, expectation values are the usual quantum mechanical ones,

〈A〉 = 〈ipure|A|ipure〉 . (5.16)

Furthermore, recall Eq. 5.1. If we have a pure state, the general formula

〈ψ|Â|ψ〉 =
∑

i,i′,j

c∗ijci′j 〈φi|Â|φi′〉 , (5.17)

collapses to a single term. The coefficient cij must vanish unless i = ipure. The combined

state of system and reservoir becomes

|ψ〉 = [
∑

j

cipurej |θj〉] |ipure〉 . (5.18)

That is, we only have a pure state when the system and reservoir are completely decoupled.

If it makes sense to talk about our system in a coordinate basis, then the density matrix

becomes

ρ(x′, x) ≡ 〈x′|ρ̂|x〉 =
∑

k

wk 〈x′|k〉 〈k|x〉 =
∑

k

k(x)k(x′)∗, (5.19)
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(this is just a change of notation, but potentially an evocative one), and a matrix element is

〈Â〉 = Tr ρ̂Â =

∫

dx 〈x|ρ̂Â|x〉 . (5.20)

The second term is

〈x|ρ̂Â|x〉 =

∫

dx′ 〈x|ρ̂|x′〉 〈x′|Â|x〉

=

∫

dx′ρ(x, x′)A(x′, x)

(5.21)

and so

〈Â〉 =
∫

dxdx′ρ(x, x′)A(x′, x). (5.22)

Returning to our earlier discussion, the expectation value of the operator is taken between

states of the entire universe. Recall that we labeled the system’s coordinates as x and the

reservoir’s, as y. Recall also that the operator Â only acted on the system. Then we can

write directly

〈Â〉 =
∫

dxdx′dyψ∗(x′, y)A(x′, x)ψ(x, y). (5.23)

This means that yet another definition for the density matrix is

ρ(x, x′) =

∫

dyψ∗(x′, y)ψ(x, y). (5.24)

Again, the density matrix is the integral over the unseen variables of the combined proba-

bility.

Some examples

The simplest example of a density matrix is for a two-state system

(

1

0

)

≡ |+〉
(

0

1

)

≡ |−〉 .

(5.25)
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|+〉 and |−〉 could label spins, up or down, or two orthogonal polarization states of light (x

and y for linear polarization). Any pure state is

(

α

β

)

= α

(

1

0

)

+ β

(

0

1

)

(5.26)

where |α|2 + |β|2 = 1. For a pure state, ρ̂ = |ipure〉 〈ipure|, or

ρ =

(

αα∗ βα∗

αβ∗ ββ∗

)

. (5.27)

Note Tr ρ = 1, ρii > 0, and ρ2 = ρ, as required. Various examples of pure states, expressed

physically as polarization states, are

• x-polarized light: α = 1, β = 0, ρx =

(

1 0

0 0

)

• y-polarized light: α = 0, β = 1, ρy =

(

0 0

0 1

)

• 45o polarization: α = β = 1√
2
, ρ45 =

1
2

(

1 1

1 1

)

• 135o polarization: α = −β = − 1√
2
, ρ135 =

1
2

(

1 −1

−1 1

)

Examples of mixed states are

• 50% x, 50% y: ρ = 1
2
(ρx + ρy) =

(

1
2

0

0 1
2

)

• 50% 45o, 50% 135o: ρ = 1
2
(ρ45 + ρ135) =

(

1
2

0

0 1
2

)

These two mixed states have the same density matrix and correspond to the same physical

effect. They are both realizations of an unpolarized beam of light.

A slightly more complicated example is a mixed spin state for electrons, in which a

fraction 1− x is in a state where the spin is in the +z state and a fraction x where the spin
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is in the +x-state.

ρ = (1− x)

(

1 0

0 0

)

+ x

(

1
2

1
2

1
2

1
2

)

=

(

1− x
2

x
2

x
2

x
2

)

.

(5.28)

The second term is built using the pure state

|x〉 = 1√
2

(

1

1

)

. (5.29)

Can you verify that

〈σz〉 = Tr ρσz = 1− x, (5.30)

〈σx〉 = Tr ρσx = x, (5.31)

and

〈σy〉 = Tr ρσy = 0? (5.32)

Notice how the usual quantum mechanical behavior appears in the limits when the density

matrix becomes that of a pure state.

As a final comment, notice the distinction between a pure state which is a product state

such as

|ψ〉 = |s〉 |E〉 (5.33)

and one which is a superposition, such as

|ψ〉 = 1√
2
(|s1〉 |E1〉+ |s2〉 |E2〉). (5.34)

Tracing over the environment (|E〉) in Eq. 5.33 obviously leaves a pure state behind. But

tracing over the environment for the state of Eq. 5.34 leaves behind a mixed state. (We

did the algebra for two-state systems in our discussion of polarized and unpolarized photon

beams.) States like Eq. 5.34 (more generally, any state which is not a product state) are

called an “entangled states.” Generally, system states which are entangled with environment

states show a loss of quantum coherence, equivalently a loss of unitary time evolution. This

would be the first sentence in a discussion of quantum information theory, were I competent

enough to do so. We will, however, talk a bit more about entangled states when we describe

the addition of angular momentum.
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Time evolution and related questions

If |i〉 changes with time, so does the density matrix. Explicitly,

ρ̂(t) =
∑

i

wi |i(t)〉 〈i(t)| . (5.35)

A useful set of relations based on this expression can be had if we expand |i(t)〉 in energy

eigenstates. Then, if at time t = 0 the state is

|i(0)〉 =
∑

n

|En〉 〈En|i〉 , (5.36)

at later times it becomes

|i(t)〉 =
∑

n

|En〉 e−iEnt/~ 〈En|i〉 = e−iHt/~ |i(0)〉 (5.37)

and the density matrix is

ρ̂(t) =
∑

i

wie
−iHt/~ |i(0)〉 |i(t)〉 〈i(t)| eiHt/~ |i(0)〉

= e−iHt/~ρ̂(0)eiHt/~. (5.38)

Differentiating this expression gives an equation for the time evolution of ρ̂:

i~
dρ̂

dt
= Hρ̂− ρ̂H. (5.39)

Notice that this has the opposite sign to the Heisenberg equation of motion for an observable

Â,

i~
dÂ

dt
= ÂH −HÂ, (5.40)

a curiosity, but not a problem – the density matrix is just not a Heisenberg representation

observable. The trace is time independent – Tr ρ̂(t) = Tr e−iHt/~ρ̂(0)eiHt/~ = Tr ρ̂(0). Does

this seem sensible?

Let us look at a few more examples using density matrices. Recall that a coordinate

space expectation value is

〈Â〉 =
∫

dxdx′ρ(x, x′)A(x′, x). (5.41)

Consider first A = x, the coordinate operator. Since 〈x|x|x′〉 = xδ(x− x′),

〈x〉 =
∫

dxxρ(x, x). (5.42)
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Next is the momentum operator. In coordinate space, 〈x|p|x′〉 = ~

i
∂
∂x
δ(x− x′). Inserting

this result in our standard formula and integrating by parts,

〈p〉 = −
∫

dxdx′
~

i

∂

∂x
ρ(x, x′) = −~

i

∫

dx[
∂

∂x
ρ(x, x′)]x=x′. (5.43)

For our last example, we compute the probability that we make a measurement and

observe the system to be in a state |χ〉. When we do this, we are measuring the expectation

value of the projector Â = |χ〉 〈χ|. This is

〈Â〉 = Tr ρ̂ |χ〉 〈χ|

= = Tr

(

∑

i

wi |i〉 〈i|
)

|χ〉 〈χ|

= wi 〈χ|o〉 |2

= 〈χ|
∑

i

wi |i〉 〈i|χ〉

= 〈χ|ρ̂|χ〉 . (5.44)

The interpretation is clear – we measure the expectation value of the density matrix in our

desired state.

To illustrate this result, let us return to our complicated example, with the density matrix

of Eq. 5.28. What is the probability to measure |+〉? It is

(

1 0
)

(

1− x
2

x
2

x
2

x
2

)(

1

0

)

= 1− x

2
. (5.45)

The |+y〉 state is 1√
2

(

1

i

)

. Can you show that the probability of observing this state, given

the density matrix, is 1
2
?

Quantum canonical ensemble

To formulate quantum statistical mechanics requires the use of density matrices. That need

is most obvious for the canonical ensemble, where the system is in contact with a reservoir

of temperature T . Here, the probability that the system is found in a state |φi〉 is

P (|φi〉) =
e−βEi

Z
(5.46)
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where k is Boltzmann’s constant, T is the temperature, β−1 = kT , and the normalizing

factor Z is the partition function, to be defined below. The density matrix, then, is diagonal

in an energy basis (labeled by |φn〉),

ρ̂ =
∑

n

wn |φn〉 〈φn| (5.47)

where wn = exp(−βEn)/Z. Thus

ρ̂ =
1

Z

∑

n

e−βH |φn〉 〈φn| =
e−βH

Z
(5.48)

(writing the density matrix as an operator) and the partition function is

Z =
∑

n

e−βEn = Tr e−βH ≡ e−βF (5.49)

where F is the Helmholtz free energy. Thus the normalized density matrix is

ρ̂ =
e−βH

Tr e−βH
. (5.50)

An obvious example to check is to find the partition function for a free particle. To do

that, let us pause to consider the un-normalized ρ as a function of β,

ρ(β) = exp(−βH). (5.51)

Note that ρ(0) = 1 and

− ∂

∂β
ρ(β) = Hρ(β). (5.52)

Can you confirm this result, by expanding in energy eigenfunctions? In coordinate space,

relabeling H → Hx, the equation of motion is

− ∂

∂β
ρ(x, x′β) = Hxρ(x, x

′, β), (5.53)

with ρ(x, x′, 0) = δ(x− x′) expressing the identity operator in coordinate basis.

Let’s use this expression to solve for a single one-dimensional particle in a heat bath.

Here H = p2/(2m) and Eq. 5.53 becomes

− ∂

∂β
ρ(x, x′β) = − ~

2

2m

∂2

∂x2
ρ(x, x′, β). (5.54)
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With the boundary condition. ρ(x, x′, 0) = δ(x − x′), this is the equation for the Green’s

function for diffusion, and we write down the answer by inspection,

ρ(x, x′, β) =

√

m

2π~2β
exp(− m

2β~2
(x− x′)2). (5.55)

Confine the particle on a line of length L to evaluate the partition function, and

Z1 = e−βF =

∫

dxρ(x, x) = L

√

m

2π~2β
. (5.56)

The three-dimensional system’s partition function is the cube of this expression (L3 gives

the familiar volume factor) and naively generalizing to N particles raises Z3
1 to the power N

to give the usual free particle partition function. Since we have not considered the effects of

identical particles, our answer does not treat the entropy of mixing properly, but that can be

accounted for simply dividing by N !. We are going too far afield, into statistical mechanics,

to continue the discussion any farther.

Euclidean time path integral

Notice that the un-normalized thermal density matrix, Eq. 5.51, is identical to the time

evolution operator, with the substitution of −i/~ for −β. This means that we can use our

calculation of the path integral formulation of the time evolution operator to construct a

path integral expression for the partition function. Before we copy expressions, it is useful

to make a change of variables, introducing u = β~. Then the evolution equation becomes

~
∂

∂u
ρ = −Hρ. (5.57)

Note that u has dimensions of time, so that we can interpret our equation as one for evolution

in imaginary time, with a formal solution ρ = exp(−Hu/~). The free particle propagator

is replaced by the diffusion Green’s function, Eq. 5.54, and the expression for the evolution

operator, Eq. 4.26, becomes

Z = Tr ρ =
( m

2πi~∆t

)
N
2

∫

dxN−1 · · · dx1

exp

(

−∆t

~

N
∑

j=1

(

1

2
m

(

xj+1 − xj
∆t

)2

+ V (xj)

))

. (5.58)

Differences in the two expressions (the absence of matrix elements at the beginning and end

times, the fact that there are only N−1 integrals over dx, and the so-far-unstated constraint
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that xN = x1) are a consequence of the fact that Z is a trace. In the limit that ∆t → 0 the

exponential becomes

exp

(

−1

~

∫ τ=β/~

0

dt′
(

1

2
mẋ2(t′) + V (x(t′))

)

)

. (5.59)

The integral is called the “Euclidean action” SE associated with a path x(t), periodic so

x(0) = x(T ) – again the trace at work. Note that it is minus the sum of kinetic and

potential energies.

Just as in the case of the ordinary path integral, we can ask, “Which paths are impor-

tant?” The answer, here, is that the paths for which SE/~ are smallest are the important

ones.

There might be many of them! However, consider the classical limit: β → 0 or T → ∞.

The range of the integral, τ = β/~, becomes small. If the important paths are those for

which x does not change, the density matrix becomes

ρ(x, x, T ) = [

∫

∏

dxj exp(−
1

~

∫ τ

0

dt′
1

2
mẋ2(t′))] exp(−βV (x)). (5.60)

The object in square brackets is the free particle propagator, Eq. 5.55, evaluated at x = x′.

The partition function is

Z =

∫

dx

√

m

2π~2β
exp(−βV (x)), (5.61)

the familiar classical result for a particle in a potential at finite temperature.

This formalism is particularly useful for carrying out numerical studies of statistical

mechanics systems. Many general properties of quantum mechanical systems can also be

obtained through its generalizations. Note that all non-commutativity has disappeared from

Eq. 5.58. It is just an N−dimensional integral over a set of classical variables xk. Computers

can do this integral using what are called “importance sampling” techniques. If we can

generate a set of N “typical configurations,” which are sets of variables xi = {xik}, whose
density in the ensemble is proportional to exp(−SE(xi)/~), then thermal averages are just

averages over the ensemble of configurations, and the thermal expectation value of any

function of x is

〈O(x)〉 = 1

N

N
∑

i=1

O(xi) +O(
1√
N
). (5.62)

Because the thermal weighting probability is real, these expressions are generally quite stable.

Contrast this behavior to the sum of complex amplitudes resulting from the real-time path
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integral! The energies of low lying states, and expectation values of matrix elements, can be

computed using products of operators at different Euclidean times, such as x(t1)x(t2).



Chapter 6

Wave mechanics
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In this chapter we return to what is (hopefully) more familiar ground for the reader: the

Schrödinger equation as a wave equation. We will explore its behavior in a variety of simple

cases, attempting to extract behavior which is common to all similar situations even though

the differential equation itself may not have such simple solutions.

Wave mechanics in one dimension

The time independent Schrödinger equation is

− ~
2

2m

∂2ψ

∂x2
+ V (x)ψ = Eψ. (6.1)

For constant V (x) = V , and if E > V , the most general solution is

ψE(x) = Ae
ipx
~ +Be−

ipx
~ ,

p2

2m
= E − V. (6.2)

If E < V , in contrast,

ψE(x) = A′e
px
~ +B′e−

px
~ ,

p2

2m
= V −E. (6.3)

Now let us consider a case where the potential has a step, V (x) = 0 for x < 0; V (x) = V0

for x > 0.

Vo

0

We assume E > 0. On the left hand side of the boundary

ψL = Ae
ipLx

~ +Be−
ipLx

~ , pL =
√
2mE (6.4)

and on the right hand side, if E > V0 we have

ψR = Ce
ipRx

~ +De−
ipRx

~ , pR =
√

2m(E − V0). (6.5)

We know that the wave equation itself must be continuous at the boundary between region

I and region II, so

A+B = C +D (6.6)
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What about the first derivative? Let us integrate the Schrödinger equation from x = −ǫ to
x = ǫ, across the boundary,

−~
2

2m

∂Ψ

∂x

∣

∣

∣

ǫ

−ǫ
+

∫ ǫ

−ǫ

(V (x)−E)Ψ(x)dx = 0. (6.7)

Making ǫ an infinitisimal, the second term in the expression vanishes. (Note that this would

NOT be the case if V (x) were a delta function.) Thus the first derivative must also be

continuous across the boundary,
−~

2

2m

∂Ψ

∂x

∣

∣

∣

ǫ

−ǫ
= 0. (6.8)

In the example we are considering, this gives

p(A− B) = p′(C −D). (6.9)

We still have a problem, though. We have four unknowns in our wave equations, but we

only have two constraint equations. We need a way to resolve this difficulty. We cannot use

normalization as a constraint, because plane waves are not normalizable functions. We must,

instead, carefully restate the physical situation. Let us suppose that we are considering the

case of a beam coming in from the right and either scattering from, or reflecting off, the

barrier. To the right of the barrier, we only have an outgoing wave. This means that we

can set D = 0. Next, if we imagine performing this experiment, we can see that we will

have control over the coefficient A. the amplitude of the incoming particles. We do not have

control over B and C because they are the amplitude of the reflected and transmitted waves

and those will in principle depend on the potential barrier. However, we expect that B and C

will depend linearly on A. (After all, the rate at which particles are reflected from the barrier

depends on the rate that they strike it.) Thus there are two relevant quantities, the relative

reflection amplitude B/A and relative transmission amplitude C/A. (One often drops the

word “relative.”) The squared modulus |C|2
|A|2 is known as the transmission coefficient, T , and

the squared modulus |B|2
|A|2 is knowns as the reflection coefficient, R, in analogy with optics

usage.

This discussion has been a bit informal, so let us pause to define a particle current.

Currents obey the usual relation to the time rate of change of a density

~∇ · ~J +
∂ρ

∂t
= 0, (6.10)

where the function ρ = Ψ∗(~x, t)Ψ(~x, t) is just the modulus squared of the wave function.

The first time derivative of the function ρ is

∂ρ

∂t
=
∂Ψ∗

∂t
Ψ(x, t) + Ψ∗(x, t)

∂Ψ

∂t
. (6.11)
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Invoking the time-dependent Schrödinger equation,

i~
∂Ψ

∂t
=

−~
2

2m
~∇2Ψ+ VΨ (6.12)

we obtain by substitution

∂ρ

∂t
=

1

i~
[−(

−~
2

2m
~∇2Ψ∗ + VΨ∗)Ψ + Ψ∗(

−~
2

2m
~∇2Ψ+ VΨ)] (6.13)

or
∂ρ

∂t
= −~∇ · [Ψ∗ ~

2mi
~∇Ψ+

1

2m
(
~

i
~∇Ψ)∗Ψ]. (6.14)

So we identify the probability current as

~J =
~

2mi
[Ψ∗~∇Ψ− (~∇Ψ)∗Ψ]. (6.15)

As an example let us consider a plane wave of the form Ψ(x) = exp i~k~r. Its current is

~J =
1

2m
[e−i~k~r(~~k)ei

~k~r − ~

i
(−i~k)e−i~k~rei

~k~r] =
~~k

m
. (6.16)

Note ~~k/m is, as expected, just the velocity.

Now we return to the barrier problem. Current conservation should hold at the barrier,

so

|A|2~
~k

m
− |B|2~

~k

m
= |C|2~

~k′

m
. (6.17)

From this we can again see what matters physically is the proportionality between A and B

and between A and C, not the absolute values. Solving the two equations (continuity of the

wave function and continuity of the derivative), we find the following values for B
A
and C

A
.

B

A
=
p− p′

p+ p′
(6.18)

C

A
=

2p

p+ p′
(6.19)

The reader should check that current conservation is obeyed.

So much for the case where E > V0. When E < V0 the solutions on the right hand side,

ΨR, will be real exponentials, and

ΨR = Ce−p′x/~ +Dep
′x/~ (6.20)
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where p′2 = 2m(V0−E). Because the potential barrier extends all the way to positive infinity,

the exponential with the positive argument must vanish; otherwise the wave function in that

region is not normalizable. This forces D = 0. We can recycle our work from the E > V0

case by making the substitution p′ → ip′. Then

B

A
=
p− ip′

p+ ip′
(6.21)

C

A
=

2p

p+ ip′
(6.22)

Note that the squared modulus of the factor, B
A
, is just equal to unity. From this one can

deduce that then the quantity, B
A
, must be equal to a pure phase. Thus our reflected wave

is just a phase shifted reversal of our original wave.

Particle in a finite well

Next we consider a potential well V (x) = V0 for −a/2 < x < a/2, V (x) = 0 otherwise. We

let the potential be attractive, with well depth −|V0|, as illustrated in the figure.

E

e

x=−a/2 x=0 x=a/2
−|Vo|

If this potential posesses any bound states, they must have negative energy. We will label

the bound state energy by −E. Equivalently, and more usefully for the algebra, any bound

state will have energy ǫ above the bottom of the well. Inside the box, wave functions have

the following form

Ψ(x) = Aeikx +Be−ikx (6.23)

with
~
2k2

2m
= ǫ (6.24)
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where

|E|+ ǫ = |V0|. (6.25)

Outside the box, the wave function dies exponentially, Ψ(x) ∝ e−α|x| with

~
2α2

2m
= |V0| − ǫ = |E|. (6.26)

To continue, we must match boundary conditions for the wave function and its derivative at

x = ±a/2: there are four such equations, all told.

Parity

It is worthwhile, once again, to pause and think formally, this time about mirror symmetry

or parity. We will assume that we are in three spatial dimensions for this section. The parity

operator P̂ performs the transformation Ψ(~x) → Ψ(−~x). Thus

P̂Ψ(~x) = Ψ(−~x). (6.27)

Since it flips the sign of the coordinate, the parity operator also obeys the operator equation

P̂ †~̂rP̂ = −~̂r. (6.28)

This relation should be true for all vector operators, not just ~r. The parity operator is

unitary. To see this, apply it twice:

P̂ †~rP̂ · P̂ †~rP̂ = ~r · ~r. (6.29)

The quantity r2 is obviously rotationally invariant, so the only way the two sides will be

equal is if P̂ † = ˆP−1, which is the definition of unitarity. The operator P̂ can act on state

vectors as well as on operators.

〈~r|P̂ |Ψ〉 = 〈−~r|Ψ〉 = Ψ(−~r). (6.30)

Applied to the Hamiltonian, it gives

P̂ †Ĥ(~r)P̂ = Ĥ(−~r). (6.31)

We know that if P̂ commutes with Ĥ then we can construct simultaneous eigenvectors of Ĥ

and P̂ . Commutivity requires that P̂ Ĥ = ĤP̂ , and, multiplying both sides by P̂ †,

P̂ †P̂ Ĥ = P̂ †ĤP̂ (6.32)
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or, because P̂ is unitary,

Ĥ = P̂ †ĤP̂ (6.33)

or

Ĥ(~r) = Ĥ(−~r). (6.34)

The squared momentum is obviously rotationally invariant, so whether or not parity com-

mutes with the Hamiltonian depends on the form of the potential. For example, in three

dimensions, parity is a good quantum number for potentials depending only on the radial

coordinate V (r). Obviously, we say that a state has “positive parity” when

Ψ(~x) = Ψ(−~x) (6.35)

and a “negative parity”state obeys

Ψ(~x) = −Ψ(−~x). (6.36)

Parity appears in many physical applications. For example, integrals of the form
∫

d3xΨi(~x)~rΨj(~x) (6.37)

vanish if Ψi and Ψj have the same parity. (This is the mathematical origin for selection rules

for radiative transitions in atoms.) We can see this result formally using

〈i|~r|j〉 = −〈i|P̂ †~rP̂ |j〉 . (6.38)

If

P̂ |i〉 = (−1)Pi |i〉 (6.39)

and

P̂ |j〉 = (−1)Pj |j〉 , (6.40)

then

〈i|~r|j〉 = −(−1)(Pi+Pj) 〈i|~r|j〉 . (6.41)

Now back to the one-dimensional square well. The potential is symmetric about its

midpoint, so energy eigenfunctions will also be parity eigenfunctions. For even parity states,

the interior solution is

Ψ = A cos kx (6.42)

and outside the well

Ψ = Be−α|x|. (6.43)
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Similarly, odd parity wave functions are

Ψ = A′ sin kx (6.44)

inside the well and outside the well

Ψ = ±B′e−α|x|. (6.45)

For each parity, we have three unknowns (E,A,B), and we have three constraints on

these equations: continuity of the wave function, as well as the continuity of its first spatial

derivative, at x = a/2, and a normalization condition on the wave function. For the even

parity states, the first two boundary conditions give

A cos
(ka

2

)

= Be−α| a
2
| (6.46)

−Ak sin
(ka

2

)

= −Bαe−α| a
2
|. (6.47)
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Dividing the second equation by the first equation, and inserting an ’a’ (the width of the

barrier) on both sides for ease of interpretation, we get

ka tan
(ka

2

)

= aα. (6.48)

At x = a
2
the odd parity states obey

A′ sin
(ka

2

)

= B′e−α| a
2
| (6.49)

and

A′k cos
(ka

2

)

= −B′αe−α| a
2
| (6.50)

or

ka cot
(ka

2

)

= −aα. (6.51)

Introducing ξ ≡ ka and η ≡ αa, the defining relations between V0, E, α and k become

ξ2 + η2 =
2ma2

~2
(E + V0 −E) =

2ma2

~2
V0. (6.52)

The continuity equation for the even parity solutions becomes

ξ tan
(ξ

2

)

= η. (6.53)

Eqs. 6.52 and 6.53 may be solved graphically. Allowed values of ξ and the η will form

a circle of radius
√

2ma2V0

~2
, which must intersect the function ξ tan

(

ξ
2

)

. The situation for

even parity is shown in the following figure:

η

ξ π 2π 3π 4π
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Notice that there is always at least one positive parity bound state, because no matter how

small is the circle formed by ξ and η, it will always intersect the ξ tan
(

ξ
2

)

function. The

number of bound states is given by the number of intersections. Clearly, as V0 becomes

bigger and bigger, the number of intersections rises, and there are more bound states. For

example, two solutions will exist when

2π ≤
√

2ma2V0
~2

≤ 4π, (6.54)

three solutions will exist when

4π ≤
√

2ma2V0
~2

≤ 6π, (6.55)

and so on. As V0 → ∞ the number of solutions will also approach infinity. The eigenvalue

equation becomes ξ = (2n + 1)π for n = 0, 1, 2, . . ., the expected result for the particle in

the infinitely deep well.

The analysis for the odd parity states is similar. The second eigenvalue equation becomes

−ξ cot
(ξ

2

)

= η. (6.56)

The situation is shown in the following figure. Again, solutions exist where the curves

intersect.

η

ξ π 2π 3π 4π

In contrast to the positive parity case, if the radius of the circle,
√

2ma2V0

~2
, is less than π

there will be no bound state solutions. Thus if the finite well is not deep enough, no odd

parity bound states will exist. As the well deepens, the number of solutions for odd parity
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states will behave qualitatively like even parity case. Again, if V0 → ∞ solutions will be of

the form ξ = 2πn where n = 1, 2, . . .. Thus we recover the familiar case of the infiniitely

deep well.

Barrier penetration

Next, consider scattering from a rectangular barrier of constant potential and finite width.

We assume the beam is entering from the left. The potential is V (x) = V0 for −a/2 < x <

a/2, V (x) = 0 otherwise.

−a/2 a/2

Vo

x=0

Outside of the barrier we have our familiar plane wave solution; on the left, there are incoming

and reflected waves,

u(x) = Aeikx +B−ikx (6.57)

and only a transmitted wave on the right,

u(x) = Ceikx, (6.58)

where ~
2k2

2m
= E. The transmission coefficient is |C|2

|A|2 and the reflection coefficient is |B|2
|A|2 .

To simplify all our results, we will simply scale A to 1. Let’s begin with the case the case

where the energy of the wave, E > V0. In this case the solution in the interior of the barrier

oscillates,

u(x) = Feiαx +Ge−iαx (6.59)

Applying our continuity boundary conditions at x = −a
2
, we have

e−ika/2 +Beika/2 = Fe−iαa/2 +Geiαa/2 (6.60)
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and

ik[e−ika/2 −Beika/2] = iα[Fe−iαa/2 −Geiαa/2]. (6.61)

Similarly, at x = a
2
we have

Ceika/2 = Feiαa/2 +Ge−iαa/2 (6.62)

and

ik[Ceika/2] = iα[Feiαa/2 −Ge−iαa/2]. (6.63)

This constitutes a 4 × 4 matrix of equations whose solution gives B, C, F , and G. The

general solution is not illuminating, and so we consider interesting special cases. First,

suppose αa = 2πn. The matching equations reduce to

e−ika/2 +Beika/2 = eiπn[F +G] (6.64)

ik[e−ika/2 −Beika/2] = iαeiπn[F −G] (6.65)

Ceika/2 = eiπn[F +G] (6.66)

ik[Ceika/2] = iαeiπn[F −G]. (6.67)

A few lines of algebra quickly reveal that B = 0, C = exp(−ika). The interpretation is easy:

The reflection coefficient is 0 and thus there is no reflected wave at the potential barrier.

In this case we have what is called a transmission resonance. It occurs only for particular

values of the wavelength and energy, when α2 = 2m(E − V0) = 4π2/a2. This is qualitatively

similar to the situation of Brewster’s angle in an optical system, where at a particular angle

of incidence one polarization component will be transmitted completely.

The complete solution for the transmission and reflection amplitudes are

B

A
=

(k2 − α2)(1− e2iαa)e−ika

(k + α)2 − (k − α)2e2iαa
(6.68)

C

A
=

4kαei(α−k)a

(k + α)2 − (k − α)2e2iαa
. (6.69)

The transmission coefficient is

T =
|C|2
|A|2 =

[

1 +
(k2 − α2)2 sin2(αa)

4k2α2

]−1

(6.70)

=
[

1 +
V 2
0 sin2(αa)

4E(E − V0)

]−1

. (6.71)

Recall that this is for the case E ≥ V0. The graph of this transmission coefficient is shown

in the figure; note the transmission resonances:
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1

T

E Vo

When E ≤ V0 the solution of the Schrödinger equation inside the barrier is

u(x) = Feβx +Ge−βx (6.72)

where ~
2β2 = 2m(V0 − E). The easiest way to find the transmission amplitude in this case

is by analytic continuation α → iβ from our previous result. This gives

T =
[

1− V 2
0 sinh2(βa)

4E(E − V0)

]−1

. (6.73)

At small E/V0 the transmission falls to zero exponentially with increasing barrier width or

height,

T ≃ 1
V 2
0

16E(V0−E)
e2βa

≃ e−2βa. (6.74)

The following figure displays this behavior.

1

T

E Vo
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It is easy to obtain an approximate solution for a very tall (V0 ≫ E) and very wide eβa ≫ 1

barrier. For ease of calculation, let us shift the location of the barrier from −a
2
< x < a

2
to

the range 0 < x < a. The interior wave function is

u(x) = Feβx +Ge−βx. (6.75)

In order to keep this solution finite, the coefficient F , must be very tiny. More precisely,

at x = a we need to keep F exp(βa) ∝ O(1). Thus for the equations to be consistent, we

need to retain terms involving F exp(βa), but can discard terms that only involve F . This

amounts to replacing the exact boundary conditions by approximate ones: At x = 0,

1 +B = F +G ≃ G (6.76)

and

ik(1−B) = β(F −G) ≃ −βG. (6.77)

They imply

G =
2ik

ik − β
. (6.78)

Similarly, at x = a we have

Ceika ≡ C ′ = Feβa +Ge−βa (6.79)

and

ikC ′ = β(Feβa −Ge−βa) = β(C ′ − 2Ge−βa) (6.80)

because Feβa = (C ′ −Ge−βa). Thus

(ik − β)C ′ = −2Ge−βa (6.81)

and so

C ′ =
−2βGe−βa

ik − β
=

−4ikβe−βa

(ik − β)2
. (6.82)

Thus we have found the transmission coefficient in the limit of a tall, wide barrier to be

T =
16k2β2e−2βa

(k2 + β2)2
, (6.83)

which agrees with Eq. 6.74.

To study scattering from an attractive potential well,
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−Vo

−a/2 a/2

we can take all of our formulas and simply change the sign of V0. Then for E ≥ V0 the

transmission coefficient. is

T (E) =
[

1 +
V 2
0 sin2(αa)

4E(E + |V0|)
]−1

. (6.84)

We still have transmission resonances, whenever αa = πn. In that case

E + V0 =
4π2

~
2n2

2ma2
. (6.85)

Stepping back for a moment, we recall that the transmission amplitude is a complex

function of the energy, or the wave number, k.

C

A
= S(E) =

4kαei(α−k)a

(k + α)2 − (k − α)2e2iαa
≡ e−ikaS̃(E) (6.86)

with

S̃(E) =
1

cos(αa)− i
2

(

k
α
+ α

k

)

sin(αa)
. (6.87)

We observe that S̃(E) will have a pole whenever

cos(αa) =
i

2

(k

α
+
α

k

)

sin(αa) (6.88)

The improbable trigonometric identity tan(2x) = 2/(cot(x) − tan(x)) transforms the pole

condition into

cot
(αa

2

)

− tan
(αa

2

)

= i
[k

α
+
α

k

]

(6.89)

so that a pole appears whenever either of the following two relations holds.

tan
(αa

2

)

=
−ik
α

(6.90)

or

cot
(αa

2

)

=
ik

α
, (6.91)
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To convert these relations into statements about energy, we recall ~2k2 = 2mE and ~
2α2 =

2m(E + V0). A pole will only occur if E < 0 and α > 0. In that case the
√
E must be

treated with care. It has a branch cut in the complex energy plane. To locate the branch

cut we define

E = |E|eiφ (6.92)

so that √
E = |E| 12 e iφ

2 . (6.93)

Then Eqs. 6.90 and 6.91 become

α tan
(αa

2

)

= K (6.94)

and

α cot
(αa

2

)

= −K (6.95)

where

iK ≡ i
√

2m|E|
~

= k. (6.96)

These are the equations which gave the values of bound state energies, Eqs. 6.53 and 6.56.

This is a general result: the scattering amplitude has a pole at all energies corresponding to

the locations of bound states in the potential. (Note that these energies may not be directly

accessible to experiment: for this potential, the bound states have negative energy but only

positive energy beams can be produced.) Physically, the pole corresponds to the presence

of a solution near the potential which is very large compared to the value of the solution far

away from the potential. This can only occur when the energy associated with the solution

is in fact the energy of a bound state.

Now we examine how S̃(E) behaves near a transmission resonance. We assume that we

have E > 0 and that a transmission resonance occurs when αa = πn or E = E0. We can

rewrite the transmission coefficient as

S̃(E) =
1

cos(αa)
[

1− i
2

(

k
α
+ α

k

)

tan(αa)
] . (6.97)

A transmission resonance occurs when tan(αa) ≃ 0. Let us Taylor expand the denominator

in a power series about E0. Writing the result as

(k

α
+
α

k

)

tan(αa) ≡ 4

Γ
(E − E0) (6.98)
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where
4

Γ
≡ d

dE

(

(
k

α
+
α

k

)

tan(αa)
)∣

∣

∣

αa=πn
, (6.99)

we discover that near the resonance the scattering amplitude is

S̃(E) ≃ 1

cos(αa)

( iΓ
2

E − E0 +
iΓ
2

)

. (6.100)

At the resonance cos(αa) → 1, so the only important term is that inside the parentheses.

The transmission coefficient near a resonance is

T (E) ∝ |S̃(E)|2 =
Γ2

4

(E − E0)2 +
Γ2

4

. (6.101)

This function is the same Lorentzian lineshape that we had discussed earlier (in the example

of magnetic resonance). It is also called a “Breit-Wigner” lineshape.

T

E Eo

Γ/2

Note that the approximation we have made is only valid near the transmission resonance.

In fact, looking at the graph of the transmission coefficient, we see that in this case, it is not

a very good approximation away from a resonance.

1

T

E Vo
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Again, we observe that the transmission amplitude has a pole at E = E0 − iΓ
2
. When

the energy is near this value in the complex energy plane, the nearby singularity completely

dominates the function. Of course, at physically accessible energies, the scattering amplitude

cannot diverge, for that would lead to a violation of unitarity. The largest it can be is a

pure phase, in this case, S̃(E) = 1. The scatterng amplitude has poles at E < 0, but these

energies are not accessible in a scattering experiment. If we had a potential of the following

form,

Bound
States

we could probe the bound states by scattering E > 0 particles and we would see resonant

behavior whenever we were near a bound state energy. Examples of such behavior occur

frequently in Nature; we will encounter it again when we study three dimensional scattering.

Scattering and the one-dimensional delta function potential

The delta function potential

V (x) = V0δ(x) (6.102)

is a useful approximation to a situation where the range of the potential is very small

compared to the distances over which we able to probe in a scattering experiment. There

are “conventional” ways to solve the Schrödinger equation (relegated to homework problems).

Let us consider an unusual one: The Schrödinger equation.

(

E +
~
2

2m

d2

dx2

)

Ψ(x) = V0δ(x)Ψ(x) = V0δ(x)Ψ(0) (6.103)

can be replaced by an integral equation

Ψ(x) = Ψi(x) +

∫ ∞

−∞

dp

2π~

eipx/~

E − p2

2m

V0Ψ(0), (6.104)
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where the homogeneous solution is that Ψi(x) = eipx/~. To check the validity of this solution

we apply the operator
(

E + ~2

2m
d2

dx2

)

to both sides, producing

(

E +
~
2

2m

d2

dx2

)

Ψ(x) = 0 +

∫ ∞

−∞

dp

2π~

E − p2

2m

E − p2

2m

eipx/~V0Ψ(0)

= V0Ψ(0)

∫ ∞

−∞

dp

2π~
eipx/~

= V0Ψ(0)δ(x).

(6.105)

Unfortunately, our “solution” is not complete – the integral is singular, due to the pole at

E = p2/(2m).

We must combine a physical problem – what boundary conditions do we want for Ψ(x)?

–with a mathematical problem – how can we distort the integration contour to avoid the

singularity? We can approach the solution by thinking of the potential as a source of waves.

Then, we want an inhomogenous solution that has outgoing waves (away from the potential)

in both directions, positive and negative x. That is, we must require

Ψ(x) ∝ eikx x > 0 (6.106)

and

Ψ(x) ∝ e−ikx x < 0. (6.107)

Mathematically, we can achieve this result by picking a contour of integration in the complex

momentum plane as shown:
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We can close the contour in the upper or lower half plane, picking a contour which gives

zero contribution to the integral. To determine how to do this, we must consider separately

the cases of x positive or negative. For x > 0 we need to close the contour in the upper half

of the plane so that its positive imaginary momentum will give a negative exponential. The

residue theorem gives the following for x > 0.

∮

dp

2π~

eipx/~

E − p2

2m

=
m

i~

exp[i
√
2mEx/~]√
2mE

(6.108)

For x < 0 we close the contour in the lower half plane, giving

∮

dp

2π~

eipx/~

E − p2

2m

=
m

i~

exp[−i
√
2mEx/~]√

2mE
(6.109)

Thus our solution for Ψ(x) is

Ψ(x) = Ψi(x) +
mV0
ip~

eip|x|/~Ψ(0) (6.110)

or, solving for Ψ(0) and collecting terms,

Ψ(x) = eipx/~ +
mV0

ip~−mV0
eip|x|/~. (6.111)

The x > 0 solution gives the transmitted wave

Ψtrans =
ip~

ip~−mV0
eipx/~, (6.112)

from which, the scattering amplitude is

S̃(E) =
ip~

ip~−mV0
(6.113)

The function S̃(E) has a pole whose location tells us the value of the bound state energy.

The pole is at

p~ = ~

√
2mE = −imV0. (6.114)

To complete the calculation, the bound state energy must be negative, and

E =
−mV 2

0

2~2
. (6.115)

Note that the one dimensional delta function potential has only a single bound state.
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Bloch waves and periodic potentials (in one dimension)

Imagine a particle in a one-dimensional periodic potential V (a) = V (x+ a), as illustrated in

the figure,

a

where a is the length of one period of the potential. Associated with this situation we can

define an operator τ̂ , called the translation operator, with the property that

τ̂ xτ̂ † = x+ a (6.116)

This operator will transform potential τ̂V (x)τ̂ † = V (x+ a). For a periodic potential this is

equal to V (x). This means that the Hamiltonian itself also obeys τ̂ Ĥτ̂ † = Ĥ , and, since τ̂

is unitary (prove it!), [Ĥ, τ̂ ] = 0. We should be able to find simultaneous eigenfunctions of

Ĥ and τ̂ .

The tight binding approximation

To proceed, let us suppose we have a set of eigenfunctions |n〉 such that that each of them

is localized around one of the wells of the potential. We label the one in the jth potential

well as |j〉.

a
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Now imagine that the wells of V (x) are sufficiently deep and sufficiently far apart, that there

is no overlap between the wave functions of neighboring wells. This means that 〈j|j′〉 = δjj′.

Because of the translational invariance of the Hamiltonian, the expectation value of the

Hamiltonian for a state in any particular well should equal that of any other well. We will call

this energy 〈j|Ĥ|j〉 = E0. Next, let us assume that the only nonvanishing matrix elements

of the Hamiltonian connect neighboring states. We parameterise this matrix element as

〈j′|Ĥ|j〉 = −∆δj′j±1. These equations compose what is referred to in solid state physics as

the “tight binding assumption.”

The translation operator shifts states: τ̂ |j〉 = |j + 1〉. What are its eigenstates? Let us

consider the following state.

|θ〉 =
∞
∑

n=−∞
einθ |n〉 . (6.117)

Applying the translation operator to it gives

τ̂ |θ〉 =
∞
∑

n=−∞
einθ |n+ 1〉 (6.118)

or, shifting the index of the sum,

τ̂ |θ〉 =
∞
∑

n=−∞
ei(n−1)θ |n〉 = e−iθ |θ〉 . (6.119)

Therefore

τ̂ |θ〉 = e−iθ |θ〉 . (6.120)

The |θ〉 states are eigenstates of the translation operator with eigenvalues of pure phase.

These states are eigenstates of H . To see this, begin with the action of H on a localized

state

Ĥ |n〉 = E0 |n〉 −∆ |n+ 1〉 −∆ |n− 1〉 . (6.121)

Use this result to apply the Hamiltonian to the states |θ〉.

Ĥ |θ〉 = E0 |θ〉 −∆(

∞
∑

n=−∞
einθ |n+ 1〉)−∆(

∞
∑

n=−∞
einθ |n− 1〉) (6.122)

= E0 |θ〉 −∆(e−θ + eiθ) |θ〉 (6.123)

or

Ĥ |θ〉 = (E0 − 2∆ cos(θ)) |θ〉 . (6.124)
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Indeed, the |θ〉 state is also an energy eigenstate. Notice that the energy lies in the range

E ∈ [E0 − 2∆, E0 + 2∆]. (6.125)

There is a band of allowed energies. But physically, what is the parameter θ? The position

space wave function is 〈x|θ〉, so let us consider 〈x|τ̂ |θ〉. Letting τ̂ act to the left gives

〈x|τ̂ |θ〉 = 〈x− a|θ〉 , (6.126)

while letting τ̂ act to the right gives

〈x|τ̂ |θ〉 = 〈x|θ〉 e−iθ. (6.127)

The quantities in equations 6.126 and 6.127 must be equal. To solve this constraint, define

〈x|θ〉 = eikxuk(x) θ = ka (6.128)

where uk(x) is a periodic function with period a, i.e., uk(x+ a) = uk(x). Note that

〈x− a|θ〉 = eik(x−a)uk(x− a) = eik(x−a)uk(x) = uk(x)e
ikxe−ika, (6.129)

which is Eq. 6.127. These solutions are called Bloch functions, and k is a wave number. Note

the form of the solution – the wave function “in the well” is multiplied by a plane wave. The

“in the well” wave function picks up a phase as we move from well to well. Putting all the

pieces together, we see that −π ≤ θ ≤ π is equivalent to −π/a ≤ k ≤ π/a and the energy is

E(k) = E0 − 2∆ cos ka. This behavior is sketched in the figure:

Eo+2

Eo−2

E(k)

∆

∆

π/−π/ a a

For an infinite chain, k is continuous. However, for a finite chain of length N with periodic

boundary conditions, N applications of τ returns us to our starting point,

〈x|τ̂N |θ〉 = 〈x|θ〉 = 〈x−Na|θ〉 = 〈x|θ〉 eiNθ (6.130)
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so that

θ =
2π

N
j. (6.131)

where j is an integer in the range −N/2 < j ≤ N/2. This gives a set of discrete levels, or a

set of discrete momenta, as many momenta as there are sites.

A more complicated example – a periodic array of delta functions

Now we take a potential function which is a periodic set of delta functions

V (x) =
∞
∑

n=−∞
V0δ(x− na). (6.132)

−a 0 a 2a

We again label the Bloch state as Ψ(x) = eikxuk(x), with periodicity condition uk(x+ a) =

uk(x).

Between the delta functions, the solution to the Schrödinger equation is

Ψ(x) = Aeiqx +Be−iqx (6.133)

where ~2q2

2m
= E. The Bloch function, then, is

uk(x) = Aei(q−k)x +Be−i(q+k)x. (6.134)

A and B may be determined from boundary conditions. The first boundary condition is the

periodicity of uk(x):

uk(0) = uk(a) (6.135)

which demands

A+B = Aei(q−k)a +Be−i(q+k)a. (6.136)
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The second boundary condition ariese from the behavior of the derivative of the wave function

at the boundary. To find it, we integrate the Schrödinger equation across the boundary,

∫ ǫ

−ǫ

dx(E +
~
2

2m

∂2

∂x2
)Ψ(x) =

∫ ǫ

−ǫ

dxV0δ(x)Ψ(x). (6.137)

which simplifies to
∂Ψ

∂x

∣

∣

∣

ǫ

−ǫ
=

2m

~2
V0Ψ(0) =

2m

~2
V0(A+B). (6.138)

We know that just inside the unit cell

(∂Ψ

∂x

)

ǫ
= iq(A−B), (6.139)

but we must be careful when evaluating the first derivative at the other side of the potential,

at x = −ǫ. This location is actually at the edge of the neighboring cell, or the far edge of

our cell:

Ψ(−ǫ) = e−ikaΨ(a− ǫ) (6.140)

and so
(∂Ψ

∂x

)

−ǫ
=
(∂Ψ

∂x

)

a−ǫ
= iq(Aeiqa − Be−iqa)e−ika. (6.141)

The second boundary condition is therefore

2mV0
~2

(A+B) = iq(A− B − Aei(q−k)a +Be−i(q+k)a). (6.142)

Let us restrict the discussion to V0 > 0. Solving for A and B yields the following relation on

the momenta k and q,

cos(ka) = cos(qa) +
mV0
~2

sin(qa)

qa
(6.143)

The right hand side of this equation is shown as a function of qa in the figure:
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The value of the left hand side of the equation is constrained by the requirement −1 ≤
cos(ka) ≤ 1. This means that only particular values of q, and hence of the energy E =

~
2q2/(2m), are allowed. These regions are shaded in the figure. Within the allowed region

there are a continuum of energy states – a “band” of energies. We can see the behavior from

the next figure, showing allowed values of E(k) vs. k, where again −π/a ≤ k ≤ π/a.

The bands are separated by “band gaps,” values of the energy for which no solutions of the

Schrödinger equation exist.

We are on the edge of being able to explain the difference between insulators and metals.

Crystalline solids are obviously examples of systems with periodic potentials. Electrons obey

the Pauli principle and hence there can be only one electron (per spin) per energy level. If we

assume that electrons in a solid do not interact (never mind that they have charge!), then the

electronic ground state of the solid has one electron (per spin) in every single particle state,

beginning with the lowest. If we run out of electrons while in the middle of a band, then

the ground state is separated from the lowest excited state by only an only an infinitesimal

amount of energy. It is easy to excite an electron from a filled state into an empty one.

This is the situation for a conductor. However, if the supply of electrons is finished just at a

band filling, then exciting an electron requires supplying a finite energy (the distance to the

bottom of the next band) to the system. Then the system is an insulator.



Quantum Mechanics 129

Schrödinger equation in three dimensions

We turn now to three dimensional problems with central potentials: V ~r) = V (|r|). The most

useful coordinate choice for these systems is spherical coordinates. We recall the definition

z = r cos θ

x = r sin θ cos φ

y = r sin θ sin φ

with −1 < cos θ < 1, 0 < φ < 2π and 0 < r < ∞. The Laplacian can be split into a radial

and an angular piece

∇2 =
1

r2
∂

∂r
r2
∂

∂r
−

~L2

~2r2
, (6.144)

where ~L2 is the squared angular momentum operator,

~L2 = −~
2

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

]

. (6.145)

While one might imagine that this is just a convenient shorthand labeling the angular part of

the Laplacian, it is none the less true that when we define the angular momentum operator

as
~L = ~r × ~p =

~

i
(~r × ~∇) (6.146)

we discover that its components, expressed in spherical coordinates, are

Lz =
~

i

∂

∂φ

Lx = i~

[

sin φ
∂

∂θ
+ cot θ cosφ

∂

∂φ

]

Ly = i~

[

− cos φ
∂

∂θ
+ cot θ sinφ

∂

∂φ

]

(6.147)

and its square is given by Eq. 6.145.

The wave function can be written in separated form, ψ(~r) = R(r)Y m
l (θ, φ). where the

functions Y m
l (θ, φ), called the spherical harmonics, obey the eigenvalue equations

~L2Y m
l (θ, φ) = ~

2l(l + 1)Y m
l (θ, φ).

LzY
m
l (θ, φ) = ~mY m

l (θ, φ).

(6.148)
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That is, they are eigenfunctions of L2 and Lz with eigenvalues ~2l(l+1) and ~m, respectively.

We state without proof that the l’s are restricted to be integers, l = 1,, 2, . . ., and−l ≤ m ≤ l.

Then we are left with an ordinary differential equation for the radial dependence of the wave

function.
[

− ~
2

2m

1

r2
∂

∂r
r2
∂

∂r
+ V (r) +

~
2l(l + 1)

2mr2

]

R(r) = ER(r). (6.149)

Notice that the angular dependence of a wave function for a central potential problem is

independent of the particular form of the potential; this part of the wave function is universal.

Notice also that the radial equation depends on V (r) and on l. Solutions of the radial

equation will in general involve a distinct set of energy levels for each value of l. Thus,

all wave functions for central potentials in three dimensions are labeled by three quantum

numbers (not including spin), one for E, l, and m. The radial solution (and the energy

eigenvalues) depend on l but not on m. Because there is no dependence on m there will be

a 2l + 1 degeneracy among the energy levels described by E and l.

S P D

E

3 states

5 states

1 state

Review of spherical harmonics

Angular momentum is so important that it deserves (and will get) its own chapter. For the

time being, we remark that commutation relations for the Li’s are simple: [Li, Lj] = i~ǫijkLk

and [~L2, Li] = 0. For central potentials, [H, ~L2] = 0, and [H,Li] = 0, which, together with

the commutation relations for the Li’s, implies that one can find simultaneous eigenstates of

H , L2 and one component of ~L. We label such a state as |ψ〉 = |E, ~L2, Li〉. It is conventional
to pick this to be eigenstates of Lz. In Dirac notation, Y m

l (θ, φ) ≡ 〈θ, φ|~L2, Lz〉. All of
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these statements (and much more) can be derived using pure operator methods. Before we

do that, however, we pause to fill in some details about the spherical harmonics as special

functions.

The explicit form of Eq. 6.148 is

0 = [
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
]Y m

l (θ, φ) + l(l + 1)Y m
l (θ, φ). (6.150)

This partial differential equation can be completely separated by writing Y m
l (θ, φ) = P (θ)Q(φ).

The resulting two equations are
[

∂2

∂φ2
+m2

]

Q(φ) = 0

[

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

(

l(l + 1)− m2

sin2 θ

)]

P (θ) = 0.

(6.151)

We immediately find solutions of the form Q(φ) = eimφ, and by demanding Q(0) = Q(2π),

we impose the quantization condition m = {0,±1,±2, . . .}. This is quantization of the

z-component of angular momentum,

LzY
m
l (θ, φ) = ~mY m

l (θ, φ). (6.152)

The equation for θ is called the associated Legendre equation in the mathematics litera-

ture. Whenm = 0 its solutions are the usual Legendre polynomials. Away fromm = 0, it has

well behaved solutions only for l = {0, 1, 2, . . .} and |m| ≤ l. The first condition amounts to

quantization of the squared angular momentum, equal to ~
2l(l+1) where l is an integer. (As

a shorthand, one often says, “the total angular momentum takes on integer values.”) The m

constraint makes physical sense because one would expect the magnitude of the z-component

of angular momentum to be less the magnitude of the total angular momentum,
√

l(l + 1)..

Also notice that since Eq. 6.151 only depends on m2, there is freedom in the definition of

the Y m
l (θ, φ)’s. The standard convention is to define Y −m

l (θ, φ) ≡ (−1)mY m
l (θ, φ)∗.

We state a few of the relevant properties of spherical harmonics in Dirac notation: Or-

thonormality:

〈lm|l′m′〉 = δll′δmm′ ; (6.153)

orthonormality in coordinate space:
∫

dΩ 〈lm|θ, φ〉 〈θ, φ|l′m′〉 =
∫

dΩY m
l (θ, φ)Y m′

l′ (θ, φ)∗ = δll′δmm′ ; (6.154)
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Completeness:

1̂ =
∑

lm

|lm〉 〈lm| =
∫

dΩ |θ, φ〉 〈θ, φ| ; (6.155)

and completeness in coordinate space

δ(cos θ − cos θ′)δ(φ− φ′) =
∑

lm

〈θ′, φ′|lm〉 〈lm|θ, φ〉 =
∞
∑

l=0

l
∑

m=−l

Y m
l (θ′, φ′)Y m

l (θ, φ)∗. (6.156)

Finally, we tabulate the first few spherical harmonics.

Y 0
0 =

1√
4π

Y 0
1 =

√

3

4π
cos θ

Y 1
1 = −

√

3

8π
sin θeiφ

Y 2
2 =

1

4

√

15

2π
sin2 θe2iφ

Y 1
2 = −

√

15

8π
sin θ cos θeiφ

Y 0
2 =

√

5

4π

(

3 cos2 θ − 1

2

)

.

(6.157)

The first three l spherical harmonics are important enough to commit to memory. For

historical reasons the different l levels have been given names.

l level m

0 s 0

1 p 0,±1

2 d 0,±1,±2

3 f · · ·
...

...
...

s, p, d, and f stand for “sharp,” “principal,” “diffuse,” and “fine,” respectively. This is

called “spectroscopic notation” and continues down the alphabet for subsequent l’s (g, h, . . .),

without names, as far as I know.
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Parity in three dimensions

Parity comes into its own in three dimensions. Let us first investigate the parity properties

of the spherical harmonics. The transformation ~r → −~r in spherical coordinates is shown in

the figure:

ϕ

θ

π−θ
ϕ+π

r

r

Specifically, it is

r → r θ → π − θ φ→ φ+ π. (6.158)

One can also express the parity operation on θ as cos θ → − cos θ.

To analyze the parity operator’s effect on the spherical harmonics, we recall their explicit

form

Y m
l (θ, φ) = Pm

l (θ)eimφ (6.159)

where the Pm
l ’s are the associated Legendre polynomials, Consider first l = 0, where these

functions are the usual Legendre polynomials. They are l-th order polynomials in cos θ

containing only even or odd powers of cos θ. Therefore

P̂Pl(cos θ) = (−1)lPl(cos θ). (6.160)

Thus, the Legendre polynomials are eigenfunctions of the parity operator with eigenvalues

±1. The associated Legendre polynomials transform under parity as

P̂Pm
l (cos θ) = (−1)l−|m|Pm

l cos(θ) (6.161)

This behavior comes from the the fact that the associated Legendre polynomials are products

of a term ∝ (1− cos2 θ)
|m|
2 with an even or odd polynomial in cos θ of highest order l− |m|.

The first term in the product is also even under a parity transformation; thus the eigenvalue
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comes from the order of the polynomial. The azimuthal part of the spherical harmonic

transforms under parity as

eimφ → eim(φ+π) = (−1)meimφ. (6.162)

Thus the behavior of the spherical harmonics under a parity transformation is

Y m
l (θ − π, φ+ π) = (−1)l−|m|(−1)mY m

l (θ, φ) = (−1)lY m
l (θ, φ). (6.163)

As m is an integer, (−1)l−|m|(−1)m = (−1)l. Thus the spherical harmonics are even or odd

under parity depending on whether l is even or odd.

The spherical square well

Perhaps it is time for an example. The spherical square well is defined by

V (r) = −V0 r < a (6.164)

V (r) = 0 r > a (6.165)

The radial equation obeys the differential equation

{ d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
− 2m(V − E)

~2

}

f(r) = 0. (6.166)

For later use, let us define k2 ≡ −2m(V0−E)
~2

. Eq. 6.166 is a form of the Bessel’s equation and

its solutions are the spherical Bessel functions. Expressed in terms of the cylindrical Bessel

functions, they are

jl(x) =

√

π

2x
Jl+1/2(x) (6.167)

nl(x) = (−1)l+1

√

π

2x
J−l−1/2(x). (6.168)

(The n(x)’s are sometimes called the spherical Neumann functions.) The first few are

j0(x) =
sin(x)

x
, j1(x) =

sin(x)

x2
− cos(x)

x
(6.169)

n0(x) =
cos(x)

x
, n1(x) =

− cos(x)

x2
− sin(x)

x
. (6.170)

The limiting forms of these functions are quite useful. As x→ 0

jl ≃
xl

1 · 3 · 5 · · · (2l + 1)
=

xl

(2l + 1)!!
nl ≃

1 · 3 · 5 · · · (2l + 1)

xl+1
=

(2l + 1)!!

xl+1
(6.171)
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and as x → ∞ we have

jl ≃
1

x
sin
(

x− lπ

2

)

nl ≃
1

x
cos
(

x− lπ

2

)

. (6.172)

The requirement that the wave function be nonsingular at the origin eliminates the Neumann

functions as solutions of the square well. Other boundary conditions require the use of linear

combinations of these two sets of functions. One such useful linear combination is called the

Hankel function.

hl(x) = jl(x) + inl(x) ≃
1

x
exp

(

i
(

x− (l + 1)π

2

))

. (6.173)

It represents a wave moving radially outward, and its complex conjugate represents an in-

coming wave. We will need these functions when we consider scattering solutions in three

dimensions.

Everything we have done so far assumes that E > V0, and consequently that k2 > 0. In

the classically forbidden region we define

~K =
√

2m(V0 −E) (6.174)

which amounts to replacing kr with iKr as the independent variable in the spherical Bessel

and Neumann functions. In the classically forbidden region the Hankel functions become

h0(iKr) =
1

Kr
e−Kr h1(iKr) = i

( 1

Kr
+

1

K2r2

)

e−Kr. (6.175)

Infinitely deep spherical well

In this case it is better to shift the origin of potential and write

V = 0 r < a (6.176)

V = ∞ r > a. (6.177)

The solutions of the Schrodinger equation are

ψE,l,m = jl(kr)Y
m
l (Ω). (6.178)

The vanishing of the wave function at r = a gives the quantization condition

jl(ka) = 0. (6.179)

If l = 0 this is merely ka = nπ.
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General results for arbitrary potentials

A useful change of variables converts the three dimensional radial equation into a one di-

mensional Schrödinger equation.. To do this, we define f(r) ≡ u(r)/r. Then

d

dr
r2
d

dr

u

r
=

d

dr

(

r2
(u′

r
− u

r

))

=
d

dr
(ru′ − u) (6.180)

= u′ + ru′′ − u′ = ru′′. (6.181)

Inserting this into the radial equation, we have

−~
2

2m

u′′

r
+
[

V (r) +
l(l + 1)~2

2mr2

]u

r
= E

u

r
(6.182)

or
−~

2

2m
u′′ +

[

V (r) +
l(l + 1)~2

2mr2

]

u = Eu. (6.183)

This is just the usual one-dimensional Schrodinger equation. The only differences with a

true one-dimensional problem are that the range of r is 0 < r < ∞, and that the bound-

ary condition at the origin is u(r = 0) = 0 so that f(r) remains a finite function. The

normalization condition also becomes very one-dimensional,

∫ ∞

0

dr|u(r)|2 = 1. (6.184)

Defining

Veff =
[

V (r) +
l(l + 1)~2

2mr2

]

(6.185)

we can rewrite the radial equation as

−~
2

2m
u′′ + Veffu = Eu. (6.186)

The potential that truly matters to the radial degrees of freedom is Veff(r), not simply V (r).

