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Over the years I have occasionally taught the graduate course on quantum field theory

at the University of Colorado. The book you are holding is my attempt to make my notes

(somewhat) legible. It descends from notes prepared for my 2017 course, and presumably I

will add to it as time goes on.

There are two ways that quantum field theory is presented in a graduate course. One

can start either with a quantum Hamiltonian, or with path integrals. I chose to start with

Hamiltonians, and then to introduce path integrals later. The reason I did that is that

most students at Colorado are experimentalists working with atoms or molecules, and my

experience is that they are more familiar with Hamiltonians given what they have learned

about nonrelativistic quantum mechanics.

David Tong’s lectures [1] are close to what I taught. There are a lot of useful links to

other material on his web page.

Sidney Coleman’s lecture notes [2] also basically parallel what I am doing. They are dif-

ferent because his audience was Harvard theoretical physics graduate students, and because

he was much more creative than I am.

There are videos of both these teachers’ courses out there, but I am not a video learner

so you are on your own with all that.

In addition, there are bits of the following books which come close to these lectures:

Schwartz 7.2-7.4, Srednicki Ch. 3, Peskin and Schroeder Sec. 2.4. Weinberg Volume 1,

chapter 6 parallels a lot of what I did in these notes.

And now a glance at what is to come:

Chapter 2 is a suggested reading list for the interested student. Chapter 3 is a look at

the “big picture”before we actually get down to work.

In Chapter 4 I introduce the story of “canonical quantization,” the passage from La-

grangian to Hamiltonian, and present our first quantum field theory, the quantum mechanical

string.

Chapter 5 is a discussion of the quantum field theoretic approach to nonrelativistic many-

body problems. It is the mostly the same chapter from my quantum mechanics notes.

Chapter 6 tells the story of perturbative quantum field theory for scalar fields, starting

with a Hamiltonian and ending with the Feynman rules for scattering problems.

I then repeat the physics story (perturbation theory for scalar field theory), but from the
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point of view of path integrals. This is Chapter 7.

We then look at the interplay of spin one-half (and other spins) with relativity, in Ch. 8.

Chapter 9 pulls the preceding chapters together to look at quantum electrodynamics.

Chapter 10 describes the physics of renormalization, introducing the concept of the renor-

malization group and illustrating the subject with calculations in scalar field theory.

Appendix A is a long discussion about the conventions for defining field operators in

relativistic field theory. This is a subject which is impossible to teach (everyone falls asleep)

but absolutely necessary to write down somewhere, since so much of the discussion depends

on the choice of conventions.

These notes are full of typos. Please report them to me.
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Here are a collection of books and papers I have found useful for describing various

aspects of quantum field theory. The preprints with “arXiv” labels come from the data base

http://arXiv.org/ (which is the standard data base for most of theoretical physics).

As I said in the Introduction, David Tong’s [1] and Sidney Coleman’s [2] lecture notes

are probably the closest courses to the way I will do things.

The two books I debated between as a text in 2017 (not that I ever followed anything very

closely) were Zee [3] and Srednicki [4]. They are quite complementary (with identical advice

for the reader). I used Zee the penultimate time I taught this course and the students didn’t

care for it so I tried Srednicki in 2017. But it’s not really close to how I present things. Two

very particle-physics oriented books are Schwartz [5] and Peskin and Schroeder [6]. Ramond

[7] has things other books don’t, specifically the use of generating functionals for perturbation

theory and a nice calculation of beta functions. Ryder [8] is concise but complete; I often

put it on reserve when I teach the formal parts of electrodynamics. Weinberg’s books [9, 10]

are very complete, but maybe they aren’t really textbooks. (My first QFT course was from

Weinberg.) Finally we are far in the past with Bjorken and Drell [11, 12]. In their day

they were quite influential and for a few special subjects (solving the Dirac equation, doing

tree-level QED) they are still worth consulting. I’ve put Refs. [3, 4, 5, 6, 7, 8] on reserve

in the Engineering Library, which is in the basement of the math building. Try to violate

social norms and go in the stacks there to browse the QFT book section. You will find a lot

of books, including (hopefully) the one for you.

I added Martin’s supersymmetry primer [13] for its Sec. 2, which has a terse description

of Dirac, Weyl and Majorana fermions.

The many - body physics book I own is Fetter and Walecka [14]: very old but still full of

useful things.

I included some statistical mechanics oriented texts, Refs. [15, 16, 17, 18, 19, 20] on my

list. I have a problem with condensed matter field theory books in that I find their treatment

of path integrals and perturbation theory somewhat unsystematic, but then I am a particle

physicist. Maybe I am missing something! The classic review article on the renormalization

group by Wilson and Kogut [21] is not to be missed. Polyakov [22] had interesting things to

say. Finally I include my own book [23] (not to be selfish, but bits of this course washed up

there) and for BEC aficionados, Pethick and Smith[24].

James Thompson suggested three quantum optics books [25, 26, 27].
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Various “inspirational” articles [28, 29, 30, 31, 32] and some introductions to effective

field theory [33, 34, 35, 36, 37] round out the list.

Remember, you can’t learn quantum field theory from any one book or any one course.

Bohr once said that “The opposite of truth is falsehood but the opposite of a great truth is

another great truth.” Quantum field theory contains many great truths.
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This course is intended to give you an introduction to quantum field theory. So – what

is a quantum field theory? A field theory is a dynamical system with degrees of freedom

defined at every space-time point. In a quantum field the degrees of freedom are quantum

variables. Quantum fields are interesting and important for two big reasons:

First, three of the four fundamental forces in Nature can certainly be described in terms of

quantum fields: electromagnetism (quantum electrodynamics or QED), the weak interactions

(which combine with QED to give electroweak theory) and the strong interactions (quantum

chromodynamics or QCD). These three interactions form the Standard Model of elementary

particle physics. In “grand unification” models these three forces are also combined in some

way. Gravity is a classical field theory (general relativity); quantum gravity is not part of

the course and so we’ll move on.

In fact, all four of these theories form a sub-class of quantum field theories called “gauge

theories.” They all possess hidden local symmetries or invariances.

Second, problems in physics are often many body problems. Quantum field theories are

quantum systems where the number of degrees of freedom is very large. If we are interested

in systems with a large number of degrees of freedom, the techniques of quantum field theory

allow us to study them in the most efficient way.

Often, complicated physical systems can be modeled from the start in terms of “effective

field theories” and analyzing their behavior takes us back to the technical aspects of this

course.

In a quantum field theory, the concept of a “particle” is a derived quantity. The field

is the fundamental object. Quantum field theory allows a natural description of particle

creation and annihilation, as is seen in Nature. There is no particular a priori reason for

particle number to be conserved. Conserved quantities are built of the field variables. They

are currents and charges and their existence is related to symmetries in the underlying field

Lagrangian. (Charge, not electron number, is conserved.)

The idea of particle creation and annihilation is also useful in situations where the un-

derlying particle number (for example, the number of electrons in an atomic system) is

conserved. Often it is more convenient to think about scattering in terms of objects which

are created and destroyed, rather than following the particle itself through space-time. An

example is the use of particles and holes in semiconductors in lieu of explicitly considering

many electrons in filled and unfilled bands.
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Because of particle creation and annihilation, relativistic quantum mechanics – replacing

the Schr̈odinger equation by the Dirac equation or the Klein-Gordon equation – is an in-

complete description of dynamics. Relativistic quantum systems are quantum field theories.

Quantum field theory for nonrelativistic systems has much in common with relativistic

quantum field theory. However, Lorentz invariance puts strong constraints on relativistic

systems, which are not present in the nonrelativistic case. An immediate example is that the

symmetry group structure of Lorentz transformations constrains the intrinsic spin of a par-

ticle, so that only spin 0, 1
2
, 1, . . . are allowed. Relativity also constrains dynamics. Imagine

the process of Compton scattering, γ + e− → γ + e−. There are two ways the process can

occur (in second order perturbation theory): emission can follow absorption, or absorption

can follow emission. (See Fig. 3.1.) In a nonrelativistic system, the intermediate states for

the two time orderings, |i1〉 and |i2〉, can be very different. But now think relativistically: if

the two spacetime events (absorption and emission) are separated by a spacelike interval, the

earlier time in one frame can be the later time in another frame. This says |i1〉 and |i2〉 must

be related. If we label the particles going into each interaction as in the figure, in a frame

where t1 < t2, we’d say particle A converts to particle B which is later absorbed by particle

C. But in a frame where t1 > t2, we would say that C emits a B̄ which is later absorbed

by A. It’s easy to convince yourself the B and B̄ have “opposite” quantum numbers. In

fact, we will see that they are antiparticles of each other. (The existence of antiparticles has

nothing to do with the presence of negative energy solutions to the Dirac equation; it is a

general feature of relativistic quantum field theories.)

When we actually get down to business, you’ll see that there are two ways to formulate

quantum field theories, with Hamiltonians or with path integrals. Hamiltonian methods

for quantum field theory are pretty much just a specialized version of what you already

know from quantum mechanics. There is a Hilbert space, states (which are nearly always

number states, |nk1, nk2 , . . .〉 with the n’s integer-valued), and there are operators (the fields)

acting on the states. A new item is that a field operator φ(x, t) combines c-number spatial

dependence with quantum operators that typically raise and lower the n’s in the states.

These are the a†(k) and a(k) in a field operator

φ(x, t) =

∫

d3k

(2π)3/2
√
2ωk

[ei(
~k·~x−ωt)a(k) + e−i(

~k·~x−ωt)a†(k)]. (3.1)

Typically the “k” in |nk . . .〉 is continuous. Time is both “what the system evolves in” –

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 (3.2)
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Figure 3.1: The two time orderings for Compton scattering, moving around under a Lorentz

transformation.



Quantum Field Theory 25

and time is also a component of the space-time four vector xµ.

Path integrals for quantum field theories look superficially like partition function in sta-

tistical mechanics. The idea is that there is a field variable φ(x, t) at every space-time point.

For a bosonic system, these are classical variables. Everything begins with the “generat-

ing functional for Green’s functions,” which is basically the partition function, which itself

depends on the classical Lagrange density,

Z =

∫

∏

x,t

dφ(x, t) exp(
i

~

∫

d3xdtL(φ, ∂µφ)). (3.3)

Of course, one can derive one formalism from the other.

In either case, the (derived) concept of a particle makes sense only if its persistence

probability is large and the probability of its disappearance is small. In that case, we could

treat the interactions as small corrections, and describe them using perturbation theory. This

leads us (either from Hamiltonians or from path integrals) to the funny pictures you see in

every quantum field theory book, Feynman diagrams. These are pictorial representations

of Green’s functions. Each part of the diagram (vertex or line) corresponds to a particular

mathematical expression, linked together in some rigid way to give a perturbative formula

for some probability amplitude. A big chunk of the course is learning how to construct –

and evaluate – Feynman diagrams to produce scattering amplitudes. At the end, horrible

calculations are reduced to exercises with lego blocks.

When we do an actual calculation, we encounter a collection of computational and inter-

pretational problems which are labelled by the word “renormalization.” This is a superpo-

sition of the following physical problems:

First, suppose you have a theory which you can’t solve exactly, so you try to solve it

approximately. You write H = H0 + λV and hope for solutions of the form

F = E0 + λE1 + λ2F2 + . . .

ψ = ψ0 + λψ1 + λ2ψ2 + . . . .

(3.4)

Experiments measure observables of the full H . Theory is based on H0, and the properties

of H0 often can’t be compared directly to experiment. (An example: an electron coupled

to an electromagnetic field, H0 is the Hamiltonian for a free electron by itself – an electron

which does not interact with the electromagnetic field (?!)) H0 and λV depend on various
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“theorist’s parameters,” such as m0 and e0, the mass of our decoupled electron, the coupling

of our decoupled electron to the decoupled photon.

To make predictions, we must first use our theory to calculate a set of derived quantities,

which can be measured. For example, we compute the amplitude for Rutherford scattering

and interpret the coefficient of 1/q2 as the physical electric charge e. A second calculation

can give us the physical electron mass m. These quantities are functions of the theorist (or

“bare”) parameters e0 and m0: e(e0, m0), m(m0, e0). Generally e = e0+Ce30+ . . . . Once we

have made this determination, we can go on to make predictions for additional observables.

We would like to express them in terms of e and m, not in terms of e0 and m0.

There is an additional complication. Quantum systems become very “rough” at short

distance. For example, one can compute the size of fluctuations of the quantum electric field

in a sphere of radius “a” (which could be the size of a probe). You would discover that

〈

0|( ~E(x+ a, t)− ~E(x, t))2|0
〉

∼ 1

a4
. (3.5)

As the size of the probe shrinks to zero, fluctuations in the field diverge. Physically, fluctu-

ations arise because you can’t probe E at a point without creating photons. This causes a

problem because, at least in principle, all the high energy states can contribute to physical

processes. The second order formula shows this explicitly:

∆E =
∑

j

| 〈i|V |j〉 |2
Ei −Ej

(3.6)

It’s hard to keep track of what is going on when processes at arbitrarily short distance

become arbitrarily large.

I could keep going, but at this point in the course, the explanation would be too cryptic.

Suffice it to say that there is a rather deep story which ultimately comes down to the

statement that in real life everything is an approximation. We will discover the issues as

we follow our nose and do what we think are straightforward calculations only to discover

that they give us absurd - looking answers. The part you may have heard about already

is the notion of a “scale - dependent” coupling, that is, the value of parameters in the

theory which are used to make comparisons with experiment are not constants (“coupling

constants”); they depend on the energy scale at which the experiment is being done.
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Like everything else in the study of dynamics, quantum field theory begins with a La-

grangian. Presumably this is because the connections between symmetries and conservation

laws, and the consequences of those connections, is most simply achieved through the La-

grangian.

A symmetry is a transformation of the coordinates which leaves the Lagrangian un-

changed. Symmetries imply conservation laws. (This connection is called Noether’s the-

orem.) That is easiest to see by imagining a Lagrangian L(q, q̇) and a transformation

q → q + δq. If the transformation is a symmetry, the Lagrangian is unchanged,

L(q + δq, q̇) = L(q, q̇) (4.1)

but if the transformation is small, we can write

L(q + δq, q̇) = L((q, q̇) +
∂L

∂q
δq + . . . (4.2)

so it must be that
∂L

∂q
= 0. (4.3)

The Lagrange equations of motion

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (4.4)

then say that ∂L
∂q̇

is time independent. In Hamiltonian dynamics, this is the momentum

conjugate to q, and the presence of the symmetry means that it is conserved.

We encode conservation laws using classical Lagrangians. However, if we are interested

in quantum dynamics, presumably we need to construct a quantum Hamiltonian. Let us

defer the connection between Lagrangians, symmetries, and conservation laws for a while,

and just look at how we can get from a classical Lagrangian to a quantum Hamiltonian. The

construction of the quantum H from the classical L is called “canonical quantization.” It is

a bit illogical to go this way –quantum is more fundamental – but the procedure is at least

reasonably well defined. (The alternative to what I am describing is to jump immediately

to the path integral.) Here is the menu:

1. Begin with L(qi, q̇i), i = 1 to N for N degrees of freedom

2. Derive the Lagrange equations of motion

d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0 (4.5)
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3. Pass to the classical Hamiltonian by finding the canonical momenta pj =
∂L
∂q̇j

4. Construct the Hamiltonian

H =
∑

j

pj q̇j − L (4.6)

5. The p’s and q’s obey Poisson bracket equations of motion

{H, qj} =
∂H

∂pj
= q̇j ; {H, pj} = −∂H

∂qj
= ṗj (4.7)

6. The quantum system whose quantum Hamiltonian corresponds to H is found by re-

placing H and all the p’s and q’s by operators and replacing the Poisson brackets by

commutators,

[pi, qj] = −iδij (4.8)

[H, qi] = −i∂qi
∂t

(4.9)

[H, pi] = −i∂pi
∂t

(4.10)

and in fact, for any operator O,

i[H,O] =
∂O

∂t
(4.11)

We are obviously working in Heisenberg basis.

Let’s do a series of examples, building up to our first quantum field theory.

4.1 The oscillator

What else? The classical Lagrangian is

L =
1

2
mq̇2 − 1

2
mω2q2 (4.12)

and the classical Hamiltonian is

H =
p2

2m
+

1

2
mω2q2. (4.13)

A useful way to describe even a classical oscillator is to work in terms of the classical variables

a =

√

mω

2

(

x+
ip

mω

)

a∗ =

√

mω

2

(

x− ip

mω

)

. (4.14)
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We can rewrite the classical equations of motion for p and q in terms of a and a∗:

ȧ = −iωa; ȧ∗ = iωa∗ (4.15)

The classical Hamiltonian can be rewritten as

H = ωa∗a. (4.16)

These two equations define a classical oscillator as well as anything else.

We pass to quantum mechanics by interpreting p and q, or a and a∗ as operators p̂, q̂, â

and â†. The Poisson bracket expression involving the classical a’s is {a, a∗} = 1. It means

that the operators obey a commutation relation [â, â†] = 1. The usual passage of steps then

gives us the quantum Hamiltonian

H = ω(â†â +
1

2
) ≡ ω(N̂ +

1

2
) (4.17)

where N̂ = â†â is the number operator. The Heisenberg equations of motion for the operators

â and â† are identical to the classical equations of motion for a and a∗, Eq. 4.15.

The algebra of the commutation relation between a and a† plus the form of the Hamilto-

nian lead immediately to the familiar features of the quantum oscillator: eigenstates of the

Hamiltonian are labelled by an integer n ≥ 0; the operator a acts on these states to lower n

by one unit, and a† acts to raise the integer by one unit. For completeness, let’s review:

Obviously, eigenstates of the Hamiltonian will also be eigenstates of N , so let’s solve the

equation N̂ |n〉 = n |n〉. Using the commutation relations

[N̂ , â] = [â†â, â] = â†[â, â] + [â†, â]â = −â (4.18)

and

[N̂ , â†] = â†. (4.19)

What do raising and lowering operators do to eigenstates of N̂? Consider

N̂ â† |n〉 = ([N̂ , â†] + â†N̂) |n〉
= (â† + â†N̂) |n〉
= (n+ 1)â† |n〉

(4.20)
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This shows us that a† |n〉 is an un-normalized eigenstate of N̂ with eigenvalue n + 1,

â† |n〉 = C
(+)
n+1 |n+ 1〉 . (4.21)

The lowering operator behaves similarly:

N̂ â |n〉 = ([N̂, â] + âN̂) |n〉 = (n− 1)â |n〉 (4.22)

so

â |n〉 = C
(−)
n−1 |n− 1〉 . (4.23)

To find the constants, consider the norm of the state â |n〉:

〈n|â†â|n〉 = (〈n| â†)(â |n〉) = |C(−)
n−1|2 〈n− 1|n− 1〉 (4.24)

= n 〈n|n〉 = n.

Therefore, (choosing a phase) the normalization factor is

C
(−)
n−1 =

√
n. (4.25)

An analogous calculation for the raising operator gives

â |n〉 =
√
n |n− 1〉 (4.26)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (4.27)

Observe that we cannot lower the state forever, because the norm of the state (the inner

product of bra and ket) must always be greater than 0. From Eq. 4.25, this norm is n.

Therefore, the minimum n must then be 0, and all the n’s must be integers (otherwise one

could lower states to negative values of n).

Familiar stuff! the important ingredients are

1. We started with a classical Lagrangian or Hamiltonian which is quadratic in the degrees

of freedom. Note, though, that while we could have begin in the standard way by

writing everything in terms of p’s and q’s, Eqs. 4.15 and 4.16 are an equally valid way

to characterize a classical oscillator.

2. The classical variables p, q, or a and a∗, become operators. The algebra of the commu-

tation relation [a, a†] = 1 gives us an energy spectrum labelled by an integer. There are

equally spaced energy levels E = nω+ constant, with n = 0, 1, 2, . . . . The operators

a and a† act on these states to lower and raise the integer by one unit.
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.

All of perturbative quantum field theory lurks in these two ingredients.

4.2 Many uncoupled oscillators

This is trivial, just add an index to what we have already done! The classical Hamiltonian

is

H =
∑

i

Hi =
∑

i

p2i
2mi

+
1

2
miω

2
i (4.28)

or

H =
∑

i

Hi =
∑

i

ωia
∗
i ai (4.29)

Clearly, we can introduce the linear combinations (classical or quantum, it doesn’t matter)

ai =

√

miωi
2

(

x̂i +
ip̂i
miωi

)

a†i =

√

miωi
2

(

x̂i −
ip̂i
miωi

)

. (4.30)

The quantum commutation relations descend from [pi, xj] = −iδij , so [âi, â
†
j] = δij . The

Hamiltonian is

H =
∑

i

ωi[â
†
i âi +

1

2
] (4.31)

The individual a’ and a†’s obey the same equation of motion as Eq. 4.15.

Energy eigenstates are simply product states

|{n}〉 = |n1, n2, . . .〉 =
∏

i

|ni〉 (4.32)

with

H |{n}〉 =
∑

i

ωi[ni +
1

2
] |{n}〉 . (4.33)

Note the sum of terms, each is an integer times a characteristic frequency. And of course

aj |{n}〉 =
√
nj |n1, n2, . . . , nj − 1, . . .〉 (4.34)

and so on.
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4.3 Our first quantum field theory

You have now been set up for our first quantum field theory, a set of coupled oscillators,

which you can think of as a set of masses and springs along a line, i. e. a one dimensional

solid. The Lagrangian is

L =

N−1
∑

n=0

1

2
ẏ2n −

1

2
µ2y2n −

1

2a2
(yn − yn+1)

2 (4.35)

where yn is the displacement of the coordinate of the nth oscillator from its equilibrium

position, the second term is the local restoring potential (think of the individual oscillator

as a pendulum) and the last term is a coupling between the individual oscillators (imagine

a spring connecting successive mass points). The Lagrange equation of motion for each

oscillator is

ÿn = −µ2yn −
1

a2
(2yn − yn−1 − yn+1) (4.36)

This is a coupled system, but it can be decoupled by Fourier series; write

yn =
1

N

∑

k

e−iknayk (4.37)

where k = 2π
Na
nk and nk = 0 to N−1 if we impose periodic boundary conditions. The inverse

relation is

yk =
N−1
∑

n=0

eiknayn. (4.38)

Noticing that
∑

n

eiknayn+1 = e−ikayk, (4.39)

we have the equation of motion

ÿk + µ2yk +
1

a2
(2− eika − e−ika)yk = 0 (4.40)

which for each Fourier mode is just

ÿk + ω2yk = 0 (4.41)

where

ω2
k = µ2 +

2

a2
(1− cos ka). (4.42)
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That is, viewed in Fourier space, the mass-spring combination is just a set of uncoupled

oscillators. We can see this directly by writing L in terms of the yk’s:

L =
1

N2

∑

n

∑

k.k′

eiknaeik
′na[

1

2
ẏk′ẏk −

1

2
µ2yk′yk −

1

2a2
2(1− cos ka)yk′yk] (4.43)

The
∑

n gives a δ(k + k′) which eats an N , leaving

L =
1

N

∑

k

1

2
ẏ−kẏk −

1

2
y−kyk[µ

2 + 2(1− cos ka)]. (4.44)

If the yn’s are real, then y−k = yk and

L =
1

N

∑

k

1

2
ẏ2k −

1

2
ω2
ky

2
k (4.45)

which is again a set of uncoupled oscillators.

Clearly, we can perform the same transformation on H . We could define pn = ∂L/∂ẏn

in coordinate space or pk = ∂L/∂ẏk = ẏk/N in Fourier space. With the latter choice

H =
1

N

∑

k

1

2
p2k +

1

2
ω2
ky

2
k (4.46)

which is yet again a set of uncoupled oscillators. The momentum variables pn and pk are

related by Fourier transform, of course.

Before looking at the quantization problem, let’s pass to the limit of an infinite number

of degrees of freedom. We can do that by removing the lattice spacing a, yn → y(xn = na).

The nearest neighbor coupling is

1

2
(
yn − yn+1

a
)2 =

1

2
[
y(x, t)− (y(x, t) + a∂y

∂x
)

a
]2 =

1

2
(
∂y

∂x
)2 (4.47)

And with
∑

n =
∑

n∆n =
∑

x
∆x
a

= 1
a

∫

dx,

L =
1

a

∫

dx[
1

2
ẏ(x, t)2 − 1

2
µ2y(x, t)2 − 1

2
(
∂y(x, t)

∂x
)2]. (4.48)

Finally define rescaled field variables

φ(x, t) =
y(x, t)√

a
(4.49)

and we have the Lagrangian in its continuum form

L =

∫

dx[
1

2
φ̇2 − 1

2
µ2φ2 − 1

2
(
∂φ

∂x
)2]. (4.50)
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Obviously, a three dimensional analog is

L =

∫

d3x[
1

2
(∂µφ)

2 − 1

2
µ2φ2] =

∫

d3xL (4.51)

where

(∂µφ)
2 = (

∂φ

∂t
)2 − (~∇φ)2 (4.52)

and L is called the Lagrange density.

This is the Lagrangian for a classical field. With our choice of scale factors, the derivative

term ∂µ transforms as a four-vector and (∂µφ)
2 is Lorentz invariant. The field φ(x, t) will be

a scalar field (scalar in the Lorentz transformation sense) if we argue that under a Lorentz

transform, only its arguments (x, t) change. (More on this later.)

We can play the a → 0 game on the Lagrange equations of motion, too. They are (see

Goldstein . . . .)

∂µ[
∂L

∂(∂µφ)
]− ∂L

∂φ
= 0 (4.53)

or

✷φ+ µ2φ = 0 (4.54)

where I’ve introduced the (c = 1) shorthand

✷ =
∂2

∂t2
− (~∇)2. (4.55)

This is called the Klein - Gordon equation; it is the continuum analog of the equation of

motion for a collection of masses and springs.

So far, this is all classical – what is the quantum analog of this system? Let’s carry out

canonical quantization in parallel for the lattice and continuum theories. Lagrangians:

Lattice:

L =
∑

n

Ln; Ln =
1

2
φ̇2
n −

1

2
µ2φ2

n −
1

2a2
(φn − φn+1)

2 (4.56)

and pn = ∂L
∂φ̇n

= φ̇n.

Continuum:

L =

∫

d3xL; L =
1

2
φ̇2 − 1

2
(∇φ)2 − 1

2
µ2φ2 (4.57)

with

π(x, t) =
∂L

∂(∂0φ)
= φ̇(x, t). (4.58)
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Hamiltonians:

Lattice:

H =
∑

n

Hn; Hn = pnφ̇n − Ln =
1

2
p2n +

1

2
µ2φ2

n +
1

2a2
(φn − φn+1)

2 (4.59)

Continuum:

H =

∫

d3xH; H(x, t) =
1

2
π(x, t)2 +

1

2
(∇φ)2 + 1

2
µ2φ2 (4.60)

Quantization:

Lattice: [pi, φj] = −iδij ; continuum [π(x, t], φ(x′, t)] = −iδ3(x− x′).

Hmm . . . , this is all true but perhaps working with φ(x, t) and π(x, t) is not maximally

efficient? Perhaps it might be better to begin in a basis in which the oscillators are uncoupled.

Return to the continuum Lagrange equation of motion

(
∂2

∂t2
−∇2)φ(x, t) + µ2φ(x, t) = 0. (4.61)

We write a φ(x, t) in terms of a superposition of normal modes (with ωk =
√

k2 + µ2)

φ(x, t) =

∫

d3k

(2π)3/2
√
2ωk

[a(k, t)e−ik·x + a∗(k, t)e−ik·x]. (4.62)

The integration measure seems arbitrary, but it will be convenient to adopt it later. The

quantities a(k, d) and a∗(k, t) are classical Fourier coefficients. Hitting φ in Eq. 4.62 with

Eq. 4.61 gives an equation of motion for the Fourier coefficients

d2a(k, t)

dt2
+ ω2

ka(k, t) = 0. (4.63)

The a(k, t)’s are obviously oscillator variables.

We have been writing down first order equations for the oscillator and this is a second

order equation. But there is a “2” we have ignored: if φ is real, then keeping an independent

a and an a∗ for each k mode is an overcounting by a factor of two. We can take care of this

over-counting if we clip out half the k modes, perhaps by restricting kz > 0 in the sum.

The solution to Eq. 4.63 is, of course,

a(k, t) = a(k, 0)(1)e−iωkt + a(k, 0)(2)eiωkt. (4.64)
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The annoying factor of two now returns, usefully. We can remove the restriction kz > 0 if

we define a(k) = a(k, 0)(1) if kz > 0 and a(k, 0)(2) if kz < 0. This amounts to just keeping

the solution

a(k, t) = a(k, 0)e−iωkt (4.65)

or
da(k, t)

dt
= −iωka(k, t). (4.66)

This gives us a set of classical variables with the desired first-order equation of motion.

Incidentally, we’ll see later that a fully relativistic theory requires the presence of both a

and a∗.

To construct the Hamiltonian, we need the momentum conjugate to φ(x, t). It is

π(x, t) = φ̇(x, t) =

∫

d3k

(2π)3/2
√
2ωk

[iωk][a(k, t)e
−ik·x − a∗(k, t)e−ik·x]. (4.67)

Now we make our system quantum by thinking of φ and π as operators and imposing the

quantization condition that [π(x, t], φ(x′, t)] = −iδ3(x − x′). We impose the condition by

replacing the classical Fourier coefficients by operators â(k) and â†(k). The commutator is

−iδ3(x− x′) =

∫

d3kd3k′

(2π)3
√
4ωkωk′

[iωk]

([a†(k, t), a†(k′, t)]× . . .

+[a(k, t), a(k′, t)]× . . .

+2[a†(k, t), a(k′, t)]eik·xe−ik
′·x′).

(4.68)

This says (yet again!) that in order to enforce the quantization condition [π(x, t], φ(x′, t)] =

−iδ3(x− x′), the a and a† operators must obey the commutation relations

[a†(k, t), a†(k′, t)] = 0 (4.69)

[a(k, t), a(k′, t)] = 0 (4.70)

[a(k.t), a†(k′, t)] = δ3(k − k′) (4.71)

for then (just substituting back)

−iδ3(x− x′) =

∫

d3k

(2π)32ωk
[−2iωk]e

ik(x−x′)

= −i
∫

d3k

(2π)3
eik(x−x

′).

(4.72)
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The commutation relations are identical to what we saw for the simple harmonic oscillator.

The rest of the oscillator story follows immediately: energy eigenstates, which are eigenstates

of the number operator, are labelled by a set of integers, one for each value of k. The classical

Fourier coefficients become operators which raise and lower the nk’s, just like the raising and

lowering operators of the oscillator. Let’s fill in the details.