The extra term is the centrifugal barrier, or the energy cost associated with having nonzero

angular momentum.

It is useful to consider some limiting cases. Suppose that we take r to be small and also

assume that V (r) is less singular than 1/r2. Then the centrifugal term ~
2l(l + 1)/(2mr2)

dominates Veff(r) and we must solve

d2u

dr2
+
l(l + 1)

r2
u = 0. (6.187)
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The solution of this differential equation is u ∝ rl+1. Physically,, the centrifugal barrier

forces the wave function away from the origin. Next suppose that V (r) → 0 as r → ∞.

Then, in that limit,
d2u

dr2
=

−2mE

~2
u(r) (6.188)

At large distances, if E < 0, as we would expect for a bound state, we find u ∝ exp
(

−
√

2m|E|
~2

r
)

. Of course, E must be known before this is useful. The two limiting forms are

sketched in the figure. No simple argument can tell us anything about u(r) at intermediate

distances.

r^(l+1) exp(−r)

u(r)

r

The two-body central potential

Two particles interacting by a central potential have a Hamiltonian

Ĥ =
p̂1

2

2m1
+

p̂2
2

2m2
+ V (|~r2 − ~r1|). (6.189)

As the Hamiltonian is invariant under an overall translation, we expect that the momentum

of the entire system will be conserved. We see that with a change of variables into relative

(~r) and center of mass (~R) coordinates:

ψ(~r1, ~r2) → ψ(~r, ~R) (6.190)

~R ≡ m1~r1 +m2~r2
m1 +m2

~r ≡ ~r1 − ~r2. (6.191)

Below, we will label
~R = (X, Y, Z) ~r = (x, y, z). (6.192)
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Let us sketch the simple steps in the change of variables, looking only at one coordinate.

p̂1
2

2m1

+
p̂2

2

2m2

=
−~

2

2m1

∂2

∂x21
+

−~
2

2m2

∂2

∂x22
. (6.193)

From the chain rule, and using M = m1 +m2, we find

∂ψ(x,X)

∂x1
=

∂x

∂x1

∂ψ

∂x
+
∂X

∂x1

∂ψ

∂X
=
∂ψ

∂x
+
m1

M

∂ψ

∂X
. (6.194)

The second derivatives are

∂2ψ

∂x21
=
∂2ψ

∂x2
+

2m1

M

∂2ψ

∂x∂X
+
m2

1

M2

∂2ψ

∂X2
(6.195)

and
∂2ψ

∂x22
=
∂2ψ

∂x2
− 2m2

M

∂2ψ

∂x∂X
+
m2

2

M2

∂2ψ

∂X2
(6.196)

so that the kinetic term is

−~
2
{1

2

( 1

m1
+

1

m2

)∂2ψ

∂x2
+

∂2ψ

∂x∂X

( 2

2M
− 2

2M

)

+
∂2ψ

∂X2

(m1 +m2

2M2

)}

. (6.197)

Thus the the Schrodinger equation becomes

[−~
2

2µ
∇2

r +
−~

2

2M
∇2

R + V (|~r|)
]

ψ = Eψ. (6.198)

The quantity µ is the ‘reduced mass,”, 1/µ = 1/m1 + 1/m2. It is no surprise that we can

assume a separated solution

ψ(~R,~r) = Φ(~R)φ(~r) (6.199)

where the energy

E = E1 + E2 (6.200)

consists of a relative-coordinate piece

E1φ(~r) =
(−~

2

2µ
∇2

r + V (r)
)

φ(~r) (6.201)

and a center of mass piece

E2Φ(~R) =
−~

2

2M
∇2

RΦ(~R). (6.202)

The center of mass motion is obviously that of a free particle, Φ(~R) = ei
~k·~R with E2 =

~
2k2/(2M), and the relative piece is our one-body central potential problem again.
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Instead of hydrogen

The author lacks the strength to present the full solution of the radial equation for hydrogen,

a problem which appears in most textbooks. Let us merely assume that the student has

worked through it previously, and summarize relevant information in (I admit) insufficient

detail to be of much use.

The Schrödinger equations for the hydrogen atom is

−~
2

2µ
u′′ +

[

~
2l(l + 1)

2µr2
− Ze2

r

]

u = Eu. (6.203)

To remove numerical factors we define rescaled energy and radial variables

E = −1

2
µc2Z2α2ǫ r =

~c

µc2αZ
ρ = (a0/Z)ρ. (6.204)

(a0 is the familiar Bohr radius.) With these substitutions the Schrödinger equation reduces

to

−1

2

d2u

dρ2
+
l(l + 1)

2ρ2
u− u

ρ
=

−ǫµ
2
. (6.205)

At small ρ we again see that u ∝ ρl+1 and at large ρ, u ∝ e−
√
ǫρ. Omitting a solution to

this equation, I will simply remark that the quantization condition is ǫ = 1
n2 . The radial

solutions are

un,l(ρ) = Nn,le
− ρ

nPn−l−1(ρ) (6.206)

where the Pn−l−1(ρ)’s are polynomials of degree n− l− 1. Since this degree must be greater

than zero, there are n such polynomials for each n (l = 0 to n − 1) and since the energy

magically does not depend on l, these states are all degenerate: counting a factor of 2 for

spin, hydrogenic levels are 2
∑l<n

l=0(2l+1) = 2n2 degenerate. This degeneracy makes hydrogen

an atypical atom. Our limited discussion makes it seem rather contrived. Its true origin is

the existence of a set of conserved quantities (the Runge-Lenz vector) associated with a 1/r

potential. The first solution of hydrogen, before Schrödinger’s wave solution, was performed

by Pauli using these quantities.

Table 6.1: Relation between n and l

n = 1 l = 0 1S

n = 2 l = 0, 1 2S, 2P

n = 3 l = 0, 1, 2 3S, 3P, 3D
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It is useful to have a functional form for at least part of the family of hydrogenic wave

functions. The n = l + 1 solutions are simple:

u(r) = Crl+1 exp(− Zr

na0
) (6.207)

The reader can readily check (by substitution) that it is a solution.

From the solution we see that the size of the wave function is about a0/Z. The 1/Z

simply reflects the increased Coulomb attraction of a multiply charged nucleus. At larger n

the wave function pushes out from the nucleus. This is also unsurprising – the electron has

more energy and sits higher in the potential well. Because the radial solution is a polynomial

of degree n− l − 1, the wave function of the (n, l) state will have n− l maxima. The graph

illustrates this for u2,1 and u2,0.

u

r

u_2,1

u_2,0

We see that 〈r〉, the average value of the radius of the electron will be a little bit bigger for

smaller l. In fact, one can show that

〈r〉 = a0
2Z

(3n2 − l(l + 1)). (6.208)

A few of these values are shown in the table.

So, to summarize, the energy levels of a hydrogenic bound state

En =
1

n2
· 1
2
α2mec

2 (6.209)
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Table 6.2: Values of < r > coefficient

n l coeff.

2 0 12

2 1 10

3 0 27

3 1 25

3 2 21

where the fine structure constant, α ≡ e2

~c
is a dimensionless constant equal to about 1/137.

The quantity 1
2
α2mec

2 is defined as the Rydberg and is equal to 13.6eV. me is the mass of

an electron, mec
2 = 511 KeV. (To be more accurate, it is the reduced mass of the electron

and the proton.) If the nucleus has charge Z, the energy levels scale as

En = Z2En(H). (6.210)

The solution of the Schrödinger equation is far from the whole story for hydrogenic atoms.

The electron’s velocity is not vanishingly small (in fact 〈 v
c
〉 ≃ 1

137
), so that while it is a good

assumption to assume that the non-relativistic, this is not completely correct. Because the

electron has spin, it has a magnetic moment. Because the electron moves in the Coulomb field

of the nucleus, it sees (by Lorentz transformation) a magnetic field. Its interaction with the

field, plus relativistic corrections to the kinetic energy, give a “fine structure” contribution

to the energy.

∆E ∝ Z4α4mec
2 (6.211)

which breaks the degeneracy of the different levels of common n. The electron also experi-

ences a direct “hyperfine” interaction with the spin of the nucleus

∆E ∝ Z3α4mec
2
(me

mp

)

. (6.212)

The ground state of hydrogen is split with a frequency difference of about 1420 MHz. Finally,

quantum fluctuations in the electromagnetic field induce a splitting between the (otherwise

degenerate) 2S and one of the 2P levels of hydrogen, with a frequency of about 1000 MHz.

This is called the Lamb shift.

Because all these effects are small, they are best studied using perturbative techniques.

We will return later to all of them except the Lamb shift.
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The semi-classical method of Wentzel, Kramers, and Brillouin

The WKB (Wentzel - Kramers - Brillouin) method is a set of tools for solving the Schrödinger

equation which are applicable when the action of typical configurations is large compared

to ~. These methods are relevant for systems of particles which are in potentials whose

variation in space is many de Broglie wavelengths in extent. The potential itself could be

very broad, or (as in the case of highly excited states) the de Broglie wavelength could simply

be small compared to the scale of variation in the potential V (r). These methods actually

predate quantum mechanics. They are basically a quantum mechanical transcription of the

method of stationary phase in optics. This is an enormous field, including topics such as

the passage from wave optics to geometric optics, the transmission of light through regions

of spatially varying index of refraction, and gravitational lensing. As a byproduct they also

give most of the old Bohr-Sommerfeld quantization rules for bound states.

We begin by writing the coordinate space wave function as

ψ(~r, t) = A exp
iW (~r, t)

~
. (6.213)

This equation assigns W (x, t)/~ as a spatially and temporally varying phase of the wave

function. At fixed time, the phase varies along the direction of the wave number, so we

immediately identify the (local) momentim and energy as

~p(x, t) = ~~k(x, t) = ~∇W ; ~ω(x, t) =
∂W

∂t
. (6.214)

Particles move on trajectories orthogonal to the surfaces of constant W , or to the surfaces

of constant phase in ψ.

p
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Substituting this functional form into the time-dependent Schrödinger equation gives

[∂W

∂t
+

1

2m
(∇W )2 + V (x)− i~

2m
∇2W

]

ψ = 0. (6.215)

Note that if we set ~ = 0, or, more precisely, if we assume that the last term in this expression

is small compared to the other two terms, Eq. 6.215 simplifies to

∂W

∂t
+H(x, p)W = 0 (6.216)

where we have defined H(x, p) ≡ 1
2m

(∇W )2 + V (x) and ~p ≡ ~∇W . This happens to be the

equation for Hamilton’s principal function W in classical mechanics.

If ψ is an energy eigenfunction, we can write it as

ψ = u(r)e
−iEt

~ (6.217)

and from Eq. 6.213, W = S(~r)−Et and

u(r) = A exp
( i

~
S(~r)

)

. (6.218)

The full equation of motion is

1

2m
(~∇S)2 − (E − V (r))− i~∇2S

2m
= 0. (6.219)

This is still exact. We will work with the one-dimensional version of this equation (although

there is a large three - dimensional literature of WKB). For future use, let us define ~k(x) ≡
√

2m(E − V (x)) so that the Schrödinger equation reduces to

d2u

dx2
+ k2(x)u = 0. (6.220)

In three dimensions, working in spherical coordinates and keeping only the radial dependence,

it is useful to include the centrifugal barrier in V (r) and to set

~k(r) =

√

2m
(

E − V (r)− l(l + 1)

r2

)

. (6.221)

Now we are in one dimension: define S ′ = dS/dx and S ′′ = d2S/dx2. We are interested in

a solution where the de Broglie wavelength of the particle is short compared to the variation

in k(x, t). We can encode this situation in the requirement that k′/k ≪ 1/λ. To get this we

(improbably) use ~ as a proxy, and we expand S(r) in a power series in ~,

S = S0 + ~S1 + ~
2S2 + · · · (6.222)
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Noting that ~2k2 is actually O(~0) (it is equal to E − V ), the zeroth order expression is

(S ′
0)

2 = ~
2k2 = 2m(E − V ) (6.223)

whose solution is

S0 = ±~

∫ x

k(x′)dx′. (6.224)

The order ~1 equation is

iS ′′
0 − 2S ′

0S
′
1 = 0. (6.225)

Substituting for S0 gives

i~k′(x)− 2~k(x)S ′
1 = 0 (6.226)

or

S ′
1 =

ik′(x)

2k(x)
(6.227)

which integrates to

S1(x) =
i

2
ln(k(x)). (6.228)

Thus to order ~1 the complete solution is

u(x) =
A

√

2m(E − V (x))
exp[± i

~

∫ x

dx′
√

2m(E − V (x′))]. (6.229)

This is for E > V . For E < V we have, defining ~κ =
√

2m(V (x)− E),

u(x) =
B

√

κ(x)
exp[±

∫ x

dx′κ(x′)], (6.230)

and we choose the sign from the appropriate boundary condition.

For an iterative solution to make sense, we must require ~S ′
1/S

′
0 << 1, or |k′/(2k2)| << 1,

because S ′
0 = k and S ′

1 = k′/k. The de Broglie wavelength is λ = 2π/k and so this condition

is equivalent to the statement that (λ/(4π)|dk/dx| << k. Physically, this means that the

fractional change in the wavelength in a distance λ/(4π) should be small compared to k.

The WKB approximation is a good one when the potential energy changes slowly over many

wavelengths of the particle.

Before we continue the story, let’s pause to discuss a particularly important application

– barrier penetration.
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Barrier Penetration and WKB

Suppose there is a potential barrier V (r) separating two classically allowed regions. V (r)

could include the centrifugal term if we are considering a radial coordinate in a three dimen-

sional problem.

V_eff(r)

r

E

r1 r2

Suppose also that for r1 < r < r2, E < V (r). We imagine that we begin with a particle

confined to the region 0 < r < r1. In the classically forbidden region the tail of the wave

function behaves as

u(r) ∝ exp
[

−
∫ r

r1

κ(r)dr
]

, (6.231)

where as usual ~2κ2(r) = 2m(V (r) − E). The ratio of the value of the wave function at

location r2, where it leaves the forbidden region, to its value at r1, where it enters, is an

interesting quantity. It measures how u(r) falls off across the barrier. The probability ratio,

its square, is called the penetration factor P .

P =
|u(r2)|2
|u(r1)|2

∝ exp
[

− 2

∫ r2

r1

κ(r)dr
]

(6.232)

where explicitly

κ(r) =
1

~

√

2m
(

V (r) +
l(l + 1)

2mr2
−E

)

. (6.233)
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V_eff(r)

r

E

R

Figure 6.1: The potential felt by an alpha particle inside and outside a nucleus.

Tunneling through a square barrier is a special case of this formula. Recall that we found

that the transmission coefficient for a barrier of height V0 and width a was

T =
[

1 +
V 2
0 sinh2(βa)

4E(V0 − E)

]−1

(6.234)

where ~
2β2 = 2m(V0 −E). For large βa, T is approximately

T ≃
(16E(V0 −E)

V 2
0

)

e−2βa =
( )

exp(−2

∫ a

0

dx

√

2m

~2
(V0 −E)). (6.235)

WKB gives the dominant exponential factor in this expression.

The classic example of barrier penetration is the alpha-decay of a nucleus. Inside the

nucleus, protons and neutrons feel the strong attractive nuclear force. This force is short

range, so outside the nucleus, nucleons only sense the Coulomb repulsion ZZ ′e2/r of the

nucleus. (The nucleon has charge Z ′e and the nucleus has charge Ze.) In alpha-decay, a

nucleus emits an alpha particle – a bound state of two protons with Z ′ = 2. We follow

Gamow, Condon and Gurney and assume that the alpha particle exists as a separate entity

inside the nucleus, where it feels an attractive potential: the decay occurs as the alpha

particle tunnels through the classically forbidden region to emerge as a free particle. The

potential it feels is shown in Fig. 6.1. WKB gives the (l = 0) penetration factor as

−1

2
logP =

∫ r

R

κ(r)dr =

√
2m

~

∫ r=ZZ′e2

E

R

(ZZ ′e2

r
− E

)
1
2
dr. (6.236)
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Taking E = 1
2
mv2, ZZ ′e2/R = 1

2
mv2, we evaluate the integral, finding

−1

2
logP =

πZZ ′e2

~v
(1− 2

π
sin−1 1

√

ZZ ′e2/(ER)
)− mvR

~
(

√

ZZ ′e2

ER
− 1)2. (6.237)

We model the lifetime for alpha-decay as τ/P where τ is the rate at which the alpha particle

strikes the barrier. In terms of the alpha’s velocity v and the nuclear radius R, τ would be

2R/v. With nuclear radii ranging from 10−12 − 10−13 cm, and known values of Z and E for

alpha decays, the right hand side of Eq. 6.237 varies by about a factor of 25. It reproduces

experimental data for lifetimes over 23 orders of magnitude.

In low energy nuclear reactions one can run the problem backward: what is the probability

that the alpha particle gets into the nucleus? It is

P ≃ exp
[

− 2πZZ ′e2

~v

]

(6.238)

because of the Coulomb barrier. This quantity is called the “Gamow factor,” and is the

dominant term in the rate for many low energy nuclear reactions. Fusion reactions in the

sun are a particularly important example – hence the meme “The sun shines by quantum

tunneling.”

There are many other more exotic variations of this calculation, including the decay of

the early universe from a “false vacuum” to its current ground state.

WKB for energy eigenvalues

Potential Wavefunction

The condition (λ/(4π)|dk/dx| << k is violated when V (x) = E or k = 0, i.e., near the

classical turning points for the orbits. How can we use WKB in that case? We need what
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are called “connection formulas.” To get them, and their consequences for bound state, we

need to make a mathematical digression. Introduce the variable

ξ =

∫ x

k(x′)dx′ (6.239)

and rewrite
d2u0(x)

dx2
+ k(x)2u0(x) = 0 (6.240)

as
d2u0
dξ2

+ [
1

k(x)2
dk(x)

dx
]
du0
dξ

+ u0 = 0. (6.241)

In the good WKB limit, the object in square brackets vanishes, and our solutions are u0 ≃
exp(±ξ), as expected. To derive the connection formula, we assume that V (x) − E →
0 vanishes with a linear dependence on x. (This is almost always the case in practical

applications.) Choose coordinates so that this zero occurs at x = 0. We write V (x)−E = Cx,

where C is a constant. We introduce the variables for use in regions I and II (see figure)

ξ1 ≡
∫ x

0

kdx (6.242)

ξ2 ≡
∫ 0

x

κdx, (6.243)

ξ_2 ξ_1

II I

v(x)−E

which both increase as we go away from zero. In region I we have

d2u0
dξ2

+
1

3ξ

du0
dξ

+ u0 = 0. (6.244)
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The solutions to this textbook differential equation are called Airy functions. They are

ordinary Bessel functions order of ±1/3. Explicitly, they are

u±1 (x) = A±

(ξ1
k

)
1
2
J± 1

3
(ξ1). (6.245)

In region II the solutions are also Airy functions, this time of imaginary order:

u±2 = B±

(ξ2
k

)
1
2
I± 1

3
(ξ2). (6.246)

As x→ 0 the Bessel functions behave like

J± 1
3
(ξ1) =

(1
2
ξ1)

± 1
3

Γ(1± 1
3
)

I± 1
3
(ξ2) =

(1
2
ξ2)

± 1
3

Γ(1± 1
3
)

(6.247)

and as x → ∞ they approach

J± 1
3
(ξ1) =

1
√

1
2
πξ1

cos
(

ξ1 ∓
π

6
− π

4
) (6.248)

and

I± 1
3
(ξ2) =

1
√

1
2
πξ2

[

eξ2 + e−ξ2e−( 1
2
± 1

3
)iπ
]

. (6.249)

At the turning point k2 = Cx or k = c
√
x and κ2 = C|x|2 or κ = c

√

|x|, so the limiting

form of the solutions to the Schrödinger equation are

u+1 =
A+

(

2
3

)
1
2
(

1
3
c
)

1
3

x

Γ
(

4
3

) u−1 =
A−

(

2
3

)
1
2
(

1
3
c
)

1
3

Γ
(

2
3

) (6.250)

and

u+2 =
B+

(

2
3

)
1
2
(

1
3
c
)

1
3 |x|

Γ
(

4
3

) u−2 =
B−

(

2
3

)
1
2
(

1
3
c
)

1
3

Γ
(

2
3

) . (6.251)

If we set B+ = −A+ then u+1 joins u+2 , and similarly, to match u−1 and u−2 we require

A− = B−. This achieves a match near the classical turning point. However, we also need to

check that our solutions obey their boundary conditions at ±∞. The limiting forms are

u+1 → 1
√

1
2
πk

cos
(

ξ1 −
5π

12

)

, (6.252)
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u−1 → 1
√

1
2
πk

cos
(

ξ1 −
π

12

)

, (6.253)

u+2 → −1√
2πκ

(

eξ2 + e−ξ2e−
5πi
6

)

(6.254)

and

u−2 → 1√
2πκ

(

eξ2 + e−ξ2e−
πi
6

)

. (6.255)

In order that ψ vanishes as x→ −∞, we must choose the linear combination u+2 + u−2 . This

oscillates as u+1 + u−1 ≃ cos(ξ1 − π/4) in the classically allowed region.

Now imagine we have a confining potential well with two turning points, as shown in the

figure:

x1 x2

V(x)

Inside the well (in the classically allowed region) we construct a solution by starting our

integration at x1, one of the classical turning points. There

u(x) ≃ 1√
k
cos
[

∫ x

x1

kdx′ − π

4

]

. (6.256)

We can also begin by integrating from x2, so

u(x) ≃ 1√
k
cos
[

∫ x2

x

kdx′ − π

4

]

(6.257)

=
1√
k
cos
[

∫ x1

x

kdx′ +

∫ x2

x1

kdx′ − π

4

]

. (6.258)

These solutions must be identical. This forces the equality

−
∫ x2

x1

kdx+
π

4
= −π

4
− nπ, (6.259)



Quantum Mechanics 151

which, upon re-introducing the potential, is the equation

∫ x2

x1

dx

√

2m(E − V (x))

~2
= (n+

1

2
)π (6.260)

where n ∈ {0, 1, 2, . . .}. For historical reasons we replace ~ by h/(2π), and write p(x) =
√

2m(E − V (x) to get

2

∫ x2

x1

dx p(x) = (n+
1

2
)h. (6.261)

We regard the integral from x1 to x2 as half of an integral for x1 (a classical turning point)

to x2 (the other classical turning point) and back to the start: an integral of the momentum

about the closed classical trajectory. Then the consistency condition is

∮

pdx = (n+
1

2
)h. (6.262)

Equation 6.262 is known as the Bohr-Sommerfeld quantization condition, a 1916 generaliza-

tion of Bohr’s famous 1913 guess of L = n~ for a circular orbit. We have derived it from the

Schrödinger equation in the WKB limit. It is a quantization condition because it will only

be satisfied for particular values of the energy E. In this formula, n is the number of nodes

in the wave function. WKB is only a good approximation if the number of nodes is large,

or (equivalently) if the classical turning points are many wavelengths apart.

In a few cases, WKB is exact. The simple harmonic oscillator is the most important such

case. The connection formula gives the 1/2 in the energy formula E = ~ω(n + 1
2
). Clearly,

if n is large, keeping the 1/2 or leaving it out will not be very important.

Connection of the WKB method and the path integral

Recall that the equation for the time evolution of a wave function is

ψ(x, t) =

∫

U(x, t; x′, t′)ψ(x′, t′)dx′ (6.263)

where the time evolution operator is

U(x, t; x′, t′) =

∫

∏

i

dxi exp
[ i

~

∫ t

t′
L(x, ẋ)dt′′

]

. (6.264)
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Suppose that the motion of the particle is nearly classical, so that in evaluating the path

integral, x and dx/dt remain very close to their classical values (the ones found by solving

Lagrange’s equation). Then

U(x, t; x′, t′) = C exp
[ i

~

∫ t

t′
dt”L(xcl, ẋcl)

]

= C exp
[ i

~

∫ t

t′
dt”
[ p2

2m
− V (xcl)

]]

,

(6.265)

replacing ẋ by p/m. The sum over paths disappears because the particle is confined to

its classical path. On the classical path, energy is conserved, so we can replace V (x) by

E − p2/(2m), giving

U(x, t; x′, t′) = C exp
( i

~

∫ t

t′

p2

m
dt′′
)

exp
(

− i

~
E(t− t′)

)

. (6.266)

Finally, the first term simplifies to
∫ t

t′
p
p

m
dt′′ =

∫ t

t′
p
dx

dt′′
dt′′ =

∫ x

x′

pdx′′, (6.267)

leaving an evolution equation

ψ(x, t) = φ(x) exp−iEt
~

(6.268)

with

φ(x) = A

∫

[

exp
( i

~

∫ x

x′

p(x′′)dx′′
)]

φ(x′)dx′. (6.269)

If we replace the integral
∫ x

x′ by
∫ x0

x′ +
∫ x

x0
, then we can write this expression as

φ(x) = exp
( i

~

∫ x

x0

p(x′′)dx′′)
[

∫

dx′φ(x′)A exp
( i

~

∫ x0

x′

p(x′′)dx′′
)]

. (6.270)

The quantity in the brackets is independent of x. We call it f(x0) and rewrite Eq. 6.270 as

φ(x) = exp
[ i

~

∫ x

x0

p(x′′)dx′′
]

f(x0). (6.271)

Look closely at this expression – it tells us that f(x0) is actually φ(x0). Thus

φ(x) = exp
[ i

~

∫ x

x0

p(x′′)dx′′
]

φ(x0). (6.272)

This is again the WKB formula for φ(x) in terms of φ(x0).
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Angular momentum and the consequences of its conservation appear in so many practical

considerations that it is very useful to devote some time to its study. We will do this in the

abstract, rather than through the use of coordinate space wave functions, like the spherical

harmonics. Electrons (and other elementary particles) carry an intrinsic spin angular mo-

mentum of 1
2
~, which, in contrast to orbital angular momentum, has no simple connection

with either coordinate or momentum. An operator language is the only way to deal with

spin. Accordingly, we assume the existence of a set of abstract operators (Ĵ1, Ĵ2, Ĵ3) and

their square, which obey the commutation relations

[Ĵ2, Ĵi] = 0 [Ĵi, Ĵj] = i~ǫijkĴk. (7.1)

We defer any explanation of why such commutation relations might be expected or “natural.”

(It will come.) We also assume the existence of states |jm〉 such that

Ĵ2 |j,m〉 = ~
2f(j) |j,m〉

Ĵz |j,m〉 = ~m |j,m〉 .
(7.2)

All the properties of the states and operators can be constructed from the commutation

relations. To simplify the process, let us define two more operators, called raising and

lowering operators,

Ĵ+ = Ĵx + iĴy Ĵ− = Ĵx − iĴy (7.3)

which have an algebra

[Ĵ2, Ĵ±] = 0 [Ĵz, Ĵ±] = ±~Ĵ± (7.4)

[Ĵ+, Ĵ−] = 2~Ĵz. (7.5)

To see how they act on states, consider the matrix element

〈j,m|[Ĵz, Ĵ+]|j,m′〉 = 〈j,m|ĴzĴ+|j,m′〉 − 〈j,m|Ĵ+Ĵz|j,m′〉 = ~ 〈j,m|Ĵ+|j,m′〉 . (7.6)

Letting Ĵz act to the left and right gives

0 = (m−m′ − 1) 〈j,m|Ĵ+|j,m′〉 . (7.7)

This means that either m = m′ + 1, or the matrix element must vanish. Therefore, Ĵ+

changes the state |j,m〉 into a state proportional to |j,m+ 1〉. There is a similar calculation

for the Ĵ− operator. To summarize,

Ĵ+ |j,m〉 = ~λm |j,m+ 1〉 (7.8)
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and

Ĵ− |j,m〉 = ~λ∗m−1 |j,m− 1〉 . (7.9)

We may determine the λm’s from

〈jm|[Ĵ+, Ĵ−]|jm〉 = 〈jm|2~Ĵz|jm〉 = 2~2m. (7.10)

Acting left and right with Ĵ+ and Ĵ−, we find

= ~
2{|λm−1|2 − |λm|2} = 2m~

2. (7.11)

The solution to this equation is |λm|2 = C −m(m+ 1). Because |λm|2 ≥ 0, the spectrum of

m’s in the states |j,m〉 is finite and bounded. There is a largest m = m1, for which λm1 = 0,

and

Ĵ+ |j,m1〉 = 0. (7.12)

There is also a smallest m2 with Ĵ− |j,m2 + 1〉 = λm2 |j,m2〉 = 0. Starting from |j,m2 + 1〉,
we may construct states |j,m2 + 2〉, |j,m2 + 3〉 . . . by repeated application of Ĵ+. Eventually,

we must hit the state |j,m1〉 and the series must terminate. Otherwise, we would find a λm

with |λm|2 < 0. Thus the number of states must be an integer.

We may find m1 and m2 by solving C −m(m+ 1) = 0. The solutions to this quadratic

equation are m1,2 = −1
2
± 1

2

√
4C + 1. Note that m1 = −(m2 + 1). Then either m1 must

be an integer (for example, m = (−3,−2,−1, 0, 1, 2, 3) or m1 must a half integer m =

(3/2, 1/2,−1/2,−3/2). Either way, the minimum m1 is the negative of its maximum. The

algebra of the commutation relation forces this result.

Finally, what is f(j), the eigenvalue of Ĵ2? To find it, consider the matrix element

〈jm|Ĵ2|jm〉 = 〈jm|Ĵ2
z +

1

2
(Ĵ+Ĵ− + Ĵ−Ĵ+)|jm〉

= ~
2m2 +

1

2
(|λm−1|2 + |λm|2)

= ~
2C

= ~
2m1(m1 + 1)

(7.13)

We rename m1 as j, so the eigenvalues of Ĵ2 are ~
2j(j + 1). Thus the quantity j is either

an integer or a half-integer, and the allowed values of m run in integer steps m = −j,−j +
1,−j + 2, . . . , j − 1, j.
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We summarize all the results for matrix elements:

〈j,m+ 1|Ĵ+|jm〉 =
√

j(j + 1)−m(m+ 1)~

=
√

(j −m)(j +m+ 1)~

(7.14)

〈j,m− 1|Ĵ−|jm〉 =
√

j(j + 1)− (m− 1)m~

=
√

(j +m)(j −m+ 1)~

(7.15)

Ĵz |j,m〉 = ~m |j,m〉 (7.16)

Ĵ2 |j,m〉 = ~
2(j(j + 1)) |j,m〉 . (7.17)

Let us consider some examples of angular momentum matrix elements.

• j = 0: There is only one state, the |j = 0, m = 0〉 state. The operators Ĵz and Ĵ2 may

be regarded as 1× 1 matrices (with the value zero).

• j = 1
2
: There are two states |1

2
,+1

2
〉 and |1

2
,−1

2
〉 corresponding to the vectors

| 1
2
,+ 1

2
〉 →

(

1

0

)

| 1
2
,− 1

2
〉 →

(

0

1

)

. (7.18)

The matrix expressions for the operators are ~̂J = ~

2
~σ where the ~σ are the Pauli matrices.

Ĵz =
~

2

(

1 0

0 −1

)

Ĵx =
~

2

(

0 1

1 0

)

Ĵy =
~

2

(

0 −i
i 0

)

(7.19)

Ĵ+ = ~

(

0 1

0 0

)

Ĵ− = ~

(

0 0

1 0

)

. (7.20)

.

• j = 1: With the three m− states, we associate vectors

|1,+1〉 →







1

0

0






|1, 0〉 →







0

1

0






|1,−1〉 →







0

0

1






(7.21)
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and operators

Ĵ2 = 2~2







1 0 0

0 1 0

0 0 1






Ĵz = ~







1 0 0

0 0 0

0 0 −1






(7.22)

Ĵ+ =
√
2~







0 1 0

0 0 1

0 0 0






Ĵ− =

√
2~







0 0 0

1 0 0

0 1 0






(7.23)

• j = 3
2
: The angular momentum operators are

Ĵz = ~











−3
2

0 0 0

0 −1
2

0 0

0 0 1
2

0

0 0 0 3
2











Ĵ+ = ~











0
√
3 0 0

0 0 2 0

0 0 0
√
3

0 0 0 0











(7.24)

Ĵ− = ~











0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√
3 0











. (7.25)

Combining angular momenta

Let us imagine that we have a system with two kinds of angular momenta, Ĵ1 and Ĵ2, and a

Hamiltonian Ĥ which commutes with their sum, though not with either individual angular

momentum:

[ ~̂J1 + ~̂J2, Ĥ] = 0, [ ~̂J1, Ĥ] 6= 0, [ ~̂J2, Ĥ] 6= 0. (7.26)

This situation often occurs in Nature. A simple example is a one-electron atom. The two

angular momenta are the electron’s spin ~S and its orbital angular momentum ~L. We know

that the electron experiences a spin-orbital interaction, H ≃ ~L · ~S. Clearly, [ ~̂S, ~̂L · ~̂S] 6= 0.

The electron’s total angular momentum is a constant of the motion, simply because there

are no torques acting on the system as a whole. Thus ~̂J = ~̂L+ ~̂S is conserved. We want to

be able to construct states which are eigenstates of all conserved quantum numbers. In this

case, these quantities can only be Ĵ and one of its components, which we select to be Ĵz.

However, we only know how to construct states which are (separately) eigenfunctions of

(Ĵ2
1 , Ĵ1z) and (Ĵ2

2 , Ĵ2z). As long as Ĵ1 and Ĵ2 involve different sectors of Hilbert space, we
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can write these combined states as product states

|J1m1〉 |J2m2〉 ≡ |J1J2m1m2〉 (7.27)

where, for example,

Ĵ2
1 |J1J2m1m2〉 = ~

2(j1(j1 + 1)) |J1J2m1m2〉 (7.28)

and so on.

Since the total angular momentum obeys a commutation relation ~J × ~J = i~ ~J , we can

try to build eigenstates of Ĵ2 and Ĵz from a linear combination of |J1J2m1m2〉’s. Ĵ2
1 and Ĵ2

2

are scalars, so they will commute with Ĵ ; hence, these states will be labeled |j1j2jm〉. These
states will be a linear combination of the product states:

|j1j2jm〉 =
∑

m1m2

|j1j2m1m2〉 〈j1j2m1m2|j1j2jm〉 . (7.29)

The object 〈j1j2m1m2|j1j2jm〉 is a number: it is called a Clebsch-Gordon coefficient. The

sum runs over all values ofm1 andm2; however, since Ĵz = Ĵ1z+Ĵ2z, there is a constraint that

m1 +m2 = m, and the sum is restricted to all values of m1 and m2 such that m1 +m2 = m.

Example: Spin 1
2
electrons in a P-wave orbital

Recoupling angular momentum is a task which can simplify many physical problems. It is

worthwhile to spend time on several examples, introducing along the way a method (not

the best nor fastest, but certainly the most widely known) for finding Clebsch-Gordon co-

efficients. Recall why we are doing this: the basis |j1j2jm〉 may be more useful than the

product state |j1j2m1m2〉.

We begin imagining a spin-1/2 electron in a P−orbital. There are six possible states

corresponding to the two spin orientations and three Lz states. We can label these states as

|11〉 |↑〉 |11〉 |↓〉 |10〉 |↑〉 (7.30)

|10〉 |↓〉 |1− 1〉 |↑〉 |1− 1〉 |↓〉 .
(7.31)

We expect

|J.M〉 =
∑

s,m

|1, 1
2
, m, s〉 〈1, 1

2
, m, s|J,M〉 (7.32)
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with s +m = M . Note that if M = 3
2
, only one term contributes to the sum. For M = 1

2

there are 2 states, for M = −1
2
there are also 2 states, and for M = −3

2
there is one state.

Thus

|J,M =
3

2
〉 = |11〉 |↑〉 . (7.33)

The Clebsch-Gordon coefficient must be unity to preserve the normalization of the state.

To build other states, write the raising and lowering operators as Ĵ± = L̂± + Ŝ± and then

examine the action of an operator on the state

Ĵ+ |J,M =
3

2
〉 = (L̂+ + Ŝ+) |11〉 |↑〉 . (7.34)

Because this state is the highest state in the hierarchy, the raising operator must yield zero.

Ĵ+ |J,M =
3

2
〉 =

√

j(j + 1)− 3

2
(
3

2
+ 1) |J,M =

3

2
+ 1〉 = 0. (7.35)

This constraint tells us that J = 3
2
. A similar calculation can be done for the |J,M = −3

2
〉

state. To calculate the Clebsch-Gordon coefficients for the full spectrum of states, we use

raising and lowering operators starting from states we know about, namely, the highest and

lowest state in the spectrum.

Ĵ− |3
2
,
3

2
〉 ∝ |3

2
,
1

2
〉 ∝ (L̂− + Ŝ−) |11〉 |↑〉 ∝ |10〉 |↑〉+ |11〉 |↓〉 . (7.36)

We can also raise the lowest state,

Ĵ+ |3
2
,−3

2
〉 = (L̂+ + Ŝ+) |1− 1〉 |↓〉 ∝ |10〉 |↓〉+ |1− 1〉 |↑〉 . (7.37)

There are six states in all; four of them make up the J = 3
2
multiplet. The two remaining

states comprise the J = 1
2
multiplet. As a rule one can show that the allowed values of J

range from J = J1 + J2 down to |J1 − J2|, and here, with J1 = 1 and J2 =
1
2
, the J = 3

2
and

J = 1
2
multiplets are the only ones present in the system. Symbolically, we write

1⊗ 1

2
=

3

2
⊕ 1

2
. (7.38)

We read this equation as “3 states times 2 states gives a decomposition of 4 states plus 2

states.” The same sort of direct product and direct sum can be done for other systems. As

an example, consider the coupling of a J = 1 system to a J = 1 system.

1⊗ 1 = 2⊕ 1⊕ 0. (7.39)

State counting works: 3× 3 = 5 + 3 + 1.
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We return to the construction of the full set of states of the J = 3
2
system. We act on

the |3
2
, 3
2
〉 state with the Ĵ− operator, to find

Ĵ− |3
2
,
3

2
〉 = L̂− |11〉 |↑〉+ Ŝ− |11〉 |↑〉

=
√
1 · 2− 1 · 0 |10〉 |↑〉+

√

1

2
· 3
2
− 1

2
· (−1

2
) |11〉 |↓〉

Ĵ− |3
2
,
3

2
〉 =

√

j(j + 1)−m(m− 1) |3
2
,
1

2
〉 =

√

3

2
· 5
2
− 3

2
· 1
2
|3
2
,
1

2
〉 .

(7.40)

Therefore

|3
2
,
1

2
〉 =

√

2

3
|10〉 |↑〉+

√

1

3
|11〉 |↓〉 . (7.41)

We can build the |3
2
,−1

2
〉 state by either of two methods. We can either act on the |3

2
, 1
2
〉

states with a lowering operator, or we can act on the |3
2
,−3

2
〉 state with a raising operator.

Making the second choice yields

Ĵ+ |3
2
,−3

2
〉 =

√

3

2
· 5
2
+

3

2
· (−3

2
) |3
2
,−1

2
〉 (7.42)

=
√
2 |10〉 |↓〉+ |1− 1〉 |↑〉

and so

|3
2
,−1

2
〉 =

√

2

3
|10〉 |↓〉+

√

1

3
|1− 1〉 |↑〉 . (7.43)

The J = 1
2
states remain. There will be a |1

2
,+1

2
〉 and a |1

2
,−1

2
〉 state. These states should

be orthogonal to all the other states. Because the states can only be composed of (sums of)

direct products of states where the z-component of angular momentum equals the appropriate

value of ±1
2
,

|1
2
,+

1

2
〉 ∼ |10〉 |↑〉+ |11〉 |↓〉

|1
2
,−1

2
〉 ∼ |10〉 |↓〉+ |1− 1〉 |↑〉 .

(7.44)

The Clebsch-Gordon coefficients can be found using orthogonality, 〈3
2
, 1
2
|1
2
, 1
2
〉 = 0 and

|3
2
,−1

2
|1
2
,−1

2
〉 = 0. We recall

|3
2
,
1

2
〉 =

√

2

3
|10〉 |↑〉+

√

1

3
|11〉 |↓〉 (7.45)
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and parameterize

|1
2
,
1

2
〉 = α |10〉 |↑〉+ β |11〉 |↓〉 , (7.46)

and then orthogonality gives

α

√

2

3
+ β

√

1

3
= 0 → α = −

√

1

3
β =

√

2

3
(7.47)

A similar operation could be used to construct the |1
2
,−1

2
〉 state. Alternatively, could also

apply the lowering operator to the |1
2
, 1
2
〉 state.

Two spin 1
2
particles

The total angular momentum of a system of two spin-1/2 states is 1
2
⊗ 1

2
= 1⊕ 0. A simple

application of the techniques of the last section yields

|11〉 = |↑〉 |↑〉

|10〉 =

√

1

2
(|↑〉 |↓〉+ |↓〉 |↑〉)

|1− 1〉 = |↓〉 |↓〉

|00〉 =

√

1

2
(|↑〉 |↓〉 − |↓〉 |↑〉)

(7.48)

This combination appears often in fermionic systems. For example, a meson is a bound state

of two spin-1
2
quarks. One can parameterize the interaction Hamiltonian between the quarks

as a spin coupling term ~̂S1 · ~̂S2. What are the eigenstates of the interaction Hamiltonian,

and their degeneracies? One way to find them would be to write the interaction term as

~̂S1 · ~̂S2 = Ŝ1zŜ2z +
1

2
(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+) (7.49)

and diagonalize it in the four-dimensional basis., An easier approach is to write

Ŝ2 = Ŝ2
1 + Ŝ2

2 + 2 ~̂S1 · ~̂S2 (7.50)

or
~̂S1 · ~̂S2 =

1

2
(Ŝ2 − Ŝ2

1 − Ŝ2
2) (7.51)

from which
~̂S1 · ~̂S2 =

1

2
Ŝ2 − 3

4
~
2. (7.52)

The eigenvalue of this operator is +1
4
~
2 for any of the three S = 1 states and −3

4
~
2 for the

S = 0 state.



Quantum Mechanics 162

Example: J = l ± 1
2
decompositions

This example is particularly relevant to single-electron atoms. The eigenstate |j,m〉 is

|j,m〉 = α |l, m− 1

2
〉 |↑〉+ β |l, m+

1

2
〉 |↓〉 ≡ α |−〉 |↑〉+ β |+〉 |↓〉 . (7.53)

It is an eigenstate of Ĵz = L̂z + Ŝz with eigenvalue m~. We would like it also to be an

eigenvalue of Ĵ2, and we can force it be so by picking suitable α and β. Recall that

Ĵ2 = L̂2 + Ŝ2 + 2L̂zŜz + L̂+Ŝ− + L̂−Ŝ+. (7.54)

Acting with Ĵ2 on the |j = l + 1/2, m〉 state produces

Ĵ2 |j,m〉 = (l +
1

2
)(l +

3

2
)[α |−〉 |↑〉+ β |+〉 |↓〉]

= {(l(l + 1)) +
3

4
}(α |−〉 |↑〉+ β |−〉 |↓〉) + (m− 1

2
)α |−〉 |↑〉 − (m+

1

2
)β |+〉 |↓〉

+α

√

(l +m+
1

2
)(l −m+

1

2
) |+〉 |↓〉+ β

√

(l −m+
1

2
)(l +m+

1

2
) |−〉 |↑〉 .

(7.55)

Taking the inner product on both sides with either 〈↓| 〈+| or 〈↑| 〈−| gives a relation between

α and β. With the latter choice,

α(l +
1

2
)(l +

3

2
) = {l(l + 1) +

3

4
+m− 1

2
}α + β

√

(l −m+
1

2
)(l +m+

1

2
). (7.56)

Equating like terms on both sides,

α(l −m+
1

2
) = β

√

(l −m+
1

2
)(l +m+

1

2
) (7.57)

and so

α

β
=

√

l +m+ 1
2

l −m+ 1
2

. (7.58)

Requiring α2 + β2 = 1 gives

α2 =
l +m+ 1

2

2l + 1
β2 =

l −m+ 1
2

2l + 1
. (7.59)

By orthogonality,

|l, 1
2
, J = l − 1

2
, m〉 = −β |l, m− 1

2
〉+ α |l, m+

1

2
〉 . (7.60)

This completes the construction of the mixing matrix for the system,
(

|l, 1
2
, l + 1

2
, m〉

|l, 1
2
, l − 1

2
, m〉

)

=





√

l+m+ 1
2

2l+1

√

l−m+ 1
2

2l+1

−
√

l−m+ 1
2

2l+1

√

l+m+ 1
2

2l+1





(

|m− 1
2
〉 |↑〉

|m+ 1
2
〉 |↓〉

)

. (7.61)
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Entanglement, again

Let’s recopy the states of two spin-1/2 particles:

|11〉 = |↑〉 |↑〉

|10〉 =

√

1

2
(|↑〉 |↓〉+ |↓〉 |↑〉)

|1− 1〉 = |↓〉 |↓〉

|00〉 =

√

1

2
(|↑〉 |↓〉 − |↓〉 |↑〉)

(7.62)

States like |11〉 and |1− 1〉 are examples of “pure states” – they are just product states.

States like |10〉 or |00〉 are examples of what are called “entangled states” – basically, any

many-body state which is not a product state is entangled. Entangled states have some very

peculiar properties – peculiar, at least, from a conceptual point of view, not a mathematical

one.

Imagine that you have prepared a |00〉 state, and you measure the z-component of one

of the spins, say Sz(1). The average value is zero, made up of an equal number of measure-

ments giving 〈Sz(1)〉 = 1/2 or -1/2. And of course, if you measure 〈Sz(1)〉 = 1/2, then it

must be that 〈Sz(2)〉 = −1/2. Physically, of course, this follows from angular momentum

conservation, but it also follows from the form of the state, involving only |↑〉 |↓〉 or |↓〉 |↑〉.

This correlation would persist even if the two spins were physically separated. An example

of such a situation would be the decay of a spinless particle into two spin - 1/2 fermions

which are produced back to back in the rest frame of the parent particle. Now the detection

of the orientation of spin 1 can take place at a macroscopic separation from the detection

of the orientation of spin 2. Nevertheless, there is a perfect correlation in the value of Sz(1)

and Sz(2).

This is not just classical physics. The observers could measure Sx(1) and Sx(2): they

would be perfectly correlated. Sz(1) and Sx(2) are, however, not correlated.

Such nonlocal correlations bother some people. Einstein was one of them. To pursue that

direction would take us into a discussion of the “Einstein - Rosen - Podolsky” paradox and

Bell’s theorem as a test of quantum mechanics as compared to “hidden variable” alternatives.

Let us leave that for the reader to explore on his/her own and simply remark that one can

sometimes use these long - distance correlations to do physics. In my own field, this has been
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done on an industrial scale, in what are called B factories. B mesons and their antiparticles

are bound states of a heavy b quark and a light antiquark (or vice versa). It happens that the

neutral ones can oscillate into each other, B0 → B̄0 → B0 . . . (Think of a two state system

in an external magnetic field not aligned along the spin measurement direction.) They are

produced in electron positron annihilation through an intermediate resonance, so that the

two mesons oscillate coherently; until one particle decays, the system consists of one B and

one B̄. But these particles can decay, and when one decays, its clock stops. The nature of

the decay tags the particle as B or B̄. The other one goes along until it decays, so there is

a possibility of events with two B’s or two B̄’s, with a probability which is governed by the

time between the two decays. The interesting physics is in the properties of the B mesons;

fundamental quantum mechanics through the entangled state allows the experimentalist to

study it. The BaBar experiment collected about 4.7 × 108 pairs of B mesons – industrial

quantum mechanics, indeed.

Symmetries and transformations

In classical mechanics, a symmetry is a transformation of the variables which leaves the

Lagrangian unchanged. In general, the existence of a symmetry implies a conservation law.

For example, consider a non-relativistic particle in a potential which is a function of the

magnitude of its distance from the origin. The system is rotationally invariant and the

particle’s angular momentum will be conserved. To investigate the general form of this

connection, let us perturb a coordinate in the Lagrangian by a small amount.

L(q + δq, q̇, . . .) = L(q) + δq
∂L
∂q
. (7.63)

If this operation is a symmetry transformation, then

∂L
∂q

= 0. (7.64)

The Lagrange equations of motion

∂L
∂q

=
d

dt

(∂L
∂q̇

)

(7.65)

then require that ∂L/∂q̇ must remain constant through the time evolution of the system. In

Hamiltonian dynamics this quantity is the momentum conjugate to the coordinate,

p =
∂L
∂q̇

(7.66)
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and (equivalently) the presence of the symmetry requires that it be a conserved quantity.

Now consider the quantum mechanical version of these statements. Consider shifting the

“center of the wave function” by an infinitesimal variation in q,

ψ(q − (q0 + δq)) = ψ(q − q0)− δq
∂ψ

∂q
ψ(q − q0) + . . .

≡ Ŝ(δq)ψ(q − q0).

(7.67)

If δq is small, the transformation is

Ŝ = 1̂− δq
∂

∂q
. (7.68)

The variation ∂/∂q can be written in terms of p, the operator conjugate to q (working in

a basis where q is diagonal). Because of the canonical commutation relation [p, q] = −i~,
∂/∂q = (i/~)p and

Ŝ = 1̂− i

~
δqp̂. (7.69)

A mathematician writes a general transformation by an amount δq as

Ŝ = 1̂− i

~
δqĜ (7.70)

where Ĝ is called the “generator of the transformation.” If the transformation ψ → Ŝψ is

unitary (and so far it nearly is, S†S ∼ (δq)2), then the Hamiltonian transforms as

Ĥ → ŜĤŜ†. (7.71)

If Ĥ is invariant under this transformation then Ĥ = ŜĤŜ† or ĤŜ = ŜĤ and [Ĥ, Ŝ] = 0.

Equivalently, the generator and the Hamiltonian commute, [Ĥ, Ĝ] = 0. The Heisenberg

equations of motion then tell us that the physical observable corresponding to the generator

of the transformation is conserved, because

[Ĥ, Ŝ] = 0 → dĜ

dt
= 0. (7.72)

Further, if the transformation is unitary and if |ψ〉 is an eigenstate of the Hamiltonian, Ŝ |ψ〉
will also be an eigenstate with the same eigenvalue

ĤŜ |ψ〉 = ŜĤ |ψ〉 = Ŝ(E |ψ〉) = E(Ŝ |ψ〉). (7.73)
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Thus, in addition to leading to a conservation law, symmetry also implies a degeneracy of

states.

The discussion so far involved only an infinitesimal transformation. The finite transfor-

mation can be constructed by linking together a set of N infinitesimal transformations one

after another. We can define a finite transformation ∆q as Nδq, and

Ŝ(∆q) =

(

1− i

~

∆q

N
p̂

)N

. (7.74)

The limit N → ∞ gives

Ŝ(∆q) = exp

(

− i

~
∆qp̂

)

. (7.75)

Observe that if p̂ is Hermitian, then the operator Ŝ is unitary.

The translation operator

The translation operator is

Ŝ = 1̂− i

~
δ~x · ~p = 1̂− δ~x · ~∇. (7.76)

Specialize to one dimension and imagine applying this operator to a Gaussian wave packet

centered at x0, ψ ∝ exp(−(x − x0)
2). It should push the state’s center to x0 + δx, ψ′ ∝

exp(−(x− x0 − δx)2. If δx is small,

ψ′ ∝ (1 + 2δx(x− x0)) exp(−(x− x0)
2)

= (1− δx
∂

∂x
) exp(−(x− x0)

2).

(7.77)

This operation only represents a symmetry if [Ĥ, Ŝ] = 0. This in turn can only happen if

the potential is zero everywhere in space. Thus the translation operator only represents a

symmetry for a free particle. The conserved quantity is, of course, the linear momentum.

Rotations

We consider the situation when the symmetry corresponds to a rotation of coordinates. An

ordinary vector ~v is transformed into a new vector by multiplication by a rotation matrix

~v′ = R~v (7.78)
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where R is a 3× 3 orthogonal matrix (i.e. R†R = RR† = 1). The analogous transformation

for a state is operation by a unitary rotation operator D(R), converting a state |α〉 into a

new state |αR〉. We write

|αR〉 = D(R) |α〉 . (7.79)

One can in principle consider two kinds of transformations. One can rotate the state, or

one can obtain the same final state by rotation of the coordinate axis by the negative of the

angle by which we rotated the state. This is called a “passive rotation.” We will deal with

“active rotations,” rotations where the state is explicitly rotated, not the coordinate axes.

The three rotation matrices for rotations about the usual Cartesian axes are

Rz =







cosφz − sinφz 0

sin φz cos φz 0

0 0 1






Rx =







1 0 0

0 cosφx − sinφx

0 sinφx cosφx






Ry =







cos φy 0 − sinφy

0 1 0

sinφy 0 cosφy






.

(7.80)

Their infinitesimal equivalents, up to second order, are

Rz =







1− ǫ2z
2

−ǫz 0

ǫz 1− ǫ2z
2

0

0 0 1






Rx =







1 0 0

0 1− ǫ2x
2

−ǫx
0 ǫx 1− ǫ2x

2






Ry =







1− ǫ2y
2

0 −ǫy
0 1 0

ǫy 0 1− ǫ2y
2






.

(7.81)

By multiplying out the infinitesimal matrices and keeping terms of second order in ǫ (set all

the ǫi’s equal), we observe that

Rx(ǫ)Ry(ǫ)−Ry(ǫ)Rx(ǫ) = Rz(ǫ
2)− 1. (7.82)

Since angular momentum is the momentum conjugate to an angle, we can define the generator

of rotations as the angular momentum operator Ĵ . Then we can write the rotation operator

for infinitesimal rotations as

D(~n, dφ) = 1̂− i

~
δφ(~n · ~̂J) (7.83)

and the operator for finite rotations is then

D(~n, φ) = exp(− i

~
φ(~n · ~̂J)). (7.84)

Since the rotation operators should obey the same relations as their classical analogues

(rotations of vectors), the following relations should hold:

D(R)D(1) = D(R)
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D(R1)D(R2) = D(R3) = D(R1R2)

D(R)D(R−1) = D(1).

(7.85)

These relations imply that

D(1) = 1̂

D(R−1) = D−1(R).

(7.86)

Return to Eq. 7.82 and consider the operator analogue for this equation. We use the in-

finitesimal form of the rotation operator

D(Rz(ǫ)) = 1− i

~
Ĵzǫ−

1

2~2
Ĵ2
z ǫ

2 + · · · (7.87)

and require the same relation as for the rotation matrix,

[D(Rx(ǫ)),D(Ry(ǫ))] = D(Rz(ǫ
2))− 1̂. (7.88)

Expanding this to second order in ǫ gives

[1̂− i

~
Ĵxǫ−

1

2~2
Ĵ2
xǫ

2, 1̂− i

~
Ĵyǫ−

1

2~2
Ĵ2
y ǫ

2] = 1̂− i

~
Ĵzǫ

2 − 1̂. (7.89)

The second order terms

1̂− 1̂− 1

~2
ǫ2[Ĵx, Ĵy] = 1̂− 1̂− i

~
Ĵzǫ

2 (7.90)

give the familiar commutation relations for the angular momentum operators,

[Ĵx, Ĵy] = i~Ĵz. (7.91)

From this, we see that the commutation relations for angular momentum operators arise

because of the geometrical properties of rotations.

Let us consider the case J = 1/2. The rotation matrix is

D
1
2

mm′(φ, ~n) = 〈1
2
, m| exp(−i1

2
~σ · ~nφ)|1

2
m′〉 . (7.92)

This is identical to the evolution operator for a spin-1/2 particle in a magnetic field, Ĥ =
e~
2mc

~B · ~σ,

U(t) = exp

[

−ieB~n · ~σt
2mc

]

(7.93)
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with the substitution φ/2 → eBt/(2mc). Explicitly, the rotation matrix is

D
1
2

mm′(φ, ~n) =

(

cos(φ
2
)− inz sin(

φ
2
) (inx + ny) sin(

φ
2
)

(−inx + ny) sin(
φ
2
) cos(φ

2
) + inz sin(

φ
2
)

)

. (7.94)

Let us investigate a curious property of the J = 1/2 rotation matrix by imagining a rotation

about the z axis. The rotation matrix simplifies to

D =

(

e−
iφ
2 0

0 e
iφ
2

)

. (7.95)

A rotation by 3600 corresponds to a transformation

D =

(

−1 0

0 −1

)

, (7.96)

that is, to a change of sign in the wave function. When J = 1
2
it is necessary to rotate the

state by 4π to return the state to its original configuration.

Euler angles

Rotations of rigid bodies are conventionally characterized by three Euler angles (α, β, γ).

The first rotation is about the z-axis by an amount α. The second rotation is about the

(new) y’-axis by an amount β. Finally, we rotate by an angle γ amount the (new) z’-axis.

The full rotation can be written in terms of rotation matrices,

R(α, β, γ) = Rz′(γ)Ry′(β)Rz(α). (7.97)

This is a bit too complicated for practical applications, so let us simplify it. We can decom-

pose two of the rotations as follows

Ry′(β) = Rz(α)Ry(β)R
−1
x (α)

Rz′(γ) − Ry′(β)Rz(γ)R
−1
y′ (β).

(7.98)

Thus we have

Rz′(γ)Ry′(β)Rz(α) = Ry′(β)Rz(γ)R
−1
y′ (β)Ry′(β)Rz(α)

= Rz(α)Ry(β)R
−1
z (α)Rz(γ)Rz(α).

(7.99)
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Rotations about the same axis commute, so as

R(α, β, γ) = Rz(α)Ry(β)Rz(γ), (7.100)

which involves only rotations about the original axes. Thus the rotation operator is

D(α, β, γ) = Dz(α)Dy(β)Dz(γ). (7.101)

Let us work in a basis where Ĵz is diagonal, so rotations about the z-axis are simple. In

that case it is conventional to define

Dj
mm′ = 〈j,m′|e− iĴz

~
αe−

iĴy
~

βe−
iĴz
~

γ |j,m〉

= e−i(m′α+mγ) 〈j,m′|e−
iĴy
~

β|j,m〉
= e−i(m′α+mγ)djmm′(β).