The Hamiltonian operator is

H =

∫

d3x[
1

2
π(x, t)2 +

1

2
(∇φ)2 + 1

2
µ2φ2 (4.73)

which we can also evaluate in terms of creation and annihilation operators. A tedious

calculation gives

H =

∫

d3k
1

2
ωk[a

†(k)a(k) + a(k)a†(k)]. (4.74)

This makes perfect sense! A set of many harmonic oscillators would haveH =
∑

j ωj(a
†
jaj+

1
2
)

and 1
2
= 1

2
(aja

†
j − a†jaj), so H =

∑

j
1
2
ωj(a

†
jaj + aja

†
j).

Our theory is diagonal in k space, so our states will be number states labeled by k.

|ψ〉 ∼ |nk1, nk2 , . . .〉 . (4.75)

Before we continue, let’s deal with an annoyance (and stick with sums rather than inte-

grals). Obviously

H =
∑

j

ωj(a
†aj +

1

2
). (4.76)

The 1
2
is the annoyance. There is a zero point energy for each oscillator. This energy is

proportional to the number of oscillators, and in this case we have an infinite number of

oscillators, so we have a infinite contribution to the zero point energy,

H |0, 0, 0, 0, 0 . . .〉 = (
∑

j

1

2
ωj) |0, 0, 0, 0, 0 . . .〉 . (4.77)

However, the gap, the splitting of any state from the ground state |0, 0, 0, 0, 0 . . .〉 is finite.

And gaps are all we ever measure in quantum mechanics. So let’s “define the zero point

energy away.” (There is an issue with quantum gravity at the point which I will ignore.) A

practical Hamiltonian is

H =
∑

j

ωja
†
jaj →

∫

d3kωka
†(k)a(k). (4.78)
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There is a formalism to deal with practicality: define “normal ordering” for any operator

O as taking the operator, moving all the a†’s in the operator to the left and all a’s to the

right, and discarding all resulting c-numbers which arise from commutation. The label for a

normal ordered operator is : O : with colons. Then

: H :=

∫

d3kωka
†(k)a(k). (4.79)

I wil drop the :: in what follows.

It’s all downhill from here. Each individual k state forming the product state is an

eigenstate of energy nkωk with ωk =
√

k2 + µ2. The integer nk counts the number of

particles in the state. As in the case of the coupled oscillator, a complete specification of the

state is as a set of integers, one for every k state.

Let’s look at the lowest lying states in the spectrum:

1. |0〉 = |0k1, 0k2, 0k3, . . .〉. This state is called the “vacuum.” It has zero energy. Clearly

it is the state with zero particle content. If we try to remove a particle from it, we

annihilate the state: a(k) |0〉 = 0 for any k. It is also clearly the analog of the ground

state for a collection of oscillators.

2. One particle states are a†(k) |0〉 = C |~k〉. : H : (a†(k) |0〉) = ωk(a
†(k) |0〉), so these

states have energy ωk, the energy-momentum dispersion relation for a massive rela-

tivistic particle with mass µ and momentum k.

3. Two particle states can be a†(k1)a
†(k2) |0〉 with E = ωk1 +ωk2 or 1/

√
2(a†(k))2 |0〉 with

energy 2ωk

and so on.

Congratulations, you have just solved your first quantum field theory. This procedure can

be repeated over and over. Let’s summarize. We began with classical fields and a classical

Lagrange density L(φ, ∂µφ). Notice that L only depends on φ and its derivatives; its space-

time dependence is all through φ and derivatives of φ. (We haven’t really discussed where

Lagrangians come from, yet.) We then found the classical field momentum π(x, t) and the

classical Hamiltonian density. Under quantization, φ(x, t) and π(x, t) become noncommuting

quantum operators acting on an abstract Hilbert space.

To go farther, it’s better to get at particle creation and annihilation operators a†(k) and

a(k) in a round-about way. Write solutions to the classical field equations associated with
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the Lagrangian in terms of its normal modes,

Dφ(x, t) = 0 → φ(x, t) =
∑

n

cn(x)an(t) + c.c., (4.80)

that is, the cn(x)’s are solutions to the differential equation and an(t) and a∗n(t) are clas-

sical expansion coefficients which obey oscillator-like equations of motion. Then enforce

the commutation relations by regarding the a’s and a∗’s as operators. You discover that

[an, a
†
m] ∝ δmn, that is, the a’s and a∗’s are number operators. The algebra immediately

gives equally spaced energy levels; the spacing between the levels is the energy-momentum

relation for the excitations of the system and the integer counts particle number.

Our description has mixture of particle and wave attributes: Waves – from the cn(x, t)’s,

because different modes can interfere spatially. And the energy-momentum relation for the

excitations comes from the classical wave equation, too. Particles –in that energies come

quantized in integers, Ek,nk
= nkωk.

Because the allowed values of any nj are integers, nj = 0,, 1, 2, . . . with no restrictions

on an upper limit, we have a theory of bosons. (Fermions, with their restriction to nj = 0 or

1, will be dealt with shortly.) Because ωk =
√

k2 + µ2, our excitations have the dispersion

relation of relativistic particles of rest mass µ.

Everything else is just technical details.

But wait –we don’t yet have interactions. However, it is easy to see how to build an

interacting quantum field theory. Only L’s which are bilinear in the field variables can be

solved as we have done, to produce a tower of noninteracting states. Anything else,

L =
1

2
(∂µφ)

2 − 1

2
φ2 + LI (4.81)

will give an interacting theory, a system in which the free particles associated with the

quadratic part of L are coupled together by LI . And LI , like all Lagrangians, will be built of
φ’s and derivative terms. Typical LI ’s will be polynomials in the φ’s, like φ(x, t)4. Because

φ(x, t) has an a† piece and an a piece, it both creates and annihilates particles. So the

interactions will involve the creation and annihilation of multiple particles at a single point

in space-time.



Chapter 5

Quantum field theory for many-body

problems

41
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5.1 Particles to waves to particles again

Recall the ingredients of our sample quantum field theory: a classical wave equation and

classical Fourier coefficients which are reinterpreted by quantization to become a set of

quantum creation and annihilation operators. This resulted in a system with integer quantum

numbers, easily interpreted as a system of an integer number of particles.

Let’s think about some analog situations in Nature. In particular, consider a collection

of non-interacting particles. If they have a set of energy levels ǫn, then the energy of a

many-particle system is

E =

n
∑

j=1

ǫjnj (5.1)

where nj is the number of particles in energy state j. Note the resemblance to the field

theoretic formula.

Next, think more closely about conservation laws. Generally, quantities like charge are

conserved, but the number of particles might not be conserved. For example, in a gas of

electrons and positrons, the number of electrons or positrons is not conserved because they

can annihilate. Only the difference in their number, the net charge, is conserved. Also, it is

often useful to think about particle creation and annihilation in a more extended context:

imagine the situation when an electron in an atom leaves the 1S state to go to the 2P state:

∆n1S = −1, ∆n2P = +1. The total particle number is conserved, the number of particles in

any given state is not.

Finally, why are all electrons alike? A crazy but consistent answer: they are all states

created by some field operator φ(x, t), and there is only one operator φ(x, t).

A quantum field theory formulation of many body problems might have some useful

features. Let’s formulate quantum field theory for Schrödinger particles. This will (hopefully)

give us a formalism which is simpler than working directly with a many-body Schrödinger

equation and wave function.

The idea is to imagine thinking of the Schrödinger equation as a differential equation (∇2

is just a differential operator, nothing more)

i~
∂ψ(x, t)

∂t
= − ~

2

2m
∇2ψ + V (x)ψ. (5.2)

Let ψn(x) solve

[− ~
2

2m
∇2 + V (x)]ψn(x) = Enψn(x) (5.3)
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and write the general solution to Eq. 5.2 as

ψ(x, t) =
∑

n

bn(t)ψn(x) (5.4)

where

i~
∂bn
∂t

= Enbn (5.5)

or
∂bn
∂t

= −iωnbn. (5.6)

This is just a “classical” differential equation, but we appear to have two thirds (the wave

equation, a time dependent b) of the field theoretic ingredients in hand. If we could write

H =
∑

n

ǫnb
∗
nbn (5.7)

we could re-interpret the expansion coefficient as an operator in an abstract Hilbert space.

So we need to find an H which can be used to give Eq. 5.6 as an equation of motion. A

natural guess for H is

H =

∫

d3xψ∗(x, t)[− ~
2

2m
∇2 + V (x)]ψ(x, t) (5.8)

which reduces to

H =
∑

n

Enb
∗
nbn, (5.9)

just from orthogonality. Now boldly interpret bn as an operator with commutation relations

[bn, b
†
m] = δnm [bn, bm] = 0 [b†n, b

†
m] = 0 (5.10)

(so that different levels n don’t interact). The Heisenberg equation of motion is

i~
∂bn
∂t

= [bn, H ] =
∑

j

[bn, b
†
jbj ]Ej = Enbn. (5.11)

We have a theory of “field quanta of the Schrödinger equation.” Our Hilbert space is a

number - operator - diagonal space

|{n}〉 = |n1, n2, n3, . . .〉 (5.12)

where the subscript labels levels of the Schrödinger differential operator. The quantity

ψ(x, t) =
∑

n

ψn(x)bn(t) (5.13)
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is an operator, a sum of a product of a c-number function of the spatial coordinates times an

(annihilation) operator acting on the space of states. In contrast to photons, for Schrödinger

particles, different operators create or annihilate particles:

ψ†(x, t) =
∑

n

ψ∗
n(x)b

†
n(t) (5.14)

Note that the b’s act on states like harmonic oscillator operators: b†nbn |n〉 = n |n〉. The

quantity n is an integer n = 0, 1, 2, . . . . Also b†n |n〉 =
√
n+ 1 |n+ 1〉, bn |n〉 =

√
n |n− 1〉.

This follows immediately from the commutation relations. As we can have any number of

particles in the state, we have just invented a quantum field theory for bosons.

What about fermions? We want to keep

H =
∑

n

Enb
†
nbn, (5.15)

but we want to restrict n to be only zero or unity. It turns out that we can do that – and pick

up the minus signs needed in many - fermion wave functions – if we replace the commutation

relation for the b’s by an anti-commutation relation

[bn, b
†
m]+ = bnb

†
m + b†mbn = δnm

[bn, bm]+ = bnbm + bmbn = 0

[b†n, b
†
m]+ = b†nb

†
m + b†mb

†
n = 0

(5.16)

Then

i~
∂bn
∂t

=
∑

m

Em[bn, b
†
mbm]

=
∑

m

Em(bnb
†
mbm − b†mbmbn)

=
∑

m

Em((δnm − b†mbn)bm − b†mbmbn)

=
∑

m

Em(δnmbm + b†mbmbn − b†mbmbn)

= Enbn.

(5.17)

The desired equation of motion is preserved.
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Now we want eigenstates of b†nbn. Note that (b†nbn)(b
†
nbn) = b†n(1 − b†nbn)bn = b†nbn −

b†nb
†
nbnbn. The second term is zero applied to any state because bnbn = −bnbn. So if |λ〉 is an

eigenstate of b†nbn,

b†nbn |λ〉 = λ |λ〉
(b†nbn)(b

†
nbn) |λ〉 = λ2 |λ〉 = λ |λ〉

(5.18)

or λ2 = λ, meaning that λ = 0, 1. Only zero or one particle can occupy a state.

Finally, we need matrix elements of bn and b†n. We have

b†nb
n |Nn〉 = Nn |Nn〉 ; Nn = 0, 1

(b†nbn)b
†
n |Nn〉 = b†n(1− b†nbn) |Nn〉 = (1−Nn) |Nn〉

(5.19)

so b†n |Nn〉 = Cn |1−Nn〉. To find Cn, square this:

|Cn|2 = 〈Nn|bnb†n|Nn〉 = 〈Nn|(1− b†nbn|Nn〉 = 1−Nn (5.20)

Thus Cn = θn
√
1−Nn where θn is a phase factor. Similarly,

bn |Nn〉 = θn
√

Nn |1−Nn〉 (5.21)

For most applications, the value of the phase factor is irrelevant.

Although the formalism looks different, everything is the same as in ordinary quantum

mechanics. Let’s see how that works out. Note that

ψ(x, t) =
∑

n

bn(t)ψn(x) (5.22)

is again an operator which annihilates particles in states n. Let’s look at the (anti)commutation

relations for ψ and ψ†:

[ψ(x, t)ψ†(x′, t)]± =
∑

n

∑

m

ψn(x)ψm(x
′)[bn, b

†
m]± = δ3(x− x′) (5.23)

from a combination of the commutation relations for the b’s and completeness for the ψ’s.

Similarly, [ψ(x, t)ψ(x′, t)]± = [ψ†(x, t)ψ†(x′, t)]± = 0. You can show that when the Hamilto-

nian is

H =

∫

d3xψ†(x, t)[− ~
2

2m
∇2 + V ]ψ(x, t), (5.24)
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the Heisenberg operator equation

i~
∂ψ(x, t)

∂t
= [ψ(x, t), H ] (5.25)

gives the time-dependent Schrödinger equation for ψ. The number density operator is

n(x, t) = ψ†(x, t)ψ(x, t) and the total particle number is

N =

∫

d3xn(x, t). (5.26)

We can build states beginning with the “vacuum state” |0〉, which has no particles in it. It

obeys the relation ψ(x, t) |0〉 = 0. Following this line, ψ†(x, t) |0〉 should be a state with one

particle at x. Is it? Look at the application of the number density operator

n(x′, t)ψ†(x, t) |0〉 = ψ†(x′, t)ψ(x′, t)ψ†(x, t) |0〉
= ψ†(x′, t)(δ3(x′ − x)∓ ψ†(x, t)ψ(x′, t)) |0〉
= δ3(x′ − x)ψ†(x′, t)) |0〉 .

(5.27)

The state is an eigenfunction of the number density operator with an eigenvalue which is a

delta function. This is the mathematical equivalent of the statement that there is a particle

located at x. Integrating, we find that the state is an eigenstate of the number operator,

Nψ†(x, t) |0〉 =
∫

d3x′n(x′, t)ψ†(x, t) |0〉 = ψ†(x, t) |0〉 , (5.28)

so the state does have one particle in it. Similarly

ψ†(x1, t)ψ
†(x2, t) |0〉 (5.29)

is a state with two particles in it, one at x1, the other at x2.

5.2 The free electron gas at zero temperature

Let’s use the language of quantum field theory to calculate some of the properties of a gas

of non-interacting electrons at zero temperature. The ground state wave function has one

filled state for every value of momentum up to the Fermi momentum pF , and then all states

are empty. This makes the momentum space properties of the Fermi gas pretty simple.

However, the coordinate space properties are nontrivial, and those are our goal.
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We should spend a few moments trying to make all the factors correct. The ground state

wave function |Φ〉 must be such that

〈Φ|a†psaps|Φ〉 = 1 |p| < pF (5.30)

and zero otherwise, where

[aps, a
†
p′s′]+ = δ3(p− p′)δss′. (5.31)

We will have a lot of momentum integrals to do, and it is convenient to simplify notation.

Put the system in a box of volume V . Then the momentum spectrum is discrete and in fact

there are V distinct p’s in all. Replacing the Dirac delta function by a Kronecker delta,

[aps, a
†
p′s′]+ = δp,p′δss′, (5.32)

a properly normalized field variable is

ψ(r) =
1√
V

∑

p

eiprap. (5.33)

To check (suppressing the spin label):

[ψ(r), ψ†(r′)]+ =
1

V

∑

pp′

eipreip
′r′ [ap, a

†
p′]+

=
1

V

∑

p

eip(r−r
′)

=
V

V
δrr′

(5.34)

The number density operator is n(x) = ψ†(x)ψ(x) and its expectation value is

〈Φ|ψ†(x)ψ(x)|φ〉 =
1

V

∑

pp′

〈Φ|a†pap|Φ〉

=
1

V

∑

p

np

= =
N

V
.