(7.102)

As an example, consider again J = 1
2
. The rotation operator is

D(α, β, γ) =

(

e−
iα
2 0

0 e
iα
2

)(

cos(β
2
) − sin(β

2
)

sin(β
2
) cos(β

2
)

)(

e−
iγ
2 0

0 e
iγ
2

)

(7.103)

or

D(α, β, γ) =

(

e−
i(α+γ)

2 cos(β
2
) −e− i(α−γ)

2 sin(β
2
)

e
i(α−γ)

2 sin(β
2
) e

i(α+γ)
2 cos(β

2
)

)

. (7.104)

Considered as an operator acting in the space of all states, the rotation operator is

reducible in J . This happens because [Ĵ2, Ĵ ] = 0 and [Ĵ2,D] = 0. As a consequence,

〈j′, m′|D|j,m′〉 ∝ δjj′. (7.105)

Thus the entire rotation matrix for all values of J is block diagonal

D =













D(j1)

D(j2)

D(j3)

. . .













(7.106)

where

D(J)
m1.m2

= 〈J,m1| exp[−
i

~
Ĵ · ~nφ]|J,m2〉 , (7.107)

a (2j + 1) × (2j + 1) matrix, is called the “Jth irreducible representation of the rotation

matrix.”
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Relation of Y m
l ’s and D’s

The spherical harmonics are coordinate space representations of angular momentum eigen-

kets. The arguments of the spherical harmonic are the values of the unit vector parameter-

izing the orientation of the coordinates.

〈~n|lm〉 = Y m
l (~n = (θ, φ)). (7.108)

Let us exploit this fact to find explicit expressions for a class of rotation operator matrix

elements. A ket oriented in the ~n direction can be constructed from one along the z-axis

using a rotation matrix,

|~n〉 = D(R) |~z〉 . (7.109)

We project this relation into coordinate space. We can parameterize the rotation with Euler

angles α = φ, β = θ, γ = 0. Then

〈l, m′|~n〉 =
∑

m′′

〈l, m′|D(R)|l, m′′〉 〈l, m′′|~z〉

=
∑

m′′

Dl
m′m′′(φ, θ, 0) 〈l, m′′|~z〉 .

(7.110)

〈l, m′|~z〉 is just the complex conjugate of a spherical harmonic, evaluated at θ = 0. At θ = 0

only the Y 0
l ’s are non-vanishing, so the φ dependence disappears. The Y 0

l ’s are proportional

to the Legendre polynomials. At θ = 0 the Legendre polynomials are equal to the identity,

so

〈l, m|~z〉 =
√

2l + 1

4π
δm,0. (7.111)

Thus Eq. 7.110 becomes

Y m
l (θ, φ)∗ =

√

2l + 1

4π
D(l)

m,0(θ, φ, 0). (7.112)

We will use this improbable identity momentarily.

Clebsch-Gordon coefficients, rotation matrices, Y m
l ’s, . . .

Do you recall how we could write states involving two independent angular momenta in

terms of eigenstates of total angular momentum? We may need to know how these states



Quantum Mechanics 172

transform under rotations. This, of course involves the rotation matrix in a reducible basis.

Its expectation value is

〈J1, J2, m1, m2|D(R)|J1, J2, m′
1, m

′
2〉 = DJ1

m1,m′
1
DJ2

m2,m′
2

(7.113)

We can also write the reducible state as a superposition of irreducible states, and express

the result in terms of a sum of matrix elements involving a single rotation matrix. Not

surprisingly, this involves a pair of Clebsch-Gordon coefficients:

〈J1, J2, m1, m2|D(R)|J1, J2, m′
1, m

′
2〉 = DJ1

m1,m′
1
DJ2

m2,m′
2

=
∑

J,M,M ′

〈J1, J2, m1, m2|J,M, J1, J2〉 ×

〈J,M |D(R)|J,M ′〉 〈J1, J2, m′
1, m

′
2|J,M ′, J1, J2〉

=
∑

J,M,M ′

〈J1, J2, m1, m2|J,M, J1, J2〉 ×

〈J1, J2, m′
1, m

′
2|J,M ′, J1, J2〉DJ

MM”(R).

(7.114)

This is a completely general result. However, suppose that all the J ’s are integers. Recalling

Eq. 7.112, we learn that Eq. 7.114 can be written as

Y m1
l1

(θ, φ)Y m2
l2

(θ, φ) =

√

(2l1 + 1)(2l2 + 1)

(4π)2

∑

l′m′

〈l1, l2, m1, m2|l1, l2, l′, m′〉 ×

〈l1, l2, 0, 0|l1, l2, l′, 0〉
√

4π

2l′ + 1
Y m′

l′ (θ, φ).

(7.115)

Multiply both sides by Y m′

l′ (θ, φ)∗ and integrate over the solid angle. By orthogonality, this

gives

∫

dΩY m′

l′ (θ, φ)∗Y m1

l1
(θ, φ)Y m2

l2
(θ, φ) =

√

(2l1 + 1)(2l2 + 1)

4π(2l′ + 1)
〈l1, l2, m1, m2|l1, l2, l′, m′〉 〈l1, l2, 0, 0|l1, l2, l′, 0〉 . (7.116)

This certainly looks horrible! On the contrary, it is a very beautiful (and useful) result.

Matrix elements like the left hand side commonly arise in practical calculations, where the

initial and final state wave functions are eigenfunctions (or superpositions of eigenfunctions)
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of orbital angular momentum – spherical harmonics. If the object whose matrix element is

desired can also be written as a superposition of spherical harmonics, we have the integral on

the left side of Eq. 7.116 to evaluate. Eq. 7.115 makes this evaluation trivial. The point of

course is that the reducible state (a product of two spherical harmonics) can be written as a

superposition of irreducible states (a single spherical harmonic, in coordinate representation).

The result simply involves a product of Clebsch-Gordon coefficients. These are tabulated.

(The reader is encouraged to perform some of these integrals without using this result, to

appreciate its utility.)

Notice that the m− dependence is contained entirely in one Clebsch-Gordon coefficient.

This immediately gives a selection rule: the integral is zero unlessm′ = m1+m2. (This is just

the z− component of angular momentum conservation, between the initial state, operator,

and final state.) The remainder of the expression (which is often called the “reduced matrix

element”) is independent of m. To look ahead, the integral is a special case of the Wigner-

Eckhart Theorem, which we will derive in a few pages.

Note that we can use of the fact that the Clebsch-Gordon coefficients are real numbers,

to write expressions more symmetrically without regard to order.

Vector and tensor operators

We have been using vector operators like L̂, Ŝ, r̂, . . . for some time, without thinking very

deeply about their vector nature. Classical vector quantities transform under rotations as

vi =
∑

Rijvj (7.117)

where R is the rotation matrix. In quantum mechanics, a state transforms as |α〉 → D(R) |α〉.
The components of the expectation values of a vector operator are also c-numbers, and they

will transform as a vector under rotations:

〈α|v̂i|α〉R =
∑

j

Rij 〈α|v̂j|α〉 = 〈α|
∑

j

Rij v̂j |α〉 . (7.118)

In quantum mechanics, a state transforms as |α〉 → D(R) |α〉. We could equally well evaluate

the rotated matrix elements by rotating the states,

〈α|v̂i|α〉R = 〈α|D†(R)v̂iD(R)|α〉 . (7.119)
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Equating these expressions tells us that a vector operator is an operator that transform

under rotations as

D†(R)v̂iD(R) =
∑

j

Rij v̂j . (7.120)

In the case of an infinitesimal rotation, where

D(R) = 1̂− i

~
ǫĴ · n̂, (7.121)

Eq. 7.120 demands that

v̂i −
iǫ

~
[v̂i, Ĵ · n̂] =

∑

j

Rij v̂j (7.122)

To interpret this expression, assume that n̂ points along the z-axis. The rotation matrix is

R →







1 −ǫ 0

ǫ 1 0

0 0 1






(7.123)

and the vector transforms as

v̂x −iǫ
~
[v̂x, Ĵz] = v̂x − ǫv̂y

v̂y −iǫ
~
[v̂y, Ĵz] = v̂y + ǫv̂x

v̂z = v̂z.

(7.124)

This is a special case of the general requirement for vector operators that

[v̂i, Ĵj] = i~ǫijkv̂k. (7.125)

We can turn the discussion around: any operator which obeys this relation is, by definition,

a vector operator.

The generalization of a vector is a tensor, specifically, a Cartesian tensor of rank N. It

transforms under rotations as

Tijk...N →
∑

i′j′k′...N ′

Rii′Rjj′Rkk′ · · ·RNN ′Ti′j′k′...N ′ . (7.126)

Cartesian tensors transform reducibly under rotations, and so are not the most convenient

objects for study. To see how to proceed, consider the simplest example of a rank N = 2

Cartesian tensor, a dyadic. It is defined as a direct product of two vector operators

Tij = uivj . (7.127)
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This is a collection of 9 numbers, the Tij’s. We can decompose it as follows:

uivj =
1

3
δij(u · v) + 1

2
(uivj − ujvi) +

(

uivj + ujvi
2

− 1

3
δij(u · v)

)

. (7.128)

The first term in the decomposition is a scalar under rotations, the second is an axial vector

(a cross product) and the last term is a symmetric traceless tensor. This decomposition

preserves the number of components (3×3 = 9) in the the dyadic. There is one scalar term,

three axial vector terms, and five terms from the traceless, symmetric tensor.

“Spherical tensors” transform simply (and irreducibly) under rotations. Their elements

are linear superpositions of Cartesian tensor elements. A simple way to define a spherical

tensor from a Cartesian vector v is via the replacement

T (k)
q = Y m=q

l=k (v). (7.129)

The rank-1 spherical tensor (a vector) is very useful. To build it, we make the substitutions

z/r = vz, y/r = vy and x/r = vx, to give

Y 0
1 =

√

3

4π
cos(θ) =

√

3

4π

z

r
→ T

(1)
0 =

√

3

4π
v̂z

Y ±1
1 = ∓

√

3

4π

(

x± iy√
2r

)

→ T
(1)
±1 = ∓

√

3

4π

(

v̂x ± iv̂y√
2

)

Y ±2
2 =

√

15

32π

(

x± iy

r

)2

→ T
(2)
±2 =

√

15

32π
(v̂x ± iv̂y)

2

(7.130)

and so on.

How do spherical tensors transform under rotations? We know that the spherical har-

monics can be written as Y m
l (n̂) = 〈n̂|l, m〉. Furthermore, we recall the transformation law

|n̂′〉 = D(R) |n̂〉. We also know that

D†(R) |l, m′〉 =
∑

m′

D(l)
mm′(R)

∗ |l, m′〉 . (7.131)

Taking the inner product of both sides with 〈n̂| gives

〈n̂|D†(R)|l, m′〉 = 〈n̂′|l, m′〉 = Y m′

l (n̂′) =
∑

m′

D(l)
mm′(R)

∗Y m′

l (n̂). (7.132)

This is the transformation law for states. Noting that D(l)
mm′(R)∗ = D(l)

mm′(R−1). We expect

that operators ought to transform as

D†(R)T̂ (k)
q D(R) =

∑

q′

T
(k)
q′ D(k)

mm′(R
−1) (7.133)
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and this is the definition for the transformation property of a spherical tensor operator.

Alternatively, we can consider the defining relation for a spherical tensor operator through

commutators of the operator with Ĵ . These are

[Ĵz, T̂
(k)
q ] = ~qT̂ (k)

q (7.134)

and

[Ĵ±, T̂
(k)
q ] = ~

√

(k ∓ q)(k ± q + 1)T
(k)
q±1. (7.135)

Combining tensor operators

As we saw in the last section, we can write the components of a vector operator u in spherical

basis

u0 = uz u±1 = ∓
(

ux ± iuy√
2

)

. (7.136)

Let us assume that we have two vector operators u and v. A few special cases of their

combination written as tensor operators are

T
(0)
0 = − 1√

3
u · v (7.137)

T (1)
q =

i√
2
(u× v)q T

(2)
±2 = u±1v±1. (7.138)

In general, we combine spherical tensor operators just like we combined angular momenta,

using Clebsch-Gordon coefficients:

T̂ (k)
q =

∑

q1q2

〈k1, k2, q1, q2|k1, k2, k, q〉X(k1)
q1

Z(k2)
q2

(7.139)

Let us examine how this transforms under a rotation.

D†(R)T̂ (k)
q D(R) =

∑

q1q2

〈k1, k2, q1, q2|k1, k2, k, q〉D†(R)X(k1)
q1 D(R)D†(R)Z(k2)

q2 D(R) (7.140)

or

D†(R)T̂ (k)
q D(R) =

∑

q1q2

〈k1, k2, q1, q2|k1, k2, k, q〉
∑

q′1

X
(k1)
q′1

D(k1)
q′1q1

(R−1)
∑

q′2

Z
(k2)
q′2

D(k2)
q′2q2

(R−1).

(7.141)

We can also write

D(k1)
q′1q1

(R−1)D(k2)
q′2q2

(R−1) =
∑

k′′q′′q′

〈k1, k2, q1, q2|k1, k2, k′′, q′〉 〈k1, k2, q1, q2|k1, k2, k′′, q′′〉D(k′′)
q′q′′ (R

−1).

(7.142)
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Equating all of these long expressions, we have

D†(R)T̂ (k)
q D(R) =

∑

k′′

∑

q1q2

∑

q′1

∑

q′2

∑

q′q′′

〈k1, k2, q1, q2|k1, k2, k, q〉 × (7.143)

〈k1, k2, q1, q2|k1, k2, k′′, q′〉 〈k1, k2, q1, q2|k1, k2, k′′, q′′〉 D(k′′)
q′q′′ (R

−1)X
(k1)
q′1

Z
(k2)
q′2

.

Recall that Clebsch-Gordon coefficients are real. Performing the sum over q1q2 will yield the

identity operator, which will introduce a δkk′′ and δqq′′ . They collapse the expression to the

more manageable

D†(R)T̂ (k)
q D(R) =

∑

q′





∑

q′1q
′
2

〈k1, k2, q′1, q′2|k1, k2, k, q′〉X
(k1)
q′1

Z
(k2)
q′2



D(k)
q′q (R

−1) (7.144)

Since the object in the large parentheses is T
(k)
q′ from Eq. 7.139, this is our defining transfor-

mation for a tensor operator, Eq. 7.133.

Let us consider three useful results for matrix elements of tensor operators, written as

〈α′, j′, m′|T̂ (k)
q |α, j,m〉. (The alphas stand for the non-angular momentum quantum num-

bers.) The first is the m-selection rule,

〈α′, j′, m′|T̂ (k)
q |α, j,m〉 = δm′,q+m (7.145)

The matrix element of the commutator of Ĵz and T̂
(k)
q

[Ĵz, T̂
(k)
q ]− ~qT̂ (k)

q = 0 (7.146)

is

〈α′, j′, m′|[Ĵz, T̂ (k)
q ]− ~qT̂ (k)

q |α, j,m〉 = ~(m′ −m− q) 〈α′, j′, m′|T̂ (k)
q |α, j,m〉 = 0. (7.147)

Either m′ = m+ q or the matrix element itself must vanish.

Next is the Wigner-Eckhart Theorem:

〈α′, j′, m′|T̂ (k)
q |α, j,m〉 = 〈j, k,m, q|j, k, j′, m′〉 〈α

′, j′||T (k)||α, j〉√
2j + 1

(7.148)

The quantity 〈α′, j′||T (k)||α, j〉 is called the “reduced matrix element.” It is fully independent

of m,m′, and q. Thus all of the geometrical dependence is contained in the Clebsch-Gordon

coefficients. From the m-selection rule we know that the only non-vanishing elements occur

when |j − k| ≤ j′ ≤ j + k.
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To prove the Wigner-Eckhart theorem, we return to the relation

[Ĵ±, T̂
(k)
q ]− ~

√

(k ∓ q)(k ± q + 1)T
(k)
q±1 = 0 (7.149)

We evaluate the equality between angular momentum states:

〈α′, j′, m′|[Ĵ±, T̂ (k)
q ]− ~

√

(k ∓ q)(k ± q + 1)T
(k)
q±1|α, j,m〉 = 0. (7.150)

Letting the angular momentum operators act on the states, we have

√

(j′ ±m′)(j′ ∓m′ + 1) 〈α′, j′, m′ + 1|T̂ (k)
q |α, j,m〉 =

√

(k ∓ q)(k ± q + 1) 〈α′, j′, m′|T (k)
q±1|α, j,m〉+

√

(j ∓m)(j ±m+ 1) 〈α′, j′, m′|T̂ (k)
q |α, j,m+ 1〉 .

(7.151)

The coefficients of this equation are identical to the ones relating the Clebsch-Gordon coeffi-

cients themselves; there is only a translation of variables, given in Table 7. Because there two

CG WE

J ↔ J’

m ↔ m’

J1 ↔ J

m1 ↔ m

J2 ↔ k

m2 ↔ q

sums of three terms with the same coefficients are equal to zero, the must be proportional

to each other. This means that

〈J1, J2, m1, m2 ± 1|J1, J2, J,M〉 = const× 〈α′, j′, m′|T (k)
q±1|α, j,m〉 (7.152)

or

〈α′, j′, m′|T̂ (k)
q |α, j,m〉 ≡ C 〈j, k,m, q|j, k, j′, m′〉 (7.153)

where

C =
〈α′, j′||T (k)||α, j〉√

2j + 1
. (7.154)

This theorem is a very useful tool for the evaluation of matrix elements and for finding

selection rules. Let us consider a few examples.
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First, consider matrix elements of a scalar operator (tensor of rank 0). They are

〈α′, j′, m′|Ŝ|α, j,m〉 = δjj′δmm′

〈α′, j||T (k)||α, j〉√
2j + 1

(7.155)

Scalar operators have no directional dependence and thus cannot change the angular mo-

mentum of a state.

The projection theorem states that matrix elements of a vector operator can be written

as

〈α′, j,m′|V̂q|α, j,m〉 = 〈α′, j,m′|Ĵ · V̂|α, j,m〉
~2J(J + 1)

〈j,m′|Ĵq|j,m〉 . (7.156)

This follows from the Wigner-Eckhart theorem, because matrix elements of V̂q and Ĵq can

be written as

〈V̂q〉 = C1 〈 ||V || 〉
〈Ĵq〉 = C1 〈 ||J || 〉

(7.157)

where C1 is a shorthand for all except the reduced matrix element Two other related matrix

elements are

〈Ĵ · V̂〉 = 〈Ĵ0V̂0 − Ĵ1V̂−1 − Ĵ−1V̂1〉
= C2 〈 ||V || 〉

〈Ĵ · Ĵ〉 = C2 〈 ||J || 〉 = ~
2J(J + 1)

(7.158)

where C2 is another linear combination of coefficients. Combining these results yields

〈V̂q〉 = 〈Ĵq〉
〈 ||V || 〉
〈 ||J || 〉 = 〈Ĵq〉

〈Ĵ · V̂〉
〈Ĵ · Ĵ〉

= 〈Ĵq〉
〈Ĵ · V̂〉

~2J(J + 1)
(7.159)

which is Eq. 7.156 when written less schematically.

The projection theorem’s most famous application is for the Zeeman effect in light atoms.

In a small magnetic field, the energy levels of the atom split due to the interaction of the

electrons’ magnetic moments with the field,

ĤB =
e ~B

2mc
· (L + 2S) (7.160)
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where L and S are the total orbital and spin angular momenta of the valence electrons. This

splitting is called the Zeeman effect. The projection theorem gives us the splitting. (We

defer discussions about why L and S are good quantum numbers for multi-electron light

atoms, and why diagonal matrix elements of ĤB give the energy shifts.) Choose the axis

of quantization along ~B and define this as the ẑ axis. We rewrite Lz + 2Sz = Jz + Sz and

consider the matrix element

〈L, S, J,M |J + S|L, S, J,M〉 = 〈L, S, J,M |Ĵ2 + Ĵ · Ŝ|L, S, J,M〉
~2J(J + 1)

~M ≡ gJ~M (7.161)

The quantity gj is called the Lande g-factor. 2Ĵ · Ŝ = −(Ĵ− Ŝ)2 + Ĵ2 + Ŝ2 = −L̂2 + Ĵ2 + Ŝ2,

and the g-factor is

gj = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (7.162)

The magnitude of the Zeeman splitting reveals information about the quantum numbers of

the state.

Our third example involves the electric quadrupole moment of the deuteron, and illus-

trates the strengths and weaknesses of the Wigner-Eckart theorem. The deuteron is a bound

state of a proton and a neutron. It is not a typical nucleon – it is one of only a few stable

nuclei with an odd number of protons and an odd number of neutrons. It is weakly bound

(Eb ∼ 2.2 MeV, about 1/10 of typical nuclear binding energies). It was discovered by Urey in

1931, before the discovery of the neutron. It has a nonzero magnetic moment and a nonzero

electric quadrupole moment.

Nuclear physics is complicated! The neutron and proton are nearly degenerate in mass,

both have spin 1
2
, and have their own spin magnetic moments. However, they are not

structureless particles like the electron – they themselves are bound states of quarks. The

nuclear potential is short range, but it is not simple, either (unlike the Coulomb potential).

It’s worth pausing to describe the phenomenology of magnetic moments. The orbital

magnetic moment is simple: from

ĤB =
e ~B

2mc
· L, (7.163)

~µ = e/(2mc)~L (or µ = e/(2mc) or e~/(2mc) for the Bohr magnetron). Now spin: for an

electron, it is conventional to introduce the g−factor and write

~µ = g
e

2mc
~S. (7.164)

For the structureless electron described by the Dirac equation, g = 2. The value was known

before Dirac, from analysis of the spectroscopy of light atoms. It’s a rather confusing story,
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with several competing factors of two – S = 1
2
, g = 2, and Thomas precession, so g = 2

was immediately realized to be a major success for Dirac. The real g-factor is a bit more

complicated –

g = 2[1 +
α

π
+ . . .] (7.165)

where the extra terms come from processes where the electron emits and absorbs virtual

photons. You need quantum field theory to describe what is going on.

Back to the proton and the neutron. The literature is presented in several slightly

inconsistent notations, but the bottom line is that g 6= 2. If we write ~µ
(s)
i = gie/(2Mc)~S,

then g
(s)
p = 2 × 2.79 and gsn = −2 × 2.79 × 0.68. (particle physicists remember the -0.68 as

−2/3). These values were completely unexpected when Otto Stern measured the proton’s

magnetic moment in the 1930’s. (The theorists all predicted g = 2 because of Dirac.)

Now for nuclei: it is conventional to define the magnetic moment of a nucleus with total

angular momentum J as

~µ = g
e

2mp

~J (7.166)

setting the scale with the proton mass.

And finally, the deuteron. The deuteron has J = 1 (from observing hyperfine splitting

in deuterium), and S = 1 (as a thought experiment, scatter a neutron off a proton: the

total spin is 1
2
+ 1

2
= 1,0 and the deuteron is a nearby resonance in the S = 1 channel). It’s

reasonable to expect that L = 0 just because our intuition suggests that the lowest bound

stats are S-waves. However, the nonzero quadrupole moment (measured by Rabi) tells us

that there is a small admixture of L = 2 in the wave function.

We take the magnetic moment from the magnetic energy (H = −~µ · ~B) in the M = J

state:

µ ≡ 〈LSJ,M = J |µz|LSJ,M = J〉 . (7.167)

The projection theorem turns this into

µ =

〈

LSJ,M = J |~µ · ~J |LSJ,M = J
〉

~2J(J + 1)
〈J,M = J |Jz|J,M = J〉

=

〈

LSJ,M = J |~µ · ~J |LSJ,M = J
〉

j + 1
.

(7.168)
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We need several ingredients to evaluate this formula. First,

~µ = g(l)~L+ g(s)~S. (7.169)

Next, g
(l)
p = 1 and g

(l)
n = 0 (the neutron is neutral!). And we have g

(s)
p and g

(s)
n , given above.

There are a couple of two”s associated with the conversion of individual spins to total spins.

For ~S, consider the |11〉 state, which is |↑↑〉. The expectation value of the magnetic moment

in this state is

〈µz〉 =
e~

2Mc
(g(s)p + g(s)n ) =

e

Mc

(g
(s)
p + g

(s)
n )

2
Sz. (7.170)

There is an identical factor of two for the orbital angular momentum, using |22〉 = |11〉 |11〉.
Putting the pieces together, we have

µ =
1

2(j + 1)
((g(s)p + g(s)n )~S · ~J + ~L · ~J) e

2Mc
. (7.171)

And, as we saw before, ~L2 = ( ~J − ~S)2 and ~S2 = ( ~J − ~L)2, so ~J · ~S = (J2 + S2 − L2)/2 and
~J · ~L = (J2 − S2 + L2)/2. this gives

µ =
e

2Mc

1

4(j + 1)
[(g(s)p + g(s)n )(j(j + 1)− l(l + 1) + s(s+ 1))

+(j(j + 1)− l(l + 1) + s(s+ 1))].

(7.172)

We can now consider two cases: First, S = 1, L = 0, J = 1:

µ =
g
(s)
p + g

(s)
n

2

e

2Mc
(7.173)

or g = 0.879. The second case is S = 1, L = 2, J = 1, and

g =
3

4
− 1

4
(g(s)p + g(s)n ) ∼ 0.3. (7.174)

The observed value of g is 0.857, so the deuteron is mostly S = 1, L = 0, J = 2. The

mismatch between 0.857 and 0.879 tells us that the state is not completely L = 0.

Now we return to the quadrupole moment. It is

Q = e(3z2 − r2). (7.175)

It is one component of the rank-2 quadrupole tensor Qij . Its expectation value in the J = 1

deuteron state is (keeping only the labels J and m)

〈Q〉 = 〈1, m|T (2)
0 |1, m〉

=
e 〈1, m, 2, 0|1, 2, 1, m〉√

3
||Q|| .

(7.176)
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We can determine Q, or to be more precise, the reduced matrix element, by doing the full

calculation any convenient combination of states (m) and component of Qij and dividing

out the known Clebsch-Gordon coefficient and other factors.

We need the Clebsch - Gordon coefficients for 1 + 2 = 1. Tables give us

〈1120|1211〉 =
√

1/10

〈1020|1210〉 = −
√

2/15

〈1− 120|121− 1〉 =
√

1/10.

(7.177)

What is 〈1||T ||1〉? T (2)
0 = r2(3 cos2 θ − 1). Evaluate 〈Q〉 in the |10〉 state:

−
√

2

15

〈1||T ||1〉√
3

=

∫

d3rψ∗
j=1,m=0r

2(3 cos2 θ − 1)ψ1,0. (7.178)

Notice that if the deuteron were pure l = 0, Q would vanish,

〈1||T ||1〉 ∼
∫

d cos θP2(cos θ) = 0. (7.179)

But Q is not zero (it is 0.28 e-fm2 where one fm is 10−13 cm). One fm is about the size of a

proton, so Q is a small quantity.

If we know that S = 1 and J = 1, then we could in principle have L = 0, 1 or 2. If the

deuteron is a parity eigenstate, then either it is positive parity (L = 0 or 2, S or D – 3S1 or
3D1 in the standard 2S+1LJ notation). If it is negative parity, it is 3P1. It seems unlikely to

have a P-wave bound state and no S-wave one, which favors a mixture of S and D. However,

that is the end of the story we can tell. All we can do to go further is to parameterize the

wave function as a superposition of S and D wave,

ψ = cosωf0(r) |00〉+ sinωf2(r) |20〉 , (7.180)

with a model for the potential and the two radial wave functions, and then use Q to determine

ω.

A little group theory

It’s probably useful to conclude this chapter with a brief discussion (little more than a

dictionary) of aspects of group theory which have found their way into quantum mechanics.
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A group is a set of elements G with a multiplication rule connecting the elements of the

group to each other. Group properties include

• Closure: For any a, b ∈ G, ab = c ∈ G

• Associativity: a(bc) = (ab)c

• An identity element: a · 1 = 1 · a

• An inverse: aa−1 = a−1a = 1

A representation of a group is a set of square non-singular matrices M1, M2, . . ., one M for

each group element g, which multiply like the group elements. If the matrices are n×n then

we speak of an n-dimensional representation of the group. If the matrices corresponding to

different group elements gi are different, the representation is called “faithful” and the group

is isomorphic to the matrix group. Otherwise we have an “unfaithful representation” with a

“homeomorphic” relation of the group to the set of matrices.

In physics we typically encounter two types of groups

• point groups, which consist of discrete sets of elements

• Lie groups, which are continuously connected groups whose parameters of products of

elements are continuous, differentiable functions of the products of the elements. An

example of a Lie group is the rotation group.

There are two types of Lie groups as well, compact and non-compact groups. A compact

group is one in which the parameters of the group have a finite range of possible values (the

rotation group is an example). In contrast, non-compact groups do not have a finite range

for their parameters. An example of a non-compact group is the part of special-relativistic

transformations corresponding to boosts.

In physics we often speak of “symmetry groups.” By that, we mean a set of transforma-

tions which leave the system unchanged. For example, rotations, which leave the length of

vectors unchanged, form a compact symmetry group. The symmetry is the transformation

x → x′ which leaves |x|2 = |x′|2. The transformation is, of course,

x′ = Rx (7.181)
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where |x′|2 = xTR†Rx = |x|2. The vectors x are assumed to be 3-dimensional, and so the

matrices R must be 3× 3 symmetric matrices with R†R = 1 in order to preserve the norm.

These matrices have 9 − 6 = 3 free parameters (since there are 6 constraints imposed by

R†R = 1). Hence three parameters characterize R. (They could be the three Euler angles,

or the angles of rotations about three axes.)

The maximum number of independent parameters which label the group parameters is

referred to as the dimension of the Lie algebra, and mathematicians call this the dimension

of the adjoint representation of the group. The rotation group is called O(3) – the group

of orthogonal transformations in three dimensions. (Clearly, one can repeat the story in N

dimensions, and arrive at the group of transformations O(N).)

As a second set of transformations, consider the matrices which rotate spinor states

U = e−iσ̂·n̂φ/2 U |ψ〉 → |ψ′〉 . (7.182)

The matrix U must be unitary to conserve probability. U is also unimodular (i.e. the

determinant must be equal to 1). The representation is two-dimensional because there are

two possibilities for the spin. The most general unitary unimodular matrix can be written

as

U(a, b) =

(

a b

−b∗ a∗

)

. (7.183)

where a and b are complex and the unimodularity condition gives the relation |a|2+ |b|2 = 1.

Because a and b are complex, four real numbers label the transformations. Unimodularity

gives one constraint, leaving three free parameters. Of course, we knew that already, from

constructing the j = 1/2 rotation matrix: we count one angle and two (of three constrained)

components of a unit vector, recalling

Re(a) = cos(
φ

2
) (7.184)

Im(a) = −nz sin(
φ

2
)

Re(b) = −ny sin(
φ

2
)

Im(b) = −nx sin(
φ

2
).

(Because
∑

i n
2
i = 1, only two of the ni’s are independent.) These parameters are called the

“Cayley-Klein” parameters and are used in classical mechanics to study rigid body rotations.

The product of the U ’s is itself a U , and

U−1(a, b) = U(a∗,−b). (7.185)
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The matrices constituting the U’s form a group called SU(2), the “special unitary group of

two dimensions.”

Although O(3) and SU(2) both characterize rotations, the groups SU(2) and O(3) are

not isomorphic groups, that is, there is no one-to-one correspondence between the group

elements. We can see that by comparing rotations by 2π and 4π. In O(3) both rotations are

3 × 3 identity matrices. In SU(2) one is

(

−1 0

0 −1

)

and the other is

(

1 0

0 1

)

. In fact,

U(a, b) and U(−a,−b) correspond to the same 3 × 3 rotation in O(3): for a given R, U is

double-valued.

If one did not require that detU = 1, one would just have a “unitary group,” U(2). The

group of unitary transformations in one dimension, U(1), is

U = eiφ. (7.186)

This is the group of gauge transformations of electrodynamics. It is an “internal symmetry”

group, in that the dynamical variables contain information which has nothing direct to do

with space or time. (Of course, φ could vary with x and t, if we are considering a local gauge

transformation.) One could also consider special unitary groups of rank n. The group SU(3)

has been particularly important in particle physics. For example, the theory of the strong

interactions, Quantum Chromodynamics, declares that quarks come in three “colors,” or

that a fermion spinor carries a three-fold internal index (red, green, blue?). This symmetry

is an SU(3) gauge symmetry; the transformation converts one color into a mixture of other

ones.

Another example of an internal symmetry could apply to a magnetic material. We could

imagine treating the spins, or locally averaged magnetic moments, as classical variables which

could rotate in three dimensions (with an internal O(3) symmetry), or could be confined to

a plane (an O(2) symmetry), or perhaps we could simply divorce the dimensionality of

the internal degree of freedom from a geometric picture and think about an O(N) internal

symmetry. Restricting the magnetization to the real line, or perhaps to the values ±1, would

take us to a discrete group Z(2). Of course, in all of these cases we have a symmetry group

only if the underlying dynamics respects the transformation of variables. This considerably

restricts the possible kinds of terms present in the Hamiltonian.
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Generators of Lie groups

Look more closely at the group elements infinitesimally close to the identity operator. They

may be written

U ≃ 1 + i

S
∑

j=1

λJφj → exp(i

S
∑

j=1

λJφj). (7.187)

If the group has S φj parameters, then there will be S generators λj where j = 1 . . . S.

If the group is to remain a group (products of group rotations remain in the group), the

generators of the group must obey an algebra which is called a “Lie algebra.” The algebra

is conventionally given through the commutators

[λi, λj] = icijkλk. (7.188)

The coefficients cijk are called “structure constants.” In SU(2) the generators are propor-

tional to the Pauli matrices, λi =
1
2
σi, and cijk = 1

2
ǫijk. In SU(N) it happens that there

are N2 − 1 generators and more complicated structure constants. (To count: there are

N2 linearly independent Hermitian matrices with N rows and columns, and one constraint:

detU = 1. The magic identity det eA = expTrA applied to A = i
∑

j λjφj says that the λ’s

must be traceless, which is our constraint lowering N2 to N2 − 1.)

It may happen that some of the cijk’s are zero, so that the generators commute. The

“rank” of a group is the maximum number of mutually commuting generators. For SU(2),

the rank is one.

If Hamiltonians are to be invariant under the group transformations, they will involve

combinations of the operators which can be constructed from the generators, which commute

with all the generators. These are called the Casimir operators. They are very useful because

their value in a representation is independent of which generator happens to be diagonal. It

turns out that the number of Casimirs is equal to the rank of the group. Since SU(2) is rank

1, it has one Casimir, Ĵ2, the square of the angular momentum.

Exactly as in the case of angular momentum, we want to construct states which are

eigenstates of as many generators as possible, plus all the Casimirs. The quantity which

is important in the present discussion is the dimensionality of a representation: it is the

size of a matrix in which the Casimirs are degenerate. This dimensionality is 2j + 1 for

SU(2) or O(3). For some more vocabulary, we call the smallest nontrivial representation the

“fundamental representation.” For SU(2) this is j = 1/2. The “adjoint representation” has

a dimensionality equal to the number of generators, j = 1 or d = 3 for SU(2) or O(3).
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In most physics applications, we encounter SU(2) and O(3) over and over again, recycling

results for our needs.

Isospin

Isospin is an interesting case of a symmetry group with wide applications to nuclear and

particle physics.

Its introduction (by Heisenberg, in the 1930’s) was inspired by the fact that the masses

of the proton and the neutron are roughly equal, and that nuclear forces seemed to be

independent of whether the interacting particles were neutrons or protons. Let us think of

the proton and the neutron as being different components of the same object, the nucleon,

which forms a two-component representation

p =

(

1

0

)

n =

(

0

1

)

. (7.189)

This is a familiar construction. We do not think of the spin-up and spin-down electrons as

separate entities, just different versions of one underlying state, the electron. The quantum

number which differentiates the neutron from the proton is called “isospin,” and we have

chosen the states to be eigenstates of I3, in complete analogy with Sz. Notice that there is

a relation between charge and isospin of Q = I3 +
1
2
B, with B, the baryon number, equal to

unity. In complete analogy to spin we have

I3 |p〉 =
1

2
|p〉 I3 |n〉 = −1

2
|n〉 (7.190)

and isospin raising and lowering operators

I+ |n〉 = |p〉 I− |p〉 = |n〉 . (7.191)

These define the Lie algebra for isospin to be that of the group SU(2), via [Ii, Ij] = iǫijkIk.

The picture can be tested by assuming some form for the Hamiltonian in an isospin ba-

sis and by computing relations between different processes, basically, making predictions of

ratios using the Wigner-Eckhart theorem. Isospin symmetry can be tested in nuclear spec-

troscopy by asking whether nuclear levels form isospin multiplets. Isospin will not be an

exact symmetry because of electromagnetism: the proton is charged, the neutron is neutral.

Relations among processes can best be described by jumping ahead twenty years, to the

early 1950’s. There happen to be three pi-mesons, π+, π−, and π0. The π+ and the π− are
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a particle-antiparticle pair, and are therefore degenerate in mass.. The mass of the π0 is

not very different from this value (135 MeV versus 140 MeV), so to good approximation we

can consider them all to be of equal mass. The three states smell like an isotriplet state,

|I = 1, I3 = 1, 0,−1〉. Mesons have B = 0, hence Q = I3 for this multiplet.

Pions have a distinguished place in the zoo of strongly interacting particles: they are the

lightest mesons, and they are responsible for the long distance part of the nuclear potential

(the Yukawa potential).

Shortly after the discovery of the mesons, they were used in scattering experiments which

observed the lightest excited states of the nucleon. These are the four states ∆++, ∆+, ∆0

and ∆−, all with mass of about 1230 MeV. With Q = I3 +
1
2
B these states plausibly form

an isospin quartet

|I = 3
2
, I3 = 3

2
, 1
2
,− 1

2
,− 3

2
〉 . (7.192)

Again, Q = I3 + B/2. One can check the hypothesis (and make predictions) by computing

relative rates for low energy pion-nucleon scattering at energies where the cross section

is dominated by the ∆ resonances. Ratios of the amplitudes agree with the appropriate

products of I = 1
2
⊕ I = 1 Clebsch-Gordon coefficients.

Here is the classic example: at energies close to the mass of the ∆, pion - nucleon

scattering is resonance scattering, that is, the reaction π + N → π + N proceeds through

the intermediate state π + N → ∆ → π + N . The scattering amplitude in a particular

channel (π+p, π−n, and so on ) is proportional to the product of the amplitude for the initial

state to couple to the particular isospin 3/2 state, times an amplitude for the intermediate

state to couple to the final state. These amplitudes are proportional to the Clebsch -Gordon

coefficients for 1 + 1/2 = 3/2. We can decompose the Delta states into (for example)

|∆++〉 = |3
2

3

2
〉 = |11〉 |1

2

1

2
〉 = |π+p〉 , (7.193)

|∆+〉 = |3
2

1

2
〉 =

√

1

3
|11〉 |1

2
− 1

2
〉+

√

2

3
|10〉 |1

2

1

2
〉

=

√

1

3
|π+n〉+

√

2

3
|π0p〉

(7.194)

and so on. Then we can write

A(π+p→ ∆++ → π+p) = A
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A(π0p→ ∆+ → π−n) = A

√

2

3

√

1

3

A(π0p→ ∆+ → π0p) = A

√

2

3

√

2

3
.

(7.195)

The three cross sections would be in the ratio 1 : 2/9 : 4/9.

The 1960’s story is that the up and down quarks are I3 = ±1
2
members of an I = 1/2

multiplet;

u =

(

1

0

)

d =

(

0

1

)

. (7.196)

Now the charge assignment is Q = I3+1/6: the 1/2 for B is now 1/6 because a quark carries

baryon number 1/3. Work out the (fractional) charges! And the proton is (q, q, q)I=1/2,I3=1/2,

a (u, u, d) bound state.

All this discussion has an old fashioned flavor. The modern story is also worth mentioning.

Isospin is an accidental symmetry which arises because the up and down quark masses are

both tiny, much smaller than the typical scale of strong interaction dynamics. If they were

degenerate, and if one could ignore electromagnetism, isospin would be an exact symmetry

of the Standard Model. It is not exact in Nature because the masses are not precisely equal

and because the quarks have different charges. The analog situation for the atomic physicist

would be to do spectroscopy in the presence of a tiny external magnetic field, which slightly

breaks rotational invariance, but still to recognize the near existence of the symmetry.

And one more decade: the 1970’s saw the introduction of “weak isospin:” the electron

and neutrino are bundled into one leptonic doublet of weak isospin

l =

(

νe

e

)

(7.197)

while the W boson, which induces transitions from charged to neutral leptons, is proportional

to an isospin raising or lowering operator W± ∝ I±. (In fact, all the families of quarks and

leptons – at least the ones which interact withW ’s – are members of doublets of weak isospin.)

Readers who know their particle physics will recognize all of this as a wildly oversimplified

story, but hopefully everyone will appreciate the many applications of SU(2) to physics.
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The classical mechanics of a collection of particles assumes that the particles are distin-

guishable, that one can somehow label all the particles at some point in time and follow their

individual motion forever after. This assumption is untenable in the real world of quantum

mechanics: identical particles really are identical. All electrons are alike. The consequences

of that fact are deep and vast. Let us introduce them slowly, and by example.

We consider first a two electron system, like the Helium atom. Temporarily ignoring

spin, we may write its Hamiltonian as a sum of kinetic terms, potentials for the interactions

of the individual electrons with the nucleus, and an interaction term for the two electrons,

Ĥ =
p̂1

2

2m
+
p̂2

2

2m
+ V (x1 − x2) + V (x2) + V (x1). (8.1)

Electrons are identical particles and so the Hamiltonian should be (and is) invariant under

an exchange of the coordinates of the two electrons, Ĥ(1, 2) = Ĥ(2, 1). The wave function

of the system depends on the coordinates of the two electrons. Call it ψ(x1, x2) or ψ(1, 2),

where we extend the idea of exchange to include possible spin degrees of freedom. One

can invent an exchange operator P̂12, which acts on the wave function to interchange the

coordinates of the two particles

P̂12ψ(1, 2) = ψ(2, 1). (8.2)

On physical grounds, a glance at Eq. 8.1 tells us that Ĥ and P̂12 must commute. We can do

the calculation for energy eigenstates, Ĥ(2, 1)ψ(2, 1) = Eψ(2, 1). Then

Ĥ(1, 2)P̂12ψ(1, 2) = Ĥ(2, 1)ψ(2, 1) = Eψ(2, 1)

= EP̂12ψ(1, 2) = P̂12Eψ(1, 2)

= P̂12Ĥ(1, 2)ψ(1, 2) (8.3)

or [Ĥ, P̂12] = 0. Therefore, one can find simultaneous eigenstates of Ĥ and P̂ . The eigenval-

ues of the exchange operator will be ±1, since

P̂12
2
ψ(1, 2) = ψ(1, 2) (8.4)

implies P̂12ψ(1, 2) = ±ψ(1, 2). The eigenstates of the exchange operator are a symmetric

state and an antisymmetric state,

ψS(1, 2) =
1√
2
(ψ(1, 2) + ψ(2, 1))

ψA(1, 2) =
1√
2
(ψ(1, 2)− ψ(2, 1)) (8.5)
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for which P = +1 and −1, respectively.

This exchange symmetry is called “statistics” for short. It applies to all of the degrees of

freedom of the state, both spatial (coordinates or momenta) and internal (spin). It happens

that there is a relation between the intrinsic spin of a particle and its statistics, called the

“spin-statistics” theorem:

Systems made of particles with integer spin (photons, pions, He4 atoms, O16 nu-

clei, Rb87 atoms) have totally symmetric wave functions and obey Bose-Einstein

statistics. They are generically called Bosons.

Systems made of particles with half-integer spin (electrons, neutrinos, He3 atoms,

Li6 atoms) have totally antisymmetric wave functions and obey Fermi-Dirac

statistics. Generically, they are called Fermions.

In these statements, “particle” refers to anything whose internal composition is irrelevant

to the situation at hand. A helium-4 atom is composed of two electrons, two protons and

two neutrons and therefore is a boson. Any many - Helium-4 system’s wave function is

symmetric under exchange of the coordinates of two Helium-4 atoms. The wave function

is antisymmetric under the exchange of two protons, for they are fermions. This fact is

irrelevant if one is not probing any physics of the protons which is independent of the physics

of Helium -4 atoms.

The spin-statistics theorem has its origin in the connection between quantum mechanics

(specifically the quantum mechanics of many particle systems, as described by quantum field

theory) and special relativity (specifically, causality). Its derivation is outside the scope of

this book, but will be found in any good quantum field theory text. It is simply not possible to

construct a consistent description of Nature for bosonic spin 1/2 particles or fermionic spin-1

ones. The connection between spin and statistics was presented as an unproven principle by

Pauli in the 1920’s, as a way of understanding the spectroscopic properties of atoms. It was

proven by him in the context of quantum field theory in 1940. For nonrelativistic quantum

mechanical systems, we simply have to take the spin-statistics theorem as a fact and deal

with it.

We can build both the symmetric and antisymmetric wave functions for three particle

systems by inspection:

ψS(1, 2, 3) =
1√
6
(ψ(1, 2, 3) + ψ(2, 3, 1) + ψ(3, 1, 2)
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+ψ(2, 1, 3) + ψ(1, 3, 2) + ψ(3, 2, 1)) (8.6)

ψA(1, 2, 3) =
1√
6
(ψ(1, 2, 3) + ψ(2, 3, 1) + ψ(3, 1, 2)

−ψ(2, 1, 3)− ψ(1, 3, 2)− ψ(3, 2, 1)). (8.7)

An important special case is that of N noninteracting fermions. Here the Hamiltonian

is a sum of identical terms, Ĥ =
∑N

i=1 Ĥi. The one particle energy eigenstates obey the

equation

ĤiuEk
= EkuEk

(8.8)

while the unsymmetrized N−particle wave functions are simply a product of one particle

solutions,

ĤuE(1, 2, 3, . . . , N) = EuE(1, 2, 3, . . . , N) (8.9)

with

uE(1, 2, 3, . . . , N) = uEk1
(1)uEk2

(2) · · ·uEkN
(N) (8.10)

and E = E1 + E2 + · · ·+ EN .

The antisymmetric wave function can be constructed from these solutions by forming the

the Slater determinant

uA(1, 2, 3, . . . , N) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

uE1(1) uE1(2) · · ·
uE2(1) uE2(2)

...
. . .

∣

∣

∣

∣

∣

∣

∣

. (8.11)

Determinants change sign if two columns are exchanged. Exchanging two columns exchanges

the labels on two particles and the minus sign is just the expected antisymmetry property. If

two of the single particle wave functions are identical then two of the rows of the determinant

are equal, and the determinant will vanish. This is to be expected, since antisymmetry means

that two fermions can never be in the same state.

Statistics apply to the complete wave function, including both space and spin compo-

nents. If we decompose the wave function for many fermions into spatial and spin wave

functions, only one of them need be antisymmetric. The spin wave function could be to-

tally antisymmetric, in which case the spatial wave function must be symmetric. Then the

fermions can be in the same spatial state. Equivalently, if the spatial part of the wave func-

tion is totally antisymmetric, then the spin wave function is symmetric and the two fermions

can be in the same spin state. Explicitly, a (separable) two-body spatial wave function,
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which is an exchange eigenstate, is

ψAB(x1, x2) =
1√
2
(uA(x1)uB(x2)± uA(x2)uB(x2)). (8.12)

The symmetric wave function carries the plus sign. To satisfy statistics, the spin wave

function in that case must be antisymmetric. The antisymmetric spatial wave function

(with its minus sign) requires a symmetric spin wave function.

As an example of this connection, suppose we have a state of two electrons, with the

same radial quantum number n, and both with orbital angular momentum L = 1. We can

write the wave function as written

ψ(1, 2) = ψspace(1, 2)ψspin(1, 2). (8.13)

It must be totally antisymmetric. We recall that two spin-1
2
particles couple to total S = 1

or 0, and that the wave functions are

|11〉 = |↑〉 |↑〉

|10〉 =
1√
2
(|↑〉 |↓〉+ |↓〉 |↑〉)

|1− 1〉 = |↓〉 |↓〉

|00〉 =
1√
2
(|↑〉 |↓〉 − |↓〉 |↑〉).

(8.14)

The triplet states are symmetric under exchange of the two particles. The singlet state is

antisymmetric.

An identical story can be told for the orbital angular momenta. We recall that 1 ⊗ 1 =

2⊕ 1⊕ 0. Some of the resulting wave functions are

|22〉 = |11〉 |11〉

|11〉 =
1√
2
(|11〉 |10〉 − |10〉 |11〉)

|00〉 =
1√
6
(|1− 1〉 |11〉+ |11〉 |1− 1〉 − 2 |10〉 |10〉).

(8.15)

We observe that the L = 2 and L = 0 states are totally symmetric under exchange, and

the L = 1 states are totally antisymmetric. It is easy to convince one’s self that the same
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connection will hold for all combinations of L ⊗ L – the L ⊗ L = 2L states are symmetric,

so the L⊗ L = 2L− 1 ones are antisymmetric by orthogonality, and so on. To preserve the

antisymmetry of the entire wave function, when the electrons are in a spin triplet state they

cannot be in L = 0 or L = 2, and similarly if the electrons are in the spin singlet they cannot

have L = 1. A two-electron atom with the electrons in the same radial and orbital state

will have missing levels. This is in contrast to the situation when the two electrons have

different radial quantum numbers. All levels will be present, because the radial part of the

wave functions could be made symmetric or antisymmetric to compensate for the symmetry

of the space and spin degrees of freedom.

Helium

The helium atom provides an interesting example of the effects of statistics. The two valence

electrons couple to either S = 1 or S = 0. These cases are called “ortho-helium” and “para-

helium,” respectively. Because ordinary electromagnetic transitions are electric dipole, the

spin of the electron is not affected by emission or absorption of photons. Thus, spectro-

scopically, helium effectively decouples into two distinct kinds of atom, with its own set of

energy levels. Of course, the ground state is para, if both electrons are to sit in the same

(lowest) orbital. Helium was a mystery in the pre-quantum days; Bohr-model arguments

simply failed when applied to it. Heisenberg was the first to realize that the combination of

statistics and interactions could account for the properties of helium.

Again neglecting small spin-dependent terms, its Hamiltonian is

Ĥ =
p̂21
2m

+
p̂22
2m

− Ze2

r1
− Ze2

r2
+

e2

|~r1 − ~r2|
. (8.16)

If we discard the Coulomb repulsion between the electrons, the Hamiltonian becomes sepa-

rable. The wave function is a (symmetrized) product of hydrogenic states

ψ(1, 2) =
1√
2
(ψn1l1m1(r1)ψn2l2m2(r2)± ψn1l1m1(r2)ψn2l2m2(r1))χs1s2 (8.17)

where χs1s2 represents the spin wave function. The probability to find one of the electrons

near r1 and the other near r2 is

|ψ(1, 2)|2d3r1d3r2 = d3r1d
3r2[(|ψn1l1m1(r1)|2|ψn2l2m2(r2)|2

±Re(ψ∗
n1l1m1

(r1)ψn2l2m2(r2)ψ
∗
n2l2m2

(r1)ψn1l1m1(r2)))]. (8.18)
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The cross terms in the above expression are often referred to as “exchange terms” or “ex-

change densities.”

Now let us switch the Coulomb repulsion back on and look at its diagonal matrix elements

〈i|V̂ |i〉 =

∫

d3r1d
3r2

e2

|~r1 − ~r2|
(|ψn1l1m1(r1)|2|ψn2l2m2(r2)|2

±Re(ψ∗
n1l1m1

(r1)ψn2l2m2(r2)ψ
∗
n2l2m2

(r1)ψn1l1m1(r2)))

(8.19)

In perturbation theory, this quantity is the shift in energy due to the electrons’ Coulomb

repulsion. The last set of terms is the exchange interaction. We can write this expression

schematically as

〈i|V̂ |i〉 = A±B (8.20)

The plus sign corresponds to the spin singlet wave function and the minus to the spin triplet

wave function. The expression can then be rewritten as expression as

〈i|V̂ |i〉 = A− 1

2
(1 + ~σ1 · ~σ2)B (8.21)

where we recall ~σ1 · ~σ2 = +1 for S = 1 and -3 for S = 0. Even though the Hamiltonian had

no explicit spin dependence, statistics induces a spin-dependent energy splitting.

The number B arises from electromagnetic interactions. It can be quite large – electron

volts, in typical atoms. This is huge, compared to “intrinsic” spin splittings, arising from,

for example, hyperfine interactions. The exchange terms are responsible for the difference in

energy between excited states in ortho and para-Helium. It is easy to tell the story, without

equations: when the electrons have S = 1, their spatial wave function has a node at zero

separation, so on average, they are farther away than they would be if they were in the

singlet state. Since they are farther away, their energy due to Coulomb repulsion is lower.

(This story will be true when the spatial wave functions have no nodes; otherwise it might

fail.)

These exchange-related energies are also the origin of spin forces in magnetic materials.

Depending on the sign of B, materials can be either ferromagnetic (the lowest state is when

the spins are aligned) or antiferromagnetic (the S = 0 state is lower). Magnetism is due to

the Pauli effect, plus Coulomb repulsion.
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Diatomic molecules

In diatomic molecules, the electronic wave function sets up a potential in which the nuclei

move. This motion can be described as a mix of rotation and vibration. The lowest energy

state of the system are in the ground state vibrational level, and the excitations are rotations,

for which the Hamiltonian is

Ĥ =
L̂2

2I
(8.22)

with I the moment of inertia, equal to µa2, with reduced mass µ and internuclear separation

a. Therefore, the energy eigenvalues are

El =
~
2

2I
l(l + 1). (8.23)

Of course, l, is an integer, and the coordinate-space wave functions are spherical harmonics,

〈x|lm〉 = Y m
l (θ, φ). Parity plays the role of the exchange operator for these systems. (We

recall, the spherical harmonics are parity eigenstates with eigenvalue (−)l.) For molecules

with different nuclei, such as HCl, all l’s are allowed. As in the case of atomic spectroscopy,

statistics of identical nuclei will remove states from the expected spectrum.

When the two nuclei are identical bosons, such as C12C12, the wave function must be

symmetric. The total angular momentum of the C12 nucleus is known to be zero, and so

statistics only depends on l. Bose statistics demands that only even values of l are allowed.

For molecules with fermionic nuclei, such as H2, the situation is similar though slightly

more complicated. The proton is a spin-1
2
fermion. The spin wave function for the pair will

either be a spin singlet or a spin triplet. The corresponding spatial wave functions must be

antisymmetric for the triplet and symmetric for the singlet, and only odd l’s are allowed for

the triplet and even l’s for the singlet.

The absence of these states was an early warning of new physics in nuclei. At the time

of the first analysis along the lines we have made (1929) the neutron was undiscovered and

nuclei of charge N and mass number A were thought to be composed of N protons (for

charge N) and N − A additional protons plus electrons in lieu of the N − A neutrons. For

N14, with N = 7, A = 14, this would be a system of 21 fermions, with, correspondingly,

Fermi statistics. The proton - neutron system has fourteen fermions and Bose statistics.

Missing states favored the latter case. The neutron was not discovered until 1932, so this

issue persisted for several puzzling years.
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Quarks and color

The proton and neutron (and all strongly interacting particles) are not fundamental particles;

they are bound states of quarks. Quarks are point-like spin-1
2
fermions, like electrons or

neutrinos. In addition, they are fractionally charged, carrying a charge of 2
3
or −1

3
(in units

of the electronic charge). There are six types of quarks, referred to as “flavors.” The up,

charm, and top quarks (just labeled as u, c, and t) have charge 2/3 while the down, strange

and bottom quarks (d, s, b) all have charge -1/3. Quarks bind together in two ways (other

possibilities may exist, a topic of some current research interest):

Mesons are bound states of a quark and an antiquark. We can imagine naively that their

spin must couple as 1
2
⊗ 1

2
= 1 ⊕ 0, so that mesons appear as spin singlets and triplets.

Indeed, that is the pattern of low lying states. The lightest mesons have J = 0 and the

lightest excited states have J = 1. Higher states can have higher angular momenta, which

can plausibly be inferred to be a combination of spin and orbital angular momentum.

Baryons are bound states of three quarks. Again, naively, we expect the spins of the

particles to add as 1
2
⊗ 1

2
⊗ 1

2
= 3

2
⊕ 1

2
. The lightest baryons are made of up and down quarks

(the lightest quarks). The proton and the neutron are spin-1
2
baryons (their quark content

is, respectively, uud and udd). Including the strange quark, we would expect to see a set of

J = 3
2
states. They are the decuplet

uuu uud udd ddd (8.24)

suu sud sdd

ssu ssd

sss

and in fact all of these particles are well established resonances,

∆++ ∆+ ∆0 ∆− (8.25)

Σ+ Σ0 Σ−

Ξ0 Ξ−

Ω−

But there is a problem with this story: The J = 3
2
spin wave function is symmetric. For

example,

| 3
2
, 3
2
〉 = |↑〉 |↑〉 |↑〉 . (8.26)
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We would expect the space wave function of the lowest energy state to be symmetric. (This

can be tested, in the form factors for scattering. No evidence for nodes ever appeared.) We

seem to have a violation of the spin-statistics theorem. The resolution (by Greenberg) was

to propose that there is another quantum number associated with quarks, called “color,”

and that it is the color part of the wave function which carries the antisymmetry. This can

be done through the Slater determinant.

∣

∣

∣

∣

∣

∣

∣

r1 r2 r3

g1 g2 g3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

. (8.27)

This seemed quite contrived at the time, but it turned out to be true. The strong

interactions involve the color degree of freedom in the same way that electromagnetism

involves charge. It is believed that the strong interactions permanently confine quarks into

colorless or “color singlet” objects, for which the color wave function is Eq. 8.27. To pursue

this subject would take us too far afield, but here is a suggestion of a check of the idea:

In the proton and neutron, the spin wave functions of the uu or dd pair must be identical.

This forces their total spin to be J = 1. Now the proton or neutron wave function is 1⊗ 1
2
= 1

2
.

Construct the wave functions and compute the magnetic moments of the two baryons in terms

of the magnetic moments of the u and d quarks. Presumably, the masses of the two quarks

are nearly equal, because the proton and neutron are nearly mass-degenerate, so the ratio of

magnetic moments is the ratio of the charges. How close is your prediction to the observed

ratio of magnetic moments, µn/µp = −0.684?
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General remarks about perturbation theory

A general problem in any practical calculation is that the Hamiltonian cannot be diagonalized

exactly. Hamiltonians which describe real world problems are usually infinite dimensional,

so writing

|ψ〉 =
∑

j

cj |j〉 (9.1)

and directly attacking

det(〈i|Ĥ|j〉 − δijE) = 0 (9.2)

or trying to integrate

i~
∂

∂t
|ψ〉 = Ĥ

∑

j

cj(t) |j〉 (9.3)

is not going to get you very far.

However, often H is almost diagonal

Ĥ = Ĥ0 + λĤ1, (9.4)

where λ is a small dimensionless parameter and H0 is time independent and solvable,

Ĥ0 |ψ0〉 =W0 |ψ0〉 . (9.5)

Then the idea is to treat the small part of the problem as a perturbation: we assume that

the energies and eigenfunctions of the complete system are nearly those of the dominant part

of the Hamiltonian. The effect of the small part is treated approximately. Specifically, we

write

Ĥ = Ĥ0 + λĤ1. (9.6)

and we want to solve

Ĥ |ψ〉 =W |ψ〉 . (9.7)

The quantity λ is a small expansion parameter. We wish to find |ψ〉 and W as power series

in λ,

|ψ〉 = |ψ0〉+ λ |ψ1〉+ λ2 |ψ2〉+ · · · (9.8)

and

W =W0 + λW1 + λ2W2 + · · · . (9.9)

The time dependent analog is

〈β|U(t, t0)|α〉 = δαβe
−iW0α(t−t0)/~ + λU1(t, t0) + λ2U2(t, t0) + . . . (9.10)
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The method of solution of the time independent Schrödinger equation is called Rayleigh -

Schrödinger perturbation theory. The time dependent situation is just called “perturbation

theory,” but contains as a special case the very useful “Golden Rule” which is the basis for

most practical calculations.

Most theoretical calculations begin and end with perturbation theory, so a few more

remarks are in order:

To a mathematician, λĤ1 ≪ H0 means that there is a basis where 〈i|Ĥ|i〉 ≫ 〈i|Ĥ|j〉,
that the Hamiltonian matrix is diagonal dominant.

Sometimes, one might actually be able to control the parameter λ in a laboratory setting.

(For example, the effect of an external magnetic field on an atom can be made small by

making the field small.)

Sometimes you can’t. An example is

Ĥ =
p2

2m0
+
Ze20
r

+ [
p4

8m0c3
+ . . . ~L · ~S] (9.11)

(where the first two terms are Ĥ0 and the terms in brackets are Ĥ1) or the interaction of an

electron in an electromagnetic field, with the same Ĥ0 and Ĥ1 = e/(mc) ~A · ~p. After the fact,
you discover that there is a small expansion parameter, α = e2/(~c) = 1/137 or 〈v/c〉 = α,

BUT you can’t realize Ĥ0 experimentally. In the electromagnetic case, how can you have an

electron which doesn’t couple to a photon?

This raises an interesting cascade of issues. Just to mention one of them: how are

the parameters in Ĥ0 (the mass parameter m0 and the charge e0 – let’s call these objects

“coupling constants” in what follows) related to quantities measured in experiment where

the Hamiltonian is the full Ĥ?

The answer: the measurement of a coupling constant is the results of comparison of a

theoretical calculation of an experimental situation, which is fit to experimental data. The

coupling constants are determined in the fit. Often, the theoretical calculation is pertur-

bative, and it is done to some finite order of perturbation theory. Then the experimental

quantity E is related to theory as

E = T0(e0, m0) + λT1(e0, m0) + λ2T2(e0, m0) + . . . (9.12)

Think of E as the experimentally measured charge of the electron. This formula means that

e is a function of the “bare parameters” e0 and m0. The quantities e0 and m0 have to be
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determined from some small set of experiments. Them one can go on to perform additional

experiments, and make predictions.

I’ve never seen this discussed in a quantum mechanics course, but you will see it when

you study quantum field theory.

Another thing to notice about Eq. 9.12: the theoretical calculation implicitly assumes that

the . . . are zero. The theoretical prediction will change when the next order in perturbation

theory is computed. This means that all perturbative calculations have in inherent ambiguity,

which is usually hard to quantify. Dealing with this is a recurring problem in theoretical

physics.

Pure nonperturbative techniques tend not to have universal applicability. There are many

special cases. Generally, completeness is lost,

|ψ〉 =
∑

j

cj |j〉 →
N
∑

j

cj |j〉 (9.13)

(this is also the case for many practical perturbative calculations) and then the issue is, how

to restore it.

Sometimes there is no good choice for λ. Sometimes, in this situation, a λ is introduced

as a bookkeeping device, and set to unity at the end of the calculation.

Rayleigh-Schrödinger perturbation theory

The perturbative expansion is developed simply by substituting the power series expansions

for W and |ψ〉 into the Schrödinger equation

(Ĥ0 + λĤ1)(|ψ0〉+ λ |ψ1〉+ λ2 |ψ2〉+ · · ·) = (W0 + λW1 + λ2W2 + · · ·)×
(|ψ0〉+ λ |ψ1〉+ λ2 |ψ2〉+ · · ·), (9.14)

and equating terms order by order in λ. At zeroth order (of course) is

(Ĥ0 −W0) |ψ0〉 = 0, (9.15)

which we assume is exactly solvable. At first order,

(Ĥ0 −W0) |ψ1〉 = (W1 − Ĥ1) |ψ0〉 . (9.16)
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In second order we have

(Ĥ0 −W0) |ψ2〉 = (W1 − Ĥ1) |ψ1〉+W2 |ψ0〉 (9.17)

Higher order terms in the series rapidly become unwieldy.

Now let us solve these equations. We assume that |ψ0〉 ≡ |um〉 is an eigenfunction of Ĥ0

with eigenvalue W0 = Em. In the formulas we develop, we also assume that the subscript m

is a discrete index. It is not really necessarily need to assume this property, just convenient.

For a continuous spectrum, sums become integrals. However, it will be necessary to assume

that the eigenvalues Em are non-degenerate.

A glance at the left hand side of Eq. 9.16 tells us that one can add an arbitrary amount

of the wave function |ψ0〉 to the wave function |ψ1〉 without changing anything. We will

make use of this fact for our convenience, by defining |ψn〉 to be orthogonal to |ψ0〉 (i.e.

〈ψ0|ψn〉 = 0). Taking the inner product of the first order equation with the bra 〈ψ0| gives

〈ψ0|(Ĥ0 −W0)|ψ1〉 = 0 = 〈ψ0|(W1 − Ĥ1)|ψ0〉 (9.18)

or

W1 = 〈ψ0|Ĥ1|ψ0〉 (9.19)

or (explicitly labeling the state)

Wm
1 = 〈um|Ĥ1|um〉 . (9.20)

This is a simple, important and useful result. The first order energy shift of the perturbation

is just its expectation value in the unperturbed state.

From Eq. 9.17, the second order energy shift is

〈ψ0|(Ĥ0 −W0)|ψ2〉 = 0 = 〈ψ0|(W1 − Ĥ1)|ψ1〉 −W2 〈ψ0|ψ0〉 (9.21)

or

W2 = 〈ψ0|(Ĥ1 −W1)|ψ1〉 . (9.22)

Note that W1 only depends on |ψ0〉 and W2 only depends on |ψ0〉 and |ψ1〉. In general to

find the energies to order n requires only the wave function to order n− 1.

The first order contribution to the perturbed wave function must be a superposition of

the unperturbed energy eigenfunctions, excluding |um〉 because the correction is orthogonal

to the unperturbed state

|ψ1〉 =
∑

n 6=m

cn |un〉 . (9.23)
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Rewrite Eq. 9.16 to reflect that we are perturbing about |um〉

(Ĥ0 − Em) |ψ1〉 = (W1 − Ĥ1) |um〉 (9.24)

and substitute for |ψ1〉:
∑

n 6=m

(Ĥ0 − Em)cn |un〉 = (W1 − Ĥ1) |um〉 (9.25)

or
∑

n 6=m

(En −Em)cn |un〉 = (W1 − Ĥ1) |um〉 . (9.26)

Now take an inner product with by 〈uk|, and, recalling 〈uk|um〉 = 0, we have

ck(Ek −Em) =W1 〈uk|um〉 − 〈uk|Ĥ1|um〉 (9.27)

or

ck =
〈uk|Ĥ1|um〉
Em −Ek

. (9.28)

Thus the complete result for the first-order correction to the wave function is

|ψ1〉 =
∑

n 6=m

|un〉
〈un|Ĥ1|um〉
Em − En

(9.29)

We now see the necessity of our requirement that the eigenvalues be non-degenerate. If they

were degenerate, the expression would diverge.

The first order wave function allows us to the second order energy correction. Exploiting

the orthogonality of |ψ1〉 and |ψ0〉, we obtain

W2 = 〈ψ1|Ĥ1|ψ0〉 (9.30)

=

(

∑

n 6=m

〈un|Ĥ1|um〉 〈un|
Em − En

)

Ĥ1 |ψ0〉

=
∑

n 6=m

| 〈un|Ĥ1|um〉 |2
Em −En

The complete energy shift through second order is

E = Em + 〈um|Ĥ1|um〉+
∑

n 6=m

| 〈un|Ĥ1|um〉 |2
Em −En

. (9.31)

As a useful mnemonic for remembering the order of terms in the denominator of the second

order correction, observe that the second order perturbation always lowers the unperturbed

ground state energy. (This is actually a deep statement, to which we will return.)
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Two simple examples with oscillators

Let us look at a couple of examples which can actually be solved exactly. They both use the

one dimensional simple harmonic oscillator Ĥ = p̂2

2m
+ 1

2
mω2x̂2. We begin with a perturbation

Ĥ1 = λx̂2. Of course, we can exactly diagonalize Ĥ in this case. The full potential is

V → 1

2
mω2x̂2 + λx̂2 =

1

2
mω

′2x̂2, (9.32)

and so the exact energies are En = ~ω′ (n+ 1
2

)

with

ω′ =

√

ω2 +
2λ

m
= ω +

λ

mω
+ · · · . (9.33)

Perturbation theory should recover the power series. To first order, we expect

∆E =
~λ

2mω
. (9.34)

In Rayleigh-Schrödinger perturbation theory, the first order correction is

E1 = 〈0|λx̂2|0〉

=
~λ

2mω
〈0|(â+ â†)2|0〉

=
~λ

2mω
〈0|â2 + ââ† + â†â+ â†2|0〉

=
~λ

2mω
(9.35)

which agrees (as it should) with the direct expansion of the exact result.

For a slightly less trivial example, consider the perturbation Ĥ1 = λx̂. This situation

also has an exact solution, since

V̂ =
1

2
mω2x̂2 + λx̂ =

1

2
mω2

(

x̂+
λ

mω

)2

− λ2

2mω2
. (9.36)

The perturbation amounts to a translation in the origin of the oscillator plus an overall

constant increment of the energy. The translation does not affect the energy, so

∆E = − λ2

2mω2
. (9.37)

Now we approach the problem using Rayleigh-Schrödinger perturbation theory. The first

order term vanishes:

λ 〈0|x̂|0〉 = λ

√

~

2mω
〈0|(â+ â†)|0〉 = 0. (9.38)
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For the second order shift, we need to compute

〈ψn|Ĥ1|ψ0〉 = λ

√

~

2mω
〈ψn|(â+ â†)|ψ0〉 = λ

√

~

2mω
δn,1. (9.39)

Therefore, the sum collapses to a single term,

E2 =
∑

n 6=0

| 〈n|Ĥ1|0〉 |2
E0 −En

=
| 〈1|Ĥ1|0〉 |2
E0 − E1

=

(

λ
√

~

2mω

)2

−~ω
= − λ2

2mω2
. (9.40)

The calculation of the energy eigenvalues agrees with the exact result.

The perturbed wave function is

|ψ〉 = |0〉+
∑

n 6=0

|n〉 〈n|Ĥ1|n〉
E0 − En

(9.41)

= |0〉 − λ

~ω

√

λ

2mω
|1〉

The original wave function for the unshifted ground state is

〈x|0〉 =
(

~

πmω

)1/4

exp
(

−mω
2~

x2
)

. (9.42)

The perturbation shifts the origin of the oscillator, so the true wave function has just been

translated. Expanding the shifted wave function for small λ,

(

~

πmω

)1/4

exp

(

−mω
2~

(

x+
λ

mω

)2
)

≃
(

~

πmω

)1/4(

1− λx

mω
+ · · ·

)

exp
(

−mω
2~

x2
)

.

(9.43)

The O(λ) term is, indeed, the first excited state.

A rearranged series (Brillouin-Wigner perturbation theory)

The initial equation whose perturbative expansion we wish to construct can be rewritten as

(Ĥ0 −W ) |ψ〉 = −λĤ1 |ψ〉 (9.44)

and its (formal) solution is

|ψ〉 = −(Ĥ0 −W )−1λĤ1 |ψ〉 . (9.45)
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Inserting a complete set of unperturbed states |n〉 with eigenvalues Ĥ0 |n〉 = W
(0)
n |n〉,

Eq. 9.45 becomes

|ψ〉 = −
∑

n

1

W
(0)
n −W

|n〉 〈n|λĤ1|ψ〉 (9.46)

The sum runs over all states |n〉. We assume that the exact wave function |ψ〉 will be close

to one of them, which we will label as |m〉. We separate that term from the series. We also

relabel |ψ〉 as |um〉 guide the eye. We have

|um〉 = C |m〉+
∑

n 6=m

|n〉 〈n|λĤ1|um〉
Wm −W

(0)
n

(9.47)

where

C =
〈m|λĤ1|um〉
Wm −W

(0)
m

. (9.48)

We solve this implicit equation by iteration:

|um〉 = C |m〉+
∑

n 6=m

C |n〉 〈n|λĤ1|m〉
Wm −W

(0)
n

+
∑

n 6=m,p 6=m

C |n〉 〈n|λĤ1|p〉 〈p|λĤ1|m〉
(Wm −W

(0)
n )(Wm −W

(0)
p )

+ · · ·

= C

(

|m〉+
∑

n 6=m

Qnm |n〉
Wm −W

(0)
n

+
∑

n 6=m,p 6=m

QnpQpm |n〉
(Wm −W

(0)
n )(Wm −W

(0)
p )

+ · · ·
)

(9.49)

where we have defined Qij ≡ 〈i|λĤ1|j〉. Eq. 9.48 inverts to give 〈m|λĤ1|um〉 = C(Wm −
W

(0)
m ), so taking the inner product of |um〉 from Eq. 9.49 with 〈m| λĤ1 gives

Wm −W (0)
m = Qmm +

∑

n 6=m

QmnQnm

(Wm −W
(0)
n )

+
∑

n 6=m,p 6=m

QmnQnpQpm

(Wm −W
(0)
n )(Wm −W

(0)
p )

+ · · · . (9.50)

The usefulness of this expansion stems from the fact that one can write down any particular

order in the expansion by inspection. For example, the order N + 1 contribution is
∑

i1 6=m,...,iN 6=m

Qmi1Qi1i2 · · ·QiN−1iNQiNm

(Wm −W
(0)
i1

)(Wm −W
(0)
i2

) · · · (Wm −W
(0)
iN

)
. (9.51)

Of course, it is not completely useful, since the defining equations are implicit. This version of

perturbation theory is called “Brillouin-Wigner perturbation theory.” Occasionally, it might

be possible to solve the implicit equations iteratively. A more useful reason for describing

this method (in the author’s opinion) is this: One can write a series solution for the energy,

Wm = W (0)
m + λW (1)

m + λ2W (2)
m + · · · (9.52)

and insert it into the Brillouin-Wigner series. Collecting terms order by order in λ will allow

one to generate the much more complicated Rayleigh-Schrödinger expansion in a straight-

forward way.
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Degenerate state perturbation theory

In the presence of degeneracies the expansions in the preceding sections break down due

to vanishing energy denominators. Physically, the perturbation expansion fails because its

implicit assumption – that the perturbation produces a small effect on the states and energy

expectation values – is simply false, when applied to states which are degenerate before the

perturbation is applied.

To illustrate this situation, suppose that we have an unperturbed system with two states

which are degenerate in zeroth order. Call them |l〉 and |m〉. Assume also that there is

a small term which can mix them. Call its matrix elements λ 〈i|Ĥ1|j〉 = λHij. The full

Hamiltonian is, then,

Ĥ =

(

E0 + λHll λHlm

λHml E0 + λHmm

)

. (9.53)

The eigenvalues are

W = E0 + λ

(

Hll +Hmm

2

)

± λ

√

(

Hll −Hmm

2

)2

+ |Hml|2 ≡ Wl̃,Wm̃ (9.54)

The energy eigenstates are

|l̃〉 = α |l〉+ β |m〉 (9.55)

|m̃〉 = −β |l〉+ α |m〉

(where of course |α|2 + |β|2 = 1). While the energies are smooth functions of λ, the eigen-

vectors are not. To see that, call

Wl̃ = E0 + λǫ. (9.56)

Then the eigenvector equation, determining α and β, is

(E0 − (E0 + λǫ))α + λHlmβ = 0 (9.57)

and therefore λǫα = λHlmβ or
α

β
=
Hlm

ǫ
(9.58)

All λ dependence has disappeared. This illustrates the point, that when a degeneracy is

present, it is simply not the case that the eigenfunction of the full Hamiltonian differs from

the eigenfunction of Ĥ0 by an O(λ) correction. Indeed, if the perturbation did not have a

diagonal term, Hll = Hmm = 0, we would find α/β = ±1.
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So much for the two state system. Now suppose that we have a zeroth order system

with many states, and two (or more) of them are degenerate. We add a perturbation to the

system. The way we can deal with it is to first separate the degenerate subspace from the

rest of the system, and diagonalize the entire Hamiltonian in it. Then reconsider the entire

system, using not the original degenerate states, but the rotated states. Our old Hamiltonian

matrix was

Ĥ =













E0 + λHll λHlm λHlk · · ·
λHml E0 + λHmm λHmk · · ·
λHkl λkm Ek + λHkk . . .
...

...
...

. . .













, (9.59)

and in the rotated basis it becomes

Ĥ =













Wl̃ 0 λHl̃k · · ·
0 Wm̃ λHm̃k · · ·

λHkl̃ λHkm̃ Ek + λHkk . . .
...

...
...

. . .













. (9.60)

Now all degeneracies have been lifted, and ordinary Rayleigh-Schrödinger perturbation

theory gives the perturbed wave function (to first order) as well as the perturbed energy (to

second order). For state |l̃〉,

|ψ〉 = |l̃〉+
∑

j 6=l̃

|j〉 〈j|Ĥ1|l̃〉
Wl̃ −Wj

(9.61)

E =Wl̃ + λ2
∑

j 6=l̃

| 〈l̃|Ĥ1|j〉 |2
Wl̃ −Wj

. (9.62)

Notice that there are no Wl̃ −Wm̃ denominators in the sums because, by design, the pertur-

bation does not connect |l̃〉 and |m̃〉 – their numerators are exactly zero.

Several comments are in order: First, the author regards the expression “degenerate state

perturbation theory” as an oxymoron: the small terms can drastically affect degenerate

states. Second, one may encounter situations where states are not degenerate, but their

unperturbed energy splitting is small compared to the effect of the perturbation: El−Em ≪
λHlm, for example. Then it might be advantageous to treat the states as if they were

degenerate, diagonalize the subspace exactly, and proceed. Finally, this business can become

quite delicate. We have not considered the case where Hll = Hmm and Hlm = 0. In this case

the perturbation does not lift the degeneracy, and one must consider higher-order formulas.

There is a brief description of this situation in Schiff.
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Hydrogen: relativistic correction

We illustrate the uses of perturbation theory in some classic examples drawn from the physics

of light atoms.

Recall that the Hamiltonian for a non-relativistic charged particle in a Coulomb potential

is Ĥ0 = p̂2/(2m) − Ze2/r. This Hamiltonian leaves out many effects in the physics of

the physical electron - proton bound state. The largest of these contribute to what is

know as “fine structure,” the relativistic correction to the kinetic energy and the spin-orbit

interaction.

The true relation between energy and momentum for a relativistic particle is E =
√

p2c2 +m2c4. Because the electron’s velocity is small (v/c ∼ α), the energy can be ap-

proximated as

E = mc2 +
p2

2m
− p2

8m3c2
+ · · · (9.63)

and the quartic term can be treated as a perturbation. Its expectation value can be partially

evaluated using tricks:

〈Ĥrel〉 = 〈− 1

2m3c2

(

p2

2m

)2

〉

= 〈− 1

2m3c2

(

Ĥ0 +
Ze2

r

)(

Ĥ0 +
Ze2

r

)

〉

= − 1

2m3c2

(

(E(0)
n )2 − 2E(0)

n Ze2 〈1
r
〉+ Z2e4 〈 1

r2
〉
)

. (9.64)

The matrix element
〈

1
r

〉

can be computed using the virial theorem,

Ze2
〈

1

r

〉

= −2E(0)
n . (9.65)

The calculation of
〈

1
r2

〉

requires a sum over Laguerre polynomials. It happens to be

〈

1

r2

〉

=
Z2

a20n
3
(

l + 1
2

) . (9.66)

Recalling that the Bohr radius is a0 =
~c

2mc2
and e2

~c
= α ≃ 1

137
, this is

〈

1

r2

〉

=
Z2m2c2α2

~2n3
(

l + 1
2

) . (9.67)
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The complete expression is

Erel =
Z4α2

n3
× Ry×

(

3

4n
− 2

2l + 1

)

(9.68)

where “Ry” is shorthand for for the Rydberg, −13.6 eV. Note that this perturbation lifts

the degeneracy between the n and l states. We list a few representative values of the term

in parentheses in Table 9. The scale of the correction is about 10−5 eV for hydrogen.

state n, l value

1s n = 1, l = 0 −5
4

2s n = 2, l = 0 −39
24

2p n = 2, l = 1 −7
24

Hydrogen: spin-orbit coupling

Recall that the electron has a spin magnetic moment

~µ = − e

mc
~S. (9.69)

It moves in the electric field of the proton. The effects of special relativity convert the electric

field into a mixture of electric and magnetic field. If the electron were moving with a uniform

velocity, this magnetic field would be

~B = −~v
c
× ~E. (9.70)

For a central potential, the electric field is

~E = −~∇V (~r) = −~r1
r

∂V

∂r
(9.71)

and so the transformed magnetic field would be

~B = −~v
c
×
(

−~r1
r

∂V

∂r

)

=
1

mc
(~p× ~r)

1

r

∂V

∂r
= − 1

mc

(

1

r

∂V

∂r

)

~L. (9.72)

However, the electron is not moving with a constant velocity as it orbits the proton. It is

accelerating. The correct answer is a factor of two smaller. The extra factor is called Thomas

precession term and its rescaling by 1/2 is the limiting value for non-relativistic velocity and

small acceleration. (See Jackson for a more extensive discussion.)
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The physical result is unchanged: the electron’s magnetic moment interacts with an

external magnetic field. The interaction is

Ĥso =
e

2m2c2
1

r

∂V

∂r
~L · ~S (9.73)

With V = −Ze2/r, this becomes

Ĥso =
1

2

Ze2

m2c2
1

r3
~L · ~S. (9.74)

As we contemplate a perturbative calculation of the energy shift due to this term, we

recall the quantum numbers of the eigenfunctions of that original Hamiltonian. They are n,

l, ml, s, and ms. We also recall that each level n is 2n2 degenerate. The interaction term

couples these degenerate states:

~L · ~S = LzSz +
1

2
(L+S− + L−S+) (9.75)

the first term couples either states with m′
l = ml and m′

s = ms and the second two terms

couple m′
l = ml ± 1 and m′

s = ms ∓ 1. We are faced with a problem of degenerate state

perturbation theory. We can avoid it by finding a basis where the perturbation is diagonal.

This is easy to do: recall that the total angular momentum is ~J = ~L + ~S and choose basis

states |j,mj , l, s〉. Then, because J2 = L2 + S2 + 2~L · ~S, our perturbation is diagonal

~L · ~S =
1

2

(

J2 − L2 − S2
)

. (9.76)

The complete spin-orbital energy correction is

∆Eso = 〈n, j,mj, l, s|Ĥso|n, j,mj , l, s〉 =
1

4

Ze2~2

m2c2

〈

1

r3

〉

(J(J + 1)− L(L+ 1)− S(S + 1)) .

(9.77)

Through a tedious calculation, the radial matrix element can be evaluated,

〈

1

r3

〉

=
Z3

a30

1

n2l
(

l + 1
2

)

(l + 1)
(9.78)

(Note that the numerator of Eq. 9.77 vanishes if l = 0.)

All the dimensional factors combine to give a term which is the same size as the relativistic

correction,

∆Eso ∼
Z4α2

n2
mc2. (9.79)
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This is no surprise; both terms come from special relativistic corrections to the nonrelativistic

limit. If we sum these two terms, we find

∆Eso +∆Erel = −Ry
Z4α2

n3

(

1

j + 1
2

− 3

4n

)

(9.80)

Surprisingly, even though the relativistic and spin-orbital corrections break the degener-

acy between states of the same j and different l, in the final analysis, they are degenerate!

In hydrogen, the famous special case is the degeneracy of the 2S 1
2
and 2P 1

2
states, while the

2P 3
2
state lies higher. Solving the Dirac equation gives this result immediately.

Hydrogen: hyperfine interaction

Nuclei have the same connection of magnetic moment and spin as electrons. The nuclear

magnetic moment is parameterized as

~M =
ZegN
2MN

~I (9.81)

(where ~I is the nuclear spin, not isospin!) and gN is the gyromagnetic ratio: for the proton

it is 2.79 and for the neutron it is −2
3
gpro = −1.91. The magnetic moment of the nucleus

generates a magnetic field which couples to the electron’s spin, giving a “hyperfine” splitting.

The Hamiltonian is familiar,

Ĥhfs =
e

mc
~S · ~B. (9.82)

A short calculation gives the connection between ~M and ~B. It begins with the vector

potential of a magnetic dipole,

~A = − ~M × ~∇
(

1

r

)

. (9.83)

The magnetic field, ~B = ~∇× ~A, is

~B = −~∇×
(

~M × ~∇
(

1

r

))

= − ~M∇2

(

1

r

)

+ ~∇
(

~M · ~∇
(

1

r

))

. (9.84)

Thus hyperfine Hamiltonian is

Ĥhfs =
Ze2gN

2MNmc2

(

(~S · ~∇)(~I · ~∇)
1

r
− ~S · ~I∇2

(

1

r

))

. (9.85)
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We now specialize to the ground state energy of Hydrogen. The wave function is

|ψgs〉 = ψ100(~r) |s,ms, I,mI〉 . (9.86)

Summing repeated indices, the energy shift is

∆Ehfs =
e2gN

2MNmc2
〈s,ms, I,mI |

∫

d3r|ψ100(~r)|2
(

SiIj
d

dxi

d

dxj

1

r
− ~S · ~I∇2

(

1

r

))

|s,ms, I,mI〉 .
(9.87)

The first term of this expression as

Jij =

∫

d3x|ψ100(~x)|2
d

dxi

d

dxj

1
√

x21 + x22 + x23
. (9.88)

If i 6= j the integral vanishes by parity. Thus Jij is proportional to δij . Because the ground

state wave function of Hydrogen is spherically symmetric, the term is

Jij = δij
1

3

∫

d3r|ψ100(~r)|2
3
∑

i=1

d2

dx2

(

1

r

)

= δij
1

3

∫

d3r|ψ100(~r)|2∇2

(

1

r

)

. (9.89)

Recalling that ∇2 1
r
= −4πδ(~r), the integral over the Dirac delta function yields

J = −4π

3
|ψ100(0)|2, (9.90)

which combines with the second term to give

∆Ehfs =
e2gN

2MNmc2
8π

3
|ψ100(0)|2

〈

~S · ~I
〉

. (9.91)

Since |ψ100|2 = 1/(πa30) = (m3c3α3)/(π~2), we have

∆Ehfs = gN
m

MN
α4mc2

4

3

〈

~S · ~I
〉

. (9.92)

This correction is on the order of m
MN

α2Ry, about 1/2000 the size of the fine structure.

In hydrogen both the proton and the electron are spin-1
2
particles, so the total angular

momentum is
~F = ~I + ~S (9.93)

and

~S · ~I =
~
2

2

(

F (F + 1)− 3

2

)

. (9.94)

F is either 0 or 1, so

~S · ~I = ~
2 ×

{

+1
4

F = 1

−3
4

F = 0
(9.95)
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This splits the ground state of hydrogen. A calculation of the numerical factor shows that

the frequency of the splitting is 1420 MHz. Transitions between the two hyperfine states

generate this famous spectral line, used by astronomers to determine the density of hydrogen

in interstellar clouds.

Before we turn to the next set of examples, let’s pause to think about something which

might seem obvious, but may not be – parameter counting. We began discussing hydrogen

with the Hamiltonian for a particle (the electron) in a Coulomb potential,

H =
p2

2me
− Ze2

r
. (9.96)

All observables (energies, expectation values of functions of p and r) depend on only two

parameters, me and the combination Ze2 – let’s say Zα where α = e2/(~c) is dimensionless.

We could determine these parameters from two experimental inputs (compare them to two

theoretical calculations) and then everything else we would calculate would be a prediction.

Perhaps we would like to be more accurate: a single electron atom is not a particle in a

Coulomb potential, it is a two-body system. We know how to account for that; we replace

the electron mass by the reduced mass m = memN/(me +mN). This gives more accuracy,

but at the cost of adding another parameter, the mass of the nucleus mN . We need an

additional experiment to fix it.

Now we want to be more accurate and we think about fine structure. New dynamics

must come in: the spin of the electron. We need to know that the electron has spin 1/2.

And there is a new parameter: the magnetic moment of the electron, or maybe better to

say, the electron’s g− factor, g = 2 so ~µ = ge/(2mc)~S. We are up to four experimental

parameters (maybe five, counting the electron’s spin). For the final topic in this section

there are the analogs for the nucleus: the nuclear spin (and diffferent nuclei have different

values for their spin) and the nuclear g− factor gN . As we demand more and more accuracy

in our theoretical calculations (or perhaps better to say, more and more fidelity between

theory and experiment) we are often forced to add more and more inputs from experiment.

(But not always: the electron’s g− factor is not quite equal to 2; using the quantum theory

of the electromagnetic field we can compute it more accurately – to a point – before we need

new experimental inputs.) This might not sound like a good thing. Of course, we can now

predict more quantities with higher accuracy, so it may be a good thing, after all. Either

way, that’s the way life is!
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Applied magnetic fields and spectroscopy

When a single-electron atom is placed in an external magnetic field, the electron feels an

interaction

ĤI = −~µtot · ~B (9.97)

where the total magnetic moment is a sum of an orbital and a spin part, ~µtot = ~µorb + ~µspin

and

~µorb = − e

2mc
~L ~µspin = − e

mc
~S. (9.98)

Thus

ĤI = − e

2mc

(

~L+ 2~S
)

· ~B. (9.99)

Recall that the atomic Hamiltonian, neglecting relativistic energy, but keeping the spin-

orbital interaction, is

Ĥ =
p2

2m
− Ze2

r
+

1

2m2c2
Ze2

r2
~L · ~S (9.100)

We should, in principle, treat the magnetic term and the spin-orbital term on an equal foot-

ing. This is difficult, because the preferred direction of the magnetic field breaks rotational

invariance. The two easy limits to analyze are the cases ĤI << Ĥs−o (the Zeeman effect) or

ĤI >> Ĥs−o (the Paschen-Back effect).

For the Zeeman effect the optimum basis is states that are diagonal in j, mj , l, and s.

Let ~B = | ~B|ẑ. Then the perturbing Hamiltonian is

Ĥ1 =
eB

2mc
(Lz + Sz + Sz) =

eB

2mc
(Jz + Sz) (9.101)

The first order energy shift is

∆E =
eB

2mc
〈j,mj , l, s|Jz + Sz|j,mj, l, s〉 . (9.102)

Matrix elements of the operator (Jz+Sz) are readily evaluated using the projection theorem

〈j,mj , l, s|Sz|j,mj , l, s〉 =
〈j,mj , l, s| ~J · ( ~J + ~S)|j,mj , l, s〉

~2j(j + 1)
〈j,mj , l, s|Jz|j,mj , l, s〉 (9.103)

The identity

( ~J − ~S)2 = J2 + S2 − 2 ~J · ~S = L2 (9.104)

yields

~J · ( ~J + ~S) = J2 +
1

2
(J2 − L2 + S2) (9.105)
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Figure 9.1: Zeeman splitting in the n = 2 levels of hydrogen.

and the energy shift is

∆E =
eB~

2mc

(

1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)

)

mj (9.106)

The factor in the brackets is known as the Lande g-factor gj, and the energy shift is given

compactly as

∆E =
eB~

2mc
gjmg. (9.107)

For a single electron atom, the total angular momentum will be either j = l + 1
2
or

j = l − 1
2
For these special cases the Lande g-factor is

l +
1

2
→ gj = 1 +

(

l + 1
2

) (

l + 3
2

)

− l(l + 1) + 3
4

2
(

l + 1
2

) (

l + 3
2

) = 1 +
1

2l + 1
(9.108)

l − 1

2
→ gj = 1 +

(

l − 1
2

) (

l + 1
2

)

− l(l + 1) + 3
4

2
(

l − 1
2

) (

l + 1
2

) = 1− 1

2l + 1
(9.109)

As an example, consider the n = 2 levels of Hydrogen. Fig. 9.1 shows the splitting in

units of eB~/(2mc). The magnetic field breaks degeneracy between 2P1/2 and 2S1/2 levels.

The other limit is one of strong magnetic field. In this case we can either neglect the

spin-orbit coupling term, or treat it as a perturbation to the Hamiltonian after diagonalizing

the magnetic moment term. Again we assume the magnetic field is in the z-direction. The

interaction Hamiltonian is

ĤI =
e~B

2mc
(Lz + 2Sz) (9.110)
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Figure 9.2: Transition from weak to strong magnetic field in the n = 2 levels of hydrogen.

Now, l and s are separately good quantum numbers, so we take states |l, ml, s,ms〉. The

energy shift is just

∆E = 〈l, ml, s,ms|ĤI |l, ml, s,ms〉 =
e~B

2mc
(ml + 2ms). (9.111)

Consider again the n = 2 state of Hydrogen. Fig. 9.2 shows the evolution of the splitting

from weak to strong magnetic field. A new degeneracy is introduced by large magnetic field.

Applied electric fields and spectroscopy

An external electric field also split energy levels. This splitting is called the Stark effect.

The interaction Hamiltonian is

ĤI = e~r · ~E = e| ~E|z (9.112)

As usual, we have picked the electric field to be in the z direction. Consider first the ground

state. In first order perturbation theory, the energy shift vanishes due to parity: the operator

has odd parity; the squared wave function is even. Specifically,

∆E100 =

∫

d3xψ∗
100eEzψ100 = 0 (9.113)

Physically, this arises because the atom, a parity eigenstate, cannot have a permanent dipole

moment.

However, the external electric field could induce a dipole moment. Recall that the polar-

ization is
~P = χ~E (9.114)
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where χ is the electric susceptibility. The change in energy is

∆E =
1

2
~P · ~E =

1

2
χE2 (9.115)

This energy shift should arise as a second-order perturbative result. It is

E
(2)
100 = e2E2

∑

nlm6=100

| 〈n, l,m|z|100〉 |2
E100 − Enlm

. (9.116)

The matrix element is

〈n, l,m|z|100〉 =
∫

r2d3rdΩφnlmr cos(θ)φ100. (9.117)

Its angular part is
∫

dΩY ∗
lm cos(θ)Y00. (9.118)

Because 1√
3
Y10 = cos(θ)Y00, the angular integral is

∫

dΩY ∗
lm cos(θ)Y00 =

1√
3
δl,1δm,0 (9.119)

Thus, the matrix element from the ground state is non vanishing only to the m = 0 state.

Physically this happens because the perturbation conserves Lz.

The evaluation of the sum of terms involving | 〈n00|z|100〉 |2 is nontrivial. Parameterizing

the result as| 〈n00|z|100〉 |2 = a20f(n), where f(n) is some dimensionless function of n, the

series becomes

∆E
(2)
100 = −e2E2a20

∞
∑

n=2

f(n)
1
2
α2mc2

(

1− 1
n2

) = −2a30E
2

∞
∑

n=2

f(n)n2

n2 − 1
(9.120)

The induced dipole moment is related to the energy shift by ∆E = −~p · ~E, so

pz = −4Ea30
∑

n

f(n)n2

n2 − 1
. (9.121)

The electric susceptibility (per atom) is then

χ =
∂~p

∂ ~E
= a30

∑

n

f(n)n2

n2 − 1
. (9.122)

It happens that the dimensionless series in Eq. 9.122 sums to a value of 1.125. The

contribution of particular terms is shown in Table 9.
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n
∑

n
fn

1− 1
n2

2 0.74

3 0.10
...

...

1.125

While the precise value is not easy to obtain, it is possible to find upper and lower bounds

on the sum using simple arguments.

The n = 2 term by itself gives a lower bound on the sum. For an upper bound, consider

the inequality
∞
∑

n=2

| 〈100|ĤI|nlm〉 |2
E1 − En

≤ 1

E1 −E2

∑

n

| 〈100|ĤI|nlm〉 |2. (9.123)

Completeness collapses the sum to

1

E1 −E2

∑

nlm

〈100|ĤI |nlm〉 〈nlm|ĤI |100〉 =
1

E1 − E2
〈100|Ĥ2

I |100〉 . (9.124)

Because of rotational invariance,

〈100|z2|100〉 = 〈100|x2|100〉 = 〈100|y2|100〉 = 1

3
〈100|r2|100〉 = a20. (9.125)

Our inequality is

∆E >
e2 ~E2

E100 − E210

∑

nlm

| 〈100|z|nlm〉 |2

=
e2 ~E2

E100 − E210

〈100|z2|100〉

= −2 ~E2a30
1

1− 1
4

. (9.126)

(9.127)

In summary, we have found

0.74 <
∑

n

fn
1− 1

n2

< 1.333. (9.128)

So much for the ground state. Now consider the Stark effect in the n = 2 sector.

Neglecting spin, this level is fourfold degenerate (one S-wave and 3 P-wave states). The
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Figure 9.3: Stark splitting in the n = 2levels of hydrogen.

Hamiltonian for the interaction is

H =

|211〉 |21− 1〉 |200〉 |210〉










0 0 0 0

0 0 0 0

0 0 0 〈210|z|200〉
0 0 〈200|z|210〉 0











|211〉
|21− 1〉
|200〉
|210〉

(9.129)

We have a problem in degenerate state perturbation theory, whose resolution involves diag-

onalizing the degenerate subspace. This is straightforward. The eigenkets and eigenenergies

are

|ψ±〉 =
1√
2
(|200〉 ± |210〉) (9.130)

E± = ∓3a0. (9.131)

Because the matrix element 〈2lm|z|2l′m′〉 is only non-zero for m′ = m and l′ = 1, l = 0 or

l′ = 0, l = 1, the other two eigenstates remain degenerate, unaffected by the perturbation.

The pattern of splitting is illustrated in Fig. 9.3. The spin-orbit term would lift the remaining

degeneracy.

Helium

Keeping only Coulomb terms, the Hamiltonian for the two electrons of Helium is

H =
p21
2m

− Ze2

r1
+

p22
2m

− Ze2

r2
+

e2

|~r2 − ~r1|
= H1 +H2 + V. (9.132)

Neglecting spin, statistics, and the inter-electron repulsion, we take as the unperturbed

Hamiltonian H0 = H1 + H2 and use its eigenfunctions as our zeroth-order states. The
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Figure 9.4: Spectrum of helium.

potential term is treated perturbatively. The unperturbed wave function is a product of

hydrogenic wave functions

ψ(r1, r2) = un1l1m1(r1)un2l2m2(r2) (9.133)

and the zeroth-order energies are just

E = En1 + En2 =
−1

2
mc2(Zα)2

(

1

n2
1

+
1

n2
2

)

. (9.134)

This gives a ground state energy for He of approximately −108.8 eV. Note that ionization

energy (the cost to completely remove one electron while leaving the other in the n = 1 state)

is exactly half this, −54.4 eV. Taking this value as the zero point energy of the system, we

plot the excited states spectrum in Fig. 9.4. Notice that if both electrons are raised above

the n = 1 state, the atom can “auto-ionize” – the lowest energy state is in the ionization

continuum. Therefore, these states are intrinsically unstable. To describe an ordinary atom,

we must leave at least one electron in its ground state.

In Chapter 8, we described the interplay of spin and statistics on the spectrum of helium.

Recall that electrons are spin-1
2
fermions. The total spin is therefore S = 1 or S = 0.

For ortho-Helium, the electrons have S = 1. These spin states are spin symmetric, so

the spatial wave function must be be totally anti-symmetric. This forbids double occupancy

in the ground state. Para-Helium states have S = 0. This state is antisymmetric, so the

spatial wave function must be symmetric. The ground state of Helium must be para-He.
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We now consider the effect of Coulomb repulsion of the electrons, treated as a perturba-

tion, on the energy levels. Take the ground state, first. The unperturbed ground state wave

function is

ψ(~r1, ~r2) = U100(r1)U100(r2)
|↑〉 |↓〉 − |↓〉 |↑〉√

2
(9.135)

and

U100(r) =
2√
4π

(

Z

a0

)3/2

e
−Zr

a0 . (9.136)

The first order energy shift is

∆E = e2
∫

d3r1d
3r2

|U100(r1)|2|U100(r2)|2
|~r1 − ~r2|

=

(

Z

a0

)6
e2

π2

∫

r21dr1dΩ1r
2
2dr2dΩ2

exp [−2Z/a0(r1 + r2)]

|~r1 − ~r2|
. (9.137)

To evaluate this expression, expand 1/|~r1 − ~r2| in Legendre polynomials. Pick the z− axis

along either r1 or r2. we have

∆E =

(

Z

a0

)6
e2

π2

∞
∑

l=0

∫

r21dr1dΩ1r
2
2dr2dΩ2 exp [−2Z/a0(r1 + r2)]

rl<
rl+1
>

Pl(cos θ) (9.138)

Only the l = 0 term will survive the sum. The integral is straightforward and yields

∆E =
5Ze2

8a0
=

5

4
Z × Ry. (9.139)

(We could have anticipated the overall scale of e2/a0 on dimensional grounds.) Then the

first order shift in ground state energy is

Eground = E0 +∆E = −108.8 eV + 34 eV = −74.8 eV (9.140)

(with respect to the energy with both electrons removed, or −74.8 + 54.4 = −20.4 eV com-

pared to the 1SHe+ ion. This is not quite the experimental result of Eground = −78.975 eV.

We will revisit this result in Chapter 10 and improve on it.

Now we turn to the excited states. The para- wave function is

U(1, 2) =
Ua(1)Ub(2) + Ub(1)Ua(2)√

2
(9.141)

while the ortho-wave function is

U(1, 2) =
Ua(1)Ub(2)− Ub(1)Ua(2)√

2
. (9.142)
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The labels a and b are the set of quantum numbers associated with those states.

The first order energy shift is

∆E
(±)
1 =

e2

2

∫

d3r1d
3r2

1

|~r1 − ~r2|
(Ua(1)Ub(2)± Ub(1)Ua(2))

∗(Ua(1)Ub(2)± Ub(1)Ua(2))

= e2
∫

d3r1d
3r2

1

|~r1 − ~r2|
[

|Ua(1)|2|Ub(2)|2 ± (U∗
a (1)Ub(1)) (Ua(2)U

∗
b (2))

]

= J ±K (9.143)

where the (+) is for the ortho states, and the (−) is for the para states. J is called the

“direct term” and has a classical interpretation as the Coulomb interaction of two charge

densities ρa(r) ≡ −e|Ua(r)|2.

J =

∫

d3r1

∫

d3r2
ρa(r1)ρb(r2)

|~r1 − ~r2|
. (9.144)

K is called the “exchange energy.” It has no classical analog.

Although spin had nothing to do with the energy difference between para and ortho

states, we recall that we can write the energy shift as an effective spin-spin interaction

∆Enl = Jnl −
1

2
(1 + σ1 · σ2)Knl. (9.145)

σ1 · σ2 = 1 or -3 for S = 1 or 0, respectively. Knl will be a number of the order of electron

volts. It is a much larger number than an intrinsic dipole-dipole interaction, which is the size

of a fine structure splitting. The large spin-dependent energies seen in magnetic materials

arise due to the effects of statistics.

J is certainly positive. but what about K? If l = n − 1 then the Unlm’s have no nodes,

implying that K is also positive. Physically, we would also expect K > 0 because the S=1

states would tend to be spread out more than the S = 0 ones. This physical argument forms

the basis for Hund’s rule for the spectroscopy of multi-electron atoms: “Higher spin states

are shifted lower in energy,” Like all good rules, it has exceptions.



Chapter 10

Variational methods

227
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Consider replacing the true ground state wave function |ψ0〉 associated with a Hamilto-

nian H by any other trial wave function |ψ〉, which obeys the same boundary conditions as

|ψ0〉. It is a remarkable fact that the expectation value of the Hamiltonian in the trial state

|ψ〉 is an upper bound on the exact ground state energy of H :

Etrial =
〈ψ|H|ψ〉
〈ψ|ψ〉 ≥ Etrue (10.1)

Furthermore, Etrial = Etrue if and only if the trial wave function happens to be equal to the

true ground state wave function. To prove this result, expand the normalized trial state in

a superposition of energy eigenstates

|ψ〉 =
∑

cn |ψn〉 (10.2)

and compute

〈ψ|H|ψ〉 =
∑

m,n

c∗mcn 〈ψm|H|ψn〉 . (10.3)

Orthogonality collapses the sum to

〈ψ|H|ψ〉 =
∑

n

|cn|2En (10.4)

and since all the En’s are greater than E0,

〈ψ|H|ψ〉 ≥ E0

∑

n

|cn|2 (10.5)

or

〈ψ|H|ψ〉 ≥ E0 (10.6)

since the sum is unity.

This remarkable fact has practical consequences: Variational methods form a vast and

important part of the literature of approximate solutions of the Schrödinger equation. In

many cases the bounds are coarse and only of qualitative use. However, one can use the

variational principle to construct better and better approximations to the ground state wave

function. The energy tells whether one wave function is “better” than another by giving the

winner’s energy a lower value. Sometimes these calculations can be made extraordinarily

precise.

There are various ways to exploit the variational principle: In the most commonly seen

case, the the variational wave function is characterized by a set of parameters, αi. The

energy is extremized by the constraint that

∂E(α)

∂αi
= 0 (10.7)
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The solution of these equations give the “best” (minimizing) αi’s (and hence the best trial

wave function accessible to the parameterization). Generally, the normalization condition of

the state is α dependent. We can work directly with Eq. 10.7, or we can define

E ≡ 〈ψ(α)|Ĥ|ψ(α)〉
〈ψ(α)|ψ(α)〉 . (10.8)

The minimization condition becomes

∂E

∂αi
=

1

〈ψ|ψ〉
∂

∂αi
〈ψ|Ĥ|ψ〉 − 〈ψ|Ĥ|ψ〉

〈ψ|ψ〉2
∂

∂αi
〈ψ|ψ〉 = 0 (10.9)

or
∂

∂αi
〈ψ|Ĥ|ψ〉 −E

∂

∂αi
〈ψ|ψ〉 = 0. (10.10)

The reader might recognize this as a constrained minimization problem, where E plays the

role of a Lagrange multiplier.

Variational calculations can be used for excited states, but in that case the trial wave

function must be orthogonal to the exact ground state, and to all states with lower energy

than the one desired, for all values of the variational parameters. If that is the case, then

one can replace the E0 of Eq. 10.5 by

〈ψ|Ĥ|ψ〉 =
∑

j

Ej |cj|2 ≥ E1

∑

j

|cj|2 (10.11)

and one has a variational bound. Otherwise, the bound on the energy is only that it is greater

than the ground state. If the variational wave function can do so, it will prefer to increase

the amplitudes of lower energy states: the variational wave function always finds the lowest

energy that it can. Sometimes, it is easy to orthogonalize the trial wave function against

other states. For example, in a central potential problem, an l = 1 trial wave function will

bound the energy of the lowest l = 1 state, regardless of whether there is a lower l = 0 state.

Sometimes, it is hard to do this. An example would be to find a bound on the second-lowest

even-parity state.

Typically, variational results for energies are much better than variational results for

matrix elements. To see this, suppose that the trial wave function consists of the ground

state plus a small admixture of some orthogonal excited state, |ψ〉 = |ψ0〉+ ǫ |ψ1〉 Then

〈ψ(α)|Ĥ|ψ(α)〉
〈ψ(α)|ψ(α)〉 =

E0 + ǫ2E1

1 + ǫ2
= E0 +O(ǫ2) (10.12)
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If the ground state wave function is known to ten per cent then the true ground state energy

can be computed to within one per cent. Expectation values for operators are less forgiving:

〈ψ|Ô|ψ〉
〈ψ|ψ〉 = 〈ψ0|Ô|ψ0〉+ ǫ

(

〈ψ0|Ô|ψ1〉+ 〈ψ1|Ô|ψ0〉
)

+ · · · (10.13)

The expectation value of the operator can be determined to within ten per cent, and (unlike

the for energy) the sign of the extra piece is unknown. Exceptions to this rule (usually only

of academic interest) occur if the operator is anti-Hermitian, or if the operator is diagonal

in the trial (and true) bases.

A simple harmonic oscillator example

We assume the standard Hamiltonian Ĥ = p̂2

2m
+ 1

2
mωx̂2, and attempt to variationally bound

the ground state energy using the trial wave function |ψ〉 = Ne−βx2/2. The expectation value

of the potential term of the Hamiltonian is

〈x2〉 =
∫

dxx2e−βx2

∫

dxe−βx2 . (10.14)

Differentiating under the integral, we write

∫

dxx2e−βx2

= − ∂

∂β

∫

dxe−βx2

(10.15)

so

〈x2〉 = −
√

β
∂

∂β

1√
β
=

1

2β
. (10.16)

Similarly,
∂2ψ

∂x2
=
(

−β + β2x2
)

e−βx2

(10.17)

and the expectation value of the kinetic energy is

〈KE〉 = − ~
2

2m

(

−β + β2 〈x2〉
)

=
~
2β

4m
. (10.18)

The total energy is E(β) = ~2β
4m

+ mω2

4β
. The β−dependence of the energy is shown in

Fig. 10.1. Obviously, there is a minimizing value of β = mω/~, for which E(β) = ~ω/2. Of

course, this happens to be the exact result, because one of the members of the family of trial

solutions happened to be the exact ground state.
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Figure 10.1: Dependence of the oscillator energy on the variational parameter.

Helium ground state energy

Recall that the calculation of the ground state energy of helium, which treated the inter-

electron repulsion perturbatively, did not agree very well with experiment. A variational

calculation should be able to improve this result. The Hamiltonian for helium was

Ĥ =
p̂21
2m

− Ze2

r1
+

p̂22
2m

− Ze2

r2
+

e2

|~r1 − ~r2|
. (10.19)

Let us assume that the trial wave function is separable, ψ(r1, r2) = ψ(r1)ψ(r2) with

ψ(r) =
1√
4π

(

Z∗

a0

)3/2

exp (−Z∗r/a0) . (10.20)

This is a product of hydrogen-like wave functions, and the variational parameter is Z∗. As

a trick to do this calculation, notice that if

(

p̂2

2m
− Z∗e2

r

)

ψ(r) = ǫψ(r) (10.21)

then

ǫ =
1

2
Z∗α2mec

2. (10.22)

The expectation value of the energy in the trial state is

E(Z∗) =

∫

d3r1d
3r2ψ

∗(r1)ψ
∗(r2)

(

p̂21
2m

− Ze2

r1
+

p̂22
2m

− Ze2

r2
+

e2

|~r1 − ~r2|

)

ψ(r1)ψ(r2)

(10.23)



Quantum Mechanics 232

Rewriting
p2

2m
− Ze2

r
=

p2

2m
− Z∗e2

r
− (Z − Z∗)e2

r
, (10.24)

this energy is

E(Z∗) = 2ǫ− 2(Z − Z∗)e2
〈

1

r

〉

Z∗

+ e2
〈

1

|~r1 − ~r2|

〉

Z∗

. (10.25)

The virial theorem tells us that

e2
〈

1

r

〉

Z∗

=
Z∗e2

a0
= Z∗α2mec

2. (10.26)

We previously found (see Eq. 9.139) that

e2
〈

1

|~r1 − ~r2|

〉

Z∗

=
5

4
Z∗1

2
α2mec

2 (10.27)

Thus the total energy is

E(Z∗) = −1

2
α2mec

2

(

−2Z∗2 + 4ZZ∗ − 5

4
Z∗
)

. (10.28)

Minimizing with respect to Z∗ gives Z∗ = Z − 5/16 and

E = −1

2
α2mec

2

(

2(Z − 5

16
)

)2

(10.29)

There is an obvious physical interpretation of this result: Z∗ can be thought of as an effective

nuclear charge see by each electron, which is suppressed because of screening by the other

electron. The variational ground state energy of Helium is E0 = −77.38 eV, as compared to

the true ground state energy of -78.975 eV and the result from perturbation theory of -74.8

eV. A better trial wave function could be used to lower the variational bound still more:

Bethe and Jackiw offer some examples.

Ritz variational method

The Ritz variational method is often used in research, but the author has not found it to

be well documented in elementary texts. The idea is to take a restricted (or finite) basis of

states, which we assume to be orthonormal, and write our trial state as a superposition of

them

|ψ〉 =
N
∑

i=1

αj |j〉 . (10.30)
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We diagonalize the Hamiltonian in the basis. This gives us a set of N energies {E} =

E0, E1, . . . , EN−1. The lowest energy is a variational upper bound on the true ground state

energy.

The proof of this statement uses Eq. 10.9. The αj’s are variational parameters (note that

we regard α∗
j and αj as different). We seek an extremum while regarding E as the Lagrange

multiplier which preserves normalization

∂

∂α∗
i

{

〈ψ|Ĥ|ψ〉 −E 〈ψ|ψ〉
}

= 0 (10.31)

Noting that

〈ψ|ψ〉 =
N
∑

m=1

α∗
mαm (10.32)

and writing

〈ψ|Ĥ|ψ〉 =
N
∑

m,n

α∗
mαnhmn (10.33)

with hmn = 〈m|Ĥ|n〉, Eq. 10.31 becomes

∂

∂α∗
i

{

∑

mn

α∗
mhmnαn −

∑

m

α∗
mαmE

}

= 0 (10.34)

whose solution involves the set of N linear equations

hinαn − δinEαn = 0. (10.35)

There is only a solution when

det (hnm − δnmE) = 0. (10.36)

This is, of course, the eigenvalue equation in the restricted basis. Its lowest energy solution

is thus our variational upper bound.

As a particular case of this equation, recall the formula for the correction to the ground

state energy from second-order perturbation theory.

En = E0
n +

∑

l 6=n

| 〈n|Ĥ1|l〉 |2
E0

n − El
. (10.37)

Note that the contribution of every term to the lowest state’s energy is negative. Why is

this? Perturbation theory represents an approximate diagonalization of the Hamiltonian
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matrix. Suppose we restrict the sum to a finite basis. The approximate ground state wave

function will be given by the familiar sum

|ψ0〉 = |ψ0
0〉+

N
∑

i 6=0

ci |ψ0
i 〉 . (10.38)

This sum is equivalent to a variational choice for the wave function. As we add more states

(increasing N) the wave function must improve, and the variational bound on the energy

must become lower and lower.

A research example

I spend a lot of my time (and a computer’s time) finding eigenmodes of complicated Hamil-

tonians. In my problems, space is discretized on a lattice, the wave functions are column

vectors whose length is the number of discretization points, and the Hamiltonians are very

large sparse matrices acting on the vectors. Here is an algorithm (see T. Kalkreuter and H.

Simma, Comp. Phys. Comm. 93, 33 (1996)) which I find useful:

Suppose that we are given a Hamiltonian and we want to find the N lowest energies

wave functions corresponding to those energies. We start off with an initial set of trial wave

functions {ψJ
0 }. We then perform the following sequence of operations to refine them:

1) Diagonalize the Hamiltonian in the subspace of the set of wave functions {ψJ
0 }.

2) Take the lowest energy wave function ( call it |φ0〉) from the set. Construct an orthog-

onal wave function by the application of H followed by projection

|φ1〉 = Ĥ |φ0〉 − |φ0〉 〈φ0|Ĥ|φ0〉 (10.39)

and normalize it. Then diagonalize the Hamiltonian in the 2×2 subspace of the states

|φ0〉 and |φ1〉. Find the lowest energy state (call it |φ′
0〉).

3) Replace |φ0〉 by |φ′
0〉 and repeat Step 2 some number of times, until the change in

energy of the state is small.

4) After we are confident that our lowest energy state is reasonably converged, take the

first excited state from step 1 and orthogonalize it (using Gram-Schmidt or some other

finite vector orthogonalization process) with respect to the lowest energy state. Then
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go to step 2 and repeat the entire process for the excited state. Othogonalize with

respect to the ground state, as well. When the first state seems stable, repeat for the

third state, and so on. During the construction of states for the Nth level, all trial

states must be orthogonalized against all the lower energy states.

5) When all N states have been “improved,” return to step 1 with them, and repeat the

whole procedure.

Typically, the quality of the variational state degrades as its energy rises, so if N states are

needed, it might be a good idea to work in a basis which is larger than N , and throw away

the extra states.

In contrast to low eigenmodes, finding the eigenmode of a matrix H with the highest

eigenvalue, when the spectrum ofH is bounded from above, is simple. We start by taking any

trial vector |ψ〉. It has the usual expansion in energy eigenfunctions of H , |ψ〉 =
∑

j αj |j〉.
Now consider the state constructed by repeated application of H . It is

|ψN〉 = ĤN |ψ〉 =
∑

j

αjE
N
j |j〉 (10.40)

The state with the largest coefficient in the sum is the one with the largest eigenvalue, so

|ψN〉 is merely this state, rescaled, plus small corrections.
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Just as we did for energy levels, approximate solutions may be constructed for the time

dependent Schrödinger equation. The story begins similarly:. We assume that the Hamilto-

nian can be written as Ĥ = Ĥ0 + V̂ , where H0 is “large” in some sense, time independent,

and can be diagonalized. We further assume that V may be regarded as a perturbation. The

time evolution will be developed in terms of the eigenfunctions of H0.

It is very useful to replace the time dependent wave function by a time evolution operator,

and to find matrix elements of that operator. It is defined through

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (11.1)

and it obeys an equation of motion

i~
∂Û (t, t0)

∂t
= ĤÛ(t, t0). (11.2)

Matrix elements of U connect initial states at some early time with final states at some later

time. What they encode is called the “transition amplitude” from the initial state to the

final state. It is

A = 〈β(t)|Û(t, t0)|α(t0)〉
= Uβα(t, t0) (11.3)

Often, the early time is chosen to be far in the past (t0 → −∞) and the late time is far in

the future (t→ ∞) – “far” in the sense of some natural time scale in the problem. In order

to specify the transition amplitude, we must be able to specify the initial and final states

|α(t0)〉 and |β(t)〉. However, we can only construct the wave function if we can diagonalize

the Hamiltonian. This is a problem, if Ĥ = Ĥ0 + V̂ and only H0 can be diagonalized. The

way to evade this problem is to define V (t) so that it vanishes at the early or late time where

we specify the wave functions. Sometimes this is easy, when V is explicitly switched on and

off at specific times, for example V (t′) ∝ θ(t′ − t0) − θ(t − t′). Sometimes the amplitude

of the perturbation is constant in time. To make sense of the calculation, in that case we

must assume that the perturbation is switched on and off adiabatically at early and late

times. One way to do this is to replace V (t) by V (t) exp(−ǫ|t|), and then to take ǫ to zero,

cautiously.