(5.35)

The gas has uniform density – no surprise. (Incidentally, to make contact with the usual

statistical mechanics story,
∑

p

= V

∫

d3p

(2π)3
(5.36)
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per spin state.) The Fermi momentum is defined via the number density,

N

V
=
∑

s

∫ pF

0

4πp2dp

(2π)3
=

p3F
3π2

(5.37)

With our confidence high we move to more interesting observables. Consider the Green’s

function, a generalization of Eq. 5.35,

Gs(x− x′) = 〈Φ|ψ†
s(x)ψs(x

′)|Φ〉 (5.38)

It is the amplitude to remove a particle at location x′ and put it back in at location x. From

the calculation of the density, it is

〈Φ|ψ†
s(x)ψs(x)|Φ〉

=
1

V

∑

ps

npspe
ip(r−r′)

=
N

V

∑

p npse
ip(r−r′)

∑

p nps

(5.39)

The last step is done to pull in an overall factor of the density, n = N/V . Our technical

problem is the integral

I(p) =

∫ pF

0

d3pei~p·(~r−~r
′). (5.40)

We do this in spherical coordinates, picking the ẑ axis along the ~x− ~x′ direction and calling

|~x− ~x′| = R. This gives

I(p) = 2π

∫ pF

0

p2dpdcosθeipR cos θ

= 2π

∫ pF

0

p2dp
sin pR

pR

= 2π

∫ pF

0

p2dpj0(pR)

(5.41)

where j0(x) is the spherical Bessel function. Dropping this result into Eq. 5.39 and grooming

it a bit gives

G(r − r′) =
3

2
n
j1(pFR)

pFR
(5.42)
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and the limiting value of this expression at R = 0 is just n/2, as we expect. (Half the

particles have one of the spins.)

A more interesting question: what is the probability to find a particle at location x′, given

that there is one at location x? One way to answer this question is to remove a particle of

spin s at x, leaving behind N −1 particles, and then measure the density of particles of spin

s′ in the new state, |Φ′(r, s)〉:

〈Φ′(r, s)|ψ†
s′(r

′)ψs′(r
′)Φ′(r, s)〉 = 〈Φ|ψ†

s(r)ψ
†
s′(r

′)ψs′(r
′)ψs(r)Φ〉

≡ (
n

2
)2gss′(r − r′)

=
∑

pp′qq′

e−i(p−p
′)re−i(q−q

′)r′ 〈Φ|a†psa†qs′aq′s′ap′s|Φ〉

(5.43)

There are two cases. First, suppose s 6= s′. Then it must be that p = p′ and q = q′ to get a

non-vanishing contraction of the a’s and a†’s. Then

(
n

2
)2gss′(r − r′) =

∑

pq

〈Φ|npsnqs′|Φ〉

= nsns′.

(5.44)

This means gss′(r − r′) = 1. The different spins do not know about each other.

If s = s′ then either p = p′, q = q′ or p = q′,q = p′. The first term will contain a factor

〈Φ| a†psa†qsaqsaps |Φ〉 = 〈Φ|npsnqs |Φ〉 (5.45)

after anti-commuting the operators through. The second term has a factor

〈Φ| a†psa†qsapsaqs |Φ〉 = −〈Φ|npsnqs |Φ〉 (5.46)

Putting the pieces together,

C(r, r′) =
1

V 2

∑

pq

npsnqs(1− ei(p−q)(r−r
′))

= n2 − | 1
V

∑

p

npse
i(r−r′))|2

= = n2 − n2g(r − r′)2

(5.47)
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Figure 5.1: pair correlation function for the non-interacting Fermi gas.

recalling the expression for the Green’s function. We can call C(r, r′) = n2G(r − r′)) where

G(r) parametrizes the interesting physics. From the explicit functional form of g(r),

G(r) = 1− (
3

pF r
j1(pF r))

2. (5.48)

Note that G(r) vanishes at r = 0. This is a consequence of Fermi statistics: if there was a

particle already at a location r, there will not be a second one there, too.

5.3 Particles that interact among themselves

So far we have discussed “free particles” – particles in a potential V (x), but otherwise not

interacting with each other. How can we introduce two-body interactions? This is easy –
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add to our one-body Hamiltonian

H1 =

∫

d3xψ†(x, t)[− ~
2

2m
∇2 + V (x)]ψ(x, t) (5.49)

a two-body term

H2 =

∫

d3xd3x′ψ†(x, t)ψ†(x′, t)v(x, x′)ψ(x, t)ψ(x′, t). (5.50)

Note that we have chosen the same ordering of operators as we used for the pair correlation

function. Here v(x) is the potential between the particles. Now suppose that v(x, x′) is, in

some sense, small. If it were zero, it would be natural to expand in plane wave states,

ψ(x, t) =
1√
V

∑

k

bk(t)e
ikx. (5.51)

If v(x, x′) is actually a function of the relative separation of the particles, v(x− x′), then we

can write the Hamiltonian in a plane wave basis as

H =
∑

k1k2

b†k1bk2

∫

d3x

V
e−ik(1−k2)x

~
2k2

2m

+
∑

k1

∑

k2

∑

k3

∑

k4

b†k1b
†
k2
bk3bk4

∫

d3x1
V

d3x2
V

ei(k3−k1)x
′

ei(k4−k2)xv(x1 − x2).

(5.52)

The first term is
∑

k

~
2k2

2m
b†k1bk1 (5.53)

(from the delta function in the integral) and the second term can also be condensed: define

r − x′ − x, change variables from x, x′ to x, r, and use

∫

d3x1
V

d3x2
V

ei(k3−k1)rv(r)ei(k4−k2+k3−k1)x = δ3(k4 − k2 + k3 − k1)v(q) (5.54)

where ~q = ~k3 − ~k1 and

v(q) =

∫

d3x

V
eiqrv(r). (5.55)

Then the two-body Hamiltonian is

H2 =
∑

k1

∑

k2

∑

q

v(q)b†k1+qb
†
k2−qbk2bk1 , (5.56)
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that is, the interaction scatters particles of wave number k1 and k2 into wave number k1 + q

and k2 − q (Or, it annihilates initial state particles and creates final state ones.) We can

compute the lowest order T-matrix by specifying initial and final states,

|i〉 = b†p1b
†
p2 |0〉

|f〉 = b†p3b
†
p4
|0〉

(5.57)

and then the lowest order T-matrix element is

〈f |H2 |i〉 = v(q)δ3(p3 + p4 − p1 − p2) (5.58)

No surprise again, but we can do so much more.

For an off-beat example of the use of this formalism, consider a weakly interacting col-

lection of bosons near absolute zero.

5.4 Excitation in a Bose-Einstein condensate

Recall your statistical mechanics for bosons: the number of particles in a state ~k is given by

N(k) =
1

CeE(k)/T − 1
(5.59)

where T is the temperature (in energy units, k = 1) and C is related to the fugacity or

chemical potential. In a normal system, C and the particle number are related:

N

V
=

∫

d3k

(2π)3
1

CeE(k)/T − 1
. (5.60)

However, as T falls, there is no C which can solve the equation. You have to split off the

zero energy state,

N =
1

C − 1
+ V

∫

d3k

(2π)3
1

CeE(k)/T − 1
(5.61)

and it contributes a finite amount to the right hand side. The mathematics is telling us

that the (~k = 0) ground state is macroscopically occupied – there is a condensate. This is

in contrast to the microscopic occupation of each remaining phase space differential volume

element d3k.
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Let’s think about the condensed system in the language of second quantization. The

ground state has order N particles in it,

b†0b0 |ψ〉 = N0 |ψ〉 . (5.62)

In addition, there is some occupation at k 6= 0

b†kbk |ψ〉 = N(k) (5.63)

given by Eq. 5.59 above.

To make life interesting, let’s assume that we do not have an ideal Bose gas, but suppose

that there is some interaction among the bosons. We can describe it by some potential

v(r). In fact, let’s assume that v(r) = vδ3(r) so that v(q) = v is a constant. (This is

old-fashioned language. Looking back at Eq. 5.58, we see that the T-matrix is a constant,

and recalling the chapter about scattering, we are replacing the T-matrix by its scattering

length approximation.)

Now for approximations. The ground state operators do not commute, [b0, b
†
0] = 1, but

b†0b0 |ψ〉 = N0 |ψ〉 where N0 ≫ 1. In this sense, b0 and b†0 “almost” commute. Let’s treat

them as classical objects, whose size is about
√
N . Then, in H2, there is a natural hierarchy

of terms:

1. b†0b
†
0b0b0, the scattering of condensate particles, has a size roughly vb40 ∼ vN2

2. Terms like b†kb
†
0b0b0 vanish – they do not conserve momentum.

3. Order N terms: b†kb
†
−kb0b0 + b†0b

†
0bkb−k for two particles either leaving or entering the

condensate, and 22b†kbkb
†
0b0 which controls the scattering of a normal particle off the

condensate

4. Ordinary particle scattering is an order (1) effect.

The Hamiltonian of item (3) is

H
(3)
I = b20

∑

k 6=0

(b†kb
†
−k + bkb−k + 4b†kbk). (5.64)

We must be slightly careful with item (1): the total number of particles is

N = b20 +
∑

k 6=0

b†kbk (5.65)
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and so

b40 = N2 − 2N
∑

k 6=0

b†kbk. (5.66)

Then, our approximate Hamiltonian, which considers scattering into or out of the condensate,

is

H =
∑

k

~
2k2

2m
b†kbk +N2v +Nv

∑

k 6=0

(b†kb
†
−k + bkb−k + (4− 2)b†kbk). (5.67)

Now notice something important: this H is quadratic in the b’s. We can make a change of

variables, to a new basis, a†k and ak, and write

H = N2v +
∑

k

ǫ(k)a†kak; (5.68)

that is, the system is described by a set of excitations of “quasi-particles” annihilated by ak.

These are the normal modes of the system. The transformation will be

ak =
bk + Lkb

†
−k

√

1− L2
k

; a†k =
b†k + Lkb−k
√

1− L2
k

(5.69)

or

bk =
ak − Lka

†
−k

√

1− L2
k

; b†k =
a†k − Lka−k
√

1− L2
k

. (5.70)

Of course, we have to find Lk and we do this by making the substitutions into H and choosing

it to cancel the unwanted terms. Notice that

[ak, a
†
k′] =

[bk, b
†
k′] + L2

k[b
†
−k, b−k′ ]

1− L2
k

= δkk′ (5.71)

so the correct creation-annihilation operator algebra is maintained. Physically, ak annihilates

an original boson carrying momentum k (for a momentum change = −k) or creates a boson

with momentum −k, which is also a momentum change −k. A wee bit of algebra yields

Lk =
ǫk + 2Nv − E(k)

2Nv
(5.72)

where ǫk = ~
2k2/(2m) and

E(k)2 = (
~
2k2

2m
)2 + 2Nv

k2

m
(5.73)

E(k) is the energy of an excitation with momentum k. As the equation and Fig. 5.2

show, the high momentum quasi-particles are just the original particles. However, the low-

lying, long wavelength spectrum has a linear dispersion relation, E(k) = Cs~k where Cs =



Quantum Field Theory 55

Figure 5.2: Quasi-particle (phonon) dispersion relation for the weakly-interacting condensed

Bose gas.
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√

2Nv/m. These are sound waves – they are called “phonons,” in complete analogy with the

quantized vibrational modes of a crystal lattice. The non-ideal weakly-interacting condensed

Bose gas is best thought of as a gas of non-interacting phonons.

Finally, suppose we have an impurity atom (of mass M) moving through the condensate.

The only way it can lose energy is to create an excitation in the condensate. Suppose it has

initial momentum ~~q, and also suppose it creates an excitation of momentum ~~k at an angle

θ away from its direction of motion. Conservation of energy says

~
2q2

2M
=

~
2

2M
|~q − ~k|2 + E(k)

=
~
2

2M
[q2 + k2 − 2kq cos θ] + E(k)

(5.74)

or

qk cos θ =
k2

2
+
ME(k)

~2
. (5.75)

Calling the impurity’s velocity v = ~q/M , this is

cos θ =
k

q
+
ME(k)

~2k
=

~k

2Mv
+
E/~k

v
. (5.76)

For phonons, E(k)/~k > Cs, so we need v > Cs for cos θ < 1, allowing a phonon to be

emitted. This means that if the impurity atom is moving too slowly, it cannot emit a

phonon, and it cannot lose energy. Now look at the process from the point of view of an

observer riding along with the impurity. The condensate streams past without friction (if

the velocity of the condensate is low enough). This is superfluidity – we have just discovered

that the condensate is a superfluid!
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6.1 Time dependent perturbation theory

We need approximate solutions for the time dependent Schrödinger equation. We assume

that the Hamiltonian can be written as H = H0 + H1, where H0 is “large” in some sense

and can be diagonalized. We further assume that H1 may be regarded as a perturbation.

The time evolution will be developed in terms of the eigenfunctions of H0.

It is very useful to replace the time dependent wave function by a time evolution operator,

and to find matrix elements of that operator. It is defined through

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (6.1)

and it obeys an equation of motion

i~
∂U(t, t0)

∂t
= HU(t, t0). (6.2)

Matrix elements of U connect initial states at some early time with final states at some later

time. What they encode is called the “transition amplitude” from the initial state to the

final state. It is defined as

Uβα(t, t0) = 〈β(t)|U(t, t0)|α(t0)〉 (6.3)

To find a practical expression for the evolution operator, let us define the “interaction rep-

resentation” perturbation

Ĥ1(t) = eiH0t/~H1(t)e
−iH0t/~ (6.4)

and the “interaction representation” evolution operator

Û(tf , ti) = eiH0tf/~U(tf , ti)e
−iH0ti/~. (6.5)

We want to solve

i~
∂

∂t
U(t, t0) = (H0 +H1)U(t, t0). (6.6)

In interaction representation, Eq. 6.6 becomes

i~
∂

∂t

[

e−iH0t/~ÛeiH0t/~
]

= (H0 +H1) e
−iH0t/~ÛeiH0t0/~. (6.7)

The left hand side is

i~
∂

∂t

[

e−iH0t/~ÛeiH0t0/~
]

=

[

H0e
−iH0t/~Û + e−iH0t/~i~

∂Û

∂t

]

eiH0t0/~, (6.8)
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so
[

H0e
−iH0t/~Û + e−iH0t/~i~

∂Û

∂t

]

eiH0t0/~ = (H0 +H1)e
−iH0t/~ÛeiH0t0/~ (6.9)

or

i~
∂Û

∂t
=
(

eiH0t/~H
−iH0t/~
1

)

Û = Ĥ1Û . (6.10)

This is just a first order differential equation. Integrating it, we find

i~
[

Û(t, t0)− Û(t0, t0)
]

=

∫ t

t0

dt′Ĥ1(t
′)Û(t′, t0). (6.11)

Because Û(t0, t0) = 1, the evolution operator satisfies the integral equation

Û(t, t0) = 1− i

~

∫ t

t0

dt′Ĥ1(t
′)Û(t′, t0). (6.12)

Like all Volterra integral equations, it can be solved by iteration:

Û(tf , ti) = 1− i

~

∫ tf

ti

dt1Ĥ1(t) +

(

− i

~

)2 ∫ tf

ti

dt2

∫ t2

ti

dt1Ĥ1(t2)Ĥ1(t1)

+

(

− i

~

)3 ∫ tf

ti

dt3

∫ t3

ti

dt2

∫ t2

ti

dt1Ĥ1(t3)Ĥ1(t2)Ĥ1(t1) + · · · (6.13)

The operators H1(t) may not commute at different times, and so it is important to preserve

their time ordering.