Path integral formulation of time-dependent perturbation theory

Constructing the formulas for time-dependent perturbation theory beginning with the path

integral is a bit more transparent than working directly with the equation of motion. We will
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begin with this approach. We write the Hamiltonian as Ĥ = Ĥ0 + V̂ . We assume that the

initial and final states are eigenfunctions of Ĥ0. The matrix element of the time evolution

operator is

Uβα(t) = 〈β|e−iĤt/~|α〉 . (11.4)

We slice up the exponential into a set of N infinitesimal intervals where N∆t = t.

Uβα(t) = lim
N→∞

〈β|
(

e−i(Ĥ0+V̂ )∆t/~
)N

|α〉 (11.5)

Inserting complete states of Ĥ0 between the exponential factors gives

Uβα(t) = lim
N→∞

∑

i1

∑

i2

· · ·
∑

iN−1

〈β|e−i(Ĥ0+V̂ )∆t/~|i1〉 〈i1|e−i(Ĥ0+V̂ )∆t/~|i2〉 〈i2| · · · |α〉 . (11.6)

So far, we have not used the fact that the size of V is small compared to H0. Now we do so.

We expand each exponential in a power series in V

e−i(Ĥ0+V̂ )∆t/~ = e−iĤ0∆t/~

[

1− i∆t

~
V +O(∆t2)

]

. (11.7)

The transition amplitude becomes

Uβα(t) = lim
N→∞

∑

i1

∑

i2

· · ·
∑

iN−1

〈β|e−iĤ0∆t/~

(

1− i∆t

~
V (tn)

)

|i1〉 ×

〈i1|e−iĤ0∆t/~

(

1− i∆t

~
V (tn)

)

|i2〉 〈i2| · · · |α〉 . (11.8)

Let us take this long formula and regroup it into a sum of terms order by order in powers of

V . At zeroth order we have

U
(0)
βα (t) = lim

N→∞

∑

i1

∑

i2

· · ·
∑

iN−1

〈β|e−iĤ0∆t/~(1)|i1〉 〈i1|e−iĤ0∆t/~(1)|i2〉 〈i2| · · · |α〉 (11.9)

which collapses to

U
(0)
βα (t) = 〈β|e−iĤ0t/~|α〉 = δβαe

−iEαt/~ (11.10)

because all the states are eigenstates of H0.

In first order we need one V out of the product of terms in the big sum. In each time

slice there is a 1 − i∆t
~
V . The result will be a sum of terms, one for each time slice. To see

what we get, let us imagine that there are three time slices. Then the evolution operator is

Uβα(t) =
∑

i

∑

j

〈β|e−i(Ĥ0+V )∆t/~|i〉 〈i|e−i(Ĥ0+V )∆t/~|j〉 〈j|e−i(Ĥ0+V )∆t/~|α〉 . (11.11)
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Figure 11.1: Representation of Eq. 11.12.

The order V 1 contribution is

Uβα(t) = 〈β|e−iĤ0∆t/~

(

i∆t

~
V

)

|i〉 〈i|e−iĤ0∆t/~|j〉 〈j|e−iĤ0∆t/~|α〉+

〈β|e−iĤ0∆t/~|i〉 〈i|e−iĤ0∆t/~

(

i∆t

~
V

)

|j〉 〈j|e−iĤ0∆t/~|α〉+

〈β|e−iĤ0∆t/~|i〉 〈i|e−iĤ0∆t/~|j〉 〈j|e−iĤ0∆t/~

(

i∆t

~
V

)

|α〉 . (11.12)

This long formula is represented pictorially by Fig. 11.1. The matrix elements in which there

is no interaction (i.e. no V terms) give

〈i|e−iĤ0∆t/~|j〉 = δije
−iEi∆t/~. (11.13)

Since the initial and final states, as well as the intermediate states are eigenstates of H0,

Fig. 11.1 has the following interpretation: In the earliest time the state begins in eigenstate

|α〉 and then propagates through time into state |i〉, which must be identical to it. The

propagation through time without any interaction does not change the physical content of

the wave function, it just introduces an overall multiplication by a phase. The state then

propagates for another time ∆t into state |j〉 which again must be equal to state |i〉. In

the third time slice, where the transition is from |j〉 to |β〉) there is something new – the

perturbing potential presents itself to transform the state. One can interpret the other lines

in the picture similarly.

Summing over the three first-order contributions gives

U
(1)
βα (tf , ti) = −i∆t

~

∑

all slices tj

〈β|e−iEβ(tf−tj)/~V (tj)e
−iEα(tj−ti)/~|α〉 . (11.14)
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Figure 11.2: Space-time representation of the first order transition amplitude.

Converting the sum over time slices into an integral yields the first order expression for the

transition amplitude

U
(1)
βα (tf , ti) = − i

~

∫ tf

ti

dte−iEβ(tf−t)/~ 〈β|V (t)|α〉 e−iEα(t−ti)/~. (11.15)

We can represent this process by a cartoon, Fig. 11.2. The lines represent the propa-

gation of the system in its initial and final state. The vertex represents the action of the

perturbation, which transforms the system from its initial state to its final state. The inter-

action only acts at one point in time, but which time this is will be unconstrained. We must

integrate over all times where it acts to get the full amplitude for the process.

Note that in the formula for the first order amplitude, there is no trace of any intermediate

states. All we have are the initial and final state, which we specified. The system evolves

from the initial time until the perturbation acts, simply by rotating its phase (the e−iEα(t−ti)

factor) and after the perturbation has acted and the system has gone into the final state, its

phase continues to rotate, but now controlled b the energy Eβ.

Next, let us go to second order. Again we illustrate the expansion using only three

time slices. The representation of the amplitude is shown in Fig. 11.3. We have not shown

terms which are order V 2 at a single time slice. In the N → ∞ limit they represent a

vanishingly small component compared to the terms with a single V on each time slice.

Compare Fig. 11.4. The second order contribution to the transition amplitude is
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Figure 11.3: Pictorial representation of the second order transition amplitude, with three

time slices.
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Figure 11.4: The second order amplitude with many time slices.
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Figure 11.5: Space-time picture of the second order transition amplitude.

U
(2)
βα =

(

−i∆t
~

)2
∑

i

e−iEβn1∆t/~ 〈β|V (tn1)|i〉 e−iEi(n2−n1)∆t/~ 〈i|V (tn2)|α〉 e−iEα(N−n2)∆t/~.

(11.16)

Again promoting time to a continuous variable, we have

Uβα =

(

− i

~

)2
∑

i

∫ tf

ti

dt2

∫ t2

ti

dt1e
−iEβ(tf−ti)/~ 〈β|V (t2)|i〉 e−iEi(t2−t1)/~ 〈i|V (t1)|α〉 e−iEα(t1−ti)/~.

(11.17)

We can represent this as another cartoon in Fig. 11.5. Now the perturbation acts twice,at a

pair of time points. Between these points, the particle propagates as an eigenstate of H0.

Note the sum over intermediate states. In principle, the initial application of V could

take the initial state into any intermediate state, as long as the final application of V can

connect it to the final state. To groom the formula, let us define a potential (the “interaction

representation” potential)

V̂ (t) = eiĤ0t/~V (t)e−iĤ0t/~ (11.18)

and the “interaction representation” evolution operator

Û(tf , ti) = e−iĤ0t/~U(tf , ti)e
iĤ0t/~. (11.19)

With these definitions, the entire series can be written more compactly as as

Û(tf , ti) = 1− i

~

∫ tf

ti

dt1V̂ (t) +

(

− i

~

)2 ∫ tf

ti

dt2

∫ t2

ti

dt1V̂ (t2)V̂ (t1)

+

(

− i

~

)3 ∫ tf

ti

dt3

∫ t3

ti

dt2

∫ t2

ti

V̂ (t3)V̂ (t2)V̂ (t1) + · · · (11.20)
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Figure 11.6: Electron-electron scattering: two intermediate states.

This is called the “Dyson series” for the evolution operator. Note the nested time integrals,

preserving the ordering in the multiple time integrals of the temporal points where the

potential acts.

As an example of the sum over intermediate states, imagine (rather poetically) computing

the transition amplitude for electron - electron scattering. The interaction term involves the

emission and absorption if a photon from the electron. The initial state |α〉 is a state in

which the two electrons have momenta ~p1 and ~p2. The final state |β〉 is also a two-electron

state where the particles carry momenta ~k1 and ~k2. All we know about this process is that

two electrons came in, scattered off one another, and two electrons came out. We do not

know which electron emitted a photon, and which one absorbed it. We must sum over both

possibilities. The situation is shown in Fig. 11.6. In the left panel, the intermediate state

consists of a electron with momentum p2, another electron with momentum k1, and a photon,

while in the right panel the intermediate state’s electrons carry momentum p1 and k2. These

intermediate states are different.

Hamiltonian formulation of time-dependent perturbation theory

We repeat the derivation of the Dyson series, by a direct attack on the equation of motion

of the evolution operator. Again writing H = H0 + V , it is

i~
∂

∂t
U(t, t0) =

(

Ĥ0 + V
)

U(t, t0). (11.21)

Our calculation simplifies if we work with the interaction representation perturbation and

evolution operator, Eqs. 11.18 and 11.19. With these replacements, Eq. 11.21 becomes

i~
∂

∂t

[

e−iĤ0t/~ÛeiĤ0t/~
]

=
(

Ĥ0 + V
)

e−iĤ0t/~ÛeiĤ0t0/~. (11.22)
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The left hand side is

i~
∂

∂t

[

e−iĤ0t/~ÛeiĤ0t0/~
]

=

[

Ĥ0e
−iĤ0t/~Û + e−iĤ0t/~i~

∂Û

∂t

]

eiĤ0t0/~, (11.23)

so
[

Ĥ0e
−iĤ0t/~Û + e−iĤ0t/~i~

∂Û

∂t

]

eiĤ0t0/~ = (H0 + V )e−iĤ0t/~ÛeiĤ0t0/~ (11.24)

or

i~
∂Û

∂t
=
(

eiĤ0t/~V e−iĤ0t/~
)

Û = V̂ Û . (11.25)

This is just a first order differential equation. Integrating it, we find

i~
[

Û(t, t0)− Û(t0, t0)
]

=

∫ t

t0

dt′V̂ (t′)Û(t′, t0). (11.26)

Because Û(t0, t0) = 1, the evolution operator satisfies the integral equation

Û(t, t0) = 1− i

~

∫ t

t0

dt′V̂ (t′)Û(t′, t0). (11.27)

Like all Volterra integral equations, it can be solved by iteration:

Û(t, t0) = 1− i

~

∫ t

t0

dt1V̂ (t1) +

(

− i

~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2V̂ (t1)V̂ (t2) + . . . . (11.28)

The operators V (t) may not commute at different times, and so it is important to pre-

serve their time ordering. This is Eq. 11.20, derived more succinctly, although perhaps less

transparently.

The two-state system as an example

Let us check our perturbative formalism against an exactly - solvable example, the two-state

system

Ĥ = ~

(

λ ǫ

ǫ −λ

)

(11.29)

Suppose that at time t = 0 the system is in state

ψ =

(

1

0

)

(11.30)
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and that our object is the time-dependent transition amplitude into the state

ψ =

(

0

1

)

. (11.31)

at a later time. This problem can, of course, be solved exactly. Recall that we can construct

the solution as an expansion in energy eigenfunctions

ψ(t) = A+ψ+e
−iωt + A−ψ−e

iωt (11.32)

The eigenvalues of H are ±ω = ±
√
λ2 + ǫ2. The un-normalized solutions can be written as

ψ+ =

(

α

β

)

(11.33)

with

(λ− ω))α + ǫβ = 0, (11.34)

or

ψ+ = C

(

ǫ

ω − λ

)

. (11.35)

The orthogonal eigenstate is

ψ− = C

(

ω − λ

−ǫ

)

. (11.36)

Then Eq. 11.32 becomes

ψ(t) = A+

(

ǫ

ω − λ

)

e−iωt + A−

(

ω − λ

−ǫ

)

eiωt (11.37)

The C’s have been absorbed into other constants without loss of generality. The t = 0

boundary condition requires that
(

1

0

)

= A+

(

ǫ

ω − λ

)

+ A−

(

ω − λ

−ǫ

)

(11.38)

and so

A+ =
ǫ

ǫ2 + (ω − λ)2
A− =

ω − λ

ǫ2 + (ω − λ)2
. (11.39)

The amplitude into the the ”down” state at a time t is

(

0 1
)

ψ(t) = (ω − λ)A+e
−iωt − ǫA−e

iωt =
ǫ(ω − λ)

ǫ2 + (ω − λ)2
(

e−iωt − eiωt
)

. (11.40)
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This is exact. To compare it to the perturbative solution, it is necessary to expand it in a

series in ǫ. Recall that ω =
√
λ2 + ǫ2 = λ+ ǫ2/(2λ). With this result, the coefficient in front

of the harmonic time dependence becomes

ǫ(ω − λ)

ǫ2 + (ω − λ)2
→ ǫ× ǫ2

2λ

ǫ2 +
(

ǫ2

2λ

)2 =
1

2

ǫ

λ
. (11.41)

Next we compute the matrix of the evolution operator perturbatively. We regard λ≫ ǫ

and identify H0 and V accordingly. In lowest order, the transition amplitude is

U↓↑(t) =
i

~

∫ t

0

dt′eiλ(t−t′) 〈↓ |V | ↑〉 e−iλ(t′−0). (11.42)

The signs on the exponentials are due to the signs on the energies. Evaluating the matrix

element gives

U↓↑(t) = − i

~
e−λt

~ǫ

∫ t

0

dt′e−2iλt′ (11.43)

=
ǫ

2λ

[

e−iλt − eiλt
]

.

With the approximation ω = λ in the exponentials, the perturbative result agrees with the

expansion of the exact solution.

Special cases of time-dependent perturbation theory

A number of special cases of time dependence are often encountered in the literature. To

begin, V (t) could simply be some arbitrary function of time. Then the transition amplitude

just has to be computed in a case-by-case basis. The only reason to list this possibility (which

is a staple of examination questions) is to remark: in general, the transition amplitude can

connect initial and final states of different energy. This should come as no surprise: if the

Hamiltonian is time dependent, energy is not conserved.

Next, we have the so-called “Sudden Approximation.” The potential is a simple impulse

in time. This can represented as

V = V0δ(t− t0) (11.44)

Of course V0 itself might be complicated. The lowest order time evolution operator is (rather

trivially)

Uβα = − i

~
e−Eβt2/~eiEαt1/~ 〈β|V |α〉 . (11.45)
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The probability that the state is in |β〉 at a time t is then

|Uβα|2 =
| 〈β|V |α〉 |2

~2
. (11.46)

Potentials which are harmonic in time

V (t) = V0e
−iωt or V (t) = V0 cos(ωt) (11.47)

are often encountered. Since the expression for the evolution operator can almost be written

down by inspection after going through the case of a constant potential, the evaluation of

the evolution operator in this case is left as an exercise for the reader. (The answer will be

given below).

Finally, the potential may be constant in time. This is something of a misnomer, because

we are formally required to switch the potential on and off adiabatically. Neglecting this

formal requirement, the transition amplitude becomes

Uβα = − i

~
〈β|V |α〉 e−iEβt2/~eiEαt1/~

∫ t2

t1

e−i(Eα−Eβ)t/~. (11.48)

The integral is straightforward to evaluate: it is

∫ t2

t1

e−i(Eα−Eβ)t/~ =
e−i(Eα−Eβ)t2/~ − e−i(Eα−Eβ)t1/~

−i(Eα −Eβ)/~
. (11.49)

Just for simplicity, let us set t1 → 0. We also define ~ωαβ = Eα − Eβ. The transition

probability to be found in state |β〉 at time t is

|U(t)βα|2 =
1

~2
| 〈β|V |α〉 |2

{

2− 2 cos(ωαβt)

ω2
αβ

}

(11.50)

In this expression, there is no reason for a transition not to connect states of different energy;

there is a transition probability when Eα is different from Eβ. Energy is not conserved. This

is no surprise, the potential was nonzero for a finite interval t – the Hamiltonian is time

dependent.

For a harmonic perturbation, with V ∼ exp(−iωt), this becomes

|U(t)βα|2 =
1

~2
| 〈β|V |α〉 |2

{

2− 2 cos((ωαβ − ω)t)

(ωαβ − ω)2

}

. (11.51)
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Figure 11.7: Frequency dependence vs. ωαβ of the transition amplitude of Eq. 11.50.

When our spectrum is discrete, this is the end of the story. If we set ω = ωαβ, |Uβα(t)|2
diverges. Perturbation theory has broken down. This is actually no surprise; recall the discus-

sion of the exact time dependence of the two state system in Ch. 3, especially Eq. 3.50. At res-

onance, when ω = ωαβ, |Uβα(t)|2 oscillates between zero and unity. Of course, |Uβα(t)|2 = 1

is not a small number; there is no reason for perturbation theory to still be applicable in

this case. We would only expect it would be valid when the transition probability was small.

The mechanical way perturbation theory fails is that it does not include the width of the

Lorentzian which regulates the expression.

Fermi’s Golden Rule

Now we consider a situation in which we have many final states |β〉 whose energies Eβ are

all nearly equal. Our perturbing Hamiltonian V will be assumed to be a constant in time.

In this case, two things happen: first, the transition probability |Uβα(tf)|2 is proportional

to tf – the rate of the transition α → β is a constant in time. And second, transitions only

occur when Eβ is very close to Eα, and at long times only when Eβ is equal to Eα: energy

is conserved in the transition.

These results follow from the behavior of Eq. 11.50. We can think of the object in the

curly brackets as a function of ωαβ. We plot it in Fig. 11.7. At the origin where ωαβt is

small, the function approaches 1
2
t2. The envelope of the function falls away as 1/ω2

αβ. Nodes

of the function are found at integer multiples of 2π/t. They become ever closer to the origin

as t grows. The width of the function collapses to zero like 1/t. This all means that as t

grows, the function is dominated more and more by the peak around ωαβ = 0.
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We interpret this result as meaning that at long times only transitions where ωαβ = 0 are

allowed: the final and initial states have the same energy and energy is a conserved quantity.

Furthermore, consider transitions into any of the related states β. Then the total transition

probability out of state |α〉 is the integral over the curve. In the limit of tiny ωαβ , the area

under the curve, the product of its height times its width, is proportional to t, P (tf) = Wtf .

The constant of proportionality W is the rate of transitions per unit time – it is called the

“transition probability per unit time.” To flesh this out a bit more, suppose that there are

ρ(Eβ)dEβ states available in the energy interval dEβ. The total transition rate (transitions

per unit time) will be

W = lim
tf→∞

1

tf

∫

P (α→ β)ρ(Eβ)dEβ. (11.52)

This is the rate at which states of energy Eβ are populated.

A physics application of this idea is the lifetime of an excited state. The number of decays

of N parent states at time t is
dN(t)

dt
= −WN(t). (11.53)

The solution of this equation is the usual formula of radioactive decay,

N(t) = N0 exp(−Wt). (11.54)

so that 1/W , the “inverse transition probability per unit time,” is also the lifetime of the

state.

To get a practical formula, proceed in stages. Inserting the explicit time-dependence of

Eq. 11.50 into Eq. 11.52 yields

W = lim
tf→∞

∫

1

~2
| 〈β|V |α〉 |2

{

2− 2 cos(ωαβtf )

ω2
αβtf

}

ρ(Eβ)dEβ. (11.55)

As we argued, at large times the object in curly brackets becomes strongly peaked about

ωαβ = 0. We have also argued that in that limit, its integral (over ω or energy) is a constant.

To find the constant, pause to define the function I(t) as

I(t) =
1

~2t

∣

∣

∣

∣

∫ t

0

eiωαβtdt

∣

∣

∣

∣

2

=
2 (1− cos(ωαβt))

(~ωαβ)2t
(11.56)

To find the constant of proportionality, write it as

I(t) = Aδ(~ωαβ). (11.57)
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and integrate the expression over an energy interval. If it is proportional to a delta function,

the integral will be equal to a constant and the value of the constant will normalize the delta

function. So

A =

∫

dEI(t) =

∫ ∞

−∞
d(~ω)

2 (1− cos(ωt))

(~ω)2t
(11.58)

or

A =
2

~

∫ ∞

−∞
dx

1− cos(x)

x2
=

2π

~
(11.59)

Thus the transition probability per unit time is

Wβα =

∫

2π

~
| 〈β|V |α〉 |2δ(Eβ − Eα)ρ(Eβ)dEβ. (11.60)

This expression forms the basis for many practical calculation of time evolution. It is such

an important result, that Fermi called it the “Golden Rule.” We will make extensive use of

it. I like to build the variations on what I call the “useless form of the Golden Rule,”

Wβα =
2π

~
| 〈β|V |α〉 |2δ(Eβ − Eα). (11.61)

It is useless because the presence of the delta function means that the expression is either

zero or infinity! But it is a useful building block. Many physical systems have a continuum

of energy eigenstates, which are highly degenerate. The properties of the states, the so-

called “density of states,” generally has nothing to do with the physics of the process which

populates them (| 〈β|V |α〉). When the transition probability per unit time is summed over

the available “phase space” of these possible states the delta-function will select a subspace

of them which can be populated by the transition process.

For example consider the decay of a 2P state of hydrogen into the 1S state plus a photon.

There are many potential final states: in principle, while the photon must have energy

Eγ = E2P − E1S, it could be emitted in any arbitrary direction. The direction of its wave

number ~k is arbitrary, even though Eγ = ~c|~k| is fixed.

We could equally well have considered the case of many initial states and one final state.

Imagine illuminating an atom in its ground state with broad-spectrum radiation of intensity

I(ω). Our transition is 1S+ γ → 2P . This is a harmonic perturbation, V ∼ exp(−iωt), and
the I(t) expression in W is modified to

I(t) =
2 (1− cos((ωβα − ω)t))

(~(ωβα − ω)2t
→ 2π

~
δ(Eβ − Eα − ~ω). (11.62)
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The density of final states ρ(Eβ)dEβ is replaced by I(ω)dω in the summation over what is

absorbed. Then the total absorption rate is

Wβα =

∫

I(ω)dω
2π

~
| 〈β|V |α〉 |2δ(Eβ −Eα − ~ω) = I(ω =

Eβ −Eα

~
)
2π

~2
| 〈β|V |α〉 |2. (11.63)

Now return to Eq. 11.60. Physicists like to write the differential transition probability as

dWβα =
2π

~
| 〈β|V |α〉 |2δ(Eβ −Eα)ρ(Eβ)dEβ. (11.64)

For a harmonic potential, V (t) ∝ cos(ωt), the single delta-function becomes

1

4
[δ(Eβ − Eα − ~ω) + δ(Eβ − Eα + ~ω)]. (11.65)

The two terms have simple interpretations: the two exp(±iωt) parts of the cosine have the

correct frequency dependence to add or subtract energy from the initial and final state, and

cause transitions up or down in energy.

All this discussion was in the context of first order perturbation theory. Let us see what

happens in second order. The evolution operator is

U
(2)
βα =

∑

γ

(

− i

~

)2 ∫ tf

ti

dt1

∫ t1

ti

dt2e
−iωβtf e−i(ωγ−ωβ)t1e−i(ωα−ωγ)t2eiωαti 〈β|V |γ〉 〈γ|V |α〉 .

(11.66)

We evaluate the integral over dt2 to give

Uβα =
∑

γ

(

− i

~

)2

〈β|V |γ〉 〈γ|V |α〉 e−iωβtf eiωαti

∫ tf

ti

dt1

(

e−i(ωα−ωγ)t1 − e−i(ωα−ωγ)ti

−i(ωα − ωγ)

)

e−i(ωγ−ωβ)t1 . (11.67)

(11.68)

The first term in the long parentheses in this expression is

U
(2)
βα = − i

~

∑

γ

〈β|V |γ〉 〈γ|V |α〉
Eα −Eγ

e−iωβtf eiωαti

∫ tf

ti

dte−i(ωβ−ωα)t. (11.69)

In the limit ti − tf → ∞ the integral forces ~ωβ = ~ωα, just as in the equation for first order

perturbation theory. At long times the integral over the second term in the long parentheses

becomes small compared to the integral over the first term. Dropping the second term and
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keeping the overall time integral from the first term gives us the second order expression for

the transition amplitude

Uβα(t) = [δαβ − i
~
{〈β|V |α〉+ ∑

γ
〈β|V |γ〉〈γ|V |α〉

Eα−Eγ
+ · · ·}]

×
∫ tf
ti
dte−i(ωβ−ωα)t]× e−i(ωβtf−ωαti).

(11.70)

The last factor, exp(−i(ωβtf −ωαti)), will disappear when we take the absolute square. The

integral from ti to tf is the same expression that we have already found in lowest order. We

treat it exactly as we did when we derived the first order Golden Rule It will (again) enforce

energy conservation in the sense that the transition probability will vanish unless ωβ = ωα,

and the transition probability per unit time will be a constant. The same thing happens

when we go to higher and higher order in the perturbative expansion for Uβα(t).

The term in braces in Eq. 11.70 is called the “T-matrix.” At second order it is

〈β|T |α〉 = 〈β|V |α〉+
∑

γ

〈β|V |γ〉 〈γ|V |α〉
Eα − Eγ

+ · · · . (11.71)

The upshot of this calculation is that we can write an expression for the Golden Rule which

goes beyond first order perturbation theory, simply by replacing V by T :

Wβα =
2π

~
| 〈β|T |α〉 |2δ(Eβ − Eα). (11.72)

Notice that the sum in Eq. 11.71 runs over all intermediate states, regardless of energy.

Referring to the sketch of the process in Fig. 11.5, we interpret this result by saying that

because the system only remains in state |γ〉 for a finite time interval, energy need not be

conserved in the transition from |α〉 to |γ〉 or from |γ〉 to |β〉. Alternatively, we can say that

only on small time scales, where t ∼ 1/(ωα − ωγ), are transitions possible, which do not

conserve energy.

In casual introductions to quantum mechanics, one often sees discussions in which the

“position-momentum uncertainty principle” ∆x∆p > ~ is introduced along with an “energy-

time uncertainty principle,” ∆E∆t > ~. They really have very different meanings: the usual

uncertainty principle is a statement about states and observables, which at heart comes

from the non-commutativity of operators. The energy-time uncertainty principle is quite

different. It is a “principle” only in the sense that we have just described, that processes

need not conserve energy over short time intervals.
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In this chapter we use time dependent perturbation theory to analyze the physics of

the absorption and emission of electromagnetic radiation by quantum mechanical systems.

This subject is of great practical importance, since electromagnetism is the most common

experimental probe used to study matter.

We will analyze radiative transitions using what is called the “semi-classical approxima-

tion.” In this approximation, the “matter” part of the system, the charged particles which

emit and absorb radiation, will be described using the Schrödinger equation. The electro-

magnetic field, however, will be described as if it were classical. This approximation is (of

course) inconsistent. There is no honest way to describe radiation processes as involving the

emission and absorption of photons when radiation is classical. However, the reader who is

willing to live temporarily with this inconsistency will find that the formalism captures es-

sentially all the practical parts of the subject of radiation: selection rules, lifetimes of states,

probabilities for emission of radiation into particular directions or polarizations. The price

to be paid is the necessity to adopt some ad-hoc rules for how to initiate calculations and

how to interpret their results. We will return later to construct a fully quantum mechanical

description of the electromagnetic field.

Einstein relations

In 1917 Einstein set the stage or the interaction of radiation with matter. In this paper

(Physikalische Zeitschrift 18, 121 (1917), reprinted and translated in D. ter Haar, “The

old quantum theory,” (Pergamon, 1967)) he described the three kind of processes involving

radiation and matter, and relations between them. 1917 was of course before the discovery

of quantum mechanics, and one of the successes of quantum mechanics was to verify and

quantify his work. Einstein envisioned three kinds of processes involving electromagnetism

and matter:

1) Spontaneous emission: While this process has no classical analogue, it comes first

on Einstein’s list. A system in state |n〉, with energy En, spontaneously decays into

another state |m〉 of energy Em by the emission of a photon of energy ~ω = En −Em.

Einstein parameterized the probability of the decay dW in a time dt by

dW = Amndt (12.1)

where Amn is called an “Einstein coefficient.” We recognize it as the transition prob-

ability per unit time for the initial state to decay to the final state, with the emission
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of a photon.

2) Absorption: A system in state |m〉 may absorb a photon from a source of energy ~ω

and is then promoted to state |n〉. In modern language, the rate for this process is

parameterized with an absorption cross section, defined as

σ ≡ energy absorbed by atom

unit time× energy flux
(12.2)

Note the units of σ – length squared (hence the name). The cross section represents

an inherent strength of a reaction. Equivalently, one can consider the absorption

rate itself. This quantity should be proportional to the intensity of the radiation

of the appropriate frequency, I(ω), illuminating the system. The absorption rate is

parameterized through a second Einstein coefficient Bnm,

Rate of Absorption = I(ω)× Bnm. (12.3)

We have flipped the subscript to label the states as we did for spontaneous emission,

but to represent the transition as going from the lower energy state to the higher one.

3) Stimulated or induced emission: Finally, a system illuminated by radiation might emit

radiation as a result of the presence of the electromagnetic field. This rate can also be

parameterized with an Einstein coefficient for emission, defined through

Rate of Emission = I(ω)×Bmn. (12.4)

The three Einstein coefficients can be related by imagining that they take place in a cavity

filled with black body radiation. The intensity of radiation (energy density per frequency

interval) is given by Planck’s formula

I(ω) =
~ω3

π2c3
1

e~ω/kBT − 1
. (12.5)

Suppose that the cavity also contains atoms which are in thermal equilibrium with the radia-

tion. Also suppose, for simplicity, that these atoms have two levels |m〉 and |n〉 with energies

En > Em, and that En−Em = ~ω. The three kinds of radiative processes (spontaneous and

stimulated emission, and absorption) can all occur in the cavity.

In equilibrium the rate at which excited state atoms are converted to the ground state

must be equal to the rate at which atoms are removed from the ground state. Calling Nn

and Nm the number of atoms in each state, the equilibrium condition is

Rate(n→ m) = Rate(m→ n) (12.6)
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or

Nn(Amn +BmnI(ω)) = Nm(BnmI(ω)). (12.7)

Solving this equation for the intensity gives

I(ω) =
Amn

Nm

Nn
Bnm − Bmn

. (12.8)

If we assume that the relative numbers of particles in each state will be given by Boltzmann

statistics (i.e. Nm/Nn = exp(−(−Em − En)/kT ), Eq. 12.8 becomes

I(ω) =
Amn

e~ω/kTBnm − Bmn
. (12.9)

But the intensity is given by the Planck formula. Therefore the rate of absorption (per

atom, per frequency interval) and rate of stimulated emission must be equal: Bmn = Bnm.

Additionally, the rate for spontaneous emission must be related to the rate of absorption:

Amn =
~ω3

π2c3
Bnm. (12.10)

This was as far as Einstein could proceed in 1917. Along the way in our development of

electromagnetic interactions, we will be able to compute the values of the A and B coefficients

and verify Eq. 12.10.

Necessary electrodynamic preliminaries

No professional calculation involving electromagnetism in quantum mechanics uses MKS

units. Most quantum field theory books use Lorentz-Heaviside units, a variation on CGS

with some rearranged 4π’s. We will work with the slightly more familiar CGS convention,

where the four Maxwell’s equations are

~∇× ~E +
1

c

∂ ~H

∂t
= 0 ~∇× ~H − 1

c

∂ ~E

∂t
=

4π

c
~J (12.11)

~∇ · ~B = 0 ~∇ · ~E = 4πρ

In Gaussian units, ~D = ~E and ~H = ~B in free space, and I seem to have been casual about

writing ~B or ~H in my expressions. Introducing a scalar potential φ and a vector potential
~A allows us to write the fields as

~E = ~∇φ− 1

c

∂ ~A

∂t
; ~H = ~∇× ~A (12.12)
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Recall that the scalar potential and the vector potential are not unique quantities. We can

perform a gauge transformation of the fields without the loss of any physical content in the

solutions.
~A→ ~A + ~∇χ φ→ φ− 1

c

∂χ

∂t
(12.13)

We will treat the interaction of radiation and matter perturbatively. The analog of

zeroth-order solutions of the Schrod̈inger equation for the radiation field are the solutions of

the Maxwell equations in free space, ~J = 0 and ρ = 0. A convenient gauge choice is Coulomb

gauge: φ(x, t) = 0 and ~∇ · ~A(x, t) = 0. Then the vector potential is a solution of the wave

equation

∇2 ~A− 1

c2
∂2 ~A

∂t2
= 0 (12.14)

for which
~A(~x, t) = ~A0e

i(~k·~x−ωt) + ~A∗
0e

−i(~k·~x−ωt) (12.15)

We can also write this solution as

~A(~x, t) = ~ǫa cos(~k · ~x− ωt) (12.16)

where ~ǫ is a unit polarization vector. The gauge condition, ~∇ · ~A = 0 imposes the so-called

transversality condition on the vector potential, ~A0 · ~k = 0. Thus ~k · ~ǫ = 0. In Coulomb

gauge the two independent polarizations signal the two polarization states of light. (We will

always assume linear polarization in our formulas.)

The amplitude of the vector potential can be expressed in terms of the intensity of the

radiation. In this book we adopt the convention that “intensity” means energy density. De-

pending on the physical process under consideration there are two choices for the amplitude.

The first choice is appropriate when we consider an external source of radiation, appro-

priate to absorption or stimulated emission. We define the intensity of the radiation in a

frequency interval ∆ω as the time average of

I(ω)∆ω =
1

8π

(

E2 +H2
)

. (12.17)

The fields are given by appropriate derivatives of Eq. 12.16:

~E = −1

c

∂ ~A

∂t
= −ω

c
~ǫa sin

(

~k · ~x− ωt
)

(12.18)

and
~H = ~∇× ~A = −~k ×~ǫa sin

(

~k · ~x− ωt
)

. (12.19)
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. The instantaneous intensity is

I(ω)∆ω =
1

8π
|a|2 sin2

(

~k · ~x− ωt
)

{

ω2

c2
~ǫ · ~ǫ+ |~ǫ× k̂|2|k|2

}

(12.20)

=
1

4π

ω2

c2
sin2

(

~k · ~x− ωt
)

The time average converts the sin2() into a 1
2
, so

I(ω)∆ω =
ω2

8πc2
|a|2 (12.21)

and the squared normalization of the vector potential is

|a|2 = 8πc2

ω2
I(ω)∆ω. (12.22)

The second choice for a normalization factor comes when we want to represent the radi-

ation field associated with a single photon. (This is the first of several stories we must tell

when describing the quantum electromagnetic field semi-classically.) A single photon with

frequency ω has an energy ~ω or a time averaged energy density (energy per unit volume) of

~ω/V . To write a solution for Maxwell’s equations which encodes this constraint, we simply

express the energy in the field in a volume V as

E = V
E2 +H2

8π
=

V

8π
|a|2

{

ω2

c2
+ k2

}

sin2
(

~k · ~x− ωt
)

. (12.23)

Again time averaging the sin2() term gives

E = V
1

8π
|a|2ω

2

c2
(12.24)

and because we are dealing with photons we force this to be equal to ~ω. Thus

|a|2 = 8π~c2

ωV
. (12.25)

For future reference, the complete expression for the electromagnetic field with “photon

normalization” is

~A(~x, t) =

(

8π~c

ωV

)1/2

~ǫ cos
(

~k · ~x− ωt
)

(12.26)

=

(

2π~c

ωV

)1/2

~ǫ
(

ei(
~k·~x−ωt) + e−i(~k·~x−ωt)

)

Notice the factor of volume. It will disappear in final answers.
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Electromagnetic transition amplitudes

The Hamiltonian for a particle in an electromagnetic field is

Ĥ =
1

2m

(

p̂− e ~A

c

)2

+ V (x). (12.27)

We decompose this into a zeroth order Hamiltonian

Ĥ0 =
p2

2m
+ V (x) (12.28)

and a perturbation

V = − e

2mc

(

~p · ~A + ~A · ~p
)

+
e2A2

2mc2
. (12.29)

We groom the momentum dependence, writing

(

~p · ~A+ ~A · ~p
)

ψ =
(

~p · ~A
)

ψ + ~A · (~pψ) + ~A · (~pψ) (12.30)

where

~p · ~A =
~

i
~∇ · ~A. (12.31)

In Coulomb gauge, ~∇ · ~A = 0, so

(

~p · ~A+ ~A · ~p
)

= 2 ~A · ~p (12.32)

and the interaction term becomes

V = − e

mc
~A · ~p+ e2A2

2mc2
. (12.33)

In the remainder of this chapter we will only consider lowest-order processes, and so we will

ignore the term proportional to A2.

Assume that at t = 0 the vector potential is switched on. The lowest-order transition

amplitude from an initial state |n〉 to a final state |k〉 is

Ukn(t) = − i

~

∫ t

0

dt′ 〈k|V (t′)|n〉 eiωknt
′

(12.34)

The time dependent potential is

V (t′) = − ea

mc

(

ei(
~k·~x−ωt) + e−i(~k·~x−ωt)

)

~ǫ · ~p. (12.35)
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This gives the transition amplitude as a sum of two terms,

Ukn(t) = −〈k|V1|n〉
~

ei(ωkn−ω)t − 1

ωkn − ω
− 〈k|V2|n〉

~

ei(ωkn+ω)t − 1

ωkn + ω
. (12.36)

The coordinate-space matrix elements are given in terms of the final state and initial space

wave functions ψk and ψn, as

〈k|V1|n〉 =
ie~a

mc

∫

d3rψ∗
ke

i~k·~r~ǫ · ~∇ψn (12.37)

and

〈k|V2|n〉 =
ie~a

mc

∫

d3rψ∗
ke

−i~k·~r~ǫ · ~∇ψn. (12.38)

The two terms are responsible for different phenomena. The first term will give a large

transition amplitude only when ωkn = ω. This represents absorption of radiation. Similarly,

the second term is responsible for emission.

Golden Rule expression for absorption

We now have all the pieces in hand to compute the transition probability per unit time for

absorption

W =
2π

~
| 〈k|V1|n〉 |2δ(Ek −En − ~ω) (12.39)

=
2π~e2|a|2
m2c2

∣

∣

∣

∣

∫

d3rψ∗
ke

i~k·~r~ǫ · ~∇ψn

∣

∣

∣

∣

2

δ(Ek − En − ~ω).

We must deal, somehow, with the delta-function. Let us do this by considering absorption

from a beam of radiation. We know that the normalization of the vector potential is given

by Eq. 12.22. Using this expression for |a|2 gives the differential transition probability per

unit second from a frequency interval ∆ω of

∆W =
4π2c2

ω2
I(ω)

e2

m2c2
~∆ωδ(∆E − ~ω)|M |2 (12.40)

where M is the long expression for the coordinate space matrix element. We compute the

total absorption rate by replacing the finite widths by infinitesimals and integrating over the

intensity profile:

Rate =W =

∫

dωδ(∆E − ~ω)I(ω)× 4π2
~c2e2

ω2m2c2
|M |2

= I

(

ωfi =
∆E

~

)

Bfi. (12.41)
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σ

ω_fi

Figure 12.1: A schematic absorption cross section as a function of frequency.

Bfi is the Einstein coefficient for absorption.

One can also interpret the Golden Rule result a little differently. The delta-function can

be regarded as the infinitesimal limit of a sharp, narrow function such as a Lorentzian.

δ(ω − ωfi) = lim
γ→0

γ

2π

1

(ω − ωfi)2 +
γ2

4

(12.42)

Then the transition probability per unit time can be expressed in terms of an absorption

cross section, defined as

σ =
energy absorbed per unit time

energy flux
. (12.43)

Thus

σ =
~ω ×W

c
(

1
2π

ω2

c2
|a|2
)

=
4π2

~
2e2

mω2c
|Mfi|2δ(∆E − ~ω) (12.44)

or

σ =
4π2

~
2e2

mω2c
|Mfi|2

γ

2π

1

(ω − ωfi)2 +
γ2

4

. (12.45)

The frequency dependence of the absorption cross section is shown in Fig. 12.1, a sharp

absorption line.
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Stimulated emission

The calculation of the rate for stimulated emission is almost identical to the one for absorp-

tion. The Golden Rule tells us that it is

Wk→n =
2π

~
| 〈n|V2|k〉 |2δ(En + ~ω − Ek) (12.46)

where the matrix element is

〈n|V2|k〉 =
∫

d3rψ∗
n(r)e

−i~k·~r~ǫ · ~∇ψk(r). (12.47)

Contrast this expression with the corresponding one for absorption,

〈k|V1|n〉 =
∫

d3rU∗
k (r)e

i~k·~r~ǫ · ~∇Un(r). (12.48)

Only the squared modulus of the matrix element goes into the transition probability. Because

of transversality, we can integrate by parts to show that

∫

d3rψ∗
k(r)e

i~k·~r~ǫ · ~∇ψn(r) = −
[
∫

d3rψ∗
n(r)e

−i~k·~r~ǫ · ~∇ψk(r)

]∗
. (12.49)

or

〈n|V2|k〉 = −〈k|V1|n〉∗ . (12.50)

This means that the two Einstein coefficients are equal, Bkn = Bnk. Physically, this is a

consequence of the time reversal invariance of electromagnetism.

One body phase space

The transition probability per unit time for spontaneous emission is

Wfi =
2π

~
| 〈f |V |i〉 |2δ(Ef + ~ω − Ei) (12.51)

where the perturbation is

V =
e~

2mc

(

2π~c2

ωV

)1/2

ei
~k·~r~ǫ · ~∇. (12.52)

We must now confront the delta function. We do this by realizing that there are many

possible states for the photon which can satisfy the delta function. Its energy ~ω = Ei −
Ef , and hence the magnitude of the photon’s wave number, ~|~k| = ~ω/c is fixed, but the
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ϕ

θ

dΩ

Figure 12.2: Geometry for the calculation of one body phase space: the photon is emitted

into a region of solid angle dΩ.

orientation of ~k – the direction of emission of the photon – can be arbitrary. (For the careful

reader, we are outside classical radiation theory when we do this.)

Place the decaying system at the origin of a coordinate system. The photon will be

emitted into some solid angle dΩ, as shown in Fig. 12.2. We consider the (differential)

transition probability per unit time for the decay to occur while the photon is observed in

an element of solid angle dΩ. This rate is proportional to the number of available quantum

states into which the photon can decay. This number is called a “phase space factor.” The

differential transition probability becomes

∆W = [
dρ

dΩ
]dΩ

2π

~
| 〈f |V |i〉 |2δ(∆E − Eγ). (12.53)

Any less-differential transition probability will involve an integral which will include the delta

function. Rather than work directly with Eq. 12.53, let us proceed more generally.

Begin by thinking of the photon as being confined in a cubic box whose sides have length

L. For convenience, we impose periodic boundary conditions on the solution of the wave

equation. The components wave numbers of the modes will be quantized in units of 2π/L

(for example, kx = 2π
L
n, n = 0, 1, . . .). Therefore in a range of wave numbers between kx and

kx + dkx there are L/(2π)dkx modes. Recalling that p = ~k, the number of modes between

~p and ~p+ d~p is

dρ =

(

L

2π~

)3

dpxdpydpz. (12.54)
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Since L3 is the volume of the box, we can write this simply as

dρ =
V

(2π~)3
d3p. (12.55)

This is the differential number of free particle states per momentum bin in a box of volume

V r,. and hence this is the our differential phase space factor dρ(E). (Often in the literature,

the “differential” is inconsistently omitted, and the right side of Eq. 12.55 is written as ρ(E).)

With this result, the transition probability for emission of a photon into an infinitesimal

momentum (or wave number) bin d3p is

dW =
2π

~
| 〈f |V |i〉 |2δ(Ef − Ei + ~ω)

d3p

(2π~)3
V. (12.56)

The overall factor of V seems peculiar. However, recall the normalization convention for a

“single photon” electromagnetic wave:

~A =

(

2π~c

ωV

)1/2

~ǫ
(

ei(
~k·~x−ωt) + e−i(~k·~x−ωt)

)

(12.57)

Its factor of 1/
√
V will, when squared, cancel the factor of V from the phase space.

A final rewriting of the Golden Rule expression uses the relativistic relation between

energy and momentum, E = |p|c, to convert the momentum integral to an integral over

energy, In spherical coordinates

d3p =
d3Eγ

c3
=
E2

γdEγdΩ

c3
. (12.58)

The transition probability per unit time for emission of a photon of energy Eγ into a unit of

solid angle dΩ is, therefore,

dW =
V

(2π~)3
E2

γdEγdΩ

c3
| 〈f |V |i|〉 |22π

~
δ(Eγ − (Ei −Ef )) (12.59)

This expression is readily integrated over the energy of the photon. The energy-conserving

delta function gives sharp spectral lines to the emission spectrum. The differential decay rate
dW
dΩ

may have nontrivial angular dependence, which can be used to diagnose the quantum

numbers of the initial and final states. The total decay rate summed over all final states |f〉)
is the inverse lifetime of the state,

∑

f Wfi = Γ = 1
τi
.
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Multipole expansions

The matrix element in the Golden Rule expression for spontaneous emission is

〈f |V |i〉 = −ie~
mc

(

2π~c2

ωV

)
1
2
∫

d3rψ∗
f(r)e

i~k·~r~ǫ · ~∇ψi(r). (12.60)

It is obviously nontrivial to calculate. Fortunately, in most cases it is not necessary to ex-

actly evaluate it. In typical atomic transitions the wavelengths of the photons are thousands

of Angstroms while the size of the atom is only about an Angstrom. Thus eikr ≃ 1 ev-

erywhere that the atomic wave functions are nonzero. Setting eikr = 1 is called the dipole

approximation. To see where this name comes from, write
∫

d3rψ∗
f (r)

~∇ψi(r) =
i

~
〈f |~p|i〉 . (12.61)

Use ~p = md~r
dt
, the Heisenberg equation of motion, and and the fact that |f〉 and |i〉 are

eigenstates of the Hamiltonian to write

〈f |d~r
dt

|i〉 = d

dt
〈f |~r|i〉 = i

~
〈f |[Ĥ, ~r]|i〉 = iωfi 〈f |~r|i〉 (12.62)

The matrix element in Eq. 12.61 becomes the matrix element of the dipole operator, −e~r,
∫

d3rψ∗
f (r)~∇ψi(r) = −mωfi

~

∫

d3rψ∗
f (r)~rψi(r), (12.63)

so we see how the dipole approximation got its name.

In dipole approximation the Einstein coefficient is

Bkn =
4π2e2

~2
| 〈k|~ǫ · ~r|n〉 |2. (12.64)

〈k|~r|n〉 = 0 defines a “forbidden transition.” It may only be forbidden in dipole approxima-

tion, not to all orders, and so the actual transition rate will be computed by expanding

ei
~k·~r = 1 + i~k · ~r − 1

2
(~k · ~r) + · · · (12.65)

and looking for non-vanishing terms. If the first (n− 1) terms in this series vanish the Γ is

proportional to the nth term in the series. In atomic transitions, kr is on the order of 10−3

to 10−4 and “forbidden” in the dipole approximation means truly forbidden for all practical

purposes.. In nuclear decays, kr may be on the order of 0.1 and so higher order transitions

are much more common.
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Figure 12.3: Geometry for evaluating the polarization sum.

Return to spontaneous emission. In dipole approximation, the transition probability per

unit time for emission of a photon into an element of solid angle dΩ is

dΓ

dΩ
=

V

(2π~)3
×
E2

γdEγ

c3
δ(Efi −Eγ)

2π

~

(

e~

mc

(

2π~c2

ωV

)
1
2

)2

× |~ǫ · 〈f |~∇|i〉 |2. (12.66)

Combining terms, exploiting Eq. 12.63. and integrating over the delta function gives

dΓ

dΩ
=
αck3fi
2π

|~ǫ · 〈f |~r|r〉 |2. (12.67)

Commonly, the polarization of the emitted photon is not detected. In that case we must sum

over both of the projected polarizations. Picking the ẑ direction to lie along the direction of

the outgoing photon, as shown in Fig. 12.3, we have

∑

pol

|~ǫ · ~M |2 = |~ǫ1 · ~M |2 + |~ǫ2 · ~M |2 ≡ |Mx|2 + |My|2

= |Mx|2 + |My|2 + |Mz|2 − |Mz|2

= | ~M |2 − |~k · ~M |2
k2

= |M |2(1− cos2 θ) (12.68)

and thus

| 〈f |~ǫ · ~r|i〉 |2 = | 〈f |~r|i〉 |2 sin2 θ. (12.69)
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Eq. 12.67 becomes
dΓ

dΩ
=
αck3fi
2π

sin2 θ| 〈f |~r|i〉 |2. (12.70)

Performing the angular integral gives

Γ =
αck3fi
2π

| 〈f |~r|i〉 |2
∫

dΩ sin2 θ (12.71)

=
αck3fi
2π

| 〈f |~r|i〉 |2
∫ 2π

0

dφ

∫ 1

−1

d(cos θ)(1− cos2 θ)

=
4αck3fi

3
| 〈f |~r|i〉 |2

This is also the Einstein coefficient for spontaneous emission, Afi, and 1/Γ is the lifetime of

the state τ (assuming, of course, that this is the only allowed decay).

Note that there may be a nontrivial angular dependence in 〈f |~r|i〉 but the polarization

sum followed by the integration over all space washes it out.

Note also that Γ scales like k3fi. Since the energy difference between the two levels is

equal to ~ckfi, the larger the energy gap, the quicker the decay.

“Selection rules” tell us when Γ = 0. We can develop a sense for them by a looking at a

series of examples. First, suppose the system is a one-dimensional simple harmonic oscillator

oriented along the z-axis. The dipole matrix element is

〈f |~r|i〉 = ẑ 〈f |z|i〉 =
∫

dzψ∗
nf
zψni

(12.72)

The operator, z can be expressed in terms of raising and lowering operators, yielding

〈f |~r|i〉 =
∫

dzψ∗
nf

√

~

2mω

(√
niδnf ,ni−1 +

√
ni + 1δnf ,ni+1

)

ψni
(12.73)

Therefore, the only allowed transitions are those with ∆n = 1.

A physical example of this selection rule is in the spectroscopy of diatomic molecules. The

nuclei vibrate and rotate in the minimum of a potential due to the electrons. Transitions

between these states have selection rules: for the vibrational levels, which are harmonic

oscillator states, the ∆v = 1 selection rule is what we have just derived. Angular momentum

controls the selection rules for changes in the rotational levels, and we consider that case

next.

The inverse lifetime for the Nth state (from the decay N → N − 1 is

1

τ
=

4e2ω2

3~c4

(

~N

2mω

)

. (12.74)
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n=1

n=2

n=0

Figure 12.4: Diagram of allowed transitions between harmonic oscillator states.

The higher energy states decay faster. Notice that there is only a single spectral line!

In single electron atoms, or more generally, in transitions between states in a central

potential, angular momentum considerations control selection rules. Neglect spin for the

moment. The wave functions separate into radial and angular parts. ψ(~r) = R(~r)Ylm(θ, φ).

Write ~r in a spherical tensor basis,

~r =

(

−~x− i~y√
2
, ~z,

~x+ i~y√
2

)

= r

(

− x̂− iŷ√
2
, ẑ,

x̂+ iŷ√
2

)

. (12.75)

The required matrix element is

〈f |~rm|i〉 =

∫

r2drR∗
frRi

∫

dΩY mf∗
lf Y m

1 Y mi
li

=

∫

r3drR∗
fRi × I (12.76)

where I can be evaluated through the three spherical harmonic formula, Eq. 7.116,

I =

√

2li + 1

2lf + 1
〈li, 1; 0, 0|li, 1; lf , 0〉 〈li, 1;mi, m|li, 1|lf , mf 〉 . (12.77)

For the matrix element of a particular component of ~r to be non-vanishing,we need mf =

m + mi. The Clebsch-Gordon coefficients allow lf = li + 1 or lf = li − 1, but lf = li, is

forbidden by parity. Thus we have the selection rules

∆m = ±1, 0 (12.78)

∆l = ±1

As an example, let us calculate the rate of the 2p→ 1s electric dipole transition in hydrogen,

neglecting spin. The 2p states are

|1m〉 = Y m
1 (Ω)R21(r) (12.79)
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and the 1s state is

|00〉 = Y 0
0 (Ω)R10(r) (12.80)

As r̂Y 0∗
0 =

√

1
3

(

Y −1
1 , Y 0

1 , Y
1
1

)

, it is easy see that

〈00|~r|11〉 = −
√

1

3
R
x̂+ iŷ√

2

〈00|~r|10〉 =

√

1

3
Rẑ (12.81)

〈00|~r|1-1〉 =

√

1

3
R
x̂− iŷ√

2

where R is the radial integral (which is the same in all three cases). The squared modulus

of all three of these matrix elements is equal, so the inverse lifetime of all of the 2p states is

the same,

1

τ
=

4e2

3~c

1

c2

(

~ω

~

)2
R2

3
=

4

9
α
(E2p −E1s)

3

(~c)3
R2c. (12.82)

Inserting numbers, the lifetime is τ ≃ 1.6× 10−9s.

This treatment did not include spin. Because the operator driving the transition, ~r,

is spin-independent, the transition cannot change the spin. The selection rule is ∆s = 0,

∆ms = 0.

Finally, we can have states which are simply labeled by quantum numbers for total

angular momentum, j and m. Because ~r is a rank-1 tensor (a vector) the Wigner-Eckhart

theorem tells us

〈fjfmf |~r|ijimi〉 = −4π

3
〈|V (1)

q |〉 = 〈ji, 1;mi, q|ji, 1; jf , mf〉
〈fjf ||r||iji〉√

2ji + 1
. (12.83)

We are now equipped to calculate the intensities of spectral lines. Two kinds of problems

are commonly encountered: First, we are given particular initial and final states, all of

whose angular momentum quantum numbers are specified. An example of such a problem

would be to imagine an atom in an external magnetic field. The initial and final states are

Zeeman-split. What are the intensities of all the spectral lines between the two multiplets?

In the second example, we cannot tell which mi goes to which mf . We want to compute

the absolute intensity of the spectral line, or the relative intensities of two lines from states

with the same radial wave functions. In this case we must average over the initial states and
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sum over the final states,

| 〈f |~r|i〉 |2 →
∑

mf

∑

mi

| 〈fjfmf |~r|ijimi〉 |2
2ji + 1

(12.84)

Again writing ~r in a spherical tensor basis gives

〈fjfmf |rq|ijimi〉 = 〈ji, 1;mi, q|ji, 1; jf , mf 〉
〈fjf ||r||iji〉√

2ji + 1
. (12.85)

Up to proportionality factors,

Γ =
∑

mi

∑

mf

1
∑

q=−1

| 〈fjf ||r||iji〉 |2
(2ji + 1)2

| 〈ji, 1;mi, q|ji, 1; jf , mf〉 |2. (12.86)

The reduced matrix element has no mi, mf or q dependence, so

Γ =
| 〈 ||r|| 〉 |2
(2ji + 1)2

∑

mi

∑

mf

1
∑

q=−1

〈ji, 1; jf , mf |ji, 1;mi, q〉 〈ji, 1;mi, q|ji, 1; jf , mf 〉 (12.87)

The sum collapses to unity from completeness, leaving

Γ ∝ (2jf + 1)

(2ji + 1)2
| 〈fjf ||r||iji〉 |2. (12.88)

To compute the reduced matrix element, one would typically calculate the full transition

probability for some simple choice of mi and mf and then compare it to a calculation using

the Wigner-Eckhart theorem.

Example: S → P transitions in a single electron atom

We illustrate all this machinery in the simple case of an electron in an S state of a single-

electron atom, which decays to a lower energy P state. First we consider the transition

S1/2 → P1/2. We decompose the states into an L− S basis:

|P1/2〉 =







|1
2
, 1
2
〉 =

√

2
3
|11〉 |↓〉 −

√

1
3
|10〉 |↑〉

|1
2
, -1

2
〉 =

√

2
3
|1-1〉 |↑〉 −

√

1
3
|10〉 |↓〉

(12.89)

and

|S1/2〉 =
{

|1
2
, 1
2
〉 = |00〉 |↑〉

|1
2
, -1

2
〉 = |00〉 |↓〉

(12.90)
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Figure 12.5: S1/2 → P1/2 transitions in an external magnetic field.

The following matrix elements are nonzero:
〈

3
1

2

1

2

∣

∣

∣

∣

~r|21
2

1

2

〉

= −
√

1

3

R√
3
ẑ (12.91)

〈

3
1

2

1

2

∣

∣

∣

∣

~r|21
2
-
1

2

〉

=

√

2

3

R√
3

(

x̂− iŷ√
2

)

〈

3
1

2
-
1

2

∣

∣

∣

∣

~r|21
2

1

2

〉

=

√

2

3
〈00|~r|11〉

〈

3
1

2

1

2

∣

∣

∣

∣

~r|21
2

1

2

〉

= −
√

1

3
〈00|~r|11〉

The relative intensities of the transitions will just be given by the ratios of the squares of the

Clebsch-Gordon coefficients. In an external magnetic field, the splittings in the S1/2 and P1/2

multiplets are different (the Landé g-factors are different). This gives the following spectrum

and relative intensity.

Strength

Ea = E0 + δ1 − δ2 1

Eb = E0 + δ1 + δ2 2

Ec = E0 − δ1 − δ2 2

Ed = E0 − δ1 + δ2 1

(12.92)

A photograph of the multiplet of lines would resemble Fig. 12.6. The total transition rate

will be R2

3

(

1
3
+ 2

3
+ 2

3
+ 1

3

)

= (2/3)R2.

The S1/2 → P3/2 family of transitions is similar. The 2P3/2 states as

2P3/2 =



























|3
2
3
2
〉 = |11〉 |↑〉

|3
2
3
2
〉 =

√

1
3
|11〉 |↓〉+

√

2
3
|10〉 |↑〉

|3
2
-1
2
〉 =

√

1
3
|1-1〉 |↑〉+

√

2
3
|10〉 |↓〉

|3
2
-3
2
〉 = |1-1〉 |↓〉

(12.93)
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Figure 12.6: Spectral lines in a transition S1/2 → P1/2.

Figure 12.7: Spectral lines in a transition S1/2 → P3/2.

Again we have the spin selection rule ∆ms = 0. This leaves six spectral lines. The relative

intensities will be
rel. intensity

| 〈31
2
1
2
|~r|23

2
3
2
〉 |2 = R2

3
3

| 〈31
2
1
2
|~r|23

2
1
2
〉 |2 = R2

3
× 2

3
2

| 〈31
2
1
2
|~r|23

2
-1
2
〉 |2 = R2

3
× 1

3
1

(12.94)

The spectrum is shown in Fig. 12.7. The complete m− averaged rates are then

1
2

∑

si

∑

mf
Γ(3S1/2 → 2P1/2) = 1

2
× 2× R2

3
1
2

∑

si

∑

mf
Γ(3S1/2 → 2P3/2) = 1

2
× 4× R2

3

(12.95)

If there were no Zeeman field splitting these lines, we would see two spectral lines with a

relative intensity of two to one. This ratio, plus the relative intensities of the Zeeman-split

lines are diagnostics which, in principle should allow us to assign quantum numbers to the
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states. (That’s how it was done in the old days!)

We have only scratched the surface of the vast, technical subject of radiative processes,

but perhaps we should leave it, to consider some applications which take us slightly farther

afield.

Completing the story of blackbody radiation and Einstein coefficients

At the start of this chapter we recalled the Einstein relation between the A and B coefficients

for emission and absorption by atoms in a black body,Eq. 12.10. The dipole A and B

coefficients were also found to be

Afi =Wfi =
4

3

e2

~c3
ω3| 〈f |~r|i〉 |2; (12.96)

Bfi =
4π2e2

~2
| 〈f |~ǫ · ~r|i〉 |2. (12.97)

The B coefficient is the coefficient for absorption of radiation with a particular polarization,

emanating from a particular direction. To reproduce the Einstein relation, we need to average

Bfi over all incident polarizations and over all directions of the incident radiation. There

are two polarizations so we need to calculate

1

2

∑

ǫ

Bfi =
2π2e2

~2

∑

ǫ

| 〈f |~ǫ · ~r|i〉 |2 (12.98)

We set up our coordinate system as in Fig. 12.8, where ~ǫ1, ~ǫ2 and ~k make up a right-handed

coordinate system. The polarization average is

1

2

∑

ǫ

Bfi =
2π2e2

~2
sin2 θ| 〈f |~r|i〉 |2. (12.99)

The black body presents an isotropic distribution of radiation to be absorbed, and so we

must also average over all angles.
〈

1

2

∑

ǫ

Bfi

〉

=
2π2e2

~2
| 〈f |~r|i〉 |2

∫

dφ
∫

dθ sin2 θ

4π
(12.100)

=
2π2e2

~2
| 〈f |~r|i〉 |2 × 1

2
× 4

3
=

4π2e2

3~2
| 〈f |~r|i〉 |2

This gives

Afi

Bfi
=

4e2ω3

4~c3

4π2e2

3~2

=
~ω3

π2c3
(12.101)
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Figure 12.8: Coordinate system for polarizations and wave numbers, for averaging the B

coefficient.

or

Bfi =
π2c3

~ω3
Afi (12.102)

which is the Einstein relation.

Spin-flip transitions

Both the proton and the electron are spin-1
2
fermions, so in the 1S state of hydrogen, the

total spin of the two particles is ~F = ~SP + ~Se = 0, 1. The F = 1 and F = 0 states states are

split by the hyperfine interaction, with a separation of 1420 MHz. Recall from Ch. 9 that

the higher energy state is the F = 1 state. This state can decay to the F = 0 state if the

electron flips its spin. The perturbing Hamiltonian is the usual one for a magnetic moment

in a magnetic field,

Ĥ = −~µ · ~B ~µ =
e~

2mc
~σ. (12.103)

where this time the field is that of the emitted photon. (We ignore the contribution of the

proton because its magnetic moment is tiny compared to the electron’s. In positronium there

would be a contribution from both particles.) The photon’s vector potential is

~Aphoton =

(

2π~c2

ωV

)
1
2

~ǫ
[

ei(
~k·~x−ωt) + e−i(~k·~x−ωt)

]

(12.104)

and so the magnetic field is

~B = ~∇× ~Aphoton = i~k ×~ǫ

(

2π~c2

ωV

)
1
2

~ǫ
[

ei(
~k·~x−ωt) − e−i(~k·~x−ωt)

]

. (12.105)
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Thus the Hamiltonian is

Ĥ = − ie~

2mc

(

2π~c2

ωV

)
1
2

σ ·
(

~k ×~ǫ
) [

ei(
~k·~x−ωt) − e−i(~k·~x−ωt)

]

(12.106)

The two exponential terms will give rise to transitions up and down in energy between the

two states. The 1420 MHz line is in the microwave band and the wavelength is approximately

21 cm, which means

kr ≈ 2π

21 cm
× 1

2
A
o ≈ 1.2× 10−7. (12.107)

The dipole approximation should work well. The final polarization summed differential

transition probability per unit time is then

dΓ =
1

8π
α

Eγ

(mc2)2
~c2dEγδ(Eγ −∆E)

∑

ǫ

| 〈f |~σ ·
(

~k ×~ǫ
)

|i〉 |2. (12.108)

We evaluate the matrix element between the states

|i〉 = |10〉 = 1√
2
(|↑e↓p〉+ |↓e↑p〉)

|f〉 = |00〉 = 1√
2
(|↑e↓p〉 − |↓e↑p〉) . (12.109)

Only the matrix element of σz will be non-vanishing, and it is

1

2
(〈↑↓| − 〈↓↑|)~σe,z (|↑↓〉+ |↓↑〉) = 1. (12.110)

To deal with the polarizations, we define a coordinate system where ǫ̂1 = x̂ and ǫ̂1 = k̂×ǫ̂1,
as shown in Fig. 12.9. With this choice,

(

~k × ǫ̂2

)

z
= 0 and

(

~k × ǫ̂1

)

z
= −k sin θ. The inverse

lifetime is thus

Γ =
1

τ
=

α

8π

E3
γ

(mc2)2
c

~c

∫

dφd cos θ sin2 θ =
α

3

E3
γ

(mc2)2
c

~c
. (12.111)

We have used the fact that |~k| = k = Eγ/(~c). The numerical value of the lifetime is about

2 × 1014 sec. In the real world, this is too slow to compete with more likely processes, like

collisional de-excitation. However, this is an interesting decay mechanism in the physics of

heavy quark systems.

Note that the perturbation does not couple to the spatial part of the wave function, and

so the matrix element could be calculated without knowledge of it. If the initial and final

states had different spatial wave functions (for example, in the transition 2S → 1S), the

transition would vanish in dipole approximation. One would have to go to higher order in

the multipole expansion to get a nonzero rate.
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Figure 12.9: Coordinate system for the spin-flip matrix element’

Line breadth

In Ch. 11 we introduced the “energy-time uncertainty relation” as the connection between

the time over which a transition probability was observed and the degree of energy non-

conservation which could occur. We now introduce a second version of this relation, in a

connection between the lifetime of a state and the width of the spectral line associated with

transitions as the state decays. We make this connection using perturbation theory, although

it is more general.

Suppose that long ago the system was in a particular state. As its wave function evolves

with time, one may ask for the probability that the system remains in the same state far in the

future. When we answer this question, we must be careful to switch the perturbing potential

on and off adiabatically. The physical reason for doing this is that if the perturbation

was switched on, we could not construct eigenstates of the zeroth order Hamiltonian. The

mathematical reason for doing this is that the calculation is delicate. Otherwise, we assume

that the perturbation is time-independent. Thus, we write

V → V eηt (12.112)

and take the limit η → 0 at the end of the calculation. We work in the interaction represen-

tation. The t = −∞ state is |ψ(t)〉 = |i〉.

Consider first the transition amplitude to a state |n〉, which is not the same as the initial
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state. The first order transition amplitude is

Uni(t) = 0− i

~
〈n|V |i〉

∫ t

t0

dt′eηt
′

eiωnt′e−iωit′ (12.113)

Performing the time integral and then and (setting t0 → −∞) gives

Uni(t) = − i

~

〈n|V |i〉
i(ωn − ωi) + η

e(η+i(ωn−ωi))t (12.114)

Let us check that this gives the Golden Rule result, setting η → 0 at the end of the calcula-

tion). The transition probability is

|Uni(t)|2 =
1

~2

| 〈n|V |i〉 |2
(ωn − ωi)2 + η2

e2ηt (12.115)

If the transition probability |Uni(t)|2 is equal to the time interval times the (time independent)

transition probability per unit time, |Uni(t)|2 = t×Wni, then we can writeWni = d|Uni(t)|2/dt
because Wni should by definition have no explicit time dependence. Performing this calcu-

lation gives

Wni =
2η

~2

| 〈n|V |i〉 |2
(ωn − ωi)2 + η2

e2ηt (12.116)

As η → 0 e2ηt → 1, but evaluating η
η2+ω2 requires care. The limiting form which is appropriate

in the sense of contour integration is

lim
η→0

η

η2 + ω2
= πδ(ω). (12.117)

The transition probability per unit time takes its familiar form

Wni =
2π

~
δ(Ei −En)| 〈n|V |i〉 |2 (12.118)

after rescaling the argument of the delta function.

Next we calculate the amplitude for the state to remain itself, when probed at very long

times in the future. The transition amplitude is

Uii(t) = 1− i

~
〈i|V |i〉

∫ t

t0

dt′eηt
′

+

(

− i

~

)2 ∫ t

t0

dt1

∫ t1

t0

eηt1eηt2
∑

m

| 〈i|V |m〉 |2eiωit1e−iωm(t1−t2)e−iωit2 .(12.119)

The first order term integrates to

− i

~
〈i|V |i〉

∫ t

t0

dt′eηt
′

= − i

~

〈i|V |i〉
~η

eηt. (12.120)
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The second order term is

U
(2)
ii =

(

− i

~

)2
∑

m

| 〈i|V |m〉 |2 1

−i(ωm − ωi) + η

∫ t

−∞
dt1e

(η+i(ωi−ωm))t1e−i(ωi−ωm)t1eη1

=

(

− i

~

)2

c
∑

m

| 〈i|V |m〉 |2
−i(ωi − ωm) + η

∫ t

−∞
dt1e

2ηt1 .

We separate the m = i from the sum, so

U
(2)
ii =

(

− i

~

)2 | 〈i|V |i〉 |2
2η2

e2ηt +

(

− i

~

)

∑

m6=i

| 〈i|V |i〉 |2
2η2~(Ei − Em + i~η)

. (12.121)

We now want to show that

i~
dUii

dt
= ∆iUii (12.122)

or equivalently

Uii(t) = e−i∆it/~, (12.123)

where ∆i is a constant. To show that

dUii/dt

Uii
= − i

~
∆i (12.124)

for constant ∆i is equivalent. We do this by beginning with the explicit ratio

dUii/dt

Uii
=

− i
~
〈i|V |i〉 e2ηt +

(

− i
~

)2 〈i|V |i〉
η

e2ηt +
(

− i
~

)
∑

m6=i
|〈i|V |m〉|2

Ei−Em+i~η

1− i
~

〈i|V |i〉
η

e2ηt + · · ·
(12.125)

We are doing perturbation theory, so we simply expand the ratio as a power series in V ,

dUii/dt

Uii

= − i

~
〈i|V |i〉

(

1 +
i

~

〈i|V |i〉
η

)

+

(

− i

~

)2 | 〈i|V |i〉 |2
η

+

(

− i

~

)

∑

m6=i

| 〈i|V |m〉 |2
Ei −Em + i~η

= − i

~

(

〈i|V |i〉+
∑

m6=i

| 〈i|V |m〉 |2
Ei − Em + i~η

)

(12.126)

(12.127)

or

∆i = 〈i|V |i〉+
∑

m6=i

| 〈i|V |m〉 |2
Ei −Em + i~η

. (12.128)
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To make sense of this relation, recall that we have been working in interaction repre-

sentation. We convert it to Schrödinger representation by re-introducing the zeroth-order

energy into the exponential, so that

Uii(t) = exp (−i (Ei +∆i) t/~) . (12.129)

∆i is complex. Its real part corresponds to an energy shift. To first order ∆i = 〈i|V |i〉
which is the usual result from time-independent perturbation theory. The second order

expression looks familiar, but what about the i~η in the denominator? We recall the identity

(only defined under an integral)

1

x+ iǫ
= P 1

x
+ iπδ(x) (12.130)

where P stands for the principal value. With this relation we can decompose the second

order piece of ∆i into a real part,

Re
(

∆
(2)
i

)

= P
∑

m6=i

| 〈i|V |m〉 |2
Ei − Em

(12.131)

which is just the second order energy shift, and an imaginary part,

Im
(

∆
(2)
i

)

= π
∑

m6=i

| 〈i|V |m〉 |2δ(Ei −Em) =
~

2

∑

m6=i

Wmi (12.132)

which is just the sum of Wmi transition probabilities per unit time,scaled by ~ to become

energies. The amplitude for the state to remain itself is thus

Uii(t) = exp−iRe(∆i)t/~ exp−
∑

m6=i Wmit/2 . (12.133)

The squared modulus of this quantity gives probability that the state persists. It is

|Uii(t)|2 = exp−t/τ (12.134)

where
1

τ
=
∑

m6=i

Wmi. (12.135)

This makes complete sense: the inverse lifetime of the state is the sum of transition proba-

bilities per unit time for decays out of the initial state.

Notice that the state itself no longer evolves in time as a pure phase. It is still the case

that

|i(t)〉 = Uii(t) |i〉 , (12.136)



Quantum Mechanics 282

but now

Uii(t) = exp

(

− i

~
ǫt− Γt

2~

)

(12.137)

Carry this function into the energy domain by Fourier transform:

f(E) =

∫

dteiEt/~Uii(t) (12.138)

=

∫

dteit(E−ǫ)~e−Γt/2~

=
1

E − ǫ− iΓ
2

The absolute square of this expression is

|f(E)|2 = 1

(E − ǫ)2 + Γ2

4

, (12.139)

the line shape for a “Lorentzian.” We encountered this function before, in Eq. 12.42. A sharp

energy state, whose time evolution is given by a simple exp(−iωt), would be a delta-function

in the energy domain. The fact that the state can decay broadens the delta function.

The width of the state – its uncertainty in energy – is equal to Γ, which is ~/τ . Thus

Γτ = ∆Eτ = ~. This is the careful expression of the “energy-time uncertainty relation.”

The quantity Γ can be observed in spectral lines from transitions involving the state.

Because the state is not sharp, the spectral line will also have a Lorentzian line shape. We

are describing what is called the “natural width” of the spectral line. In practice, many

other effects can contribute to nonzero line breadth, including Doppler broadening, the shift

of the photon’s frequency because the source is moving. We will see Lorentzians again, in

Ch. 13.

Coupled channels

An important ingredient in the study of condensed atomic gases is a so-called “Feshbach

resonance.” The idea is that perturbing the system with an external electric or magnetic

field, one can drive an energy level very close to zero energy. Then the system will become

strongly interacting, in the sense that the scattering length will diverge. (This point will be

discussed in Ch. 13.) We can give a schematic illustration of this phenomenon through the

following solvable model.

Suppose we have a system with a set of “ordinary” energy levels ǫi where i = 1, 2, . . . , N .

Also let us have one “special” energy level which we denote by ǫ0. We assume that we
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have control over the “special” energy level ǫ0 through some laboratory apparatus. The

“ordinary” energy levels are also assumed to be decoupled from one another, but not from

the “special” energy level. We can then write down the Hamiltonian in matrix form

Ĥ =

















ǫ0 V01 V02 V03 · · ·
V10 ǫ1 0 0 · · ·
V20 0 ǫ2 0 · · ·
V30 0 0 ǫ3 · · ·
...

...
...

...
. . .

















(12.140)

One can, of course, find the energy eigenvalues of this system by solving the secular

equation

det[Ĥ − δijE] = 0. (12.141)

Write out the determinant as

0 = (ǫ0 − E)det







ǫ1 − E 0 · · ·
0 ǫ2 − E · · ·
...

...
. . .






− V01det







V10 0 · · ·
V20 ǫ2 − E · · ·
V30 0 ǫ3 −E






(12.142)

+V02







V10 ǫ1 − E · · ·
V20 0 · · ·
V30 0 ǫ3 − E






+ · · ·

This is

0 = (ǫ0−E)
∏

i

(ǫi−E)−|V01|2(ǫ2−E)(ǫ3−E) · · ·−|V01|2(ǫ1−E)(ǫ3−E) · · ·+ · · · (12.143)

or

0 = (ǫ0 − E)
∏

i

(ǫi − E)−
∑

i

|V0i|2
∏

j 6=i

(ǫj − E). (12.144)

There are N + 1 roots to this characteristic equation. Let’s focus on the case where one of

them, E is assumed to be close to ǫ0. In that case E is given by the implicit equation

(ǫ0 − E)−
∑

i

|V0i|2
(ǫi − E)

= 0 (12.145)

or

E = ǫ0 +
∑

i

|V0i|2
(E − ǫi)

. (12.146)
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Figure 12.10: Naively tuning ǫ0 across the other ei’s.

ε0
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ε2
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Figure 12.11: As the energy ǫ0 is tuned across the other ei’s, the true energy levels mix and

repel.
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Imagine varying our laboratory apparatus so that we vary the energy ǫ0. The naive energy

spectrum for the system is shown in Fig. 12.10. But we know that in quantum mechanics

levels never cross. A more accurate picture would be shown in Fig. 12.11.

The secular equation knows about level repulsion and mixing. Single out another level

in the sum, ǫ1. The secular equation is

ǫ1 −E =
|V01|2

(ǫ0 − E)
+
∑

i 6=1

|V0i|2
(ǫi − E)

(ǫ1 −E)

(ǫ0 −E)
(12.147)

When ǫ0 ≈ ǫ1 this simplifies to

ǫ1 − E =
|V01|2
ǫ0 − E

+ small corrections (12.148)

This is the secular equation for the Hamiltonian

Ĥ =

[

ǫ1 V10

V01 ǫ0

]

. (12.149)

Of course, the true energy levels are not ǫ1 nor ǫ2, and the eigenstates are mixtures of

|0〉 and |i〉. Altering the position of the “special” level affects the energies of the nearby

“ordinary” levels.

When the spectrum of ordinary levels forms a continuum, the sum is promoted to an

integral, and it is convenient to break up the denominator into a principle value part and a

delta function
1

E − ǫ
→ P 1

E − ǫ
+ iπδ(E − ǫ). (12.150)

The eigenvalue equation has real and imaginary parts, with

Re(E) = ǫ0 + P
∫

dǫ
|V0ǫ|2
(E − ǫ)

(12.151)

and

Im(E) =

∫

dǫ|V0ǫ|2πδ(E − ǫ) (12.152)

The self-consistent solution of the real part of the equation would give the energy levels. The

imaginary part of the expression gives the decay width of the state.
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Scattering via perturbation theory

Scattering experiments are among the most important tools of the physicist. A beam of

particles bombards a target. Particles emerge from the collision, moving at some angle with

respect to the beam, and are seen by detectors. The rate of scattering, as parameterized

by cross sections, angular distributions, energy loss, and so on, give information abut the

nature of the interactions and about the internal structure of the target.

Indeed, in my own field of elementary particle physics, almost all the experimental infor-

mation we have comes from scattering experiments. Even in those cases where we observe

the decay of excited states, the states whose spectra we study are produced in collisions of

other particles.

There are two ways to study scattering. The first is in the context of perturbation

theory and leads to the “Born approximation” and its higher order generalizations. This

is an appropriate approach if the forces causing the scattering are relatively weak and the

wavelength of the particle is relatively small. The second methodology works directly with

the time independent Schrödinger equation (H − E)ψ = 0, with E > 0 and boundary

conditions such that the solution corresponds to an incoming plus an outgoing wave. These

two pictures are complementary.

Kinematic preliminaries

Suppose we have an object whose area A we wish to determine. A way to measure this

area would be to use the object as a target and to bombard it with particles. One could

measure the area as the counts per second or particle hits per second, divided by the beam

current I (particles in the beam per unit area per second). To generalize this idea, think of

the scattering of the beam from a portion of the target a distance s from its center, which

scatters the beam in a direction labeled by a solid angle Ω where it is seen by a counter of

angular size dΩ. The counting rate dN(θ) is

dN(θ) = I(sds)dφ = Idσ (13.1)

where dσ is a differential area element, so

dN(θ)

I
= dσ. (13.2)
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The counting rate may depend on θ so we write the scattering rate as

dN(θ, φ)

dΩ
= I

dσ

dΩ
(13.3)

where dσ/dΩ is called the “differential cross section.” We also define the “total cross section”

to be the counts per unit time in a detector with 4π solid angle resolution, divided by the

beam current

σ =
1

I

∫

dΩ
dN

dΩ
≡
∫

dσ

dΩ
dΩ (13.4)

The total cross section σ may not have any physical meaning. For example, we will see that

in the case of Coulomb scattering, the differential cross section behaves as

dσ

dΩ
≃ 1

sin4 θ/2
(13.5)

as θ vanishes. In this case the total cross section is divergent.

Let us specialize to two-body scattering (two particles, beam and target, going in and

coming out). We already know that we can write the coordinates in terms of relative and

center of mass variables, and that in the center of mass frame the two bodies can be treated

as a single body of reduced mass µ. Scattering is easiest to visualize in the center of mass

frame. Both before and after the collision, the particles’ momenta are equal and oppositely

directed. The particles emerge back to back at some angle θc with respect to the original

direction. We will develop scattering theory in the center of mass frame and defer the

complicated (though trivial) problem of converting results from this frame to the laboratory

frame to any good book about classical mechanics.

Scattering experiments are usually performed in the laboratory in either of two situations.

The first is the frame with one particle (call its mass M) at rest and the other (of mass m)

moving with velocity v0. For historical reasons this is called the “laboratory frame.” This

label gives short shrift to modern particle physics experiments, which use colliding beams.

Here the laboratory and center of mass frames coincide. In the center of mass frame the two

particles have momenta ~p1 and ~p2 = −~p1, and this frame moves at a velocity v with respect

to the lab frame. Then the components of the two momenta along v are p1 = m(v0 − v)

and p2 = −Mv. Setting p1 + p2 = 0 yields the velocity of the center of mass frame as

v = m/(M +m)v0. Then p2 = −Mmv/(M +m) = −µv0 where µ = mM/(M +m) is the

reduced mass. The other particle’s momentum is p1 = mv0(1−m/(M +m)) = µv0. In the

center of mass, the kinetic energy of the two particles is p22/(2M) + p21/(2m) = (1/2)µv20.

In the lab frame, the kinetic energy is (1/2)mv20 = (1/2)µv20 + (1/2)(M +m)v2, where the
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second term is the kinetic energy due to the motion of the frame. There are of course

similar formulas for relativistic kinematics. (In that case, it is much more convenient to use

kinematic variables with simple Lorentz transformation properties.) Notice that in the limit

that M/m becomes very large, µ = m and v = 0.

The Born approximation

Let us consider the scattering potential as a perturbation. The two particles are assumed

to be noninteracting at large separation and approach each other as plane waves. They

interact weakly, scatter through some angle θ and emerge as free particles or plane waves.

The transition probability per unit time is given by the Golden Rule.

In the center of mass frame we treat the two scatterers as a single particle of reduced

mass µ. Its initial state has momentum ~pi and its final state has momentum ~pf . In elastic

scattering the initial and final energies are equal, so p2i /(2µ) = p2f/(2µ). The Golden Rule

tells us that the transition probability per unit time Γ due to a perturbing potential V is

dΓ =
2π

~
| 〈~pf |V |~pi〉 |2δ(Ef −Ei)dρ(Ef) (13.6)

where the phase space factor is

dρ(Ef) = V
d3pf
(2π~)3

(13.7)

for free particles in a box of volume V . This is identical to the phase space factor we found

for photons, Eq. 12.55, because the derivation just involved counting plane wave states in

a box. What is different is the energy - momentum dispersion relation, p2f/(2µ) = Ef for

non-relativistic motion as opposed to Ef = cpf for the massless photon.

The zeroth order initial and final states are noninteracting free particle states

ψi =
1√
V

exp(i~pi · ~r/~) (13.8)

and

ψf =
1√
V

exp(i~pf · ~r/~). (13.9)

Note that we adopt a “box normalization” for the states,
∫

V

d3x|ψ|2 = 1 (13.10)

to adapt to the same conventions that are used in the phase space definition.
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We must now convert dΓ into a differential cross section. The counting rate (particles

per unit time) dN is just dΓ. The differential cross section is dN divided by the particle

current I, which is just the density of particles in the beam (one particle per volume V , in

our convention for the initial state wave function) times the particle velocity |~pi|/µ. Thus

dσ =
2π

~

µV

|pi|
| 〈~pf |V |~pi〉 |2δ(Ef − Ei)V

d3pf
(2π~)3

. (13.11)

Note that the volume factors cancel between the phase space factor, the current, and the

normalization of the initial and final states.

It is expedient to rewrite the phase space factor to make the integral over the energy-

conserving delta function trivial. Observing that

d3pfδ(Ef −Ei) = p2fdpfdΩδ(Ef −Ei) = pf(pfdpf)dΩδ(Ef − Ei), (13.12)

we use Ef = p2f/(2µ) to make the replacement dEf = pfdpf/µ. Then the phase space

factor becomes µpfdEfdΩδ(Ef − Ei). Integrating the energy over the delta function gives

the differential cross section as

dσ

dΩ
=

2π

~

µV 2

|pi|
| 〈~pf |V |~pi〉 |2

µ|pf |
(2π~)3

. (13.13)

For elastic scattering |pi| = |pf | and the momentum factors cancel, leaving

dσ

dΩ
= (

µV

2π~2
)2| 〈~pf |V |~pi〉 |2

≡ |f(θ)|2. (13.14)

We have introduced the “scattering amplitude,” f(θ). It is conventionally defined with a

minus sign,

f(θ) = − µV

2π~2
〈~pf |V |~pi〉 . (13.15)

In Born approximation

f(θ) = − µ

2π~2

∫

d3re−i~pf ·~r/~V (~r)ei~pi·~r/~. (13.16)

or

f(θ) = − µ

2π~2

∫

V (r)d3rei~q·~r/~. (13.17)

where ~q = ~pf − ~pi is the momentum transfer. This is a very important formula, as much

because of its simplicity as for anything else. It says that the scattering amplitude is pro-

portional to the three-dimensional Fourier transform of the scattering potential.
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There is a similar formula in classical electrodynamics: the amplitude of an electromag-

netic wave scattered from a small fluctuation in the dielectric constant is given by the Fourier

transform of the shape of fluctuation into wave number space. The quantum mechanical for-

mula is actually simpler, because there are no polarization factors to track.

In elastic scattering, the magnitudes of the initial and final momenta are equal, so the

momentum transfer ~q has a magnitude q = 2|p| sin θ/2, where θ is the scattering angle.

Now let us evaluate f(θ) in the useful special case of a central potential, V (~r) = V (r).

Evaluate the integral in a coordinate system where ~q defines the ẑ axis. Then ~q ·~r = qr cos θ

and an easy passage of steps yields a one-dimensional integral,

f(θ) = −2µ

q~

∫ ∞

0

rdrV (r) sin
qr

~
. (13.18)

As a specific example, consider the so-called Yukawa potential

V (r) =
A

r
e−mr (13.19)

where m is a parameter characterizing the inverse range of the potential. The choice of

m is motivated by Yukawa’s proposal for the origin of the nuclear force in the exchange of

mesons of mass mπ: m = mπc
2/(~c). In condensed matter physics and for light scattering,

this potential is called the “Orenstein-Zernicke correlation function,” and 1/m is called the

“correlation length.” In the limit of vanishing m and for A = Z1Z2e
2, this potential describes

Coulomb scattering, or the famous Rutherford experiment.

A few lines of algebra yield the differential cross section

dσ

dΩ
=

4µ2A2

(q2 +m2~2)2
. (13.20)

Writing q2 = 4p2 sin2 θ/2, we expose the angular dependence of the differential cross section,

dσ

dΩ
=

4µ2A2

(4p2 sin2 θ/2 +m2~2)2
. (13.21)

This formula has several interesting limits. If the energy is very low, p/m << 1, the

differential cross section is isotropic: dσ/d cos θ is a constant. A variation on this limit is

scattering from a delta function potential. To convert the Yukawa potential to delta function

form, we chose A so that
∫

d3rδ3(r) = 1 in the large m limit. We can choose A so that V

has the correct limit (as m goes to infinity): Set

1 = A

∫

d3r
e−mr

r
= 4πA

∫ ∞

0

rdre−mr =
4πA

m2
(13.22)
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so that

lim
m→∞

V0
m2

4π

e−mr

r
→ V0δ(~r). (13.23)

The differential cross section becomes

dσ

dΩ
=
µ2V 2

0

4π2~4
(13.24)

The range of the delta function’s potential is so small that the scattering wave cannot resolve

structure in it and scatters “minimally.”

The second useful limit is that of Coulomb scattering, where A = Z1Z2e
2 and m = 0:

dσ

dΩ
=

µ2Z2
1Z

2
2e

4

4p4 sin4 θ/2
=
µ2Z2

1Z
2
2e

4

q4
(13.25)

This is the famous Rutherford result. The cross section diverges as θ vanishes. This is

because the Coulomb interaction is long range – no matter how far away the two particles

are, they still interact electrically.

Before continuing with examples, let us summarize a few general results about scattering

in Born approximation:

• dσ/dΩ and f(θ) are functions of q alone. That is, f(θ) depends on p2/(2µ) and θ only

through the combination q = 2p(1− cos θ).

• f(θ) is always real

• dσ/dΩ is independent of the sign of V .

• f(θ) becomes small for large q. This is due to the exp(−~q ·~r/~) term in the integrand.

• For small p, so that q is small, and the potential is short range, the scattering amplitude

is isotropic.

Of these results, only the last one is generally true beyond Born approximation.

Because it is perturbative, the Born approximation is generally valid if the scattering

amplitude is small. Physically, we want the true wave function in the scattering region not

to be too different from a plane wave. Since f(θ) has units of area, “small” must mean with

respect to some other quantity with dimensions of length. That could be the inverse wave

number of the beam. We could imagine our small ratio to be

k2|f(θ)| ≪ 1, (13.26)
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for example.

An alert reader might wonder: We have considered scattering on a bare point charge, and

re-derived Rutherford’s result. However, Rutherford actually did his scattering on atoms,

which are electrically neutral. How does that change the answer? And why do we read about

“big scattering at large angle?” We have found dσ/dΩ ≃ 1/q4, which certainly becomes small

at large angle.

The solution to this question introduces some interesting physics. Use the fact that

∇2 exp(i~q · ~r/~) = −q2/~2 exp(i~q · ~r/~) to write the scattering amplitude, Eq. 13.17, as

f(θ) =
µ

2π~2q2

∫

V (r)d3r∇2ei~q·~r/~. (13.27)

Then integrate twice by parts to pull the differential operator onto the potential term:

f(θ) =
µ

2π~2q2

∫

d3rei~q·~r/~∇2V (r). (13.28)

Now assume that the interaction is Coulombic. The beam particle has charge Ze, and

the potential arises from the charge distribution of the target, ρ(r). In that case Poisson’s

equation is

∇2V (R) = Ze× (−4πρ(r)) (13.29)

and

f(θ) = −2Zeµ

q2

∫

d3rei~q·~r/~ρ(r). (13.30)

The object in the integral is the Fourier transform of the charge density, and is called the

“form factor” F (q):

f(θ) = −2Zeµ
F (q)

q2
. (13.31)

For Coulomb scattering on a point charge, ρ(r) = Z ′eδ3(r) so F (q) = Z ′e and dσ/dΩ =

4Z2Z ′2e4µ2/q4 as before.

Now we can understand “big scattering at large angles.” Rutherford had in mind a

model for the atom with had some smooth, extended charge density ρ(r) extending over the

entire size of the atom – about an Angstrom in range. The form factor for such a charge

distribution will fall off at large q – for qa0/~ >> 1 it would be tiny. The form factor of the

delta function is a constant, so at any sufficiently large angle (or q) it will give a scattering

amplitude which is greater than that from any smooth charge distribution.
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As an example, imagine scattering on a hydrogen atom, when the electron is in its 1S

state. Then the total charge density, proton and electron, is

ρ(r) = e[δ3(r)− |ψ1S(r)|2] (13.32)

where |ψ1S|2 = exp(−2r/a0)/(πa
3
0). The form factor is F (q) = e[1 − Fe(q)], and a short

passage of steps gives

Fe(q) =
1

(1 +
q2a20
4~2

)2
. (13.33)

As expected, Fe(q = 0) = 1. In this limit the form factor is just the total charge (in units

of the electronic charge). Thus, the differential cross section for charged particle scattering

from a hydrogen atom is

dσ

dΩ
=

4Z2e4µ2

q4
(1− 1

(1 +
q2a20
4~2

)2
)2. (13.34)

Observe that as qa0/~ → ∞ (high energy or large angle), the electron contribution is

negligible compared to the proton. The Rutherford result is recovered. In the other limit,

qa0/~ → 0, the cross section goes to a constant:

dσ

dΩ
=

4Z2e4µ2

q4
× 4(

q2a20
4~2

)2 =
Z2α4(µc2)2

(~c)2
a40. (13.35)

The atom looks neutral at long distance–there is no 1/q4 peaking.

Inelastic electron-atom scattering

It is easy to generalize the case of elastic Coulomb scattering to the situation where the

scattering excites the target. The process of interest is electron + ground state atom in state

ψ0 → electron + excited state atom in state ψn. The process is called “inelastic” because

the energy of the final state electron is less than the energy of the initial electron. Neglecting

symmetrization, the initial state of beam electron plus target electrons is

|i〉 = 1√
V
eipixψ0(x1, . . . , xN) (13.36)

while the final state is

|f〉 = 1√
V
eipfxψn(x1, . . . , xN) (13.37)
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The un-subscripted x labels the bombarding electron’s coordinate while the subscripted ones

are for the bound electrons. In principle, one should worry about statistics for the identical

electrons. However, if the bombarding energy is large, the exchange terms will be small and

we can treat the bombarding electron as distinguishable from the target ones.

As before, the potential is that between the atom and the beam, a sum of Coulomb

attraction and repulsions

V (x) = −Ze
2

r
+

N
∑

i=1

e2

|~x− ~xi|
. (13.38)

The differential cross section is

dσ(0 → n)

dΩ
=
m

pi

2π

~
| 〈f |V |i〉 |2 pfm

(2π~)3
(13.39)

where the first term is the beam flux, the last term is the phase space factor, and the matrix

element is

〈f |V |i〉 =
∫

d3xeiqx/~ 〈n| (−Ze
2

r
+

N
∑

i=1

e2

|~x− ~xi|
|i〉 . (13.40)

Specifically,

〈n| (−Ze
2

r
+

N
∑

i=1

e2

|~x− ~xi|
) |i〉 =

∫ N
∏

i=1

d3xi

ψn(x1, . . . xN)
∗(−Ze

2

r
+

N
∑

i=1

e2

|~x− ~xi|
)ψ0(x1, . . . xN).

(13.41)

In the first term of this expression, r is just the separation between the bombarding electron

and the nucleus. It does not involve the bound electrons. Thus, the initial and final atomic

electron states must coincide if the matrix element is not to vanish.

〈n| − Ze2

r
|0〉 = −Ze

2

r
〈n|0〉 = −Ze

2

r
δn,0. (13.42)

The second term can be turned into another kind of form factor. Write
∫

d3xeiqx/~ 〈n|
N
∑

i=1

1

|~x− ~xi|
|0〉 = 〈n|

∑

i

∫

eiqx/~

|x− xi|
d3x |0〉 = 〈n|

∑

i

∫

eiq(x+xi)/~

|x| |0〉

(13.43)

(shifting the origin), and the integral becomes

〈n|
∑

i

eiqxi/~ |0〉
∫

d3x
eiqx/~

|x| =
4π~2

q2
〈n|
∑

i

eiqx/~ |0〉 . (13.44)
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We define a transition form factor

ZFn(q) = 〈n|
∑

i

eiqxi/~|0〉 . (13.45)

(Compare this formula to that for the usual (one particle) form factor, 〈0|
∑

i e
iqxi/~|0〉.)

Thus

〈f |V |0〉 = 4π2
~
2Ze2

q2
(δn0 − Fn(q)) (13.46)

and the differential cross section is

dσ(0 → n)

dΩ
=
pf
pi
|4Z

2e4µ2
~
4

q4
|δn0 − Fn(q)|2. (13.47)

In an inelastic collision, the δn0 term gives zero and the overall cross section is rescaled by

the ratio of phase space factor to beam current, pf 6= pi. In an elastic collision, pf/pi = 1

and the result recovers the ordinary (elastic) form factor.

Photoelectric effect

As a final example of “Born physics” we consider the process (photon + atom → electron +

ion), the photoelectric effect. The physical process we have in mind is to compute the cross

section for absorption of X-rays in an atom. For simplicity, we assume that the electron

begins in the 1S state of an atom and is knocked out, the final state is a plane wave with

momentum ~P = ~ ~K. The energy of the ejected electron is Ef . The Golden Rule gives the

differential transition probability

dΓ =
2π

~
| 〈~ ~K| e

mc
~A · ~p|1S〉 |2ρ(Ef )δ(Ef −E1S −Eγ) (13.48)

As before, the phase space factor is

ρ(Ef )δ(Ef − E1S −Eγ) = m|~K|V dΩ

(2π~)3
(13.49)

Here m = me = µ the reduced mass. We convert dΓ into a differential cross section by

dividing by the beam intensity, (1 photon/volume V) times c. Thus

dσ

dΩ
=

2π

~c
V 2|~K| µ

(2π~)3
| 〈f |V |i〉 |2. (13.50)

We compute the matrix element with the following ingredients: The outgoing electron’s wave

function is

ψf =
1√
V
eiK·r, (13.51)
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the vector potential is

~A =

(

2π~c2

ωV

)1/2

eik·r~ǫ, (13.52)

(absorbing the frequency dependence into the delta-function: note: we can’t use the dipole

approximation!) and the initial electronic wave function is taken to be hydrogenic,

ψi =

(

λ3

π

)1/2

e−λr (13.53)

where λ = Z/a0. Then the matrix element is

〈f |V |i〉 = e

mc

(

2π~c2λ3

ωV

)1/2
1

V

∫

d3re−iK·r~p · ~ǫeik·re−λr (13.54)

The operator ~p is (~/i)~∇. We can push ~p to the left to get

〈f |V |i〉 = e

mc

(

2πλ3

ω

)1/2

(~ ~K · ~ǫ)
∫

d3reiq·re−λr (13.55)

where ~q = ~k− ~K is the wave number (scaled momentum) of the recoiling atom. We visualize

the scattering as follows: the electron and atom emerge back to back, with ~K at an azimuthal

angle of φ to the polarization direction. ~K has a polar angle of θ with respect to the beam.

We did the integral when we evaluated the form factor of Hydrogen. It is just

8πλ

(q2 + λ2)2
. (13.56)

Putting all the pieces together, we have

dσ

dΩ
=

2π

~c

~Km

(2π~)3
e2

m2

2λ3~3

ck
(K sin θ cosφ)2

64π2λ2

(q2 + λ2)4
(13.57)

= 32
e2

~c

sin2θ cos2 φ

k2
~k

mc

(

λ2

q2 + λ2

)4(
K

λ

)3

(13.58)

The answer is not terribly illuminating. Let’s make some approximations.

First, call the atom’s ionization potential I. Energy conservation says ~ck = I +

~
2K2/(2m). I is equal to ~

2λ2/(2m). Go to high energies, so that ~
2K2/(2m) and ~ck

are much greater than I. But don’t go too high in energy, or you will have to deal with

special relativity: keep mc2 > ~ck. Energy conservation neglecting I tells us that

~ck = ~
2K2/(2m), (13.59)
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so K2 = (2mc2)/(~ck)k2. Putting all the inequalities together,

2mc2 >> ~ck ≃ ~
2K2/(2m) >> I (13.60)

or K2 >> k2 and K2 >> λ2. Then

q2 = ( ~K − ~k)2 ≃ K2 − 2Kk cos θ = K2(1− 2k/K cos θ) = 2mck/~(1− ~K/(mc) cos θ).

(13.61)

Now ~K/(mc) = pc/(mc2) = v/c ≡ β for the electron, so finally q2 = 2mck/~(1 − β cos θ).

q2 >> λ2 so q2 + λ2 can be replaced by q2. The last alteration we make is to write

(
K

λ
)3 = (

K2

λ2
)3/2 =

(

~
2K2/(2m)

~2λ2/(2m)

)3/2

=

(

~ck

I

)3/2

(13.62)

and we have re-introduced the ionization potential. We can rewrite

λ2

q2 + λ2
≃ λ2

q2
=

2mI

2mck~(1− β cos θ)
=

I

~ck(1− β cos θ)
. (13.63)

After all these substitutions, the differential cross section is

dσ

dΩ
=

32α sin2 θ cos2 φ

(1− β cos θ)4

(

I

~ck

)4

(
~ck

I
)7/2

~ck

mc2
1

k2
. (13.64)

The last two terms are
~ck

mc2
1

k2
=

~ck

mc2
(~c)2

(~ck)2
=

(~c)2

mc2
I

~ck

1

I
, (13.65)

so
dσ

dΩ
= 32α

(

~ck

I

)7/2
(~c)2

Imc2
sin2 θ cos2 φ

(1− β cos θ)4
. (13.66)

That was a lot of work, but we have separated the angular and energy dependences in a

useful way. Now we can understand a number of features of the photoelectric effect: First,

the angular factors show that the ejected electron is thrown dominantly forward, from the

(1− β cos θ)4 in the denominator. Near threshold, the antenna pattern for the electron is a

dipole (sin2 θ) but as the energy rises, the pattern is folded up. The sin2 θ in the numerator

is from the ~ǫ · ~K factor in the interaction: the elctron’s momentum follows the direction of

polarization. This pattern is superficially quite similar to that for bremsstrahlung or other

radiation process, but note, this is the pattern for an ejected electron, not a photon.

Notice that the cross section falls steeply with Eγ = ~ck: σ ≃ (I/Eγ)
−7/2. The cross

section switches off at Eγ = I due to energy conservation (the ejected electron must have
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positive energy). In a real atom, there are of course many energy levels (s, p, d) with

Is > Ip > Id . . ., and so the total cross section is a set of overlapping shoulders, one for

each threshold. It is often customary to plot the cross section as a function of wavelength;

then the cross section rises with wavelength and there are a series of “notches” as the energy

falls below the threshold to ionize a particular atomic level. The notches serve, of course, as

markers for the energy levels of electrons in the atom.

At very high energy, Eγ > 2mc2, the photoelectric cross section falls to zero, but a new

process takes over and dominates: the photon can convert to an electron-positron pair in

the presence of the electric field of the nucleus. This is called the “Bethe-Heitler” process

after the two physicists who first calculated its rate.
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Photo-disassociation of the deuteron

A problem related to the photoelectric effect is a nice venue to discuss phase space in more

generality. Let us examine the photo-disassociation of the deuteron. In this problem a

photon with momentum ~ ~K and a deuteron of momentum ~PD collide to produce an outgoing

proton and neutron, with momenta ~pp and ~pn, respectively. The interaction Hamiltonian is

(as usual)

H =
1

2mp

(~pp −
e

c
~A)2 +

p2n
2mn

+ V (~rp − ~rn), (13.67)

with the inter-nucleon potential described by V (r). We expand the Hamiltonian and work

to first order in e to write

H0 =
p2p
2mp

+
p2n
2mn

+ V (r); (13.68)

the interaction term is the usual electromagnetic expression

HI = − e

mpc
~pp · ~A. (13.69)

We define center of mass and relative coordinates through M ~R = mp~rp +mn~rn, with M =

mp +mn, and ~r = ~rp − ~rn. The reduced mass is µ = mmmp/M . Then

H0 =
P 2
R

2M
+
p2r
2µ

+ V (r). (13.70)

The form of V (r) is un-needed, other than to specify the wave function of the proton and

neutron in the deuteron ψ(r) in the initial state

|i〉 = ei
~PD·~R
√
V

ψ(r). (13.71)

The final state is assumed to be a product of plane waves for the proton and neutron,

|f〉 = 1√
V

exp(i~pp · ~rp/~)
1√
V

exp(i~pn · ~rn/~). (13.72)

Let us assemble our ingredients for the Golden Rule. The photon, deuteron, proton

and neutron energies are Eγ = ~ck, ED = mDc
2 + Ekin(D), Ep = mpc

2 + Ekin(p), and

En = mnc
2 + Ekin(n). Writing mdc

2 = mpc
2 +mnc

2 − B, where B is the binding energy of

the deuteron, energy conservation becomes Ekin(p) + Ekin(n) = Ein = ~ck + Ekin(D) − B.

Physically, the energy of the photon plus the deuteron’s kinetic energy equals the sum of the

two outgoing projectile’s energies plus the energy to disassociate the deuteron.
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The transition amplitude becomes

M = 〈f |HI |i〉 =
∫

d3Rd3r
e−i~pp·~rp/~e−i~pn·~rn/~

V 3/2

e

mpc
(~pp ·A)ei ~PD ·~R/~ψ(r), (13.73)

where

~A = (
2π~c2

ωkV
)1/2ǫei

~k·~rp (13.74)

is the vector potential at the location of the proton. Again letting the momentum operator

~pp = ~/i~∇p act to the left on the outgoing proton wave function, the transition amplitude

becomes

M =
1

V 3/2

e

mpc
(
2π~c2

ωkV
)1/2~pp · ~ǫ

∫

d3Rd3re−i~pp·~rp/~e−i~pn·~rn/~ei
~PD ·~R/~ψ(r). (13.75)

We now replace rn and rp by the relative and center of mass coordinates, rp = R +

(mn/M)r, rn = R− (mp/M)r. The exponential factor in Eq. 13.75 becomes

i ~R · (~PD + ~~k − ~pp − ~pn) + i~r · (mp

M
~pn − (~pp − ~~k)

mn

M
). (13.76)

Notice thatM is a product of an integral over R which is independent ψ(r) times an integral

over r which contains all the physics. Call that term Mr:

Mr =
1

V 3/2

e

mpc
(
2π~c2

ωkV
)1/2~pp · ~ǫ

∫

d3r exp(−i(−mp

M
pn +

mp

M
(~pp + ~~k)) · ~r)ψ(r). (13.77)

Let’s break away from the calculation for a moment and focus on the R part of M . We

can integrate over R, working in a box of volume V = L3. In one dimension it would be an

integral of the form
∫ L

0

dReiQR/~ =
eiQL/~ − 1

iQ/~
. (13.78)

The Golden Rule needs the square of M . To deal with Eq. 13.78 we first square the result

of the integral and then take the L → ∞ limit. Just as the time integral in the square of

the Golden Rule amplitude
∫ T

0

dteiωT =
eiωT − 1

iω
(13.79)

squares to give an energy-conserving delta function,

lim
T→∞

|e
iωT − 1

iω
|2 → 2πTδ(ω), (13.80)
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so the spatial integral squares to give a momentum conserving delta function,

lim
L→∞

|e
iQL/~ − 1

iQ/~
|2 → 2πLδ(Q/~) = 2π~Lδ(Q). (13.81)

Thus the squared center of mass integral contributes a factor

L3(2π~)3δ3(~PD + ~~k − ~pp − ~pn) (13.82)

to the Golden Rule expression:

dΓ =
2π

~
|Mr|2(2π~)3V δ3(~PD + ~~k − ~pp − ~pn)δ(Ed + ~ck −B −Ep − En)ρ(E). (13.83)

The phase space factor must count all the states for both outgoing particles, so it is

ρ(E) = V
d3pp
(2π~)3

V
d3pn
(2π~)3

. (13.84)

Had we had N particles in the final state, ρ(E) would have been a product of N terms, one

for each particle. One often sees this written in the literature without explanation:

dΓ(i→ j1, j2 . . . jn) = |M |2 2π
~
δ(
∑

i

Ei−
∑

j

Ej)(2π~)
3δ3(

∑

i

~pi−
∑

j

~pj)
∏

j

V d3pj
(2π~)3

. (13.85)

Eq. 13.83 clearly indicates that both momentum and energy are conserved in the process, a

very sensible result.

Including the flux factor for the beam, J = vrel×(one photon in volume V ) = (c/V ),

gives the differential cross section

dσ =
V 2

c

2π

~
|Mr|2(2π~)3δ3(~PD+~~k−~pp−~pn)δ(Ed+~ck−B−Ep−En)

d3pp
(2π~)3

d3pn
(2π~)3

. (13.86)

All the volume factors neatly cancel, as they should. To groom this expression, we can just

integrate over one of the outgoing particles’ momentum. This will impose overall momentum

conservation on the process and give a familiar-looking result,

dσ =
2π

~c
|M̃ |2 d3pp

(2π~)3
δ(Ed + ~ck −B −Ep − En) (13.87)

where

M̃ =
e

mpc
(
2π~c2

ωk
)1/2~pp · ~ǫ

∫

d3r exp(−iq · ~r)ψ(r) (13.88)

and

~~q = −mp

M
~pn +

mp

M
(~pp − ~~k) (13.89)
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Notice that in Eq. 13.86 we do not have to specify any particular reference frame. The

center of mass frame is a convenient one, however. In it, ~PD+~ ~K = 0, ~Pp = −~pn = ~p = ~ ~K,

and Ep + En = p2/(2µ). Performing the phase space integrals leaves

dσ

dΩ
=

2π

~c

ppµ

(2π~)3
|M̃ |2. (13.90)

If we write ~pp = ~ ~K, ~pn = −~ ~K, we find

~q = ~K
mp +mn

M
− ~k

mN

M
= ~K − ~k

mN

M
. (13.91)

This is essentially the same calculation as for the atomic photo-effect. Psychologically,

it is easier to deal with the atomic case, because the kinematics in that case “naturally”

seems to be one-body (photon in, electron out), although of course both situations have two

particles in the final state. In the case of the deuteron, mn/M = 1/2 and ~q = ~K − ~k/2

while in the atomic case mn/M → 1 and ~q = ~K − ~k. In the deuteron, the reduced mass is

µ = mp/2; in the atom, µ = me the electron mass. If we had more than two bodies in the

final state, we would have had a 3N dimensional phase space integral over all the particle’s

momenta, and four delta functions as constraints. The 3N − 4 dimensional integral would

have bounds induced by the requirement that all the particles’ energies must be positive.

It’s a bit of a mess, but completely comprehensible (at least in principle).

We have not completed the calculation, of course. What should we take for the wave

function of the deuteron, ψ(r)? The deuteron is barely bound, B ∼ 2.2 MeV. The range of

the nuclear potential is a few times 10−13 cm – the size of the proton or neutron. Because the

deuteron is so weakly bound, its wave function must have an enormous tail in the classically

forbidden region. A good model for the deuteron is to put the particles in an attractive

square well potential and adjust the parameters in the potential so that the binding energy

is nearly at zero. Then the wave function is nearly all outside the well, and

ψ(r) =

√

κ

2π

e−κr

r
(13.92)

Of course, κ is
√

2µB/~2. With this choice for ψ(r) the integral is pretty much identical to

the one for the plotoelectric effect.
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Scattering theory from the Schrödinger equation

The Lippmann-Schwinger equation

A second approach to scattering theory treats it as a special case of the time-independent

Schrödinger equation
(

Ĥ0 + V
)

|ψ〉 = E |ψ〉 . (13.93)

The zeroth-order Hamiltonian is Ĥ0 =
p2

2m
. Its free space solution (an eigenstate of Ĥ0) is

〈x|φ〉 = ei~p·~x/~

(2π~)3/2
(13.94)

If one were to reduce the strength of the potential to zero, one would expect that |ψ〉 would
reduce to |φ〉. To capture that behavior, rewrite the Schrödinger equation as an integral

equation,

|ψ〉 = 1

E − Ĥ0

V |ψ〉+ |φ〉 . (13.95)

As it stands, the equation is not well defined because H0 has a continuous spectrum; one

must avoid the pole in the first term. This is done by shifting the singularity slightly off the

real axis, modifying Eq. 13.95 to

|ψ±〉 = 1

E −H0 ± iǫ
V |ψ±〉+ |φ〉 . (13.96)

This is called the Lippmann-Schwinger equation. To understand what we have done, evaluate

the Lippmann-Schwinger equation in coordinate space. It is

〈x|ψ±〉 =
∫

d3x′ 〈x| 1

E −H0 ± iǫ
|x′〉 〈x′|V |ψ±〉+ 〈x|φ〉 (13.97)

where

G±(x, x
′) ≡ 〈x| 1

E −H0 ± iǫ
|x′〉 (13.98)

is a free particle Green’s function. One may compute it by passing to momentum space,

G±(x, x
′) =

∫

d3p

∫

d3p′ 〈x|p〉 δ3(p− p′)
1

E − p2

2m
± iǫ

〈p′|x′〉 (13.99)

=

∫

d3p

(2π~)3
ei~p·(~x−

~x′)/~

E − p2

2m
± iǫ
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=
2π

(2π~)3

∫ ∞

0

p2dp

∫ 1

−1

d(cos θ)
eip|~x−

~x′| cos θ/~

E − p2

2m
± iǫ

=
1

i(2π~)2|~x− ~x′|

∫ ∞

o

pdp

[

eip|~x−
~x′|/~ − e−ip|~x−~x′|/~

]

E − p2

2m
± iǫ

.

To simplify notation, let p = ~q and 2mE = ~
2k2. Making these substitutions, one finds

poles at q ≃ k ± iǫ,

G±(x, x
′) =

im

4π2|~x− ~x′|~2

∫ ∞

−∞
qdq

[

eiq|~x−
~x′| − e−iq|~x−~x′|

]

q2 − k2 ± iǫ
(13.100)

which can be evaluated by closing the contours separately for each exponential, and then

taking the ǫ→ 0 limit. This gives

G±(x, x′) = − 1

4π

2m

~2

e±ik|~x−~x′|

|~x− ~x′|
. (13.101)

This is the Green’s function for the Helmholtz equation,

(∇2 + k2)G±(x, x′) =
2m

~2
δ3(~x− ~x′). (13.102)

Now one can understand the ±ǫ: the +iǫ solution represents an outgoing spherical wave,

and the −iǫ solution is an incoming spherical wave.

To check this result, one can return to the Lippmann-Schwinger equation. Inserting the

Green’s function gives

〈x|ψ±〉 = 〈x|φ〉 − m

2π~2

∫

d3x′
e±ik|~x−~x′|

|~x− ~x′|
〈x′|V |ψ±〉 . (13.103)

For usual coordinate-space potentials, 〈x′| V |x′′〉 = V (x′)δ3(x′ − x′′), so

〈x|ψ±〉 = 〈x|φ〉 − m

2π~2

∫

d3x′
e±ik|~x−~x′|

|~x− ~x′|
V (x′) 〈x′|ψ±〉 . (13.104)

We can confirm the meaning of the ±iǫ solutions by considering a short range scattering

potential and computing the wave function far away from it. In that limit, |~x− ~x′| ≃ r− r̂ · ~x′.
Inserting the homogeneous (plane wave) solution to the Schrödinger equation for 〈x|φ〉, the
Lippmann-Schwinger equation becomes

〈x|ψ±〉 −→ ei
~k·~x

(2π~)3/2
− m

2π~2

e±ikr

r

∫

d3x′V (x′)e∓i~k′·~x′ 〈x′|ψ±〉

−→ ei
~k·~x

(2π~)3/2
+
e±ikr

r
f±(k

′, k) (13.105)
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where ~k′ ≡ kr̂. This confirms the statement that the (+iǫ) convention corresponds to an

outgoing wave and the −iǫ one to an incoming wave. The physical situation of scattering

uses the outgoing wave solution.

Explicitly, the scattering amplitude can be given entirely in terms of a matrix element

involving |ψ+〉,

f(~k,~k′) =
1

4π

2m

~2
(2π)3

∫

d3x′

(2π)3/2
e−ik′xV (x′) 〈x′|ψ+〉 (13.106)

= −(2π)3

4π

2m

~2
〈k′|V |ψ+〉 .

Let us assume that the potential is weak and solve the Lippmann-Schwinger equation by

iteration:

〈x|ψ+〉 = 〈x|φ〉+
∫

d3x′ 〈x| 1

E −H0 + iǫ
V |x′〉 〈x′|ψ+〉 (13.107)

= 〈x|φ〉+
∫

d3x′ 〈x| 1

E −H0 + iǫ
V |x′〉 〈x′|φ〉+ · · ·

Keeping the first term in this series corresponds to the first order Born approximation. To

go further, it is useful to define an operator T |φ〉 = V |ψ+〉. The operator T is labeled as

the T-matrix, in analogy with the the T-matrix used in time-dependent calculations. With

this definition,

V |ψ+〉 = V |φ〉+ V
1

E −H0 + iǫ
V |ψ+〉 (13.108)

and so

T |φ〉 = V |φ〉+ V
1

E −H0 + iǫ
T |φ〉 (13.109)

or

T = V + V
1

E −H0 + iǫ
T. (13.110)

The formula for the scattering amplitude

f(~k,~k′) = − 1

4π

2m

~2
(2π)3 〈k′|V |ψ+〉 (13.111)

is equivalent to

f(~k,~k′) = − 1

4π

2m

~2
(2π)3 〈k′|T |k〉 . (13.112)

These results suggest that one can approach scattering problems by solving the operator

equation for T directly. A simple approach is just to iterate:

T = V + V
1

E −H0 + iǫ
V + V

1

E −H0 + iǫ
V

1

E −H0 + iǫ
V + · · · . (13.113)
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As an example, the second order contribution to the scattering amplitude is

f (2)(~k,~k′) = − 1

4π

2m

~2
(2π)3 〈k′|V 1

E −H0 + iǫ
V |k〉 (13.114)

= −m(2π)3

2π~2

∫

d3x

∫

d3x′ 〈k′|x〉 〈x|V 1

E −H0 + iǫ
V |x′〉 〈x′|k〉

= −m(2π)3

2π~2

∫

d3x

∫

d3x′ 〈k′|x〉V (x) 〈x| 1

E −H0 + iǫ
|x′〉 V (x′) 〈x′|k〉

= −m(2π)3

2π~2

∫

d3x

∫

d3x′ 〈k′|x〉V (x)G(x, x′)V (x′) 〈x′|k〉 .

Here G(x, x′) is the free particle propagator. The physics of Eq. 13.113 is simple, and is

illustrated by the second order formula we have just written: the particle comes into the

region of the potential and interacts with it at location x′. It then propagates as a free

particle (through the Green’s function) to location x and interacts again. This evolution

would continue in higher order. We must sum over all the locations x′ and x. It is quite

reminiscent of the interpretation of the evolution operator in time dependent perturbation

theory, except that here we have no explicit time dependence.

The optical theorem

The optical theorem relates the imaginary part of the forward scattering amplitude to the

total elastic cross section,
kσtot
4π

= Imf(θ = 0), (13.115)

where f(~k,~k) = f(θ = 0) and

σtot =

∫

dσ

dΩ
dΩ. (13.116)

To verify this result, begin with

f(θ = 0) = − 1

4π

2m

~2
(2π)3 〈k|T |k〉 = −(2π)2

m

~2
〈k|T |k〉 . (13.117)

Replacing |k〉 by |ψ+〉 using the Lippmann - Schwinger equation, the imaginary part of this

expression can be written as

Im 〈k|T |k〉 = Im 〈ψ+|V †|k〉 (13.118)

= Im

[

〈ψ+|V † |ψ+〉 − 〈ψ+| V † 1

E −H0 + iǫ
V |ψ+〉

]

.
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Since this expression is to be evaluated under an integral, the principal part expansion allows

us to write write
1

E −H0 + iǫ
= P 1

E −H0

+ iπδ(E −H0). (13.119)

If V is Hermitian, the first term in Eq. 13.119 and the P term are real. Only the delta-

function piece conributes to the imaginary part, so

Im 〈k|T |k〉 = −π 〈ψ+|V †δ(E −H0)V |ψ+〉 . (13.120)

Furthermore, the definition for the T-matrix, T |φ〉 = V |ψ+〉, tells us that this expression
can be written as

Im 〈k|T |k〉 = −π 〈k|Tδ(E −H0)T |k〉 (13.121)

= −π
∫

d3k′ 〈k|T |k′〉 〈k′|T |k〉 δ
(

E − ~
2k′2

2m

)

= −π
∫

dΩk2dk′| 〈k|T |k′〉 |2 m

~2k′
δ(k − k′),

(13.122)

inserting a complete set of |k〉 states and picking up the Jacobian from the change of

variables in the delta function. (In the second line, H0 |k′〉 = ~
2k′2/(2m) and of course

E = ~
2k2/(2m).) Evaluating the integral and inserting the necessary numerical factors to

replace | 〈k|T |k′〉 |2 by |f(k, k′)|2, we find

Imf(θ = 0) = [−(2π)2m

~
][−π(mk

~2
)]

∫

dΩ| 〈k′|T |k〉 |2

=
k

4π

∫

dΩ|(2π)
2m

~
〈k′|T |k〉 |2

=
k

4π

∫

dΩ|f(k′, k)|2

=
k

4π

∫

dΩ
dσ

dΩ

=
k

4π
σtot.