This is called the “Dyson series” for the evolution operator. Note the nested time inte-

grals, preserving the ordering in the multiple time integrals of the temporal points where the

potential acts.

We can write this even more compactly by introducing the “time ordering operator”

T (A(t1)B(t2) . . . ). The time ordering operation takes the operators and evaluates them in

ascending order from the right; with the operator at earliest time farthest right, then the

next earliest one, and so on until the operator evaluated at the latest time sits at the far

left. Then we can think of the times ti in Eq. 6.13 as a set of dummy labels and write the

evolution operator as

Û(tf , ti) =

∞
∑

n=0

(

i

~

)n
1

n!

∫ tf

ti

dt1

∫ tf

ti

dt2 . . .

∫ tf

tn

dtnT (Ĥ1(t1)Ĥ1(t2) . . . Ĥ1(tn)) (6.14)

For useful insight, look at the second order term in the sum, and return to Schrödinger

representation. Consider a transition from one eigenstate of H0, |α〉, to another one, |β〉.
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Inserting complete sets of states the transition amplitude becomes

Uβα =

(

− i

~

)2
∑

γ

∫ tf

ti

dt2

∫ t2

ti

dt1e
−iEβ(tf−ti)/~

×〈β|H1(t2)|γ〉 e−iEγ(t2−t1)/~ 〈γ|H1(t1)|α〉 e−iEα(t1−ti)/~.

(6.15)

Notice the structure (moving in from the right): the system begins in state |α〉 and its

time evolution is the usual phase factor associated with an energy eigenstate. Then the

perturbation acts at one time t1, driving the system into a superposition of eigenstates of

H0, the |γ〉 states. each |γ〉 state is also an energy eigenstate and evolves appropriately in

time Lastly, the perturbation acts again at t2 to carry the system into |β〉.

6.2 The S-matrix

The S-matrix is defined as the limit

S = lim
t→∞

lim
t0→−∞

U(t, t0). (6.16)

We only have eigenstates of H0 so we always compute matrix elements of S between them,

〈β|S|α〉. We make a set of demands on S, and these demands constrain possible Hamiltoni-

ans. We set ~ = 1 from here on.

6.2.1 Unitarity

We want 〈β|S†S|α〉 = δαβ . This is the same thing as asking whether the evolution operator is

unitary. To satisfy this requirement, HI must be Hermitian. The proof is simple. U(t0, t0) =

Û(t0, t0) = 1. Then

i
d

dt
[Û(t, t0)

†Û(t, t0) = [−Û †Ĥ†
I ]Û + Û †[ĤIÛ ] = Û †[−Ĥ†

I + ĤI ]Û (6.17)

where we have used
dÛ

dt
= −iĤI Û (6.18)

and its Hermitian conjugate. If ĤI is Hermitian, U †U is a constant and the constant is unity

from U(t0, t0) = Û(t0, t0) = 1.
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6.2.2 Energy conservation

Is Sβα = 0 if Eα 6= Eβ? This is tricky! Recall H0 |α〉 = Eα |α〉, so we might consider

〈β|[H0, S]|α〉 = (Eβ − Eα)Sβα. (6.19)

Is this zero? If so, we have energy conservation. But there is a problem: S depends on HI

and generally [H0, HI ] 6= 0.

The escape is dirty. We have to (formally) adiabatically switch on and off HI at early

and late times, so that we can actually construct our “in” and “out” states. Then (writing

formally)

U(t, t0) = T exp(i(Ho +H
−λ|t|
I )t) (6.20)

so that

lim
t→±∞

[H0, U ] → 0. (6.21)

This says that we can only have energy conservation between the beginning and the end

of the reaction – the intermediate states can be anything. So much for being formal. The

algebra will take care of energy conservation for us, modulo technical problems associated

with squaring delta functions. For example

S
(1)
αβ = −i

∫ ∞

−∞
dteiEαt 〈α|HI |β〉 e−iEβt ∝ δ(Eα −Eβ). (6.22)

In fact, it will turn out, depending on how time ordered products are handled, that either

1. Energy isn’t conserved throughout the reaction, but all particles are on shell, p2 = m2

2. OR E is conserved, but intermediate state particles do not have p2 = m2.

6.2.3 Momentum conservation

We want Sβα = 0 if
∑

i∈α pi 6=
∑

j∈β pj or more formally [P, S] = 0 where P is the momentum

operator. We will get this if [P,HI ] = 0. The momentum P is not only an operator, it is

the generator of translations x → x+ a. Then S will be invariant under space translations

if H is, and momentum will be conserved. As you know, scattering in an external field does

not conserve momentum, but in that case there is no translation invariance. We have to

be careful about treating the momentum as a four vector and asking for time translation

invariance, because in Hamiltonian quantum mechanics, time is special: it is “what we evolve

in.”
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6.2.4 Lorentz invariance

Consider a Lorentz transformation (some combination of boosts and rotations) parametrized

by a matrix Λ (with six perameters, three for rotations, three for boosts). We have observers

in two frames:

• O sees state |α〉

• O′ sees state |Λα〉

In analogy with rotation matrices, states are transformed by a unitary operator U(Λ),

|Λα〉 = U(Λ)|α〉 (6.23)

and operators must transform as

O → U(Λ)OU−1(Λ). (6.24)

That the transformation is unitary means that 〈α|β〉 = 〈Λα|Λβ〉 = δαβ . Different observers

must see S-matrices which do the same thing, so Sα,β = SΛα,Λβ, or

〈β|S|α〉 = 〈U(Λ)β|S|U(Λ)α〉
= 〈β|U(Λ)−1SU(Λ)|α〉 .

(6.25)

So, we want S = U−1SU or [S, U(Λ)] = 0.

This just looks like formalism, until we realize that the Hamiltonian perturbative S-

matrix treats time in a special way – there is the time ordered product. (Go back and

look at Eq. 6.14.) How can we solve this constraint? There is one possibility everyone knows

(more arcane versions, for particles with higher spin, or derivative interactions, are described

in Weinberg – keep it simple, now): First, write the perturbing Hamiltonian as an integral

over a Hamiltonian density

HI(t) →
∫

d3xH(x, t) (6.26)

where H is a Lorentz scalar. Being a scalar means that the transformation rule for H is

U(Λ)−1H(x)U(Λ) = H(Λ−1x). (6.27)
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(the argument changes but H does not change; Λ−1 because the order of the U ’s in Eq. 6.27

is reversed compared to Eq. 6.23.) Then the S-matrix is

S =
∑

n

(−i)n
n!

∫

d4x1 . . . d
4xnT (H(x1) . . .H(xn)). (6.28)

This looks promising: all the integrations, and H, are invariants. Unfortunately, we are not

out of the woods yet. The time ordering operator might not be Lorentz invariant. Do a

Lorentz transformation:

U−1SU =
∑

n

(−i)n
n!

∫

d4x1 . . . d
4xnTx(H(Λ−1x1) . . .H(Λ−1xn)). (6.29)

I wrote Tx to remind that the time ordering is in the frame of x, NOT in Λ−1x. To get this,

I have inserted unity as U(Λ)−1U(Λ) = 1 between the H’s in the time ordered product. Now

change variables, writing xi = Λyi. The integration measure is invariant, d4x = d4y so

U−1SU =
∑

n

(−i)n
n!

∫

d4y1 . . . d
4ynTx(H(y1) . . .H(yn)). (6.30)

Tx contains terms like

θ((Λ−1y1)
0 − (Λ−1y2)

0)H(y1)H(y2) + θ((Λ−1y2)
0 − (Λ−1y1)

0)H(y2)H(y1). (6.31)

Now there are two possibilities. If Λ does not change the ordering of times, this expression

will be the same in all frames. If the two points x1 and x2 are separated by a time-like

interval, the time ordering will not change, and S = U−1SU . We have Lorentz invariance.

However, if the two points are space-like separated, one can move from a frame where

t1 > t2 to one where t1 < t2. To maintain Lorentz invariance, we must be able to exchange

the order of the two H’s in the time ordering. To do this, we need H(y1)H(y2) = H(y2)H(y1),

or

[H(y1),H(y2)] = 0 for (y1 − y2)
2 < 0. (6.32)

We say “our Hamiltonian commutes outside the light cone.” Eqs. 6.26 and 6.32 are the

requirements Lorentz invariance imposes on any quantum theory.

6.3 Relativistic spin-zero quantum fields

We want to consider scattering processes in perturbation theory from a state |Φk1,k2...〉 ∝
a†(k1)a

†(k2) . . . |0〉 to some final state |Φk′
1
,k′

2
...〉. We will build interaction Hamiltonians out
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of fields and their derivatives, since that is all we have in a field theory. Our states are

created and destroyed by field operators. In position space, a potential scalar field operator

could be

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[a(p)eipx], (6.33)

where we temporarily assume that we only have a field annihilation operator in φ. The

factors of π and E(p) are a convenient choice (see the notes on conventions), and it lets us

quantize with [a(p), a†(p′)] = δ3(p− p′).

Now, we know we need two things:

• H must be Hermitian, so H = H(φ, φ†)

• [H(y1),H(y2)] = 0 for space-like separation, (y1 − y2)
2 < 0.

Is Eq. 6.33 good enough to satisfy these requirements? If [φ(x), φ(y)†] = 0 for (x − y)

space-like, we’re good. Let’s see:

[φ(x), φ(y)†] =
1

(2π)3

∫

d3kd3k′
√

4E(k)E(k′)
e−i(kx−k

′y)[a(k), a†(k′)] (6.34)

(four dimensional dot products in the exponential, kx = E(k)x0 − ~k · ~x), or, from the

commutator [a(k), a†(k′)] = δ3(k − k′),

[φ(x), φ(y)†] ≡ ∆+(x− y) =
1

(2π)3

∫

d3k

2E(k)
e−ik(x−y). (6.35)

This is NOT an equal time commutator (x0 6= y0). It is a scalar function of (x − y). Let’s

evaluate it.

(a) x− y time-like: Pick a frame where ~x− ~y = 0, x0 − y0 ≡ x = ±
√

(x− y)2:

∆+(x) =
4π

2(2π)3

∫

k2dk√
k2 +m2

e∓ix
√
k2+m2

=
m

8πx
(N1(mx)± J1(mx))

(6.36)

using tables, and the J1 and N1 are Bessel functions.
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(b) x− y space-like. Work in a frame where t = 0, |x| =
√

−(x− y)2

∆+(x) =
1

(2π)3

∫

k2dkdΩ√
k2 +m2

ei
~k·~x

=
1

(2π)2

∫

k2dk√
k2 +m2

sin kx

kx

=
m

4π2x
K1(mx)

(6.37)

Tables again, and this is a Bessel function of imaginary argument,

K1(mx) ∼
√

π/(2mx) exp(−mx). (6.38)

Although we evaluates these expressions at particular points, we can slide the results up

and down the light cone by doing boosts. Eq. 6.36 is benign; the time ordering of time-like

separated events is preserved by Lorentz transformations. But Eq. 6.37 is bad news: it says

that [φ(x), φ(y)†] 6= 0 outside the light cone. Our guess for φ(x), Eq. 6.33, is inconsistent

with special relativity.

What to do? We need something additional to cancel ∆+ outside the light cone. Guess

number two:

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[a(p)eipx + ηa†c(k)e

−ipx], (6.39)

Now, if we assume that a and ac commute, and we give ac and a†c the same commutation

relation as for a and a†, [ac(p), ac(p
′)†] = δ3(p− p′) , the field commutator is

[φ(x), φ(y)†] ∼ [a+ a†c, a
† + ac] = ∆+(x− y)− |η|2∆+(y − x). (6.40)

Since ∆+ is an even function outside the light cone, we can achieve cancellation by setting

η = 1 (you can absorb phases into ac if you want).

So (punch line) to satisfy Lorentz invariance, for every particle annihilated by φ there

must be another particle created by φ, and it has to have the same mass, so that the two

∆+ functions cancel. Hmm... what about its quantum numbers?

If some quantity is conserved, its charge operator commutes with the Hamiltonian,

[Q,H] = 0 (6.41)

or, if H is a product of fields,

[Q,
∏

i∈H
φi(x)] = 0. (6.42)
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Now,

[Q, ai(k)] |ψ〉 = Q[ai(k) |ψ〉]− ai(k)Q |ψ〉
= (qψ − qi)ai |ψ〉 − qψai |ψ〉
= −qiai |ψ〉

(6.43)

or [Q, ai] = −qiai. Similarly, [Q, a†ci] = +qica
†
ic. The physical interpretation of Eq. 6.42 is

that we want the total charge annihilated at any interaction to be zero. This means that

the total charge never changes; it is conserved. To achieve this, it must be that

qi = −qic (6.44)

for all i. The particle annihilated by aic has to have the opposite charge as the particle

annihilated by a, in addition to having the same mass. This is the antiparticle of i. The

field operator creates antiparticles and annihilates particles with exactly the same strength.

Antiparticles do not exist because the Dirac equation has negative energy solutions.

Antiparticles exist to make the S-matrix Lorentz invariant.

Some comments:

• ac is called the “charge conjugate field.” (we will describe charge conjugation later on).

• η = 1 for scalars, for convenience. We will discuss spinors (j = 1/2) later.

6.4 Example 1: φ4 field theory

For our first example let us set ac = a so φ is Hermitian. (This is called a “real scalar field”

in the literature.) Pick an interaction Hamiltonian density

H(x) =
g

4!
φ(x)4. (6.45)

Examples of such systems are the Higgs boson, or in statistical mechanics, the field theoretic

analog of the Ising model. Now calculate a scattering process k1 + k2 → k3 + k4. We can do

this in first order perturbation theory,

S(k1 + k2 → k3 + k4) = 1− i

∫

d4x 〈Φk3,k4|H(x)|Φk1,k2〉 (6.46)
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where

|Φk1,k2) =
√

2Ei2Eja(ki〉
†
a(kk)

† |0〉 . (6.47)

The “1” term does not contribute to scattering so we discard it.

Let us schematically evaluate the matrix element. Write the field operator four times

using Eq. 6.42, insert it in Eq. 6.46, and inside the thicket of math symbols you will find the

expression

1

4!
〈0|a(k3)a(k4)[aa + a†a][ab + a†b][ac + a†c][ad + a†d]a(k1)

†a(k2)
†|0〉 (6.48)

Assume all the ka . . . kd are unequal (the equal ones form a set of measure zero). The only

non-vanishing terms are those for which two of the a’s, and two of the a†’s, in the brackets,

contract against the in and out states. Make a table: there are 4 ways to contract ad or a†d
against an a(k) or an a(k)†. This leaves 3 ways to contract the ac or a

†
c, two ways for the ab

(etc) and one way is left. This gives an overall 4! combinitorial factor. Each contraction has

the same weight. So we are left with

S(k1 + k2 → k3 + k4) = −ig
∫

d4x

(2π)6
ei(k1+k2−k3−k4)x

√
2E12E22E32E4√
2E12E22E32E4

(6.49)

or

S(k1 + k2 → k3 + k4) = −ig (2π)
4

(2π)6
δ4(k1 + k2 − k3 − k4) (6.50)

If you have read the notes on “Conventions for fields and scattering amplitudes,” you

know what comes next. With S = 1+T , we can strip off the delta-function and the factors of

2π, leaving the “effective T-matrix T” or “invariant amplitude M” to plug into the formula

for the cross section. I’ll recopy it, to save you time:

dσ =
1

4E1E2vrel
|M |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj
(2π)32E(kj)

. (6.51)

In this case, the invariant amplitude is very simple,

M = −ig. (6.52)

What is the cross section? We have to integrate the momenta over the delta function. We

can get this with (yet) another trick: writing E = p0 we convert the three dimensional

integral to a four dimensional one

d3p

2E
= d4pδ+(p2 −m2) (6.53)
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The δ+ means to take only the positive square root. Then the phase space integral is

d4k3d
4k4δ

4(k3+k4−k1−k2)δ+(k23 −m2)δ+(k24 −m2) =
d3k3
2E3

δ+((k1+k2−k3)2−m2) (6.54)

Let’s evaluate this in the center of mass frame:

k1 = (E,~k)

k2 = (E,−~k)
k3 = (E3, ~k)

(6.55)

where k23 + m2 = E2
3 . The delta function is δ((k1 + k2)

2 − 2(k1 + k2) · k3) = δ(s − 4EE3)

where s is called a “Mandelstam invariant’: it is a generalization of the squared center of

mass energy, s = (k1 + k2)
2 = 4E2

CM . Incidentally, the relative velocity is vrel = 2k/E.

Introducing the angular dependence through d3k = k2dkdΩ, a few steps of algebra give

dσ

dΩ
=

g2

8π2s
(6.56)

(isotropic scattering) and the total cross section is

σ =
g2

2πs
. (6.57)

Many ingredients in this calculation will be repeated over and over. To keep track of these

ingredients, it is convenient to introduce a diagrammatic language – Feynman diagrams and

Feynman rules. Our little exercise gives us some proto-rules:

1) For this theory, each order in perturbation theory contributes a weight −ig/4!. The

−i is from the Dyson series, the 4! from the g/4! in H. We display this weight as a vertex

with four lines meeting. Note that momentum is conserved at the vertex.

2) Each external line (incoming or outgoing particle) contributes a weight 1 to M or

1/((2π)3
√

2E(k) to the T-matrix.

3) There is an overall combinitorial factor of 4! contracting field in H against those in

the in - and out - states

The associated diagram is shown in Fig. 6.1. Feynman diagrams are not cartoons! Each

line or vertex refers to some specific mathematical function.
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Figure 6.1: Lowest order scattering Feynman diagram for H = gφ4/4!.
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6.5 Example 2: Discovering the propagator

For our next example, imagine three species of scalar fields A, B, and C, none of which is

its own antiparticle. Let

H(x) = g[A(x)B(x)C(x) + h.c.] (6.58)

Let’s calculate BC → BC scattering. We need second order perturbation theory.

S(kb + kc → k′b + k′c) =
(−i)2
2!

∫

d4xd4y 〈Φk′
b
,k′c|T (H(x)H(y))|Φkb,kc〉 .. (6.59)

The two vertices are at space-time points x and y. At one of these points, b′ and c′ are

created, and at the other point b and c are annihilated. Each choice gives the same weight

to S, so pick one of them and cancel the 2!. As before, we have to evaluate

〈0|b(k′b)c(k′c){T ((a†1 + ac1)(b
†
2 + bc2)(c

†
3 + cc3)(a4 + a†c4)(b5 + b†c5)(c6 + c†c6))}b(kb)†c(kc)†|0〉 .

(6.60)

b2 annihilates b(kb)
†, c3 annihilates c(kc)

†, and only

〈0|T ((a†1 + ac1)(a4 + a†c4)|0〉 (6.61)

is left. In full gory detail we have

S = −g2
∫

d4xd4y
e−ikby

(2π)3/2
e−ikcy

(2π)3/2
eik

′

bx

(2π)3/2
eik

′

cx

(2π)3/2
〈0|T (A(x)†A(y))|0〉 .. (6.62)

The quantity 〈0|T (A(x)†A(y))|0〉 is called the Propagator. Anticipating the calculation, it

is a function of (x− y). We can perform the x and y integrals by shifting variables to x and

x− y. The x integral gives a delta function leaving

S = −g2 (2π)
4δ4(kb′ + kc′ − kb − kc)

(2π)6
[−i∆F (kb + kc)] (6.63)

where

− i∆F (k) =

∫

d4zeikz 〈0|T (A(z)†, A(0))|0〉 . (6.64)

Of course,

M = (−ig)2[−i∆F (kb + kc)]. (6.65)

Again we can draw a picture. See Fig. 6.2. And also note that x0 is not necessarily later (or

earlier) than y0.
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We have to calculate the propagator. We begin with the coordinate space version

− i∆F (x− y) = θ(x0 − y0) 〈0|A(x)†A(y)|0〉+ θ(y0 − x0) 〈0|A(y)A(x)†|0〉 (6.66)

The first term is

θ(x0 − y0)

(2π)3

∫

d3kd3k′
√

4E(k)E(k′)
〈0|[a(k)†eikx + ac(k)e

−ikx][a(k′)e−ik
′y + ac(k

′)†eik
′y]|0〉 . (6.67)

The aca
†
c term is the only non-vanishing one, and k = k′ is needed, so the first term collapses

to
θ(x0 − y0)

(2π)3

∫

d3k

(2π)32E(k)
e−ik(x−y). (6.68)

The second term is similar. The coordinate space propagator is

− i∆F (x− y) =

∫

d3k

(2π)32E(k)
[θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)eik(x−y)].. (6.69)

Let’s write this as a four dimensional Fourier transform. We use the integral expression with

a convergence factor
∫ ∞

−∞
dteiωtθ(t) =

∫ ∞

0

dteiωte−ǫt =
i

ω + iǫ
(6.70)

and so

θ(t) =
i

2π

∫ ∞

−∞
dω

e−iωt

ω + iǫ
(6.71)

Convert this to a contour integral and close the contour in the upper half plane if t < 0, in

the lower half plane if t > 0, pick up the residue, and it checks.

Then (here note the (t, ~x) and define E(k) =
√
k2 +m2)

− i∆F (x) =
i

(2π)4

∫

d3kdω

2E(k)(ω + iǫ)
[e−iE(k)t+i~k·~x−iωt + eiE(k)t−i~k·~x+iωt] (6.72)

The Fourier transform is

−i∆F (q) =

∫

d4x(−i∆F (x))e
iqx

= i

∫

d4x

(2π)4
d3kdω

2E(k)(ω + iǫ)
[e−iE(k)t+i~k·~x−iωt + eiE(k)t−i~k·~x+iωt]eiqx

(6.73)

and so ~q = ±~k from the ~x integral (the sign doesn’t matter). The
∫

dx0 gives a 2πδ(q0 −
ω − E(k)) for the first term and a 2πδ(q0 + ω + E(k)) for the second one. The expression

collapses to

− i∆F (q) = i

∫

dω

2E(q)(ω + iǫ)
[δ(ω + E(q)− q0) + δ(ω + E(q) + q0)] (6.74)
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and so we can write the result in two equivalent ways: First, separate the terms:

− i∆F (q) =
i

2E(q)
[

1

q0 − E(q) + iǫ
+

1

−q0 − E(q) + iǫ
] (6.75)

and second, combine them,

− i∆F (q) =
i

q2 −m2 + iǫ
. (6.76)

This is a very important object, the propagator for a scalar field.

There is an associate Feynman diagram, Fig. 6.2.

We are not going to use Eq. 6.75 any more, but let’s look at it before moving on. The

first term is the antiparticle piece, where the time ordering is that first the antiparticle is

produced, and later it annihilates to produce the outgoing BC pair. The second term is the

opposite time order, emission preceded absorption. The energy denominators are the ones in

the “usual” quantum mechanical second-order perturbation theory formula for the T-matrix

T =
∑

I

〈f |V |I〉 〈I|V |i〉
Ei − EI

. (6.77)

This you can see if you write ~q = ~kb + ~kc = −pa, q0 = Eb + Ec, and change notation so

Ea = E(q). Then

M ∝ 0g2[
i

2Ea
{ 1

Eb + Ec − Ea + iǫ
+

1

−Ea − Eb −Ec + iǫ
}] (6.78)

The second term is trickier until you realize that the initial energy is Eb + Ec and the

intermediate energy EI = Eb + Ec + Eb′ + Ec′ + Ea so the denominator is also the correct

energy difference.

In nonrelativistic situations, the intermediate states from the different time orderings are

just different, and you can’t use all our tricks to get a beautiful answer, like Eq. 6.76. This is

all people had, before Feynman (1948-ish). How would you like to do quantum field theory

this way? It was horrible... Imagine higher order calculations! Lorentz invariance is hidden,

too. There is an old book, Heitler, “The quantum theory of radiation,” take a look at it, on

a rainy day.

Now go back to the S-matrix

S(kb + kc → k′b + k′c) =
(−i)2
2!

∫

d4xd4y
e−i(kb+kc)ye−i(kb′+kc′)x

(2π)6
[−i∆F (x− y)]

= −g2 (2π)
4

(2π)6
δ4(kb′ + kc′ − kb − kc)

i

(kb′ + kc′)2 −m2
a + iǫ

] (6.79)
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Figure 6.2: Lowest order scattering Feynman diagram for BC → BC with H = ABC + h.c.
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Here, ka = kb + kc = kb′ + kc′ so four-momentum is conserved at each vertex, but k2a =

(kb′ + kc′)
2 6= m2

a. We say “the intermediate particle is off mass shell.”

Finally, what’s the cross section? In a CM frame, (kb + kc)
2 = E2

CM and

dσ

dΩ
∼ | 1

E2
CM −m2

a

|2 (6.80)

This diverges at ECM = ma. This is the mark of a resonance, when the CM energy is exactly

right to produce the intermediate particle on shell, the cross section becomes very large.

The divergence is not physical, it is an artifact of working to lowest order the perturbative

expansion, where the resonance has zero width. The resonance is the physics!

6.6 Example 3: Another amplitude

For our next example, keep H = g(ABC + A†B†C†), but compute the reaction BC̄ → BC̄.

S = −g2
∫ ∫

d4xd4ye−(kb−kc′)xe−(kb′−kc)y 〈0|T (A(x)†A(y))|0〉 (6.81)

This gives

M = −g2 i

(kb − kc′)2 −m2
a + iǫ

(6.82)

Let’s write the S-matrix a little more suggestively,

S = −g2
∫ ∫

d4xd4ye−(kb−kc′)ixe−i(kb′−kc)y
∫

d4q

(2π)4
i

q2 −m2
a + iǫ

eiq(x−y)

= −g2 1

(2π)6

∫

d4q

(2π)4
[(2π)4δ4(kb − kc′ + q)][(2π4)δ4(kb′ − kc + q)]

i

(kb − kc′)2 −m2
a + iǫ

(6.83)

Writing this expression tells us that we have conservation of four-momentum at each vertex.

We also integrate over all internal momenta (in this case, just q). One of the delta-functions

will give overall four momentum conservation when all the integrals are done.

The associated Feynman diagram is shown in Fig. 6.3.

6.7 Wick’s theorem

Wick’s theorem is used to reduce the nasty time ordered products of field operators into

simple expressions, by recasting the time ordered product of many fields into a product
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Figure 6.3: Lowest order scattering Feynman diagram for BC̄ → BC̄ with H = ABC + h.c.



Quantum Field Theory 76

of time ordered products of two fields (which are just propagators). Let me describe it for

bosons; fermions have some permutation factors (no surprise). Write each field in its creation

and annihilation parts, φ = φ+ + φ− where 〈0|φ+ = φ− |0〉 = 0. Recall the normal ordering

operator,

: φiφj := φ+
i φ

+
j + φ+

i φ
−
j + φ+

j φ
−
i + φ−

i φ
−
j . (6.84)

We can write the time ordered product of two fields as the normal ordered product plus

a constant C, since the rearrangements needed to go from one to the other just involve

commutators of fields.

T (φ1φ2) =: φ1φ2 : +C. (6.85)

Now take the vacuum expectation value of this expression. The vacuum expectation value

of the normal ordered product vanishes, so

〈0|T (φ1φ2)|0〉 = 0 + C. (6.86)

and so we have

T (φ1φ2) =: φ1φ2 : + 〈0|T (φ1φ2)|0〉 . (6.87)

This is for two fields. Wick’s theorem generalizes this to n fields. For even n, it says

T (φ1φ2 . . . φn) = : φ1φ2 . . . φn :

+ 〈0|T (φ1φ2)|0〉 : φ3 . . . φn : + order n− 2 permutations

+
∑

〈0|T (φiφj)|0〉 〈0|T (φkφl)|0〉 : φ . . . φ :

+ . . .

+
∑

〈0|T (φiφj)|0〉 〈0|T (φkφl)|0〉 . . . 〈0|T (φmφn)|0〉
(6.88)

The proof is not so interesting. It is done by induction, and it is in Bjorken and Drell,

“Relativistic quantum fields” (and probably other books). But the formula is quite useful.

Return to H = ABC + h.c. where we need

〈B′C̄ ′|T (H(x)H(y)|BC̄〉 = 〈B′C̄| { : A†
iB

†
1C

†
1A2B2C2 :

+ 〈0|T (A†
1A2|0〉 : B†

1C
†
1B2C2 :

+ 〈0|T (B†
1B2|0〉 : A†

1C
†
1A2C2 :

+ . . .

} |BC̄〉
(6.89)
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Only the 〈B′C̄| : B†
1C

†
1B2C2 : |BC̄〉 term has the right combination of operators to annihilate

BC̄ and create B′C̄ ′. Everything else gives zero.

6.8 A glance at higher orders

We return to

H =
g

4!
φ4(x) (6.90)

where φ is real, so a = ac. Let us look at the order g2 contributions to scatttering φ1+φ2 →
φ3 + φ4.

S(2) =
1

2!

(−ig
4!

)2 ∫

d4xd4y 〈Φ34|T (φ(x)4φ(x)4)|Φ12〉 (6.91)

When we use Wick’s theorem to clean this up, we want to pull off terms with normal products

of four fields.

T (φ(x)4φ(x)4) =
∑

ijkl

〈0|T (φjφk)||0〉 〈0|T (φkφl)|0〉 : φmφnφoφp : (6.92)

Four of (ijklmnop) are at x, the other four are at y.

We have three generic kinds of terms (see Fig. 6.4):

• a) i = k = x, j = l = y and permutations

• b) i = x, j = y, k = l = x OR y

• c) In addition, we may have i = j = x, k = l = y. These are called “disconnected

diagrams.” They don’t contribute to scattering (they won’t be proportional to δ4(k1+

k2 − k3 − k4). We will neglect them.

There are three “type (a)” graphs. They all have a common combinitorial factor C,

which we will ignore for now. For eaxmple,

Sa1a = C(−ig)2
∫

d4q1
(2π)4

d4q2
(2π)4

(2π)4δ4(q1 + q2 − k1 − k3)

×(2π)4δ4(q1 + q2 − k2 − k4)×
−i

q21 −m2 + iǫ
× −i
q22 −m2 + iǫ

(6.93)
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Figure 6.4: Higher order scattering processes with H = gφ4/4!.
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so that the invariant amplitude is

Ma1 = −Cg2
∫

d4q1
(2π)4

[
−i

q21 −m2 + iǫ
][

−i
(k1 − k3 − q1)2 −m2 + iǫ

]. (6.94)

This is called a graph with a “loop integral.” The momentum q1 is unconstrained and must

be integrated over.