(13.123)

This is the desired result. Note that it is an exact relation, independent of any properties of

the scattering interaction.

Several remarks are in order.
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First, the optical theorem is really a consequence of unitarity. Being very general, quan-

tum mechanical evolution can be thought of as the action of an operator S (this is basically

the evolution operator U , but the literature of scattering uses the letter S for what is called

the “scattering matrix” or “S-matrix”) – |ψout〉 = S |ψin〉. S is unitary, so S†S = 1. We are

usually not interested in the case where |ψout〉 is identical to |ψin〉 so we write S = 1+ iT ; the

“1” leaves the state unchanged and the T changes it. Then S†S = 1 = 1+ i(T − T †) + |T |2.
The optical theorem is basically the cancellation of the last two terms of this expression.

Sometimes having an exact relation can be used even when the physics at hand is im-

perfectly known. We will use the optical theorem when we construct the general form of the

scattering amplitude as an expansion in Legendre polynomials or “partial waves.”

The optical theorem is only exact if the scattering amplitude is computed exactly. The

relation will not be satisfied if f(k, k′) is computed approximately. In our simple example,

suppose S = exp(iδ) = 1 + iδ − 1/2δ2 + . . .. The constraint S†S = 1 is only true when all

the terms in the series are kept. A place where this is encountered is the (first order) Born

approximation, where f(k, k′) is real. Higher order terms in the expansion will (gradually)

unitarize the scattering amplitude.

Sometimes people use the optical theorem as a check on their approximate calculation:

how far can I trust what I did? Sometimes it is a guide to model building. The author is

old enough to remember the use of this formula, with an approximation of the scattering

amplitude which was believed to be very accurate at small angles, to predict total cross

sections – today’s physics example would be the total cross section for proton - proton

collisions at very high energies, such as at the Large Hadron Collider.

There is an optical theorem in electrodynamics, where energy conservation replaces uni-

tary evolution. It is a bit more annoying to derive than what we did because the objects in

the calculation (the ~E and ~B fields) carry vector indices. Our derivation implicitly assumed

that we were dealing with spinless particles – ψ(x) is simply a complex field. There is an

extensive literature of scattering with spin, or scattering where the initial and final states

are very different, but perhaps you should go to the specialized literature to read about that.

And finally, unitarity imposes some pretty remarkable constraints on the scattering am-

plitude, which we will encounter below.
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Spherical wave states

Suppose that the scattering potential is rotationally symmetric. In this case it is very

convenient to work with states which are simultaneous eigenstates of the free Hamiltonian

H0, the total squared angular momentum, L̂2, and the projection of the angular momentum

along the z-axis, L̂z. These states are called spherical wave states; we will denote them as

|E, l,m〉. They must satisfy the orthogonality relation

〈E ′, l′, m′|E, l,m〉 = δll′δmm′δ(E −E ′). (13.124)

We expect that the projection of these states into a momentum or wave number basis will

be proportional to the spherical harmonics,

〈~k|E, l,m〉 = glE(k)Y
m
l (k̂). (13.125)

If the particle is assumed to be traveling along the z-axis (i.e. the wave number vector

points along the z-axis) there should be no z-projected angular momentum associated with

the state. This result follows from

L̂z = (xpy − ypx) |kẑ〉 (13.126)

= (xpy − ypx) |kx = 0, ky = 0, kz = k〉 = 0.

We can expand |kẑ〉 in the spherical wave state basis by using completeness,

|kẑ〉 =
∑

l′

∫

dE ′ |E ′, l′, m′ = 0〉 〈E ′, l′, m′ = 0|kẑ〉 . (13.127)

An arbitrary momentum state |~k〉 can be constructed by performing a rotation from the

momentum state along the z-axis, which can be characterized by Euler angles

|~k〉 = D(α = φ, β = θ, γ = 0) |kẑ〉 . (13.128)

With this relation, a general spherical wave state in the momentum basis is

〈E, l,m|~k〉 =
∑

l′

∫

dE ′ 〈E, l,m|D(φ, θ, 0)|E ′, l′, m′ = 0〉 〈E ′, l′, m′ = 0|kẑ〉 . (13.129)

The rotation matrix is an independent entity from the spherical wave states, so

〈E, l,m|~k〉 =
∑

l′

∫

dE ′δ(E − E ′)δll′Dl′

m0 〈E ′, l′, m′ = 0|kẑ〉 (13.130)
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or

〈E, l,m|~k〉 = Dl
m0(φ, θ, 0) 〈E, l, 0|kẑ〉 . (13.131)

Recalling that that Dl
m0 is proportional to Y −m

l , Eq. 13.131 becomes

〈~k|E, l,m〉 =
√

4π

2l + 1
Y m
l (k̂)glE(k). (13.132)

Our goal is now to find the functional form of the proportionality factor gle(k). Begin

with

〈~k|Ĥ0 −E|E, l,m〉 =
(

~
2k2

2m
− E

)

〈~k|E, l,m〉 = 0, (13.133)

which tells us that gle(k) = Nδ
(

~
2k2

2m
− E

)

. Now perform the expansion

〈E ′, l′, m′|E, l,m〉 =

∫

d3k′′ 〈E ′, l′, m′|~k′′〉 〈~k′′|E, l,m〉 (13.134)

=

∫

k2dkdΩN2δ

(

~
2k

′′2

2m
− E

)

δ

(

~
2k

′′2

2m
− E ′

)

Y m′∗
l′ (Ω)Y m

l (Ω)

= |N |2mk
′

~2
δ(E − E ′)δll”δmm′ .

The normalization constraint is N = ~√
mk

and so the momentum spherical wave state is

〈~k|E, l,m〉 = ~√
mk

δ

(

~
2k2

2m
−E

)

Y m
l (k̂). (13.135)

The coordinate space spherical wave state is computed straightforwardly. We expect that

〈~x|E, l,m〉 ∝ jl(kr)Y
m
l (r̂). To find the constant of proportionality we use

〈~x|~k〉 =
ei
~k·~x

(2π)3/2
=
∑

lm

∫

dE 〈~x|E, l,m〉 〈E, l,m|~k〉 (13.136)

=
∑

lm

∫

dE cljl(kr)Y
m
l′ (r̂)

~√
mk

δ

(

~
2k2

2m
− E

)

Y m∗
l (k̂).

Exploiting the identity between the spherical harmonics and Legendre polynomials

∑

m

Y m
l (r̂)Y m∗

l (k̂) = Pl(k̂ · r̂)
2l + 1

4π
, (13.137)

we find

〈~x|~k〉 =
∑

l

2l + 1

4π
Pl(k̂ · r̂)jl(kr)cl

~√
mk

. (13.138)
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Furthermore, the expansion

ei
~k·~r

(2π)3/2
=
∑

l

2l + 1

4π
Pl(k̂ · r̂)jl(kr)

1

(2π)3/2
il, (13.139)

yields the relation cl =
il

~

√

2mk
π

. The final results are

〈~k|E, l,m〉 =
~√
mk

δ

(

E − ~
2k2

2m

)

Y m
l (k̂) (13.140)

〈~x|E, l,m〉 =
il

~

√

2mk

π
jl(kr)Y

m
l (r̂). (13.141)

We will use all this machinery in the next section to derive some extremely useful results.

Partial wave analysis of scattering

If the potential is spherically symmetric then T̂ is a rotational scalar. Consequently,

[T̂ , L̂2] = 0 [T̂ , L̂z] = 0. (13.142)

The Wigner-Eckhart theorem then tells us that

〈E, l,m|T̂ |E ′, l′, m′〉 = δll′δmm′Tl(E). (13.143)

Expanding the scattering amplitude in the spherical wave state basis gives

f(~k,~k′) = − 1

4π

2m

~2
(2π)3

~
2

mk

∑

lm

∑

l′m′

∫

dE

∫

dE ′ 〈~k′|E ′, l′, m′〉Tl(E)δll′δmm′ 〈E, l,m|~k〉

= −4π2

k

∑

lm

Tl(E)Y
m∗
l (k̂′)Y m

l (k̂). (13.144)

We now define the “partial wave amplitude,”

fl(k) =
πTl(E)

k
. (13.145)

Taking ~k to lie along the z-axis,

Y m
l (ẑ) = δm0

√

2l + 1

4π
(13.146)

and in general

Y 0
l (k̂) =

√

2l + 1

4π
Pl(cos θ). (13.147)
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The scattering amplitude becomes

f(~k,~k′) =

∞
∑

l=0

(2l + 1)fl(k)Pl(cos θ). (13.148)

At large distances from the scattering source, the coordinate space wave function was found

to be

〈x|ψ+〉 =
1

(2π)3/2

(

eikz +
eikr

r
f(θ)

)

. (13.149)

Our goal is to combine these expressions into a compact formula for the outgoing wave.

To begin, we use

eikz =
∑

l

(2l + 1)Pl(cos θ)
(

eiπ/2
)l
jl(kr). (13.150)

In the limit kr ≫ 1, the Bessel functions take their asymptotic forms

jl(kr) →
sin
(

kr − lπ
2

)

kr
=
ei(kr−lπ/2) − e−i(kr−lπ/2)

2ikr
, (13.151)

and so the wave function is

〈x|ψ+〉 =
1

(2π)3/2

(

∑

l

(2l + 1)Pl(cos θ)

(

eike − e−i(kr−lπ)

2ikr

)

+
∑

l

(2l + 1)Pl(cos θ)fl(k)
eikr

r

)

=
1

(2π)3/2

∑

l

(2l + 1)
Pl(cos θ)

2ik

(

(1 + 2ikfl(k))
eikr

r
− ei(kr−lπ)

r

)

. (13.152)

This is not a terribly illuminating expression, but it conceals a very useful nugget of

information – a completely general parameterization of the partial wave amplitude fl. To

extract the nugget, notice that the first term in this expression is an outgoing spherical

wave and the second piece is an incoming spherical wave. Now recall that probability must

be conserved in a scattering process. Probability conservation implies the existence of a

conserved current, or that ~∇ · ~J = ∂ρ
∂t
. If the process is time-independent, ~∇ · ~J = 0, and

∫

~J · ~dA = 0 (13.153)

where the integration is implicitly taken over a spherical surface at infinity. For this ex-

pression to hold, the squared amplitudes of the incoming and outgoing spherical waves in

Eq. 13.152 must be equal, forcing

1 = |1 + 2ikfl(k)|2, (13.154)
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which tells us that 1 + 2ikfl(k) must be a pure phase,

1 + 2ikfl(k) = e2iδl(k). (13.155)

The quantity δl(K) is the called the “phase shift for the lth partial wave.” (The 2 in

the exponent is a convention.) Notice that there are three equivalent expressions for the

scattering amplitude,

fl(k) =
e2iδl − 1

2ik
=
eiδl sin δl

k
=

1

k cot δl − ik
. (13.156)

You will see all of these expressions in the literature.

Written in terms of phase shifts, scattering amplitude becomes

f(θ) =
∞
∑

l=0

(2l + 1)

(

e2iδl − 1

2ik

)

Pl(cos θ). (13.157)

This formula is very often used to analyze the results of scattering experiments. It is com-

pletely general; its derivation only depended on unitarity and rotational invariance. Note

that it says that only one energy dependent parameter (δl) per partial wave is needed to

parameterize the scattering amplitude.

We write the differential cross section as

dσ

dΩ
= |f(θ)|2 = 1

k2

∑

ll′

(2l + 1)(2l′ + 1)ei(δl−δ′
l
) sin δl sin δl′Pl(cos θ)Pl′(cos θ). (13.158)

The total cross section is simply the differential cross section integrated over solid angle.

Using
∫

dΩPl(cos θ)Pl′(cos θ) =
4π

2l + 1
δll′, (13.159)

it is

σ =
4π

k2

∑

l

(2l + 1) sin2 δl. (13.160)

Let us check the optical theorem:

f(θ = 0) =
1

k

∞
∑

l=0

(2l + 1)eiδl sin δlPl(1) (13.161)

=
1

k

∞
∑

l=0

(2l + 1) sin δl (cos δl + i sin δl)

Im(f(θ = 0)) =
1

k

∞
∑

l=0

(2l + 1) sin2 δl =
1

4π
σ
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The derivation of these results assumed potential scattering and, therefore, that the

scattering process was unitary. A variation on this language can be used to parameterized

a particular non-unitary variation of this picture. We imagine that a scattering process can

either involve an emerging final state particle, and further that this particle has the same

energy as the incident one, or that the incident particle is completely absorbed by the target

and nothing comes out. We refer to the two processes as “elastic scattering” or “absorption.”

This is clearly a phenomenological description, but the general case of scattering where many

different final states might emerge can be cast into a generalization of this language. This is

done as follows:

Recall that the flux into the origin per partial wave is

∣

∣

∣

∣

1

(2π)3/2
1

2ik

e−ikr

r

∣

∣

∣

∣

2

(13.162)

and the outgoing flux per partial wave is

∣

∣

∣

∣

1

(2π)3/2
1

2ik
(1 + 2ikfl(k))

eikr

r

∣

∣

∣

∣

2

. (13.163)

We define an “inelasticity factor” ηl, with 0 ≤ ηl ≤ 1, from the ratio of the outgoing and

incoming fluxes,

ηl ≡
flux out

flux in
(13.164)

With it, we write

1 + 2ikfl(k) = ηle
2iδl (13.165)

so that the elastic scattering amplitude is

fl(k) =
ηle

2iδl − 1

2ik
. (13.166)

The total elastic cross section is

σel =

∫

dΩ|f(θ)|2 = 4π
∑

l

(2l + 1)|fl|2 (13.167)

where

|fl|2 =
1 + η2l − 2η cos(2δl)

4k2
. (13.168)

The absorption or inelastic cross section is

σinel = σabs =
flux lost

flux in
=

π

k2

∑

l

(2l + 1)
(

1− η2l
)

. (13.169)
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2δ

η

Re(kf_l)

Im(kf_l)

1/2

Figure 13.1: Variables in an Argand diagram.

The total cross section is the sum,

σtot = σel + σinel =
π

k2

∑

l

(2l + 1)
(

1 + η2l − 2ηl cos(2δl) + 1− η2l
)

(13.170)

=
π

k2

∑

l

(2l + 1)2(1− ηl cos(2δl)).

The formalism preserves the optical theorem:

Im(f(θ = 0)) =
∑

l

(2l + 1)
1− ηl cos(2δl)

2k
=

k

4π
σtot. (13.171)

The Argand diagram, Fig. 13.1, is a convenient way to present information about scat-

tering amplitudes: it is a plot of

kfl(k) =
ηle

2iδl − 1

2i
(13.172)

in the complex plane: as we vary k, kfl(k) traces a circle of radius 1
2
when η = 1. The circle

touches the real axis of kfl when δ = 0. We represent scattering data as point on or within

the circle. A typical Argand diagram would look like Fig. 13.2.

How can we compute phase shifts from a given potential V (r)? If the potential is iden-

tically zero beyond some distance, V (r) = 0 for r > R , then for r > R, the wave function

corresponds to that of a free outgoing wave. This solution can be constructed from linear
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Re(kf_l)

Im(kf_l)

Figure 13.2: A typical Argand diagram is a path in the complex plane. The scattering

amplitude kf(k) follows a path in the complex plane as k is varied.

combinations of the spherical Bessel and Neumann functions, the Hankel functions.

h
(1)
l = jl + inl →

exp (i(kr − lπ/2))

ikr
(13.173)

h
(2)
l = jl − inl → −exp (−i(kr − lπ/2))

ikr
. (13.174)

The arrow shows the asymptotic limiting form for large value of the argument. The first

Hankel function thus represents an outgoing wave while the second Hankel function corre-

sponds to an incoming wave. The general solution to Schrödinger’s equation with V (r) = 0

will be the superposition

〈x|ψ+〉 =
1

(2π)3/2

∑

l

il(2l + 1)Al(r)Pl(cos θ) (13.175)

where

Al(r) = c
(1)
l h

(1)
l (kr) + c

(2)
l h

(2)
l (kr). (13.176)

Its limiting form must match the one we had previously found, in Eq. 13.152, so that c
(1)
l =

1
2
e2iδl and c

(2)
l = 1

2
. Thus, for r ≫ R we have

Al(r) = eiδl (cos δljl(kr)− sin δlnl(kr)) . (13.177)

Next, we patch together the solutions from r < R to those for R > r at the boundary

of r = R. Matching functions and derivatives is most economically done by matching
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logarithmic derivatives at the boundary. So define for the interior solution the quantity

βl =
r

Al

dAl

dr

∣

∣

∣

r=R
=

r

ψinside

dψinside

dr

∣

∣

∣

r=R
. (13.178)

From the outside wave function we have

βl = kR
cos δl

djl
dr
(kR)− sin δl

dnl

dr
(kR)

cos δljl(kR)− sin δlnl(kR)
. (13.179)

Equating the expressions and grooming a bit gives

tan δl =
jl(kR)

nl(kR)





kR
j′
l
(kR)

jl(kR)
− βl

kR
n′
l
(kR)

nl(kR)
− βl



 . (13.180)

(Recall, parenthetically, that the most convenient expression for the interior Schrödinger

equation is the one-dimensional form

d2ul(r)

dr2
−
(

k2 − 2mV

~2
− l(l + 1)

~2

)

ul = Eul (13.181)

where ul(r) = rAl(r).)

An example might be helpful: consider a hard sphere potential,

V (r) =

{

0 r > R

∞ r < R
(13.182)

Obviously, the potential acts as a boundary condition: Al(R) = 0, and so

tan δl =
jl(kR)

nl(kR)
. (13.183)

Consider first s-wave scattering:

tan δ0 =
sin(kR)

kR

− cos(kR)
kR

= − tan(kR) (13.184)

or δ0 = −kR. The wave function has just been shifted in space. At low energy (i.e. for long

wavelength, kR ≪ 1) the phase shifts for the higher partial waves are small,

tan δl =
jl(kR)

nl(kR)
→ −(kR)2l+1

(2l + 1)!!(2l − 1)!!
(13.185)



Quantum Mechanics 320

R R

δ

Figure 13.3: The hard sphere potential and the phase shift for s-waves.

and only s-wave scattering will be important. This is a general result, as can be seen from

Eq. 13.180 – the expression in the square brackets is only order unity for small kR. The

cross section can then be approximated as

dσ

dΩ
=

sin2 δ0
k2

≈ R2 (13.186)

or

σ = 4πR2 (13.187)

This is four times the expected geometric cross section, πR2, but when the wavelength is

small compared to the geometric size of a scatterer, we do not expect geometry to give a

correct answer.

Very high energy scattering, with kR ≫ 1, can be treated as scattering from a classical

target. Recalling that

|~L| = |~r × ~p| = rp = r~k, (13.188)

we can define a maximum angular momentum lmax = kR. The cross section can then be

written as

σ =
4π

k2

l=kR
∑

l=0

(2l + 1) sin2 δl. (13.189)

Using the asymptotic forms valid at large kR,

jl →
sin(kR− lπ/2)

kR
(13.190)

nl →
cos(kR− lπ/2)

kR
(13.191)
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the phase shifts approach the limiting value

tan δl = tan

(

kR − lπ

2

)

(13.192)

or

δl = kR− lπ

2
. (13.193)

Inserting this into the formula for the cross section and, because many partial waves con-

tribute, converting the sum to an integral, the cross section becomes

σ =
4π

k2

lmax=kR
∑

l=0

(2l + 1) sin2

(

kR− lπ

2

)

(13.194)

≈ 4π

k2

∫ kR

0

(2l + 1) sin2

(

kR− lπ

2

)

≈ 4π

k2
(kR)2

1

2
= 2πR2.

The sin2 term has averaged to 1
2
because it is fluctuating so rapidly.

We might have expected that the cross section would just have been the area of the

target, πR2, so what about the extra factor of two? Write the scattering amplitude as the

sum of two terms,

f(θ) =
1

2ik

kR
∑

l=0

(2l + 1)e2iδlPl(cos θ) +
i

2k

kR
∑

l=0

(2l + 1)Pl(cos θ) ≡ f1 + fs. (13.195)

The cross section contribution from f1 is

σ =

∫

dΩ|fs|2 =
π

k2

kR
∑

l=0

(2l + 1) = πR2. (13.196)

The fs amplitude makes no reference to the potential, is pure imaginary, and is large at

θ = 0, because that is where the Legendre polynomials are peaked. It is called the shadow

amplitude,

fs =
i

2k

kR
∑

l=0

(2l + 1)Pl(cos θ). (13.197)

For small angles and big l’s the Legendre polynomials can be approximated as the first Bessel

function of lθ argument,

Pl(cos θ) → J0(lθ). (13.198)
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θ∼ 1/kR

|f_s|^2

Figure 13.4: Schematic plot of the shadow scattering differential cross section.

Then the shadow amplitude is approximately

fs =
2i

2k

∫ kR

0

dlJ0(lθ)l =
iRJ1(kRθ)

θ
(13.199)

Graphically, the differential cross section |fs|2 is shown in Fig. 13.4. The corresponding cross

section is

σsh =

∫

dΩ|fs|2 = 2π

∫

R2J2
1 (kRθ)d(cos θ)

θ
= 2πR2

∫ ∞

0

|J1(ξ)|2dξ
ξ

= πR2, (13.200)

where we have set ξ = kRθ to do the integral. The interference term between f1 and fs

averages to zero because 2δl+1 − 2δl = π while fs is always imaginary. So the result is 2πR2,

half from the actual phase shift, and half from the shadow term.

That they are equal is easy to see if we look immediately behind the scattering center,

where nothing should be observed, and a shadow must be created. In fact, the shadow term

can be thought of as giving the entire cross section, from the optical theorem. This occurs

because Im f1 averages to zero, while the partial waves of fs add coherently,

4π

k
Imfs(0) =

4π

k
Im(

i

2k

kR
∑

l=0

(2l + 1)) = 2πR2. (13.201)

Universal features of scattering at low energy

At very low energy, only s-wave scattering is important, since the phase shift for the lth

partial wave goes like k2l+1 and the cross section scales as σl ≃ k4l. Outside the region where

the potential is nonzero, the wave function is

u(r) = sin (kr + δ) . (13.202)
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r=R

Figure 13.5: Wave function when V = 0.

δ

Figure 13.6: Wave function when V < 0 and δ > 0.

How is the sign of δ related to the sign of the potential? We have three cases, illustrated

in Figs. 13.5-13.7:

1) V = 0 : In this case the phase shift δ = 0

2) V < 0 : In this case the interior wave number, k′ =
√

2m
~2
(E − V ) is greater than the

exterior wave number k =
√

2mE
~2

. The location of the first node occurs closer to the

origin than in the V = 0 case. Thus δ > 0.

3) V > 0 : In this case k′ =
√

2m
~2
(E − V ) is less than k =

√

2mE
~2

. This implies that

δ < 0.

As seen in Fig. 13.6, we expect that δ grows larger as the potential becomes deeper an

deeper. (Compare Fig. 13.8.) Eventually the point might reach δ = π. At this point the
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δ

Figure 13.7: Wave function when V > 0 and δ < 0.

δ=π

Figure 13.8: Variation of the phase shift as V (r) becomes more and more negative.

cross section will fall to zero. This is quite odd – the cross section is zero even though the

potential is very attractive. But it has been observed, in electron scattering from noble gas

atoms, where it is called the Ramsauer-Townsend effect.

Let us continue to assume that k is very small. For V = 0 the Schrödinger equation

d2u

dr2
+ k2u = 0 (13.203)

becomes
d2u

dr2
= 0 (13.204)

or

u(r) = const.× (r − a). (13.205)

Another way to see this result is from the limiting form of the exact solution (recall,
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a

u

r

Figure 13.9: Linearizing the wave function about its zero.

δl ≃ k2l+1):

lim
k→0

sin (kr + δ0) ≈ k

(

r +
δ0
k

)

. (13.206)

Comparing the two expressions,

−a =
δ0
k

(13.207)

Recall that it is the logarithmic derivative of the wave function which enters into the

expression for the phase shift, Eq. 13.180. With u = sin (kr + δ), the logarithmic derivative

at the matching point is

u′

u
= k cot (kr + δ)

∣

∣

∣

R
= k cot

(

k

(

r +
δ

k

))

∣

∣

∣

R
≈ 1

r − a

∣

∣

∣

R
. (13.208)

Furthermore, if the range of the potential is small then

1

r − a
≈ −1

a
(13.209)

or

lim
k→0

k cot (kr + δ) = −1

a
. (13.210)

The scattering amplitude is

f =
1

k cot δ − ik
= − 1

1/a+ ik
. (13.211)

The cross section itself is

σ = 4π lim
k→0

1

|k cot δ − ik|2 = 4πa2. (13.212)
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a

Figure 13.10: A repulsive potential generally implies a positive scattering length.

a

Figure 13.11: An attractive potential might impliy a negative scattering length...

The quantity “a” is called the scattering length. Notice that it completely characterizes the

cross section at low energy, regardless of the shape of the potential.

What can we say about the sign of the scattering length? If V = 0, then the wave function

rises linearly from the origin and a = 0. Now suppose V > 0: A repulsive V suppresses the

wave function under it. If we were extrapolate a linear wave function to the origin, we would

find an a > 0. This is illustrated by Fig. 13.10. An attractive potential (V < 0) might give

a positive a (Fig. 13.11) or a negative one (Fig. 13.12).

We can take the analysis a bit farther. We have assumed that k is small, but have not
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a

Figure 13.12: Or a positive scattering length.

found any dependence of σ on k. To remedy that, recall Eq. 13.180, specialized to s-waves:

tan δ0 =
j0(kR)

n0(kR)

[

kR
j′0
j0
− β

kR
n′
0

n0
− β

]

(13.213)

Substituting for the spherical Bessel functions gives

tan δ0 = − tan(kR)

[−1 − β + kR cot kR

−1 − β − kR tan kR

]

=
kR− (1 + β) tankR

1 + β + kR tan kR
. (13.214)

For kR ≪ 1 we can expand this expression and pick up the leading k dependence (note

tan x = x(1 + x2/3)),

tan δ0 = −(kR)

[

β + (kR)2

3
(1 + β)

1 + β + (kR)2

]

. (13.215)

This says that
1

k
tan δo = −R

(

C1 + C2k
2 + · · ·

)

(13.216)

or, more conventionally,

k cot δ0 ≈ −1

a
+

1

2
r0k

2. (13.217)

Again, the scattering length is a. The quantity r0 is a new parameter, called the effective

range. The cross section is characterized by two parameters:

σ =
4πa2

1 +
(

1− r0
a

)

k2a2
+O(k4). (13.218)

The O(k4) represents both higher order terms in the Taylor expansion and the still - uncom-

puted p-wave contribution.
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This is a remarkable result: regardless of the actual shape of V (r), the scattering am-

plitude at low energy is completely characterized by two parameters. This represents a

decoupling of short and long distance physics: the detailed behavior of the system at short

distance (<< 1/k) does not affect long distance (≃ 1/k) probes. This is good news: to

understand long distance physics, one does not have to understand short distances. For

example, consider cold trapped atoms: how do they interact? Atoms are hopelessly compli-

cated and it would be a very difficult problem to compute the scattering amplitude for two

atoms at any moderate energy. However, to understand atomic interactions in a trap, one

only needs two numbers, a and r0. If they cannot be computed from first principles, they

can be determined from one or two experimental measurements. Then all other properties

of the trapped atoms which depend on how they interact (for example, the shift in the crit-

ical temperature Tc for Bose-Einstein condensation, away from the ideal gas result) can be

expressed in terms of a and r0, plus the mass of the atom.

There is corresponding bad news: one can’t learn much about short distance physics with

long distance experiments. An old illustration of this fact comes from the 1930’s. After the

neutron was discovered, a natural question to ask was, what is the neutron-proton potential

V (r)? One could do scattering of protons on deuterium (at energies of a few MeV) and

determine the associated p − n cross sections. Then one would pick a parameterization for

V (r), calculate dσ/dΩ, fit the data, and determine the parameters. This project failed,

because all potentials which give the same a and r0 produce identical scattering amplitudes,

regardless of their detailed shape.

The modern generalization of this story is called “effective field theory.” We describe

low energy behavior of Nature using Lagrangians or Hamiltonians which consist of only as

many operators as there are relevant parameters (here a and r0), regardless of whether the

field variables describe fundamental physics, or not. In the strong interactions, the relevant

degrees of freedom at low energy are the pions, plus static protons and neutrons. They

are not the fundamental constituents of strongly interacting matter, quarks and gluons. If

desired, one could use the more fundamental theory to predict the parameter values of the

low energy effective theory. However, all of low energy physics will be contained in them,

and one would use the low energy theory to do calculations.

Physics at low energies depends only on the symmetries which are manifest at low en-

ergies, and the values of a few low energy parameters. In a BEC, the important degrees of

freedom are the (local) wave function of the condensate, and the symmetries are invariances

under global phase rotations (and local ones, if couplings to electromagnetism are included).
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That the condensate has an atomic substructure is irrelevant to its low energy, long distance

properties.

Let us illustrate how the scattering length and effective range appear in the “spherical

square well,” V (r) = −V0 for r < R, V = 0 otherwise. Recall the bound state solution

u(r) =

{

sin(Gr) r < R

e−λr r > R
(13.219)

where ~2λ2

2m
= |Eb| and ~2G2

2m
= V0−|Eb|. Recall also that G2+λ2 = 2mV0

~2
. Marching solutions

and derivatives at the boundary (or matching logarithmic derivatives) gives us

GR cot(GR) = −λR (13.220)

which can be solved to give the bound state energies. In the scattering situation, the energy

of the incoming state is positive, and so the wave function is

u(r) =

{

sin(Kr) r < R

sin(kr + δ) r > R
(13.221)

We again have the familiar relations ~
2K2

2m
= V0 + Escat and

~
2k2

2m
= Escat. Matching wave

functions and derivatives at the boundary gives

KR cot(KR) = kR cot(kR + δ), (13.222)

which will determine the phase shift.

Now suppose that Escat ≈ 0. Additionally, suppose that the potential is such it supports

one bound state, which is also close to zero: |Eb| ≈ 0. This corresponds to K ≈ G. The

interior solution can be expanded in terms of bound state parameters as

K cot(KR) = G cot(GR) + (K −G)
∂

∂G
(G cot(GR)) (13.223)

= −λ + (K −G)[cotGR−GR(1 + cot2GR)]

= −λ + (K −G)

(

λ

G
−GR

(

1 +
λ2

G2

))

.

(13.224)

If λ/G is tiny, this is

K cotKR = −λ− (K −G)GR. (13.225)
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Furthermore, Taylor expanding K −G in the assumed small k2 + λ2, we find

K −G =

(

2mV0
~2

− λ2 + λ2 + k2
)

1
2

−
(

2mV0
~2

− λ2
)

1
2

(13.226)

≈ 1

2

k2 + λ2
√

2mV0

~2
− λ2

=
1

2

k2 + λ2

G
.

(13.227)

Then

K cot(KR) = −λ− 1

2
(k2 + λ2)R. (13.228)

For small kR compared to δ we can expand the expression

k cot(kR + δ) = k cot δ − k2R(1 + cot2 δ). (13.229)

Then we can combine the two equations to rebuild Eq. 13.222,

k cot δ − k2R(1 + cot2 δ) = −λ− 1

2
(k2 + λ2)R. (13.230)

Replace the cot2 δ by λ2/k2, the leading behavior in the expression (we only need to work

to order k2) and we have

k cot δ − k2R(1 +
λ2

k2
) = −λ− 1

2
(k2 + λ2)R, (13.231)

or

k cot δ = −λ +
1

2
(λ2 + k2)R. (13.232)

Since k cot δ = −1/a + 1
2
r0k

2, we can read off the scattering length as

1

a
= λ− 1

2
Rλ2 (13.233)

and the effective range is just r0 = R. The scattering length has little to do with the length

scale in the problem (R) – the direct connection of the scattering length is to 1/λ, the size

of the wave function in the classically forbidden region.

We began this derivation by making the assumption that the bound state energy was

close to zero. Notice that as the potential is tuned so that the bound state energy is driven

to zero, the scattering length diverges as 1/λ: the cross section can become enormous. There

is a contemporary use of this relation for trapped cold atoms: their interactions can be tuned

by tuning parameters in the potential, and can be made large by bringing the energy of a

bound state close to zero energy. The words “Feshbach resonance” are used to describe this

situation.
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Analyticity properties of scattering amplitudes

Far from the origin, the general form of the (un-normalized and l = 0) wave functions are

ψscat = e2iδ
eikr

r
− e−ikr

r
(13.234)

≡ S(k)
eikr

r
− e−ikr

r
(13.235)

for the scattering solution, and

ψbound =
e−Kr

r
(13.236)

for the bound state. For the bound state, only particular values ofK = Kn are allowed, while

we have a continuum of possibilities for k for the scattering solution. Recall that the bound

state wave function the scattering wave functions are solutions of the same Schrödinger

equation (only the boundary conditions at infinity are different). They must be connected

somehow. To make the connection, imagine evaluating the scattering solution at one of the

bound state energies. It is

ψ(k ≡ iKn) = S(iK)
e−Knr

r
− eKnr

r
(13.237)

It would reproduce the bound state solution if the incoming wave’s amplitude were zero,

that is, if
ψincoming

ψoutgoing

=
1

S(iKn)
→ 0. (13.238)

The connection between the bound state and the scattered wave function will only hold if

this ratio goes to zero at the special values of k = iKn. This will happen only if the scattering

amplitude has poles at all these values,

S(k) ∝
∏

n

1

k − iKn
(13.239)

This is a very general and profound statement. It says that one can determine bound state

properties from very careful scattering experiments. Recognizing that the connection we have

discovered applies to all partial waves, we put an index on Sl, the scattering amplitude in

the lth partial wave, We add to our list of properties of Sl = e2iδl :

1) Sl has poles at k = iK for all bound states.
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2) Sl = e2iδl for all k > 0.

3) Because tan δl or δl ∼ k2l+1 at small k, S = 1 at k = 0

Let us check that these results can be obtained from the effective range formula:

k cot δl = ik

[

eiδ + e−iδ

eiδ − e−iδ

]

= ik

[

e2iδ + 1

e2iδl − 1

]

= ik

[

S + 1

S − 1

]

= −1

a
+

1

2
r0k

2 (13.240)

If S has a pole at some k, then S+1
S−1

→ 1 and

1

a
= −ik + 1

2
r0k

2 (13.241)

At the bound state, we recall the definition of Eq. 13.219, that k = iλ, or

1

a
= λ− 1

2
r0λ

2 (13.242)

This agrees with Eq. 13.233.

In the scattering length limit, the scattering amplitude is

f = − 1

1/a+ ik
(13.243)

Notice that we need a > 0 to have a true bound state, so that ik = −1/a and eikr becomes

e−r/a. The pole at ik = −1/a with a < 0 does not correspond to a bound state. People

speak of a “virtual bound state,” but that is just a shorthand for having a < 0. These

situations occur in low energy proton-neutron scattering. The total spin S = 1 channel has

a bound state (the deuteron) which is at a tiny energy, 2.2 MeV compared to the mass of the

neutron or proton; the singlet state has no bound state, but its scattering length is negative

and about four times as large as the triplet’s.

Resonance and scattering

Recall that the total cross section can be written as

σ =
4π

k2

∞
∑

l=0

(2l + 1) sin2 δl. (13.244)

There is a maximum value each partial wave can contribute to the cross section, which

obviously occurs when | sin δl| = 1 or δl is an integer multiple of π/2. This is called the

“unitarity bound.”
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new physics

σ_ l / σ_max

1

Figure 13.13: Projecting a scattering cross section above the energy where the unitarity

bound is satisfied.

The unitarity bound is often invoked as a harbinger of new physics. Imagine that an

experiment only measure a certain region of the energy spectrum, and in that region the

cross section in some partial wave is observed to be rising. (Compare Fig. 13.13.). A linear

projection the data might carry the cross section above the unitarity bound. Since this is

not allowed, some new physics must appear, which will modify the scattering amplitude and

preserve unitarity.

One kind of new physics is a resonance. To introduce the idea of a resonance in a

perhaps too-unphysical way, suppose that the phase shift δl happens to increase with energy

and crosses the value π/2 at an energy E0, as shown in Fig. 13.14. This behavior can be

parameterized as

tan δl(E) ∼
1
2
Γ

E0 − E
. (13.245)

Then the cross section can be re-expressed in terms of E0 and Γ, as

σl =
4π

k2
(2l + 1)

tan2 δl
1 + tan2 δl

=
π

k2
(2l + 1)

Γ2

(E0 − E)2 + Γ2

4

. (13.246)

The familiar Lorentzian line shape is characteristic of resonant behavior. (Often, the names

“Breit-Wigner” are attached to this shape.) From the formula, we see the physics of reso-

nance: the cross section becomes large because a state whose energy is close to the center of

mass energy in the scattering experiment is easily excited.

Resonances play an important role in scattering experiments: they are a way to observe

the spectrum of excitations in the target. It’s worth spending some time looking more closely
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δ

90

E_0 E

Figure 13.14: Resonant behavior in the scattering phase shift. The resonance is at energy

E0.

E_0 E

σ

Figure 13.15: Energy dependence of a resonant cross section.
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at what is going on. Let us continue the exposition by returning to a perturbative T-matrix

perspective. The second order expression involves a sum over all intermediate states

〈f |T |i〉 =
∑

n

〈f |V |n〉 〈n|V |i〉
Ei −En

(13.247)

In this expression, Ei is the CM energy for the scattering process. If there is an intermediate

state |j〉 with energy Ej , it will dominate the T-matrix when Ei is near Ej . Then the

T-matrix can be approximated by a single term

〈f |T |i〉 = 〈f |V |j〉 〈j|V |i〉
Ei − Ej

. (13.248)

Now consider the first order transition probability per unit time for state |j〉 to decay

into state |f〉 under the influence of the perturbation V :

γjf =
2π

~
ρ(Ej)| 〈f |V |j〉 |2 (13.249)

This has units of inverse time. The corresponding quantity with dimensions of energy is

Γjf = ~γjf , and

Γjf = 2πρ(Ej)| 〈f |V |j〉 |2. (13.250)

The two body phase space factor is

ρ(Ej) =
d3p

(2π~)3
δ(Ej − E). (13.251)

If the squared matrix element has no angular dependence then we can perform the angular

integral and the phase space factor becomes

ρ(Ej) =
4πµp

(2π~)3
dEδ(Ej −E) =

µp

2π2~3
. (13.252)

We can substitute the Γ’s for the matrix elements of V into the relevant places in Eq. 13.248,

so

| 〈f |T |i〉 |2 = | 〈f |V |j〉 |2| 〈j|V |i〉 |2
(Ei − Ej)2

=
ΓjfΓji

(Ei −Ej)2
1

(2πρ(Ej))2
. (13.253)

Now we return to the cross section for the reaction i→ f . It is proportional to the square of

the T-matrix element, weighted by phase space factors. (Recall, everything is s-wave, still.)

σ =
2π

~
ρ(E)| 〈f |T |i〉 |2 1

vrel
(13.254)

=
2π

~

µ

p
ρ(E)

1

(E − Ej)2
ΓjfΓji

(2πρ(Ej))2
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When E ∼ Ej , or when the c. m. energy is close to the resonance energy, the ρ(E)’s cancel

and we have

σ =
2π

~

µ

p

1

4π2

1

ρ(E)

ΓjfΓji

(E − Ej)2
(13.255)

=
π

k2
ΓjfΓji

(E − Ej)2
(13.256)

This is resonant behavior. The answer is a bit too extreme, because the cross section diverges

at E = Ej . This just is an unphysical consequence of using lowest order perturbation theory.

We can fix this with the following simple argument: Suppose that the state |j〉 has a lifetime

of 1
γ
. (We know it can decay; we have just computed its decay rate into the state |f〉 in

Eq. 13.249.) Then

〈j(t)|j(t)〉 ∼ e−γt (13.257)

and so

|j(t)〉 = |j〉 e−γt/2eiEjt/~ (13.258)

= |j〉 e−i/~(Ej−iΓ/2)t

We then recall how the second order T-matrix formula was derived. There was a factor of

exp(−iEjt/~) which upon integration gave a factor of Ej in a denominator. We can just

replace Ej byEj − iΓ
2
in the denominator,

1

E −Ej
→ 1

E − Ej +
iΓ
2

, (13.259)

and we arrive at our final form for the resonance cross section:

σ(i→ f) → π

k2
ΓjfΓji

(E − Ej)2 +
Γ2

4

. (13.260)

Although the derivation was done in the context of perturbation theory, it is true in gen-

eral. The formula has many practical applications. The Γ’s have units of energy. Quantities

such as Γjf are called the “partial decay width” for the resonance to decay into final state

f . Γ with no subscript is the ‘total decay width” and of course

Γ =
∑

f

Γjf . (13.261)

The physical interpretation of a scattering process parameterized by Eq. 13.260 is that the

initial state couples to the resonance with a strength proportional to Γji and the final state
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couples with a strength Γjf (or, equivalently, the intermediate state couples to the final

state with the same factor). The range of energies over which the resonance contributes

significantly to scattering, Γ, gives a measure of the lifetime of the state. Sometimes, your

literature will convert Γ into an inverse lifetime; more often the quantity is quoted as an

energy. The form of the expression “on resonance,” (at E = Ej) is also worth viewing:

σ =
4π

k2
ΓjiΓjf

Γ2
=

4π

k2

(

Γji

Γ

)(

Γjf

Γ

)

(13.262)

This suggests a useful experimental technique: while sitting on the resonance, one can mea-

sure “branching ratios” Γjk/Γ for the resonant state either from the relative rate of produc-

tion of different final states at fixed initial state, or from the relative rates of production of

the resonance with different initial states.

The whole derivation assumed s-wave scattering. If the resonance occurs in the lth partial

wave, the expression just picks up an overall factor of 2l + 1.

Many real-life experimental situations are more complicated. There can be multiple,

overlapping resonances, in which case one must add the amplitudes for the different res-

onances. Often, scattering can proceed through the resonance and through non-resonant

channels (“background”). In that case we parameterize the scattering amplitude as

kfl(E) =
−1

2
Γ

E − E0 +
iΓ
2

+R(E) (13.263)

where R(E) is the smooth background. The resonance will interfere with the background.

The phase of the resonant scattering amplitude depends strongly on energy, while the back-

ground amplitude generally varies slowly. A typical interference one would see in a resonance

would look like Fig. 13.16 or, cleaning the graph, Fig. 13.17. The background may be some

known physics, and then the interference pattern will be a diagnostic for understanding

the resonance. This was used at the time of the first experiments for Z0 production in

electron -positron annihilation. The Z0 has a mass of about 91 GeV and its production

e+e− → Z0 → µ+µ− interefered with the (known) QED process e+e− → γ → µ+µ−.

Unitarity arguments were quite important in the development of the Standard Model

of the weak and electromagnetic interactions. Low energy cross sections for various weak

processes were observed to rise as a positive power of the energy, with an extrapolated energy

for the loss of unitarity estimated to be several hundred GeV. Something new had do occur.

That new physics was, of course, the W and Z particles. The same arguments are made

today, involving the scattering cross section for particular polarization states of W’s, to infer
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Figure 13.16: A resonance interfering with background, with regions of constructive and

destructive interference labeled.

Figure 13.17: A resonance interfering with background.
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the existence of some new physics beyond the Higgs boson within the energy reach of the

Large Hadron Collider.

Scattering with identical particles

Consider a scattering process involving two identical spinless bosons. The wave function is

symmetric under exchange of the particles’ coordinates. In the absence of symmetry consid-

erations, the wave function of the final state is a function of the relative spatial coordinate

~x = ~x1 − ~x2. To generate a correct result, we must explicitly symmetrize the scattering

amplitude,

ψs(~x) = eikx + e−ikx + (f(θ) + f(π − θ)))
eikr

r
. (13.264)

The differential cross section then becomes

dσ

dΩ
= |f(θ) + f(π − θ)|2 (13.265)

= |f(θ)|2 + |f(π − θ)|2 + 2Re|f ∗(θ)f(π − θ)|. (13.266)

Note that it is symmetric under the replacement θ → π − θ.

Fermion wave functions are antisymmetric. Two spin-1
2
fermions can be in a relative spin

state S = 0, state, in which the spin wave function is antisymmetric and the spatial wave

function is symmetric, or in a S = 1 state with an antisymmetric space wave function. The

scattering amplitudes in the two cases are then

S = 0 → f(θ) + f(π − θ) (13.267)

S = 1 → f(θ)− f(π − θ) (13.268)

where of course f(θ) is the unsymmetrized scattering amplitude.

Scattering experiments are often performed using an unpolarized beam and target. A

mixture of the two scattering channels is observed. For spin-1
2
fermions the initial - spin -

averaged and final - spin -summed differential cross section is

dσ

dΩ
=

1

4
|FS|2 +

3

4
|FA|2 (13.269)

= |f(θ)|2 + |f(π − θ)|2 − Re(f ∗(θ)f(π − θ)|.

Symmetry has an immediate effect on the partial wave expansion

f(θ) =
∑

l

flPl(cos θ). (13.270)
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Under parity P̂Pl(cos θ) → (−1)lPl(cos θ). Therefore the space-symmetric scattering ampli-

tude is a sum restricted to even partial waves,

FS(θ) =
∑

l even
flPl(cos θ) (13.271)

while the antisymmetric amplitude is restricted to the odd partial waves

FA(θ) =
∑

l odd

flPl(cos θ). (13.272)

As an interesting consequence, there is no s-wave scattering amplitude for a pair of fermions

in a spin-triplet state, and no p-wave amplitude for the scattering of two identical spinless

bosons.



Chapter 14

Classical waves – quantum mechanical

particles

341
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The quantum electromagnetic field

By now, you know very well that systems which have a classical description as particles

have a quantum mechanical description which is wave-like: at the very least, their behavior

is described by the Schrödinger equation, and we naturally expect to see wave phenomena

such as interference in the normal state of events.

But what about systems whose classical limit is a system of waves, such as the electro-

magnetic field, vibrations of a crystalline solid, and the like? You colloquially know that

these systems show particle-like behavior, in that their energies are quantized in multiples

of a fundamental frequency, E = n~ωk with n = 0, 1, 2, . . .: For the electromagnetic field,

this is a description in terms of photons. We have yet to explore what this particle - like

behavior really means. It happens that it is ubiquitous: any classical system which is a set

of coupled (or uncoupled) harmonic oscillators shows photon-like behavior. Let us describe

this, now.

This will be a minimalist development of the quantum mechanical electromagnetic field.

I will not worry about special relativity per se, or about setting up the formalism to deal with

high orders of perturbation theory. The goal is to improve on the semi-classical description

of radiation given in Chapter 12, to make it a fully quantum mechanical one.

We recall that the quantum mechanics of a single simple harmonic oscillator is described

using raising and lowering operators

â =

√

mω

2~

(

x̂+
ip̂

mω

)

â† =

√

mω

2~

(

x̂− ip̂

mω

)

(14.1)

such that [a, a†] = 1 and

H =
~ω

2
(a†a+ aa†). (14.2)

Eigenstates of H are the number states |n〉 where

a†a |n〉 = n |n〉 ; a |n〉 =
√
n |n− 1〉 ; a† |n〉 =

√
n + 1 |n+ 1〉 (14.3)

and n = 0, 1, 2, . . .. Of course, En = ~ω(n + 1/2). Finally recall the Heisenberg equations

of motion for the raising and lowering operators are equivalent to the classical ones for the

complex amplitudes

i~ȧ = [H, a] → ȧ = −iωa (14.4)

and similarly for a†.
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So much for one oscillator. Suppose we have many uncoupled oscillators. The Hamilto-

nian is

H =
∑

i

Hi =
∑

i

p2i
2mi

+
miω

2
i x

2
i

2
. (14.5)

“Uncoupled” means that [xi, pj] = 0 if i 6= j. Clearly, we can solve this system by introducing

separate creation and annihilation operators for each oscillator, just putting a subscript on

the raising and lowering operators. The only nontrivial commutator will be [ai, a
†
j] = δi,j.

The Hamiltonian becomes

H =
∑

i

~ωi(a
†
iai +

1

2
) (14.6)

Our states are product states, with an integer for each index:

|{n}〉 = |n1, n2, n3 . . .〉 (14.7)

where

ai |{n}〉 =
√
ni |. . . , ni−1, ni − 1, ni+1 . . .〉

a†i |{n}〉 =
√
ni + 1 |. . . , ni−1, ni + 1, ni+1 . . .〉

(14.8)

The energy is a sum of terms, each of which has its own integer.

The problem of quantizing the electromagnetic field, or any linear wave system, can be

solved if we can rewrite the classical system as a set of uncoupled harmonic oscillators. Before

explicitly considering electrodynamics, let’s begin by looking at a slightly simpler problem,

a set of coupled oscillators. Suppose our classical Hamiltonian is a generalized quadratic

function of the coordinates and momenta:

H =
∑

j

p2j
2

+
∑

j,k

1

2
xjVjkxk (14.9)

with Vjk = Vkj. (This is not the most general quadratic Hamiltonian we can consider, but it

will suffice for our needs.) The equations of motion, which tie all the x’s and p’s together,

ṗj = −Vjkxk
ẋj = pj ,

(14.10)

can be uncoupled by defining linear combinations Xj = Rjlxl or xj = R−1
jl Xl. Then

ṗj = −VjkR−1
jl Xl (14.11)
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Rnj [pn = R−1
jl Ẋl] → Ẋn = Rnjpj ≡ Pn (14.12)

so

Ṗn = −RnjVjkR
−1
jl Xl (14.13)

Now choose R so that RnjVjkR
−1
jl is diagonal, equal to −ω2

l δnl. The system decouples:

Ṗj = −ωjXj

Ẋj = Pj

(14.14)

and

H =
∑

j

(
P 2
n

2
+
ω2
nX

2
n

2
). (14.15)

Our coupled system has been re-written as a set of uncoupled oscillators. The ωn’s are the

frequencies of the normal modes.

Now for the quantum mechanical case. We could begin with the original Hamiltonian

Eq. 14.9 and replace the pi’s and xi’s by operators obeying the usual commutation relations.

However, the Hamiltonian couples the coordinates, and hence the raising and lowering op-

erators. It is better to jump immediately to the diagonal case, Eq. 14.15, and work with the

Pn’s and Xn’s: define An = Xn+iPn and A†
n = Xn+iPn. Operators associated with different

normal modes commute among themselves. They obey the standard commutation relation

of number operators, the states are given by Eq. 14.7 and the energies are integer-spaced

multiples of ~ωk for each normal mode k.

Finally, note that if we have a classical system with a set of dynamical variables vk, and

if we can write the classical equations of motion for a system as

v̇k = −iωvk v̇∗k = iωv∗k (14.16)

then it is a collection of uncoupled oscillators – and so is the quantum system. The classical

vk’s refer to the normal modes; their quantum mechanical operators act on states whose

frequencies are the eigenfrequencies of the classical system. The Rkl matrices give us the

translation dictionary between the normal mode states and the local degrees of freedom.

So, are the classical Maxwell equations oscillator-like? Recall that in Coulomb gauge

(~∇ · ~A = 0 and φ = 0) the vector potential is a solution of the wave equation

∇2 ~A− 1

c2
∂2 ~A

∂t2
= 0. (14.17)
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In a box of volume V , with appropriate boundary conditions, the wave numbers of A are

quantized and we can write the vector potential as a superposition of eigenmodes

~A(~x, t) =
∑

k

∑

σ=1,2

(

2π~c

ωV

)1/2

~ǫ
(

akσ(t)e
i(~k·~x) + a∗kσ(t)e

−i(~k·~x)
)

(14.18)

The σ index labels the polarization, and if ~∇· ~A = 0, then ~ǫkσ ·~k = 0.There are of course two

such polarizations, which can be chosen rather arbitrarily. The factors akσ(t) are the Fourier

coefficients or amplitudes of the wave number ~k part of the superposition. The pre-factor is

our old one-photon normalization, chosen purely for convenience because the a’s could take

on any classical value.

Now, do the classical Fourier coefficients have Eq. 14.16 as their equation of motion? If

they do, we are done: the quantum electromagnetic field is a a direct product of oscillator

states; that is, it is composed of photons.

This is straightforwardly done, modulo an annoying factor of two. If we keep both a and

a∗ in the equation for A, we over-count the number of k modes by a factor of two. We can

take care of this over-counting if we clip out half the k modes, perhaps by restricting kz > 0

in the sum.

Inserting Eq. 14.18 into the wave equations gives us

d2akσ
dt2

+ ω2
kakσ = 0 (14.19)

where ωk = ck. The solution is, of course,

akσ(t) = a
(1)
kσ (0)e

−iωkt + a
(2)
kσ (0)e

iωkt. (14.20)

The annoying factor of two now returns, usefully. We can remove the restriction kz > 0 if

we define akσ = a
(1)
kσ (0) if kz > 0 and a

(2)
kσ (0) if kz < 0. This amounts to just keeping the

solution

akσ(t) = a
(0)
kσ e

−iωkt (14.21)

or
dakσ
dt

= −iωkakσ. (14.22)

This gives us a set of classical variables with the desired first-order equation of motion. The

energy in the field is also that of a set of oscillators:

U =
1

8π

∫

(E2 +B2) =
∑

kσ

~ωk

2
(akσ(t)

∗akσ(t) + akσ(t)a
∗
kσ(t)) (14.23)
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And there we are: the classical mechanical electromagnetic field is a collection of oscilla-

tors, one for each value of (k, σ). We replace the Fourier modes by a set of number operators.

The Hamiltonian becomes

H =
∑

kσ

~ωk

2
(akσa

†
kσ + akσa

†
kσ). (14.24)

The quantum vector potential is an operator (as are all dynamical variables). Looking at it

again, we see that it is a superposition of raising operators and lowering operators:

~A(~x, t) =
∑

k

∑

σ=1,2

(

2π~c

ωV

)1/2

~ǫ
(

akσe
i~k·~x + a†kσe

−i~k·~x
)

. (14.25)

It acts on our photon-counting (number basis) Hilbert space to increase or decrease nkσ – to

increase or decrease the number of photons in a mode. We can make a suggestive change in

nomenclature: akσ is conventionally called an “annihilation operator” since it decreases the

number of photons in a state; a†kσ is called a “creation operator.”

The Hamiltonian of the electromagnetic field,

Hrad =
∑

kσ

~ω[a†kσakσ +
1

2
] (14.26)

has an annoying feature – the second term. The energy of an oscillator in its ground state

is ~ω/2. Since there are an infinite number of modes of the electromagnetic field, this “zero

point energy” is infinite. Fortunately, we do not have to think about it. We only care about

energy differences in calculations, and so we could only imagine seeing the zero point energy

in very unusual circumstances (quantum gravity, anyone?) or under changes in the boundary

conditions, the Casimir effect. So we’ll ignore it henceforth and just write

Hrad =
∑

kσ

~ωa†kσakσ. (14.27)

Let’s use this formalism to reconsider emission and absorption of light by an atom, finally

treating the electromagnetic field quantum mechanically. As in Chapter 12, we write

H = H0 +Hint (14.28)

where H0 = Hatom +Hrad is the zeroth order Hamiltonian, whose eigenstates we use in our

perturbative expansion. The (first order) interaction term is

Hint = −e~p ·
~A

mc
. (14.29)
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For the case of emission, our initial and final states are

|i〉 = |a〉atom |. . . , nkσ, . . .〉rad
|f〉 = |b〉atom |. . . , nkσ + 1, . . .〉rad

(14.30)

and we need to write the interaction term explicitly, in order to evaluate it,

Hint = − e

mc

∑

kσ

(

2π~c

ωV

)1/2

~p · ~ǫ[akσeikx + a†kσe
−ikx]. (14.31)

Its matrix element is

〈f |Hint|i〉 = − e

mc

∑

kσ

(

2π~c

ωV

)1/2

〈b|~p · ~ǫe−ikx|a〉 〈nkσ + 1|a†kσ|nkσ〉 . (14.32)

Note that our choice of |f〉 and |i〉 means that 〈f |akσ|i〉 = 0. Only the creation term

contributes. The matrix element becomes

〈f |Hint|i〉 = − e

mc

∑

kσ

(

2π~c

ωV

)1/2 √
nkσ + 1 〈b|~p · ~ǫe−ikx|a〉 . (14.33)

This is formally a time-independent perturbation. Therefore, the Golden Rule’s delta func-

tion constrains the energy difference between the initial and final states, δ(Eb + ~ωk − Ea).

Here the ~ωk comes from the energy of the state of the electromagnetic field. It compensates

mathematically for the e±iωt of the semi-classical calculation. The Golden Rule, including

one-body phase space for the states of the electromagnetic field, gives the differential decay

rate

dΓ =
2π

~

(

2π~c

ωV

)

(nkσ + 1)| 〈b|~p · ~ǫe−ikx|a〉 |2δ(Eb + ~ωk − Ea)× V
d3pγ
(2π~)3

. (14.34)

Note that apart from the (nkσ+1), this is exactly the same result we had in semi-classical

approximation. (This means that all of our discussion about selection rules and intensities

goes through unchanged.) But now our calculation is completely quantum mechanically

consistent. The operator ~A has taken us from an nkσ photon state to an nkσ + 1 photon

state.

For absorption, the final state is

|f〉 = |b〉atom |. . . , nkσ − 1, . . .〉rad (14.35)
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and the Golden Rule gives us

dΓ =
2π

~

(

2π~c

ωV

)

nkσ| 〈b|~p · ~ǫe−ikx|a〉 |2δ(Ec − ~ωk − Ea). (14.36)

The n or n+ 1 factors are sensible. Recall that if we had had an external beam of intensity

I(ω)∆ω (energy per unit volume), then

|aext|2 =
2πc2

ω2
I(ω)∆ω. (14.37)

If the beam is actually N photons of energy ~ω, we’d expect

N

(

2π~c

ωV

)

=
2πc2

ω2
I(ω)∆ω (14.38)

or

N~ω = V I(ω)∆ω. (14.39)

This seems consistent.