There are four type (b) graphs.

(2π)4δ4(k1 + k2 − k3 − k4)Mb1 ∝ (−ig)2
∫

d4q1
(2π)4

d4q2
(2π)4

(2π)4δ4(q2 − k2)δ
4(k3 + k4 − q2 − k1)

× −i
q21 −m2 + iǫ

× −i
q22 −m2 + iǫ

(6.95)

This says that

Mb1 ∝ (−ig)2 −i
k22 −m2 + iǫ

∫

d4q1
(2π)4

−i
q21 −m2 + iǫ

. (6.96)

This is getting mechanical, but the result is worrisome: the integral is divergent!

∫

|q|<Λ

d4q1
(2π)4

−i
q21 −m2 + iǫ

∝
∫ Λ d3q

q2
∝ Λ2 (6.97)

where I have put in a cutoff to make sense of the expression.

This is our first encounter with the “divergences” of quantum field theory. They arise

from the short distance sector of the theory. This is most easily seen by working in coordinate

space and keeping all the propagators,

M(x1, x2, x3, x4) ∝ (−ig)2
∫

d4xd4y[−i∆F (x1 − x)][−i∆F (x2 − x)][−i∆F (x3 − x)]

[−i∆F (x− y)][−i∆F (y − x4)][−i∆F (y − y)]

(6.98)

The divergence comes from the last term: emission and absorption at the same point,

− i∆F (x = 0) =

∫

d4q1
(2π)4

−i
q21 −m2 + iǫ

. (6.99)

This contribution is present even though we might only be interested in scattering (or other

processes) taking place at very low energies, or at long distances. To proceed further at this

point, we have to do several things:
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1. Enumerate all possible divergent contributions: are there a finite number, or an infinite

number? It turns out that in φ4 theory, only two point functions and four point

functions contain divergences.

2. Regulate the divergences: do something to make them well defined. In the example, I

cut off the momentum integral, restricting |q| < Λ.

3. Do calculations in the regularized theory and make sense of them.

This is a project for later in the semester.

6.9 Feynman rules

You may have noticed a certain robotic similarity in all our examples. All our manipulations

can be absorbed into a set of rules for constructing invariant amplitudes, in terms of Feynman

diagrams.

Here are the Feynman rules for scalar field theory:

Given an interaction Hamiltonian density which is a product of fields (for example H =

gφ4/4!)

1) Draw all connected diagrams allowed by H. For each vertex there is a factor −i, a
factor of the coupling constant, and there is an overall 1/n! from the Dyson series. Each

diagram will typically have some associated combinatorial factor.

2) Each internal boson carrying a momentum q contributes a −i∆F (x− y) in coordinate

space, or
∫

d4q

(2π)4
i

q2 −m2 + iǫ
(6.100)

in momentum space.

3) Each vertex counts either (orient all the momenta in or out for this)

(2π)4δ4(
∑

q) (6.101)

or
∫

d4xei
∑
qx (6.102)

As an alternative to rules 2 and 3,
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2’-3’) Conserve momentum at every vertex, integrate

∫

d4q

(2π)4
(6.103)

over all unconstrained momenta

And compute the invariant amplitude from the resulting expression by snipping off delta

functions and 2π’s associated with the incoming and outgoing particles

M
(2π)4

(2π)3(ni+nf )/2
δ4(
∑

pout −
∑

pin) →M (6.104)

The differential cross section is

dσ =
1

4E1E2vrel
|M |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj
(2π)32E(kj)

× 1

nf !
(6.105)

The new 1/nf ! is a counting factor for identical particles, basically Bose statistics. It is

discussed in Bjorken and Drell, “Relativistic Quantum Mechanics,” p. 136, or in Zee, a hint

on p. 54.

6.10 Conclusion

This chapter has been a terse but fairly complete introduction to quantum field theory based

on Hamiltonians. We only looked at scalar particles. The interesting (and more physical,

at least before 2012) quantum field theories contain fermions and gauge fields. Perturbation

theory for such systems is very similar to what we have done: there will be vertices and

propagators, which only differ in detail (important details, true) from what we have found.

However, before we push on to these systems, I want to go back to the drawing board. You

recall, that there are two ways of introducing quantum mechanics, either with Hamiltonians,

or with the path integral. Path integrals are not so useful for practical problems in single

particle quantum mechanics, but they really come into their own when they are applied to

quantum field theories. We have to become comfortable with them. That is the subject of

the next chapter.
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Chapter 7

Path integrals in quantum mechanics

and quantum field theories

83
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7.1 Path integrals in quantum mechanics

This section is taken from my quantum mechanics notes.

What if H varies with time? How can we make sense of the time evolution operator?

Let us begin with the formal expression for the evolution operator

Uαβ(t) = 〈α| exp(−iĤt
~

)|β〉 . (7.1)

In this formula t is some finite quantity, so it might be hard to compute Uαβ(t). We propose

to evaluate the time evolution operator by slicing the time interval into a series of N steps

of infinitesimal time interval ∆t, arranging that t = N∆t. In each time interval ∆t, the

Hamiltonian will be regarded as constant, while of course it will be allowed to vary from

time step to time step. That is,

Uαβ(t) = lim
N→∞;∆t→0

〈α|
N
∏

i=1

exp(−iĤ(ti)∆t

~
)|β〉 . (7.2)

Inserting a complete set of states between each exponential factor, we have

Uαβ(t) =
∑

j1

∑

j2

· · ·
∑

jN

〈α|jN〉 〈jN | exp(−
iĤ(tN)

~
∆t)|jN−1〉

〈jN−1| exp(−
iĤ(tN−1)

~
∆t)|jN−2〉 · · ·

〈j1| exp(−
iĤ(t1)

~
∆t)|β〉 .

(7.3)

Rather than thinking of this expression time slice by time slice, let us link together a partic-

ular set of states |j′1〉, |j′2〉, . . . |j′N〉, and connect them together as a “path” in Hilbert space,

as shown in Fig. 7.1. Each path contributes a complex number to Uβα, the product of each

particular matrix element 〈j′M | exp(−iH(tM )∆t/~)|j′M−1〉. Uβα is the sum of contributions

from all paths: hence the name “path integral” associated with this representation of the

time evolution operator.

Let us suppose that our intermediate states are diagonal in coordinate space, so that we
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N−1

2

3

1

α

β

Figure 7.1: Paths in the time-sliced interval.

can interpret each path through Hilbert space as a “real” trajectory, x(t). Then,

Uαβ(t) =

∫

dx0

∫

dxN · · ·
∫

dx1 〈α|xN〉 〈xN | exp(−
iĤ(tN)

~
∆t)|xN〉 × (7.4)

〈xN | exp(−
iĤ(tN−1)

~
∆t)|xN−1〉 · · · 〈x1| exp(−

iĤ(t0)

~
∆t|x0〉) 〈x0|β〉 .

(7.5)

The time slicing helps us make sense of the evolution operator. Suppose next that the

Hamiltonian is that of a particle in an external potential, Ĥ = Ĥ1+ Ĥ2, where Ĥ1 =
p̂2

2m
and

Ĥ2 = V (x). Then we can break the time evolution operator over a time ∆t (which involves

Ĥ) into a product of two terms

exp(−iĤ∆t

~
) = exp(−iĤ1∆t

~
) exp(−iĤ2∆t

~
) +O(∆t2). (7.6)

This means that

〈x1| exp−
iĤ1∆t

~
exp−iĤ2∆t

~
|x2〉 =

∫

dx3 〈x1| exp(−
ip̂2∆t

2m~
)|x3〉

× 〈x3| exp(−
iV (x)∆t

~
)|x2〉

=

∫

dx3 〈x1| exp(−
ip̂2∆t

2m~
)|x3〉

×δ(x3 − x2) exp(−
iV (x2)∆t

~
).

(7.7)
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Notice that the term first term is just the propagator for a free particle, and so

〈x1| exp(−
iĤ∆t

~
)|x2〉 =

∫

dx3K(x1,∆t; x3, 0)δ(x3 − x2) exp(−
iV (x2)∆t

~
)

=
( m

2πi~∆t

)
1

2

exp[i

(

m(x1 − x2)
2

2(∆t)2
− V (x2)

)

∆t

~
].

(7.8)

Thus the path integral will take the form

Uαβ(t) =
( m

2πi~∆t

)
N
2

∫

dxN · · · dx1 〈α|xN〉 〈x1|β〉

exp

(

i∆t

~

N
∑

j=1

(

1

2
m

(

xj+1 − xj
∆t

)2

− V (xj)

))

.

(7.9)

(We have factorized the ∆t dependence in the expression in a useful way.) In the limit that

∆t→ 0 the exponential factor associated with a single path x(t′) becomes

exp

(

i

~

∫ t

0

dt′
(

1

2
mẋ2(t′)− V (x(t′))

))

. (7.10)

The reader should recognize the integrand as the classical Lagrangian for a nonrelativistic

particle in an external potential., The integral is the classical action associated with its

integral along a path specified by x(t′). This is the expression for the contribution to the

path integral from a single path (a single term in the sum over intermediate states as defined

in Eq. 7.3.) Each contribution is a phase, whose value is the ratio of the classical action for

that particular path divided by ~. The time evolution operator is a sum of contributions

over all possible paths the particle can take from the initial time to the final time.

We can now understand how classical dynamics can arise from quantum mechanical

motion. Suppose that the action for every possible path the particle could take is large,

much greater than ~. Compare two paths (which could correspond to paths which are

similar in the classical sense). An action S0 is associated with one path while the other has

a different action, which we will write as S0 + δS. These two paths combine to produce a

contribution to the evolution operator of

exp
iS0

~
+ exp

i(S0 + δS)

~
= exp

iS0

~

(

1 + exp
iδS

~

)

. (7.11)

If δS/~ is a large number, the phase difference between the paths, exp(iδS/~), will not be

small. There will be destructive interference between the two paths and their contribution
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to the transition amplitude will be small. Obviously, the only sets of paths which contribute

will be the ones for which their contributions will add coherently. These will be the ones for

which δS ≃ 0, This is the statement of the principle of least action: the dominant paths are

the ones which extremize the classical action – that is, the particle follows the path which is

the solution to the classical equations of motion.

As a contrast, it could be the case that all paths have a classical action which is on the

order of, or smaller than, ~. Then there are no sets of nearby paths which dominate the

evolution operator. These systems are fully quantum mechanical; attempting to describe a

particle’s motion using the idea of a classical trajectory will not result in correct physics.

7.2 Path integrals in quantum field theory (for bosons)

Once again, quantum field theory is quantum mechanics with lots of indices and some re-

labelling. I specialize to the case of quantum field theories containing bosons (but without

fermions – see below). Our variables are the φ(x, t)’s and the π(x, t)′s, defined to obey

canonical commutation relations

[π(x, t), φ(x′, t)] = −iδ3(x− x′). (7.12)

The xi’s or x(t)’s of the quantum mechanical path integral are replaced by the φ(x, t)’s. We

replace the integration measure

∏

i

dxi →
∏

xj ,ti

φ(xj , ti) ≡ [dφ]. (7.13)

If φ(x, t). has components, we must integrate over them, too. For example, if φ is a complex

field we must integrate over its real part and its imaginary part.

Next we have to deal with the in and out states, |α〉 and |β〉. There are many choices

here! Most often, we take |α〉 = |β〉 = |0〉, the vacuum. Why? The analogy is with a
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correlation function for a quantum mechanical system in its ground state, which is

〈0|T (q(tA)q(tB))|0〉 = N

∫

dq(t0)dq(t)
∏

ti

dq(ti) 〈0|q(t)〉
〈

q(t)|eiH∆t|q(tn))
〉

× . . .
〈

q(tA)|q(tA)eiH(tA)∆t)|q(tA −∆t)
〉

× . . . 〈q(t0)|0〉

= N ′
∫

∏

i

dqie
iSq(tA)q(tB).

(7.14)

In quantum field theory the analogous object is 〈0|T (φ(x1)φ(x2)|0〉, which will give us

Green’s functions. Just copying formulas we have already written down and changing labels,

the matrix element of an arbitrary operator between |0〉. the vacuum at t = −∞ and 〈0|,
the vacuum at t = ∞, is

〈0|O(φ(x1)φ(x2), . . . φ(xn))|0〉 = N

∫

[dφ] exp(i

∫

Ld4x)|O(φ(x1)φ(x2), . . . φ(xn)). (7.15)

that is, just the average of the operator weighted by the measure exp(i
∫

Ld4x).

What is N? We can find it with a trick – calculate 〈0|1|0〉 = 1. Solving for N in Eq. 7.15,

〈0|O(φ(x1)φ(x2), . . . φ(xn))|0〉 =
∫

[dφ]eiS(φ)O(φ(x1)φ(x2), . . . φ(xn))
∫

[dφ]eiS(φ)
(7.16)

This is a story you have seen before, in statistical mechanics. The density matrix ρ(p, q)

gives the thermal probability of occupancy,

ρ = Ne−βH . (7.17)

Thermal expectation values are

〈O〉 = Tr ρO = NTr e−βHO (7.18)

and of course 〈1〉 = Tr ρ = NTr e−βH so

〈O〉 = Tr e−βHO
e−βH

(7.19)

and ρ = e−βH/Tr e−βH .
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The analogy is even more precise with the so-called “Euclidean path integral.” Consider

a Lagrange density

L =
1

2
(∂µφ)

2 − V (φ)

=
1

2
(
∂φ

∂t
)2 − 1

2
(∇φ)2 − V (φ).

(7.20)

Change variables from t to x0 = it. This makes two changes in familiar formulas,

i

∫

dt =

∫

dx0

1

2
(
∂φ

∂t
)2 = −1

2
(
∂φ

∂x0
)2

(7.21)

Then

〈0|O|0〉 =
∫

[dφ]O exp(−
∫

d4x[
∑

j
1
2
( ∂φ
∂xj

)2 + V (φ)])
∫

[dφ] exp(−
∫

d4x[
∑

j
1
2
( ∂φ
∂xj

)2 + V (φ)])
. (7.22)

There is a complete analogy of bosonic quantum field theory in its path integral form with

the partition function for a spin model in d+ 1 (spatial) directions:

• φ(x, t) ↔ a classical spin variable defined on every site in a d+ 1 dimensional space

• action ↔ βH(φ)

• (or alternatively) Euclidean Lagrangian ↔ β× Hamiltonian density

• Green’s function ↔ an expectation value of some function of φ’s (a correlation func-

tion).

Path integrals for fermionic theories are a bit more complicated, because fermionic opera-

tors obey anticommutation relations rather than commutation relations. The field variables

in the path integral must encode this fact. The objects that do this are called “Grassman

variables” or “anticommuting c-numbers.” For us, living in a too-short one-semester course,

this is a technical difficulty which I will skip over due to time constraints, and I will not

discuss the fermion path integral any further. Look in any good quantum field theory text

if you are interested.
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7.3 The propagator and Feynman rules, again

(This section is copied from a section in the lecture “Secret Symmetry” in Sidney Coleman’s

“Aspects of Symmetry” and from Pierre Ramond’s book.) We would like to calculate the

following integral

ρ =

∫ ∞

−∞

N
∏

i=1

dxi exp(−
1

2
xiMijxj)

≡
∫

∏

dxiρ(x)

(7.23)

(Einstein convention summing repeated indices, of course).