Note that the emission rate is proportional to nkσ + 1. If there were no photons in the

initial state, this would be unity. But this case is what we meant by “spontaneous emission”

– the atom just decays. The nkσ part of the expression corresponds to what we meant

by induced or stimulated emission. Just as in the case of absorption, it is proportional to

the intensity of radiation already present in the to-be-occupied state. There is of course a

more holistic way to regard our result: if |i〉 has nkσ photons already present, the decay

rate for the atom is enhanced by a factor nkσ + 1. The photonic state becomes even more

populated. Hmm...light amplification by stimulated emission of radiation? Perhaps there are

practical applications. Note that the effect has a rather trivial origin, from the algebra of the

raising operator, 〈n+ 1|a†|n〉 =
√
n+ 1. The same thing will happen for all oscillator-analog

systems.

By the way, do you recall the Einstein relations? We had Na atoms in state a, Nb in

state b, in a black body cavity,
Na

Nb
= e−

Eb−Ea
kT (14.40)

In equilibrium, and with Eb < Ea)

dNb

dt
= −Nb(absorption(b→ a)) +Na(emission(a → b))

dNb

dt
= −Na(emission(a → b)) +Nb(absorption(b → a))

(14.41)
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In equilibrium dNi/dt = 0 for either i, meaning that Nb/Na = (emission rate)/(absorption

rate) = (nkσ + 1)/nkσ. Thus

nkσ

nkσ + 1
= e−

Eb−Ea
kT = e−

~ω
kT (14.42)

or

nkσ =
1

e
~ω
kT − 1

(14.43)

which is the Planck formula, mode by mode. Phase space just counts the number of available

modes per wave number interval.

Particles to waves to particles again

Our discussion about the free electromagnetic field gave us a language to talk about the

creation and annihilation of photons. It also gave us a Hamiltonian, Eq. 14.27, which was

additive in the photon number. Finally, it gave us a vector potential operator, Eq. 14.25.

Notice its structure: each operator (akσ, for example) is multiplied by a spatially dependent

function (ak(x) =
(

2π~c
ωV

)1/2
~ǫei(

~k·~x)) which is a solution to the classical wave equation (or “field

equation”) (∇2 + k2)ak(x) = 0. Here ∇2 is just a differential operator, with no connection

to momentum or any quantum operator.

Let’s think about some analog situations in Nature. In particular, consider a collection

of non-interacting particles. If they have a set of energy levels ǫn, then the energy of a

many-particle system is

E =
n
∑

j=1

ǫjnj (14.44)

where nj is the number of particles in energy state j. Note the resemblance to the photon

formula.

Next, think more closely about conservation laws. Generally, quantities like charge are

conserved, but the number of particles might not be conserved. For example, in a gas of

electrons and positrons, the number of electrons or positrons is not conserved because they

can annihilate. Only the difference in their number, the net charge, is conserved. Also, it is

often useful to think about particle creation and annihilation in a more extended context:

imagine the situation when an electron in an atom leaves the 1S state to go to the 2P state:

∆n1S = −1, ∆n2P = +1. The total particle number is conserved, the number of particles in

any given state is not.
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Finally, why are all electrons alike? We could have asked before, why are all photons

alike? A crazy but consistent answer: they are all states created by A(x, t), and there is only

one operator A(x, t).

The combination of all these ideas, that particles are field quanta which can be created

and annihilated, is called Quantum Field Theory. It is a more general formulation of quantum

dynamics – the quantum mechanics of a one or a few particles in a potential contains a

subset of quantum field theoretic ideas – and all of (quantum) Nature is described at the

most fundamental level we know about by one quantum field theory or another. In addition,

many “effective field theories” are used to describe particular natural systems.

Let’s formulate quantum field theory for Schrödinger particles. The idea is to imagine

thinking of the Schrödinger equation as a differential equation (∇2 is just a differential

operator, nothing more)

i~
∂ψ(x, t)

∂t
= − ~

2

2m
∇2ψ + V (x)ψ. (14.45)

Let ψn(x) solve

[− ~
2

2m
∇2 + V (x)]ψn(x) = Enψn(x) (14.46)

and write the general solution to Eq. 14.45 as

ψ(x, t) =
∑

n

bn(t)ψn(x) (14.47)

where

i~
∂bn
∂t

= Enbn (14.48)

or
∂bn
∂t

= −iωnbn. (14.49)

This is just a “classical” differential equation, but we appear to have two thirds (the wave

equation, a time dependent b) of the photon game ingredients in hand. If we could write

H =
∑

n

ǫnb
∗
nbn (14.50)

we could re-interpret the expansion coefficient as an operator in an abstract Hilbert space.

So we need to find an H which can be used to give Eq. 14.49 as an equation of motion. A

natural guess for H is

H =

∫

d3xψ∗(x, t)[− ~
2

2m
∇2 + V (x)]ψ(x, t) (14.51)
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which reduces to

H =
∑

n

Enb
∗
nbn, (14.52)

just from orthogonality. Now boldly interpret bn as an operator with commutation relations

[bn, b
†
m] = δnm [bn, bm] = 0 [b†n, b

†
m] = 0 (14.53)

(so that different levels n don’t interact). The Heisenberg equation of motion is

i~
∂bn
∂t

= [bn, H ] =
∑

j

[bn, b
†
jbj ]Ej = Enbn. (14.54)

We have a theory of “field quanta of the Schrödinger equation.” Our Hilbert space is a

number - operator - diagonal space

|{n}〉 = |n1, n2, n3, . . .〉 (14.55)

where the subscript labels levels of the Schrödinger differential operator. The quantity

ψ(x, t) =
∑

n

ψn(x)bn(t) (14.56)

is an operator, a sum of a product of a c-number function of the spatial coordinates times an

(annihilation) operator acting on the space of states. In contrast to photons, for Schrödinger

particles, different operators create or annihilate particles:

ψ†(x, t) =
∑

n

ψ∗
n(x)b

†
n(t) (14.57)

Note that the b’s act on states like harmonic oscillator operators: b†nbn |n〉 = n |n〉. The

quantity n is an integer n = 0, 1, 2, . . .. Also b†n |n〉 =
√
n + 1 |n+ 1〉, bn |n〉 =

√
n |n− 1〉.

This follows immediately from the commutation relations. As we can have any number of

particles in the state, we have just invented a quantum field theory for bosons.

What about fermions? We want to keep

H =
∑

n

Enb
†
nbn, (14.58)

but we want to restrict n to be only zero or unity. It turns out that we can do that – and pick

up the minus signs needed in many - fermion wave functions – if we replace the commutation
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relation for the b’s by an anti-commutation relation

[bn, b
†
m]+ = bnb

†
m + b†mbn = δnm

[bn, bm]+ = bnbm + bmbn = 0

[b†n, b
†
m]+ = b†nb

†
m + b†mb

†
n = 0

(14.59)

Then

i~
∂bn
∂t

=
∑

m

Em[bn, b
†
mbm]

=
∑

m

Em(bnb
†
mbm − b†mbmbn)

=
∑

m

Em((δnm − b†mbn)bm − b†mbmbn)

=
∑

m

Em(δnmbm + b†mbmbn − b†mbmbn)

= Enbn.

(14.60)

The desired equation of motion is preserved.

Now we want eigenstates of b†nbn. Note that (b†nbn)(b
†
nbn) = b†n(1 − b†nbn)bn = b†nbn −

b†nb
†
nbnbn. The second term is zero applied to any state because bnbn = −bnbn. So if |λ〉 is an

eigenstate of b†nbn,

b†nbn |λ〉 = λ |λ〉
(b†nbn)(b

†
nbn) |λ〉 = λ2 |λ〉 = λ |λ〉

(14.61)

or λ2 = λ, meaning that λ = 0, 1. Only zero or one particle can occupy a state.

Finally, we need matrix elements of bn and b†n. We have

b†nb
n |Nn〉 = Nn |Nn〉 ; Nn = 0, 1

(b†nbn)b
†
n |Nn〉 = b†n(1− b†nbn) |Nn〉 = (1−Nn) |Nn〉

(14.62)

so b†n |Nn〉 = Cn |1−Nn〉. To find Cn, square this:

|Cn|2 = 〈Nn|bnb†n|Nn〉 = 〈Nn|(1− b†nbn|Nn〉 = 1−Nn (14.63)
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Thus Cn = θn
√
1−Nn where θn is a phase factor. Similarly,

bn |Nn〉 = θn
√

Nn |1−Nn〉 (14.64)

For most applications, the value of the phase factor is irrelevant.

Although the formalism looks different, everything is the same as in ordinary quantum

mechanics. Let’s see how that works out. Note that

ψ(x, t) =
∑

n

bn(t)ψn(x) (14.65)

is again an operator which annihilates particles in states n. Let’s look at the (anti)commutation

relations for ψ and ψ†:

[ψ(x, t)ψ†(x′, t)]± =
∑

n

∑

m

ψn(x)ψm(x
′)[bn, b

†
m]± = δ3(x− x′) (14.66)

from a combination of the commutation relations for the b’s and completeness for the ψ’s.

Similarly, [ψ(x, t)ψ(x′, t)]± = [ψ†(x, t)ψ†(x′, t)]± = 0. You can show that when the Hamilto-

nian is

H =

∫

d3xψ†(x, t)[− ~
2

2m
∇2 + V ]ψ(x, t), (14.67)

the Heisenberg operator equation

i~
∂ψ(x, t)

∂t
= [ψ(x, t), H ] (14.68)

gives the time-dependent Schrödinger equation for ψ. The number density operator is

n(x, t) = ψ†(x, t)ψ(x, t) and the total particle number is

N =

∫

d3xn(x, t). (14.69)

We can build states beginning with the “vacuum state” |0〉, which has no particles in it. It

obeys the relation ψ(x, t) |0〉 = 0. Following this line, ψ†(x, t) |0〉 should be a state with one

particle at x. Is it? Look at the application of the number density operator

n(x′, t)ψ†(x, t) |0〉 = ψ†(x′, t)ψ(x′, t)ψ†(x, t) |0〉
= ψ†(x′, t)(δ3(x′ − x)∓ ψ†(x, t)ψ(x′, t)) |0〉
= δ3(x′ − x)ψ†(x′, t)) |0〉 .

(14.70)



Quantum Mechanics 354

The state is an eigenfunction of the number density operator with an eigenvalue which is a

delta function. This is the mathematical equivalent of the statement that there is a particle

located at x. Integrating, we find that the state is an eigenstate of the number operator,

Nψ†(x, t) |0〉 =
∫

d3x′n(x′, t)ψ†(x, t) |0〉 = ψ†(x, t) |0〉 , (14.71)

so the state does have one particle in it. Similarly

ψ†(x1, t)ψ
†(x2, t) |0〉 (14.72)

is a state with two particles in it, one at x1, the other at x2.

Electrodynamics (yet) again

We return one last time to quantum electrodynamics, this time with number operators for

particles in addition to those for the electromagnetic field. The interaction Hamiltonian is

HI =

∫

d3xψ†(x, t)[− e~

imc
~A · ~∇]ψ(x, t) (14.73)

and the zeroth-order Hamiltonian is a sum of a particle term

Hp =

∫

d3xψ†(x, t)[− ~
2

2m
∇2 + V ]ψ(x, t) =

∑

n

Enb
†
nbn (14.74)

and a radiation term

Hrad =
∑

kσ

~ωka
†
kσakσ. (14.75)

To actually perform calculations, we have to insert the explicit formulas for the field operators

into HI , arriving at

HI =
∑

nn′

∑

kσ

[b†nbn′akσM(~k, σ, n, n′) + b†nb
′
na

†
kσM(−~k, σ, n, n′) (14.76)

where

M(~k, σ, n, n′) = − e~

imc

∑

kσ

(

2π~c

ωV

)1/2 ∫

d3xψ∗
n(x)[e

ikx~ǫkσ · ~∇]ψn′(x) (14.77)
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is the complex amplitude we have seen so many times before. However, look more closely:

Our initial and final states are

|i〉 = |. . . Nn′, . . .〉particle |. . . nk′σ′ . . .〉rad
|f〉 = |. . . Nn, . . .〉particle |. . . nkσ . . .〉rad

(14.78)

andHI induces transitions among these states. Its first term destroys a photon of momentum

k, destroys the particle in state n′, and creates a particle in state n. The second term again

destroys n′ and creates a particle in n along with a photon in k. The first term obviously

represents absorption of the photon while the second one is for emission. Let’s examine the

matrix element for absorption:

〈f |HI|i〉 =M(~k, σ, n, n′)(δnkσ,nk′σ′−1

√
nk′σ′)

√

N ′
n

√

Nn ∓ 1, (14.79)

again the same answer we’ve gotten many times before plus something new: extra Bose or

Fermi counting factors associated with previous occupancy in our initial and final states. In

particular, if our final state is already occupied, and we are a fermion, we can’t go there.

This is new physics. Apart from this, all the formalism of quantum field theory is overkill

for this problem. But, in dealing with many particle states, and in cases where the analogs

of the M ’s can be pre-computed, it is a very convenient language. We need only think about

the many-body part of the physics.

Light scattering

Most students who take a graduate quantum mechanics class also take a graduate electricity

and magnetism class and learn a little bit about the scattering of light on matter. The

story is entirely classical and starts with electric dipole scattering from a single scattering

source. The story can proceed to considering many scatterers, or extended scatterers, simply

summing or integrating over the locations of the individual scatterers. This allows one to

understand a wide variety of phenomena: the blue sky, the red sunset, Bragg peaks in X-

ray crystallography, critical opalescence, and much more. If you can find a copy, the old

article “How light interacts with matter,” by V. F. Weisskopf (Scientific American 219 3,60,

September 1968) is an evocative description of this physics.

The classical description of microscopic dynamics models the atom as an electron on a

spring of natural frequency ω0 with a damping force F = −Γd~x/dt in an external electric
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field ~E exp(−iωt):
m
d2~x

dt2
+ Γ

d~x

dt
+mω2

0~x = e~ǫ0E0 exp(−iωt). (14.80)

For a steady state solution ~x(t) = ~ǫ0x exp(−iωt), so there is an induced time dependent

dipole moment, which serves as an antenna. After a short passage of algebra we discover

that the differential cross section for scattering from an initial polarization ~ǫ0 into an outgoing

polarization direction ~ǫ is

dσ

dΩ
= (

e2

mc2
)2|~ǫ · ~ǫ0|2

ω4

|ω2
0 − ω2 + iωΓ

m
|2 . (14.81)

The prefactor

r0 =
e2

mc2
(14.82)

is the classical electron radius, about 10−13 cm, and it sets the scale for the cross section,

far tinier than the physical size of the atom. Notice how Rayleigh scattering (σ ∝ ω4)

is recovered for ω ≪ ω0. At high frequency, the cross section becomes independent of

frequency. This is called Thomson scattering. (It is the same formula as for scattering off a

free electron.)

Of course, this is all classical, and it is a natural question to ask: how much of this

classical result remains, with a fully quantum mechanical description? The answer: quite a

lot! Let’s do the calculation. (Note: this is a very old subject. Apparently Heisenberg and

Kramers guessed the answer before the development of quantum mechanics. The description

that follows is based on the one in Dirac’s book.)

Light scattering is a second order process: the initial photon is annihilated, the final

photon is created. We have to take the interaction Hamiltonian

HI = − 1

m
(
e

c
~A · ~p) + e2

2mc2
~A · ~A (14.83)

and work to second order in the first term and first order in the second term.

Label the incoming photon’s momentum as ~q1 and the outgoing photon’s momentum as

~q2 (with energies cq1 = ~ω1 and cq2 = ~ω2); give the incident particle a momentum ~p1 and

energy E1; the final state particle has momentum ~p2 and energy E2.

Focus on the photon operators to start the calculation. All the terms in the T matrix

operator will have to be sandwiched between initial and final states

|iphoton〉 = a†q1σ1
|0〉
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|fphoton〉 = a†q2σ2
|0〉

(14.84)

and so the A2 photon operator piece of T will be (temporarily suppressing lots of irrelevant

factors)
∑

kb,σb

∑

ka,σa

〈0|aq2σ2(akaσa
+ a†kaσa

)(akbσb
+ a†kbσb

)aq1σ1 |0〉 . (14.85)

For a nonzero matrix element, there are two possibilities: kaσa = k1σ1 and kbσb = k2σ2, or

kaσa = k2σ2 and kbσb = k1σ1. The A
2 term gives

〈f |HI |i〉 = 2[
e2

2mc2
][

2π~c2

V
√
ω1ω2

]δif

∫

d3x

V
exp(i(p1 − p2)x/~) exp(i(q1 − q2)x/~) (14.86)

I have written the electron’s (or atom’s) wave function as a product of a relative piece (with

state labeled as |i〉 or |f〉) and plane waves for the center of mass motion. These factors get

stripped off (or integrated over) to give the phase space integral for the cross section. The

derivation is identical to ones we have done before (for the photoelectric effect, for example).

The result is that the Golden Rule formula for the differential cross section is

dσ =
1

vrel

d3q2
(2π~)3

|T |2[ d
3p2

(2π~)3
(2π~)3δ3(~q1 + ~p1 − ~q2 − ~p2)]

×2π

~
δ(cq1 + E1 − cq2 − E2).

(14.87)

With vrel = c and d3q2 = dΩq22dq2 a few integrals over delta functions give us

dσ

dΩ
=

|T |2
(2π~c2)2

ω2
2. (14.88)

and it’s obviously useful to define

T =
2π~c2√
ω1ω2

T (14.89)

for an even cleaner expression,
dσ

dΩ
= |T |2ω2

ω1
. (14.90)

The constants multiplying T are obviously the normalization factors for the two photon

fields, which cancel against terms in the phase space formula.

Keeping only the A2 term, and assuming that we simply have free electrons for our initial

and final matter states, gives the Thomson cross section

dσ

dΩ
= (

e2

mc2
)2|~ǫ1 · ~ǫ2|2. (14.91)
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Let’s write the full expression for T and make some comments before evaluating it. We

have to work to second order in the ~A · ~p term. There are two possible time orderings: first,

the initial photon could be absorbed before the final photon was emitted. The intermediate

state consists only of matter states |n〉. The energy denominator is ∆E = ~ω1 +Ei −En =

~ω1 − ~ωni. But there is a second possibility: the atom could emit the final photon before

absorbing the initial one. The intermediate state consists of the matter state |n〉 plus the

two photons. The energy denominator is ∆E = ~ω1+Ei− (En+~ω1+~ω2) = −~ω2−~ωni.

We have

T =
e2

mc2
[~ǫ2 · ~ǫ1δfi +

1

m~

∑

n

(
〈f |~p · ~ǫ2|n〉 〈n|~p · ~ǫ1|i〉

ω1 − ωni
− 〈f |~p · ~ǫ1|n〉 〈n|~p · ~ǫ2|i〉

ω2 + ωni
)]. (14.92)

There is a lot of physics here! Notice that while the A2 term does not change the state

of the atom, the other two terms can. The final state |f〉 does not have to equal the state

|i〉. Of course, energy is conserved overall. The physical process is called “fluorescence” (if

ω2 < ω1) or “Raman scattering” with “Stokes” or “anti-Stokes” transitions, when the matter

state gains or loses energy.

Back to Thompson scattering for a second. The two new terms do contribute to the dif-

ferential cross section, but they are momentum dependent and for an initially static electron

and an incident photon energy much less that the electron mass, they are sub-dominant.

Only in that case is ω2 = ω1: the correct kinematics produces the familiar Compton energy

or wavelength shift (or to be precise, the non relativistic form of that formula, since we are

treating the electron nonrelativistically). The fully relativistic differential cross section is

called the “Klein-Nishina” formula. If you take a quantum field theory class, you’ll probably

have to evaluate it at some point.

Back to atomic scattering. Eq. 14.92 is a bit awkward to use, but we can fix that with

the usual substitution 〈f |~p|i〉 = imωfi 〈f |~x|i〉 where ~ωfi = Ef − Ei. But now, can we see

Rayleigh scattering (σ ∝ ω4) in some variation of Eq. 14.92? Amazingly, yes. Let’s pull the

polarization factors out and write the dot products as sums on repeated indices. Then

T =
e2

mc2
ǫl2ǫ

m
1 [δlmδfi +

1

m~

∑

n

ωfnωni(
〈f |xl|n〉 〈n|~xm|i〉

ω1 − ωni
− 〈f |xm|n〉 〈n|xl|i〉

ω2 + ωni
)]. (14.93)

We can make the first term look like the other two by using xlpm − plxm = i~δlm, so that

δlmδfi =
1

i~

∑

n

(〈f |xl|n〉 〈n|pm|i〉 − 〈f |pl|n〉 〈n|xm|i〉)
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=
m

~

∑

n

(〈f |xl|n〉 〈n|xm|i〉ωni − 〈f |xm|n〉 〈n|xl|i〉ωfn)

(14.94)

This allows us to write

T =
e2

mc2
ǫl2ǫ

m
1

m

~

∑

n

(〈f |xl|n〉 〈n|xm|i〉 (ωni −
ωniωfn

ω1 − ωni
)− 〈f |xm|n〉 〈n|xl|i〉 (ωfn −

ωniωfn

ω2 + ωni
)).

(14.95)

Dirac adds in 0 = ω2

∑

n(〈f |xl|n〉 〈n|xm|i〉 − 〈f |xm|n〉 〈n|xl|i〉) to give

T =
e2

mc2
ǫl2ǫ

m
1

m

~

∑

n

(〈f |xl|n〉 〈n|xm|i〉 (ωni −
ωniωfn

ω1 − ωni
+ ω2)

−〈f |xm|n〉 〈n|xl|i〉 (ωfn −
ωniωfn

ω2 + ωni
+ ω2).

(14.96)

The energy conservation relation ω1 − ωni − ωfn = ω2 collapses both terms in the sum to

T =
e2

mc2
ǫl2ǫ

m
1

m

~
ω1ω2

∑

n

(
〈f |xl|n〉 〈n|xm|i〉

ω1 − ωni

− 〈f |xm|n〉 〈n|xl|i〉
ω2 + ωni

). (14.97)

so that

dσ

dΩ
= (

e2

mc2
)2ω1ω

3
2|
m

~
ǫl2ǫ

m
1

∑

n

(
〈f |xl|n〉 〈n|xm|i〉

ω1 − ωni

− 〈f |xm|n〉 〈n|xl|i〉
ω2 + ωni

)|2. (14.98)

This exposes the σ ∼ ω4 Rayleigh form for elastic scattering, when ω1 = ω2. When all the

ωni terms are much greater than ω1, the terms with the energy denominators are suppressed

compared to the contact term and the Thomson formula re-emerges. On resonance, where a

denominator vanishes, the formula breaks down. We know what to do in that case: somehow

introduce the decay width into the denominator, as we did when studying resonant scattering.

The free electron gas at zero temperature

Let’s use the language of quantum field theory to calculate some of the properties of a gas

of non-interacting electrons at zero temperature. The ground state wave function has one

filled state for every value of momentum up to the Fermi momentum pF , and then all states

are empty. This makes the momentum space properties of the Fermi gas pretty simple.

However, the coordinate space properties are nontrivial, and those are our goal.
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We should spend a few moments trying to make all the factors correct. The ground state

wave function |Φ〉 must be such that

〈Φ|a†psaps|Φ〉 = 1 |p| < pF (14.99)

and zero otherwise, where

[aps, a
†
p′s′]+ = δ3(p− p′)δss′. (14.100)

We will have a lot of momentum integrals to do, and it is convenient to simplify notation.

Put the system in a box of volume V . Then the momentum spectrum is discrete and in fact

there are V distinct p’s in all. Replacing the Dirac delta function by a Kronecker delta,

[aps, a
†
p′s′]+ = δ(p, p

′)δss′, (14.101)

a properly normalized field variable is

ψ(r) =
1√
V

∑

p

eiprap. (14.102)

To check (suppressing the spin label):

[ψ(r), ψ†(r′)]+ =
1

V

∑

pp′

eipreip
′r′ [ap, ap′]+

=
1

V

∑

p

eip(r−r′)

=
V

V
δrr′

(14.103)

The number density operator is n(x) = ψ†(x)ψ(x) and its expectation value is

〈Φ|ψ†(x)ψ(x)|φ〉 =
1

V

∑

pp′

〈Φ|a†pap|Φ〉

=
1

V

∑

p

np

= =
N

V
.

(14.104)

The gas has uniform density – no surprise. (Incidentally, to make contact with the usual

statistical mechanics story,
∑

p

= V

∫

d3p

(2π)3
(14.105)
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per spin state.) The Fermi momentum is defined via the number density,

N

V
=
∑

s

∫ pF

0

4πp2dp

(2π)3
=

p3F
3π2

(14.106)

With our confidence high we move to more interesting observables. Consider the Green’s

function, a generalization of Eq. 14.104,

Gs(x− x′) = 〈Φ|ψ†
s(x)ψs(x

′)|Φ〉 (14.107)

It is the amplitude to remove a particle at location x′ and put it back in at location x. From

the calculation of the density , it is

〈Φ|ψ†
s(x)ψs(x)|Φ〉

=
1

V

∑

ps

npspe
ip(r−r′)

=
N

V

∑

p npse
ip(r−r′)

∑

p nps

(14.108)

The last step is done to pull in an overall factor of the density, n = N/V . Our technical

problem is the integral

I =

∫ pF

0

d3pei~p·(~r−~r′). (14.109)

We do this in spherical coordinates, picking the ẑ axis along the ~x− ~x′ direction and calling

|~x− ~x′| = R. This gives

I = 2π

∫ pF

0

p2dpdcosθeipR cos θ

= 2π

∫ pF

0

p2dp
sin pR

pR

= 2π

∫ pF

0

p2dpj0(pR)

(14.110)

where j0(x) is the spherical Bessel function. Dropping this result into Eq. 14.108 and groom-

ing it a bit gives

G(r − r′) =
3

2
n
j1(pFR)

pFR
(14.111)
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and the limiting value of this expression at R = 0 is just n/2, as we expect. (Half the

particles have one of the spins.)

A more interesting question: what is the probability to find a particle at location x′, given

that there is one at location x? One way to answer this question is to remove a particle of

spin s at x, leaving behind N −1 particles, and then measure the density of particles of spin

s′ in the new state, |Φ′(r, s)〉:

〈Φ′(r, s)|ψ†
s′(r

′)ψs′(r
′)Φ′(r, s)〉 = 〈Φ|ψ†

s(r)ψ
†
s′(r

′)ψs′(r
′)ψs(r)Φ〉

≡ (
n

2
)2gss′(r − r′)

=
∑

pp′qq′

e−i(p−p′)re−i(q−q′)r′ 〈Φ|a†psa†qs′aq′s′ap′s|Φ〉

(14.112)

There are two cases. First, suppose s 6= s′. Then it must be that p = p′ and q = q′ to get a

non-vanishing contraction of the a’s and a†’s. Then

(
n

2
)2gss′(r − r′) =

∑

pq

〈Φ|npsnqs′|Φ〉

= nsns′.

(14.113)

This means gss′(r − r′) = 1. The different spins do not know about each other.

If s = s′ then either p = p′, q = q′ or p = q′,q = p′. The first term will contain a factor

〈Φ| a†psa†qsaqsaps |Φ〉 = 〈Φ|npsnqs |Φ〉 (14.114)

after anti-commuting the operators through. The second term has a factor

〈Φ| a†psa†qsapsaqs |Φ〉 = −〈Φ|npsnqs |Φ〉 (14.115)

Putting the pieces together,

C(r, r′) =
1

V 2

∑

pq

npsnqs(1− ei(p−q)(r−r′))

= n2 − | 1
V

∑

p

npse
i(r−r′))|2

= = n2 − n2g(r − r′)2

(14.116)
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Figure 14.1: pair correlation function for the non-interacting Fermi gas.

recalling the expression for the Green’s function. We can call C(r, r′) = n2G(r − r′)) where

G(r) parametrizes the interesting physics. From the explicit functional form of g(r),

G(r) = 1− (
3

pF r
j1(pF r))

2. (14.117)

Note that G(r) vanishes at r = 0. This is a consequence of Fermi statistics: if there was a

particle already at a location r, there will not be a second one there, too.

Particles that interact among themselves

So far we have discussed “free particles” – particles in a potential V (x), but otherwise not

interacting with each other. How can we introduce two-body interactions? This is easy –
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add to our one-body Hamiltonian

H1 =

∫

d3xψ†(x, t)[− ~
2

2m
∇2 + V (x)]ψ(x, t) (14.118)

a two-body term

H2 =

∫

d3xd3x′ψ†(x, t)ψ†(x′, t)v(x, x′)ψ(x, t)ψ(x′, t). (14.119)

Note that we have chosen the same ordering of operators as we used for the pair correlation

function. Here v(x) is the potential between the particles. Now suppose that v(x, x′) is, in

some sense, small. If it were zero, it would be natural to expand in plane wave states,

ψ(x, t) =
1√
V

∑

k

bk(t)e
ikx. (14.120)

If v(x, x′) is actually a function of the relative separation of the particles, v(x− x′), then we

can write the Hamiltonian in a plane wave basis as

H =
∑

k1k2

b†k1bk2

∫

d3x

V
e−ik(1−k2)x

~
2k2

2m

+
∑

k1

∑

k2

∑

k3

∑

k4

b†k1b
†
k2
bk3bk4

∫

d3x1
V

d3x2
V

ei(k3−k1)x′

ei(k4−k2)xv(x1 − x2).

(14.121)

The first term is
∑

k

~
2k2

2m
b†k1bk1 (14.122)

(from the delta function in the integral) and the second term can also be condensed: define

r − x′ − x, change variables from x, x′ to x, r, and use

∫

d3x1
V

d3x2
V

ei(k3−k1)rv(r)ei(k4−k2+k3−k1)x = δ3(k4 − k2 + k3 − k1)v(q) (14.123)

where ~q = ~k3 − ~k1 and

v(q) =

∫

d3x

V
eiqrv(r). (14.124)

Then the two-body Hamiltonian is

H2 =
∑

k1

∑

k2

∑

q

v(q)b†k1+qb
†
k2−qbk2bk1 , (14.125)
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that is, the interaction scatters particles of wave number k1 and k2 into wave number k1 + q

and k2 − q (Or, it annihilates initial state particles and creates final state ones.) We can

compute the lowest order T-matrix by specifying initial and final states,

|i〉 = b†p1b
†
p2 |0〉

|f〉 = b†p3b
†
p4
|0〉

(14.126)

and then the lowest order T-matrix element is

〈f |H2 |i〉 = v(q)δ3(p3 + p4 − p1 − p2) (14.127)

No surprise again, but we can do so much more.

For an off-beat example of the use of this formalism, consider a weakly interacting col-

lection of bosons near absolute zero.

Excitation in a Bose-Einstein condensate

Recall your statistical mechanics for bosons: the number of particles in a state ~k is given by

N(k) =
1

CeE(k)/T − 1
(14.128)

where T is the temperature (in energy units, k = 1) and C is related to the fugacity or

chemical potential. In a normal system, C and the particle number are related:

N

V
=

∫

d3k

(2π)3
1

CeE(k)/T − 1
. (14.129)

However, as T falls, there is no C which can solve the equation. You have to split off the

zero energy state,

N =
1

C − 1
+ V

∫

d3k

(2π)3
1

CeE(k)/T − 1
(14.130)

and it contributes a finite amount to the right hand side. The mathematics is telling us

that the (~k = 0) ground state is macroscopically occupied – there is a condensate. This is

in contrast to the microscopic occupation of each remaining phase space differential volume

element d3k.
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Let’s think about the condensed system in the language of second quantization. The

ground state has order N particles in it,

b†0b0 |ψ〉 = N0 |ψ〉 . (14.131)

In addition, there is some occupation at k 6= 0

b†kbk |ψ〉 = N(k) (14.132)

given by Eq. 14.128 above.

To make life interesting, let’s assume that we do not have an ideal Bose gas, but suppose

that there is some interaction among the bosons. We can describe it by some potential

v(r). In fact, let’s assume that v(r) = vδ3(r) so that v(q) = v is a constant. (This is

old-fashioned language. Looking back at Eq. 14.127, we see that the T-matrix is a constant,

and recalling the chapter about scattering, we are replacing the T-matrix by its scattering

length approximation.)

Now for approximations. The ground state operators do not commute, [b0, b
†
0] = 1, but

b†0b0 |ψ〉 = N0 |ψ〉 where N0 ≫ 1. In this sense, b0 and b†0 “almost” commute. Let’s treat

them as classical objects, whose size is about
√
N . Then, in H2, there is a natural hierarchy

of terms:

1. b†0b
†
0b0b0, the scattering of condensate particles, has a size roughly vb40 ∼ vN2

2. Terms like b†kb
†
0b0b0 vanish – they do not conserve momentum.

3. Order N terms: b†kb
†
−kb0b0 + b†0b

†
0bkb−k for two particles either leaving or entering the

condensate, and 22b†kbkb
†
0b0 which controls the scattering of a normal particle off the

condensate

4. Ordinary particle scattering is an order (1) effect.

The Hamiltonian of item (3) is

H
(3)
I = b20

∑

k 6=0

(b†kb
†
−k + bkb−k + 4b†kbk). (14.133)

We must be slightly careful with item (1): the total number of particles is

N = b20 +
∑

k 6=0

b†kbk (14.134)



Quantum Mechanics 367

and so

b40 = N2 − 2N
∑

k 6=0

b†kbk. (14.135)

Then, our approximate Hamiltonian, which considers scattering into or out of the condensate,

is

H =
∑

k

~
2k2

2m
b†kbk +N2v +Nv

∑

k 6=0

(b†kb
†
−k + bkb−k + (4− 2)b†kbk). (14.136)

Now notice something important: this H is quadratic in the b’s. We can make a change of

variables, to a new basis, a†k and ak, and write

H = N2v +
∑

k

ǫ(k)a†kak; (14.137)

that is, the system is described by a set of excitations of “quasi-particles” annihilated by ak.

These are the normal modes of the system. The transformation will be

ak =
bk + Lkb

†
−k

√

1− L2
k

; a†k =
b†k + Lkb−k
√

1− L2
k

(14.138)

or

bk =
ak − Lka

†
−k

√

1− L2
k

; b†k =
a†k − Lka−k
√

1− L2
k

. (14.139)

Of course, we have to find Lk and we do this by making the substitutions into H and choosing

it to cancel the unwanted terms. Notice that

[ak, a
†
k′] =

[bk, b
†
k′] + L2

k[b
†
−k, b−k′ ]

1− L2
k

= δkk′ (14.140)

so the correct creation-annihilation operator algebra is maintained. Physically, ak annihilates

an original boson carrying momentum k (for a momentum change = −k) or creates a boson

with momentum −k, which is also a momentum change −k. A wee bit of algebra yields

Lk =
ǫk + 2Nv − E(k)

2Nv
(14.141)

where ǫk = ~
2k2/(2m) and

E(k)2 = (
~
2k2

2m
)2 + 2Nv

k2

m
(14.142)

E(k) is the energy of an excitation with momentum k. As the equation and Fig. 14.2

show, the high momentum quasi-particles are just the original particles. However, the low-

lying, long wavelength spectrum has a linear dispersion relation, E(k) = Cs~k where Cs =
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Figure 14.2: Quasi-particle (phonon) dispersion relation for the weakly-interacting condensed

Bose gas.



Quantum Mechanics 369

√

2Nv/m. These are sound waves – they are called “phonons,” in complete analogy with the

quantized vibrational modes of a crystal lattice. The non-ideal weakly-interacting condensed

Bose gas is best thought of as a gas of non-interacting phonons.

Finally, suppose we have an impurity atom (of mass M) moving through the condensate.

The only way it can lose energy is to create an excitation in the condensate. Suppose it has

initial momentum ~~q, and also suppose it creates an excitation of momentum ~~k at an angle

θ away from its direction of motion. Conservation of energy says

~
2q2

2M
=

~
2

2M
|~q − ~k|2 + E(k)

=
~
2

2M
[q2 + k2 − 2kq cos θ] + E(k)

(14.143)

or

qk cos θ =
k2

2
+
ME(k)

~2
. (14.144)

Calling the impurity’s velocity v = ~q/M , this is

cos θ =
k

q
+
ME(k)

~2k
=

~k

2Mv
+
E/~k

v
. (14.145)

For phonons, E(k)/~k > Cs, so we need v > Cs for cos θ < 1, allowing a phonon to be

emitted. This means that if the impurity atom is moving too slowly, it cannot emit a

phonon, and it cannot lose energy. Now look at the process from the point of view of an

observer riding along with the impurity. The condensate streams past without friction (if

the velocity of the condensate is low enough). This is superfluidity – we have just discovered

that the condensate is a superfluid!
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Atoms

An exact treatment of the Z-body Schrödinger equation for electrons bound to a nucleus is

very hard, and, in the days before supercomputers, it was impossible. Not wishing to do

these calculations, we will have to make approximations from the very beginning. Let us

begin our study of atoms keeping only the Coulomb interaction for all the electrons. Our

many-electron Hamiltonian is

Ĥ =

Z
∑

i=1

(
p̂2i
2m

− Ze2

ri
) +

Z
∑

j=1

∑

i<j

e2

|~ri − ~rj |
(15.1)

At zeroth order, we choose to neglect the inter-electronic repulsion, and keep only the nuclear

attraction. We might be able to justify this for heavier atoms, where Z ≫ 1. It is certainly

a simple approximation: our many-electron wave function becomes a product of hydrogenic

wave functions. The additional imposition of the exclusion principle allows us to build atoms.

So we begin, with Table 15.1.

Table 15.1: Filling the periodic table.

Atom Highest e−

H 1s

He 1s2

Li 1s22s

Be 1s22s2

B 1s22s22p

. . .

But wait! In hydrogen, the 2s and 2p energies are degenerate at the order we are working.

Why, in the periodic table, are the s levels filled first?

Clearly, we need a better approximation. This is provided by the “central field approxi-

mation:” each electron feels the Coulomb repulsion of all the others, but angle-averaged:

V (rk) = −Ze
2

rk
+ eΦCFk(rk) (15.2)

where

ρCFk(r) = e

∫

dΩ
∑

i 6=k

|ui(r)|2, (15.3)
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∇2ΦCFk(r) = −4πρCFk(r) (15.4)

or
1

r2
∂

∂r
r2
∂ΦCFk(r)

∂r
= −4πρCFk(r). (15.5)

How can this be done? Why might it be a good approximation?

To carry out this calculation, assume that the many-electron wave function is separable,

ψ(r1, r2, . . . , rZ) = u1(r1)u2(r2) . . . uZ(rZ), (15.6)

and pick some convenient functional form for all the u’s. From them, compute ρCFk(r) and

ΦCFk(r). Then solve

[− ~
2

2m
∇2

k −
Ze2

rk
+ eΦCFk(rk)]uk(rk) = ǫkuk(rk). (15.7)

This is the Schrödinger equation for a particle in a radial potential, so the solution is

uk(~r) = R(r)Y m
l (θ, φ). (15.8)

This reduces the problem to the solution of the radial part of the wave equation. Repeat this

procedure for each k. Take these uk’s, compute ρCFk and ΦCFk, and repeat the procedure

until it converges.

What we have described is also known as the “self consistent field” or “Hartree” approx-

imation. The solution will show the following generic features: The innermost electrons will

see the nuclear potential, shifted by a constant by the outer electrons. This can be under-

stood without calculation, from Gauss’ law: ~E = 0 inside a spherical charge distribution, so

the potential is a constant. The outermost electrons see the nucleus, screened by the other

electrons,V (r) = −(Z − 1)e2/r. Both of these are known to be good approximations.

Why does this procedure work? To give a partial answer, the spherical symmetry of the

charge distribution is easy to understand, if all the levels of an orbital are filled. This follows

from the identity
∑

m

|Y m
l (θ, φ)|2 = constant. (15.9)

But there is a more complete answer: this is actually a variational calculation. Let us

repeat the derivation with that idea in mind. We begin, again, with the ansatz Eq. 15.6.

We will not antisymmetrize it; we simply force our allowed states to be consistent with the
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exclusion principle. We use this wave function in a variational calculation of Hψ = Eψ with

the Hamiltonian of Eq. 15.1. We find

〈H〉 =

∫

. . .

∫

d3r1d
3r2 . . . d

3rZψ
∗Hψ

=
∑

k

∫

u∗k(rk)[−
~
2

2m
∇2

k −
Ze2

rk
]uk(rk)

+
∑

k

∑

j,pairs

∫ ∫

u∗k(rk)[u
∗
j(rj)

e2

rjk
uj(rj)]uk(rk)

=
∑

k

∫

u∗k(rk)Hkuk(rk)d
3rk

(15.10)

where

Hk = − ~
2

2m
∇2

k −
Ze2

rk
+
∑

j 6=k

∫

u∗j(rj)
e2

rjk
uj(rj)d

3rj (15.11)

Eq. 15.10 is the expectation value of Hk for a trial wave function uk. From our variational

discussion, the minimum energy is obtained when uk is an eigenfunction of Hk,

Hkuk = ǫkuk (15.12)

which is the eigenvalue equation for the Hartree wave function. The electronic energy of the

atom is then

E =
∑

k

ǫk −
∑

j>k

∫ ∫

|uj(rj)|2|uk(rk)|2
e2

rjk
d3rjd

3rk (15.13)

The sum
∑

k ǫk counts the pairs’ Coulomb repulsion twice; hence the correction term. Note

that this does not give the central field approximation directly (it is still just an approxima-

tion). However, it arises naturally for all closed shells.

Now we can return to the periodic table. The n = 1 shell is as before. To handle n = 2,

recall that the angular momentum barrier, ~2l(l + 1)/(2mr2), pushes higher l states away

from the nucleus. One an electron is at bigger r, other electrons can screen the nucleus.

This makes it energetically favorable to fill lower l first. So we have the results in Table 15.2.

Next we come to n = 3, where we have s, p and d levels. The energy difference between

them is smaller than for n = 2. At some point a higher n’s s state has lower energy than a

lower n’s d state. So we fill the 3s and 3p states, then pause to fill the 4S, making K and

Ca, before returning to fill the ten 3d states – Sc to Zn. The rare earths and the actinides

take a break in filling d orbitals to fill f ones.
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Table 15.2: Filling the periodic table.

Atom Highest e−

Li 1s22s

Be 1s22s2

B 1s22s22p
...

Ne 1s22s22p6

Atomic spectroscopy

The two largest terms left out of the central field approximation are the spin-orbital coupling

VSO =
∑

k

(
1

2mc2
1

rk

∂V

∂rk
)~Lk · ~Sk (15.14)

and the difference between the true inter-electron interaction (even “true” in the sense of the

Hartree self consistent field calculation) and the central field approximate potential, which

we will call Vc. In closed shells, VSO = 0; the term in parentheses in Eq. 15.14 is the same

for all, and terms with opposite ml’s and ms’s cancel among each other.

We can imagine two extreme cases. The first, Vc > VSO, occurs for light atoms and gives

rise to “L-S coupling” or “Russell-Saunders coupling.” Good quantum numbers are total
~J (of course) and total ~S. The goodness of ~S arises from the same interplay of Coulomb

interactions, Fermi statistics and spin that we saw for helium. Since J = L+ S, the total L

is also a good quantum number. Our states are then

|n′s, Jtot, Ltot, Stot〉 . (15.15)

We then treat VSO perturbatively. We will omit a detailed calculation, and just remark

that it is possible to parametrize the spin-orbital interaction as

VSO = F (r)~L · ~S (15.16)

where F (r) is some (hard-to-evaluate) radial function, and ~L and ~S are the total orbital and

spin angular momenta of the valence electrons. Then, squaring J = L+ S,

< ~L · ~S >= ~
2

2
(j(j + 1)− l(l + 1)− s(s+ 1)) . (15.17)
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Figure 15.1: Pattern of splitting for a pd pair of electrons under Russell-Saunders coupling.

As an example, suppose we have two valence electrons; for the sake of argument take

them as 4p4d. As in the case of helium, the Coulomb interaction differs depending on

whether the two electrons’ spatial wave function is symmetric or antisymmetric, and hence

on whether the total spin is 1 or 0. Usually, as we saw for helium, higher S lies lower. This

is called “Hund’s rule.” The electrostatic energy depends on the particular values of n and

l: in terms of the direct and exchange terms it will be ∆E = Jnl ± Knl. For our pd pair,

L = 1 + 2 = 3, 2, 1 for F, D, and P levels. The states of different L (for given S) will be

non-degenerate. Usually, lower L lies lower. A classical argument for this result is that we

want to minimize the Coulomb repulsion of the electrons, and if we put them all the same

orbital, we can maintain maximum separation if they all rotate together. Fig. 15.1 shows

the resulting splittings expected.

Finally, we have VSO. We have states of given S and L, which combine in the usual

way into all appropriate J’s, and then Eq. 15.17 gives us the final pattern of splittings. The
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Lande interval rule

E(J + 1, L, S)− E(J, L, S) = C ((J + 1)(J + 2)− J(J + 1)) = 2C(J + 1) (15.18)

can be used to identify the J quantum number of a level.

What is the sign of the L-S coupling term? For less than a half-filled orbital, the situation

is like hydrogen: higher J lies higher in energy. However, if the level is more than half filled,

the situation reverses. As an example, consider four electrons in a p-orbital. Think of this as

six electrons and two holes. The six electrons form a closed shell and are inert. Holes have

positive charge, so their spin-orbit interaction flips sign compared to electrons’. (All other

effects go as e2 and are charge-symmetric.) So for more than half filled levels, higher J lies

lower.

The author is a particle physicist and he is used to dealing with baryons, three-quark

bound states. In principle, multi-electron states are simple: combine two, then add the third

. . . Angular momentum technology beyond what we have introduced is really necessary if

you want to be professional about this.

And don’t forget missing levels due to the Pauli principle. Two valence p electrons in

different n states have the spectroscopy shown in Fig. 15.2(a). However, if they have the

same n, their radial wave function is symmetric. Two electron states with even total L are

symmetric (|22〉 = |11〉 |11〉, for example) while states of odd total L are antisymmetric. So

some states (such as and S=0 P-wave) are missing. Compare Fig. 15.2(b).

This is all quite intricate, but it allows us to predict the electronic ground state con-

figuration of atoms with one or two valence electrons. Examples are shown in Table 15.3.

Table 15.3: Ground state wave function for some two valence electron atoms.
Atom electrons quantum numbers 2S+1LJ

B 2p S = 1/2, L = 1, J = 1/2 2P1/2

C 2p2 S = 1, L = 1, J = 0 3P0

O 2p4 S = 1, L = 1, J = 2 3P2

F 2p5 S = 1/2, L = 1, J = 3/2 2P3/2

Ne 2p6 S = 0, L = 0, J = 0 1S0
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Figure 15.2: Pattern of splitting for a pp pair of electrons under Russell-Saunders coupling,

in different radial states (a) or in the same radial state, with missing levels (b)
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For heavy atoms, the spin-orbital term

∑

k

ζk~Lk · ~Sk (15.19)

is much greater than the residual electrostatic interaction. This means that each electron’s

j is a good quantum number and the system is said to be “j-j coupled.”

Because J = L+ S and because S = 1/2, 2~L · S = l for j = l + 1/2 and −(l + 1) when

j = l − 1/2. Two electrons are all I can do: we have four states whose energies are given

by sums of the appropriate ~L · S values. We then add the two j’s to give the total j and,

indirectly, the splitting due to Vc. An example of a pd state’s splittings is shown in Fig. 15.3.

Molecules

Molecules are harder than atoms because, generally, we don’t have a central potential, and

rotational invariance is lost. This makes the solution of the Schrödinger equation much more

difficult. To compensate, the ratio me/Mnucleus is 10−4 or smaller. This means that in the

molecule, the nucleus moves more slowly than the electron.

The electrons think that the nuclei are at rest, so they feel an almost static Coulomb

potential from the nuclei. If the size of the molecule is roughly that of the Bohr radius, the

electronic energy levels will be Eelec ∼ ~
2/(mea

2) ∼ eV’s, like in atoms.

To the nuclei, the electrons move quickly. As the nuclei move, they distort the electronic

cloud, which slightly changes the electronic energy. Thinking classically for a moment, the

nucleons move in an elastic medium. There is a minimum energy configuration, where the

energy I am describing is the sum of the Coulomb repulsion of the nuclei and the electronic

energy ǫ(r), which depends on the coordinates of the nuclei.

The easiest way to describe the situation is to model it as a simple harmonic oscilla-

tor: V (R) ∼ Mω2
0(R − Rp)

2 where M is a typical nuclear mass and Rp is hte equi;ibrium

separation. If the nuclei move a distance ∆R ∼ a, the potential V goes up by an amount

~
2/(mea

2). Equating the two expressions, Mω2
0a

2 ∼ ~
2/(mea

2) says ω2
0 = ~

2/(a4meM) or

~ω0 ∼
~
2

mea2

√

me

M
(15.20)

The excitations are those of an oscillator, and are called “vibrational levels.” From this

calculation, they have an energy of 1/10 to 1/100 eV.
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Figure 15.3: Schematic picture of the energy levels of a pd electron pair, jj coupled.
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What is the nuclear velocity? We can get it from p2/(2m) ∼ ~ω/2 or

v2nuc ∼
~
2

m2
ea

2
(
me

M
)3/2 (15.21)

The factor ~/(mea) is the electron velocity so this calculation shows that the nuclei move

slowly. The nuclei also do not move over large distances. Again setting ~ω ∼ Mω2δ2, we

discover (δ/a)2 ∼
√

me/M . This is means that δ/a ∼ 1/10.

Finally, the whole molecule can rotate. Assume that the rotation is rigid. Then

Erot ∼ ~
2 l(l + 1)

2I
(15.22)

where I is the moment of inertia. Because all of the mass or the molecule is in its nuclei, and

because the molecule’s size is a, I ∼ Ma2 and Erot ∼ ~
2(mea

2)(m/M). This is about 10−4

eV; rotation transition lines sit in the far infrared. Notice the hierarchical ratio of energies,

Eelec : Evib : Erot ∼ 1 :

√

me

M
:
me

M
(15.23)

The Born-Oppenheimer approximation encodes these simple ideas. The Hamiltonian is

H =
∑

electrons

p2i
2m

+
∑

nuclei

P 2
α

2Mα
+ Vee + VNN ++VeN (15.24)

where Vee is the repulsive electron-electron Coulomb interaction, VNN is the repulsive nuclear-

nuclear interaction, and VeN is the attractive electron-nuclear Coulomb interaction. To begin,

treat the
∑ P 2

α

2Mα
term as small. (We already saw, it is about

√

m/M in size.) In fact, to

really begin, drop it altogether, so the nuclear positions are frozen. Generically, call their

positions R, and call the electronic coordinates r. The wave function φ(r, R) obeys the

“electronic equation”

[Te + Vee(r) + VeN(r, R)]φn(r, R) = (ǫn(R)− VNN(R))φn(r, R). (15.25)

VNN(R) is just a constant, and ǫn(R) is the nth energy level of the electrons. The functions

φn(r, R) form a complete set of states for any R. (Dropping the nuclear kinetic term, R is

just a parameter.) So, use these states to expand the exact wave function,

Ψ(r, R) =
∑

m

φm(r, R)cm =
∑

m

φm(r, R)Φn(R). (15.26)



Quantum Mechanics 382

The expansion coefficients cn depend on R, so we have renamed them Φn(R). Now take the

Schrödinger equation

(Te + TN + Vee + VNN ++VeN)Ψ(r, R) = EΨ(r, R) (15.27)

and substitute,

∑

m

Φm(R)((Te + Vee + VNN ++VeN)φm(r, R) + TNφm(r)Φm(R) = E
∑

m

Φm(R)φm(r, R)

(15.28)

or
∑

m

Φm(R)(ǫm(R)φm(r, R) + TNφm(r)Φm(R) = E
∑

m

Φm(R)φm(r, R) (15.29)

so
∑

m

((ǫm(R) + TN )Φm(R)φm(r, R) = E
∑

m

Φm(R)φm(r, R). (15.30)

Note that TN , which is proportional to ∂2/∂R2, acts on both φ and Φ.

Multiply both sides by φn(r, R)
∗ and integrate over R:

(ǫm(R) + TN )Φm(R) = EΦm(R)−
∑

m

Anm (15.31)

where

Anm =

∫

drφn(r, R)
∗[
∑ 1

2Mα
(∇2

R(Φm(R)φm(r, R))− φm(r)∇2
RΦm(R))]. (15.32)

One can show that Anm is O(m/M) compared to the rest of the expression. Neglect it,

therefore, leaving the “nuclear equation”

(ǫm(R) + TN )Φm(R) = EΦm(R). (15.33)

The quantity ǫm(R) is the effective potential energy for the nuclei due to electrons in level m,

plus the nuclear Coulomb interactions. For a bound state, it is a function with a minimum.

At this point, it’s useful to specialize to diatomic molecules. Then there is one coordinate,

the internuclear separation R. We have

TN = − ~
2

2MN
∇2

R = − ~
2

2MN

∂2

∂R2
+

~
2L2

2MRR2
(15.34)

where MR s the reduced mass. The nuclear equation becomes

− ~
2

2MN

∂2

∂R2
Φm(R) + [ǫm(R) +

~
2K(K + 1)

2MRR2
]. (15.35)
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We have introduced the rotational quantum number K (an integer, 0, 1, 2, . . .). The nuclei

move in a potential which is a sum of the electronic term and a centrifugal barrier.

To first approximation, we simply expand the effective potential about its minimum:

Vm(R) = Vn0 +
1

2
kn0(R− R0)

2 + . . . (15.36)

The nuclear states are a set of vibrational levels, E = (v+ 1
2
)~ωn0 where ω

2
n0 = kn0/MR and

v is an integer. We can add in the centrifugal term and repeat:

Vm(R) = [Vn0 +
~
2K(K + 1)

2MRR2
K

] +B(R −RK)
2 + . . . (15.37)

where

B = (
1

2
kn0 +

3~2K(K + 1)

2MRR
2
K

+ . . .) (15.38)

We have a “stretched oscillator, ” with slightly different frequencies for the vibrational levels

as K rises.

If we ignore the stretching, the wave function is a simple harmonic oscillator in r and a

spherical harmonic in the angular variables

ψ(~r) = uv(r − rK)Y
m
K (θ, φ) (15.39)

where uv(r − rK) ∼ exp(−MRω
2(r − rK)

2). The energy is

Ev,K = ~ω(v +
1

2
) +

~
2K(K + 1)

2MRR
2
K

, (15.40)

a set of rotational bands beginning at a set of equally spaced energy intervals.

The resulting spectroscopy is simple: the interaction Hamiltonian is, in dipole approx-

imation, H = −e~r · ~E and from the Golden Rule, the transition probability per unit time

is

dΓ ∝ 2π

~
| 〈f |~r|i〉 |2 (15.41)

Because ~r = n̂((r − rK) + rK) the matrix element

∫

druv′(r − rK)
∗[((r − rK) + rK)]uv(r − rK) (15.42)

connects states with v′ = v ± 1 (the (r − rK) piece) and states with v′ = v (the rK piece).

In addition we have the usual angular selection rules ∆K = ±1, ∆mK = ±1, 0.
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Thus there are two kinds of transitions involving nuclear motion. The first are pure

rotational transitions, ∆v = 0, ∆K = ±1. The energy of the photon which is absorbed (for

K → K + 1) or emitted (for K → K − 1)

Eγ =
~
2

2MRR2
K

[Kf (Kf + 1)−Ki(Ki + 1)] (15.43)

Since the difference E(K + 1)−E(K) ∝ K + 1, this is a set of equally-spaced photon lines.

As we remarked earlier, the typical energy for rotational transitions is in the far infrared.

Vibrational-rotational spectra have selection rules ∆v = ±1, ∆K = ±1. An absorption

spectrum v → v + 1 can have two branches, K → K + 1 and K → K − 1. The two K

differences are (K + 1)(K + 2) −K)K + 1) = 2(K + 1) and (K1)(K) −K(K + 1) = −2K

(but K ≥ 1). This is a “comb” of equally spaced lines with a gap at ω = ω0, the natural

vibrational frequency. Typically these lines sit in the near infrared. All of these features are

shown in Fig. 15.4.

Finally, transitions can involve the electronic levels. The angular momentum of the

electronic cloud enters the problem. Life becomes complicated.

We conclude this section with a brief description of the H+
2 ion, the simplest molecule.

The electronic Hamiltonian is

H +
~
2

2m
∇2 − e2

|~r − ~RA|
− e2

|~r − ~RB|
+

e2

|~RB − ~RA|
(15.44)

where (see Fig. 15.5) the two protons are located at ~RB and ~RA. As there is no exact solution

to this problem, we attempt a variational solution with a superposition of hydrogenic wave

functions,

ψ(r) = αψA(r) + βψB(r), (15.45)

where

ψA(r) =
1

(πa30)
1/2

exp(−|~r − ~RA|/a0) (15.46)

is called a “molecular orbital state.” The system is reflection-symmetric about the midplane,

so we choose α = ±β. Our parity eigenstates become

ψ±(r) = C±[ψA ± ψB]. (15.47)

An immediate complication is that ψA and ψB are not orthogonal. The normalization factor

becomes

1 = C2
±

∫

d3r|ψA ± ψB|2 = C2
±[1 + 1 + 2

∫

d3rψ∗
AψB]
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Figure 15.4: Figures for diatomic molecules: (a) Electronic energy Vn(R) and its quadratic

approximation (b) modification of the potential by the centrifugal barrier (c) Vibrational-

rotational energy levels and (d) the vibrational-rotational “comb” with its missing line.
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≡ C2
±(2 + 2S(R)).

(15.48)

S(R) is called the overlap integral. It is roughly S ∼ (e2/a0) exp(−R/a0).

The energy expectation value is

〈H±〉 = ǫ(R) =
〈A|H|A〉+ 〈B|H|B〉 ± 2 〈A|H|B〉

2(1± S)

=
〈A|H|A〉 ± 〈A|H|B〉

1± S
(15.49)

where 〈A|H|A〉 is a sum of three terms, ǫ1 the ground state energy of hydrogen, e2/R the

nuclear repulsion, and

ǫD = −
∫

d3r|ψA(r)|2
e2

|~r − ~RB|
∼ −e

2

a0
exp(−2R/a0) (15.50)

the attraction to the other nucleus. A rough plot of ǫ(R) is shown in Fig. 15.5. The negative

parity state has no minimum, and hence, no bound state. The positive parity state is bound.

This makes sense: the odd parity state does not bind because it has a node at the midpoint.

The electron in the even parity state feels an attraction from both nuclei. Further, if either Z

is greater than unity, there is no binding: there is no HHe++ ion. The variational calculation

gives a binding energy of E = −1.76 eV and a mean separation for the protons of R = 1.3

Å. The experimental values are -2.8 eV and 1.06 Å. But it is easy to point to a failure for

our variational wave function: as R becomes small, ψ should look like the wave function for

a He+ atom, a hydrogenic wave function with Z = 2. Ours does not, so we know that we

can do better. Chemistry is all about clever variational choices, so perhaps we should leave

the discussion to the more specialized literature.
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Figure 15.5: The H+
2 molecule: coordinates, the overlap integral, schematic electronic energy

vs R.
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