Start with N = 1. This is

ρ =

√

2π

M
〈

x2
〉

≡
∫

x2ρ(x)dx
∫

dxρ(x)
=M−1.

(7.24)

This formula is obviously true when M is real and it is also true for complex M whenever

Re M > 0.

We can generalize this formula to N dimensions if we think x as a vector and M as a

matrix in that space. Then if M is real, symmetric, and positive definite, we can make a

rotation which diagonalizes M

xi = Rijyj
∏

dxi =
∏

dyi

xiMijxj = ylR
−1
li MijRjkyk = ylM

′
llyl

(7.25)

so

ρ = (2π)N/2(
∏

l

M ′
ll)

−1/2

= (2π)N/2(detM)−1/2.

(7.26)
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Again, if M is a complex symmetric matrix with positive-definite real part, the result is also

this formula, by analytic continuation.

Now suppose we want to compute

〈xixj〉 =
∫
∏

dxk(xixj)ρ(x)
∫
∏

dxkρ(x)
. (7.27)

We can do this integral by a trick. To begin, define

(dx) =
N
∏

k=1

dxk(2π)
−N/2 (7.28)

so
∫

(dx) exp(−1

2
xiMijxj) = (detM)−1/2. (7.29)

Now consider the integral
∫

(dx) exp(−Q(x)) (7.30)

where Q(x) = 1
2
(x,Mx)+ (b, x)+ c and (, ) represents an abstract dot product, b is a vector,

(b, x) =
∑

j bjxj , and c is a constant. We evaluate the integral as we do for any Gaussian,

by completing the square:

x̄ = −M−1b

Q(x) = Q(x̄) +
1

2
(x− x̄,M(x− x̄))

Q(x̄) =
1

2
(b,M−1b) + c

(7.31)

so
∫

(dx) exp(−Q(x)) = exp(−Q(x̄))(detM)−1/2. (7.32)

Now notice:

〈xixj〉 =
∫

(dx) exp(−1
2
(x,Mx))xixj

∫

(dx) exp(−1
2
(x,Mx))

(7.33)

and if we write

S(J) =
1

2
(x,Mx) + (J, x), (7.34)

this is

〈xixj〉 =
∂
∂Ji

∂
∂Jj

∫

(dx) exp(−S(J))
∫

(dx) exp(−S(J)) |J=0, (7.35)
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which evaluates to

∂
∂Ji

∂
∂Jj

exp(−1
2
(J,M−1J))(detM)−1/2

exp(−1
2
(J,M−1J))(detM)−1/2

|J=0 =
1

2
× 2(M−1)ij. (7.36)

(The extra “2” is because i can be the index of the first J or of the second J in the expression

– M is symmetric.)

Well, so what? These formulas are true regardless of the dimension of the space, and

we propose to apply them to spaces of infinite dimensionality. The x variables are our

field variables φ(x, t) defined everywhere in space and time. For continuous variables in D

dimensions we define

(J, φ) =

∫

dDxJ(x)φ(x)

(φ,Mφ) =

∫

dDx

∫

dDx′φ(x)M(x, x′)φ(x′).

(7.37)

Generally, M will be a differential operator and M−1 will be its inverse. We use the sources

J(x, t) as crutches to construct Green’s functions.

So let’s look once again at scalar field theory with an action

S =

∫

d4x[
1

2
(∂µφ)

2 − V (φ)] (7.38)

with V (φ) = 1
2
m2φ2+ some higher order V̄ (φ). Green’s functions are defined as (the middle

column is the Hamiltonian version, the right column is the path integral version)

G(2)(x1, x2) = 〈0|T (φ(x1)φ(x2))|0〉 = 〈φ(x1)φ(x2)〉
G(4)(x1, x2, x3, x4) = 〈0|T (φ(x1)φ(x2)φ(x3)φ(x4))|0〉 = 〈φ(x1)φ(x2)φ(x3)φ(x4)〉

(7.39)

and we compute them through an object called the “generating functional,”

W (J) =

∫

[dφ] exp(i
∫

d4x[L+ J(x)φ(x)])
∫

[dφ] exp(i
∫

d4xL) (7.40)

via

G(N) = (−i)N ∂

∂J1

∂

∂J2
. . .

∂

∂JN
W (J)|J=0. (7.41)
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As a check, doing the differentiation before evaluating W (J) gives

G(2)(x1, x2) =

∫

[dφ exp(i
∫

d4xL)φ(x1)φ(x2)
∫

[dφ] exp(i
∫

d4xL) , (7.42)

as expected.

If you look closely at W (J), you see that the integral is highly oscillatory. There are two

ways to deal with this:

• Include a convergence factor in the weight of exp(−1
2
ǫ
∫

d4xφ(x)2)

• Define W in Euclidean space, x0 = −ix̄4, d4x = −id4x̄, ∂µφ∂µφ → −∑4
j=1(∂jφ)

2 so

WE(J) ∝
∫

[dφ] exp(−
∫

d4x[
1

2
(∂µφ)

2 +
1

2
m2φ2 + V̄ (φ)] (7.43)

Now the Boltzmann factor really is a suppression factor.

Most formal quantum field theory is done in Euclidean space since only there is the

path integral well defined. Essentially all nonperturbative work (numerical simulations, for

example) is done in Euclidean space because computers can’t handle violent oscillations.

The price to be paid is that you have to undo the “Wick rotation” (x0 = −ix4) at the end

of the day. Away from perturbative calculations, that is usually not so straightforward to

carry out. Since I am pointed at Feynman rules, I will (mostly) stay in Minkowski space in

what follows.

Let’s see how path integrals reproduce the propagator. We set V̄ = 0 and write

W0(J) = N

∫

[dφ] exp(i

∫

d4x[
1

2
(∂µφ)

2 − 1

2
m2φ2 + iǫφ2 + Jφ]) (7.44)

(note the convergence factor!). We can define Fourier transforms ((1/
√
2π)4 = (2π)2)

F (p) =

∫

d4x

(2π)2
e−ipxF (x)

F (x) =

∫

d4p

(2π)2
eipxF (p)

(7.45)
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so that the object in the exponential of Eq. 7.44 is

i

∫

d4x
d4pd4p′

(2π)4
[(−pp′ −m2 + iǫ)φ(p)φ(p′)ei(p+p

′)x + J(p)φ(p)ei(p+p
′)x]

= i

∫

d4p(φ(−p)[p2 −m2 + iǫ]φ(p) + J(−p)φ(p))

(7.46)

This is (again) a shifted Gaussian so we can write

φ′(p) = φ(p) +
1

p2 −m2 + iǫ
J(p) (7.47)

and complete the square.

W0(J) = exp(
i

2

∫

d4p
J(p)J(−p)
p2 −m2 + iǫ

(7.48)

and, once again Fourier transforming,

W0(J) = W0(0) exp(−
i

2
〈J1∆F (1, 2)J2〉 (7.49)

where I’ve introduced the shorthand

〈J1∆F (1, 2)J2〉 =
∫

d4x1d
4x2J(x1)∆F (x1 − x2)J(x2) (7.50)

and

∆F (x) =

∫

d4p

(2π)4
e−ipx

1

p2 −m2 + iǫ
, (7.51)

the usual Feynman propagator, once again.

Let’s evaluate some Green’s functions:

G(2)(x, y) = (−i)2 ∂

∂Ji

∂

∂Jj
exp(− i

2

∑

kl

Jk∆
kl
F Jl)|J=0

= i∆F (x, y) =

∫

d4p

(2π)4
e−ipx

i

p2 −m2 + iǫ
.

(7.52)

and

G(4)(x1, x2, x3, x4) =
∂

∂J1

∂

∂J2

∂

∂J3

∂

∂J4
W0(J)|J=0

= [(i∆F (x1 − x2))(i∆F (x3 − x4) + (1− 3)(2− 4) + (1− 4)(2− 3).

(7.53)
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The last expression is Wick’s theorem in path integral form.

Now for general formulas – this is very dull, but you need to have some procedure which

gives all the Feynman diagrams with their (correct) combinatorial weights, to some order in

perturbation theory. Here I am (mostly) following Ramond. We begin with

W (J) = N

∫

[dφ] exp(i

∫

d4x[
1

2
(∂µφ

2)− 1

2
(m2 − iǫ)φ2 − V̄ (φ) + J(x)φ(x)]). (7.54)

In what follows I will assume that V̄ (φ) is a polynomial in φ with a small coefficient, and we

want to find a perturbative expansion forW (J). For example, we could consider V̄ = λφ4/4!

and imagine that we want to find W (J) =W)(J) + λW1 + λ2W2 + . . . . In that case

∂

∂J1
. . .

∂

∂JN
W = G(0)

n + λG(1)
n + λ2G(2)

n + . . . . (7.55)

To begin this long exercise, write

W (J) = N

∫

[dφ] exp(i

∫

d4xV̄ (φ)) exp(iS0) exp(i

∫

d4xJ(x)φ(x)) (7.56)

and I find that it is also convenient to replace all integrals by sums as I go along:

exp(i

∫

d4xV̄ (φ)) = exp(i
∑

k

V̄ (φk))

exp(i

∫

d4xJ(x)φ(x)) = exp(i
∑

k

Jkφk).

(7.57)

Now the procedure is to de-expand the exponential in exp(i
∫

V̄ ). Each term is a polynomial

in φ. Schematically, a term is

W (J) = N

∫

[dφ]eiS0φMl e
i
∑
Jkφk =

〈

φMl
〉

. (7.58)

But
1

i

∂

∂Jl
exp(i

∑

k

Jkφk)J=0 = φl. (7.59)

So we can replace the argument φk in V̄ (φk) with
1
i
∂
∂Jk

,

exp(−i
∫

d4x(J(x)φ(x) + V̄ (φ(x)) = exp(−i
∫

d4x(J(x)φ(x) + V̄ (
∂

i∂J(x)
))) (7.60)
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or

exp(−i
∑

k

(V (φk) + Jkφk) = exp(−i
∑

k

(V (
∂

i∂Jk
) + Jkφk)).. (7.61)

This seems like an absurd thing to do, but now notice that

W (J) = N

∫

[dφ]{exp(−i
∫

d4xV (
∂

i∂J(x)
)} × exp(iS0 − i

∫

d4xJ(x)φ(x)).. (7.62)

The expression in curly brackets does not depend on φ – we can pull it outside the functional

integral. And what is left is just W0(J). Thus we have found that

W (J) = exp(−i
∑

k

V̄ (
∂

i∂Jk
))W0(J) (7.63)

and again I have written the shorthand expression

W0(J) = exp(− i

2
Jm∆

ml
F Jl) = exp(− i

2

∫

d4xd4yJ(x)∆F (x− y)J(y)). (7.64)

To find Green’s functions in the interacting system, just de-expand the curly-bracket expo-

nential and take J−derivatives, term by term.

As an example, suppose V̄ (φ) = λφ4/4!.

W (J) = [1− i
∑

k

λ

4!
(
1

i
)4
∂4

∂J4
k

− 1

2

∑

kl

(
λ

4!
)2(

1

i
)8
∂4

∂J4
k

∂4

∂J4
l

+ . . . ] exp(− i

2
Jm∆

mn
F Jn) (7.65)

Of course,

G12 =
∂2W (J)

∂J1∂J2
|J=0; G1234 =

∂4W (J)

(∂J1∂J2∂J3∂J4
|J=0 (7.66)

and so on.

Differentiating the “1” term gives the lowest order G12 = ∆12. Let’s look at the O(λ)

term, which comes from
−iλ

(−i)44!
∂4

∂J4
k

exp(− i

2
Jm∆

mn
F Jn). (7.67)

Several lines of uninteresting algebra give an intermediate answer; the expression (before

taking J = 0) is

− i
λ

4
[−3∆2

kk − 6i∆kp∆kk∆kqJpJq +∆kp∆kq∆kr∆ksJpJqJrJs] exp(−
i

2
Jm∆

mn
F Jn). (7.68)

Now we can differentiate with respect to the J ’s and then set them to zero. The order λ

correction to G(2) consists of two terms:
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• (a) −i λ
4!
(−6i)∆k1∆k2∆kk × 2

• (b) −3 λ
4!
∆2
kk∆12

The interesting order λ contribution to G(4) is −i( λ
4!
)4!∆ka∆k2∆k3∆k4. The corresponding

graphs are shown in Fig. 7.2.

A couple of things are to be noticed: First of all, some of the diagrams are “connected”

and some are “disconnected.” When you evaluate the connected diagrams, they will contain

delta functions which insure overall momentum conservation, and the delta functions do not

factorize. These graphs correspond to real scattering amplitudes (1+2 → 3+4, for example,

with a δ4(p1+p2−p3−p4)). The disconnected diagrams do not correspond to a full scattering

process. Physically, they correspond to a product of individual smaller scattering processes.

Momentum is separately conserved in each subprocess. For example, graph (b) only has a

factor δ4(p1 − p2).

Second, the formalism I have described generates what are called “unamputated graphs”

meaning that the amplitude includes propagators for the incoming and outgoing states.

T-matrix elements want something different, the amplitude without propagators for the

external particles. For example, the O(λ) scattering amplitude for 1+2 → 3+4 is just −iλ.
Passing from unamputated graphs to amputated ones can be done at increasingly higher

levels of sophistication. A good place to read about this is in the text by Srednicki; look

up “LSZ formalism” (for Lehmann, Symanzik, Zimmerman). Here I am just clipping off the

incoming and outgoing propagators “by eye.”

A good place to read about generating functionals for connected graphs is in Ramond’s

book. Briefly, one writes

W (J) = exp(iZ(J)) (7.69)

and discovers that the connected n−point function is

G(n)
conn =

∂nZ

∂J1∂J2 . . .
|J=0 (7.70)

This is easy to check for free field theory:

Z0(J) =
i

2
Jk∆klJl (7.71)

and immediately we see

G(2)
conn =

i

2
× 2∆ij; G(n>2)

conn = 0. (7.72)
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He has useful tricks for carrying out this program for interacting systems.

I admit, the last few pages are pretty dense. But if you are going to do a perturbative

calculation, you have to be sure that you have written down all the Feynman diagrams you

need, and you have to get the combinatorial weight of each graph correctly. For simple

graphs, that can be done by inspection, but intuition may not be good enough in all cases.

And let’s sum up: we are pretty much done with formalism for Feynman diagrams for a

while. You have seen how perturbation theory is developed in the language of Hamiltonians

and in the language of path integrals. Both languages have their good points (and not-

so-good points). Hamiltonians are closest to what you have already seen in your quantum

mechanics classes and may be more familiar. However, there are many problems for which

Hamiltonian methods are much more complicated than path integral methods. An example

is the quantization of non-Abelian gauge theories. Most of my career has been spent working

with path integrals, studying QCD and related systems. Most of the calculations I have done

would basically be impossible using Hamiltonians. (And there are interesting problems which

are basically impossible with path integrals, and Hamiltonians are starting to come back into

my research field.) Of course, a good physicist speaks both languages!
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Figure 7.2: Lowest order scattering Feynman diagram for H = gφ4/4!. (a) and (b) are the

contributions to G(2) and (c) is the contribution to G(4).
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8.1 The Dirac equation

Recall that the wave functions of nonrelativistic electrons have two components correspond-

ing to the two possible eigenvalues of one direction of their angular momentum. They are

spinors; under rotations they transform as spin-1
2
objects.

We now face the issue of embedding spin into special relativity. In fact, it is more

interesting to look the other way around: to start with special relativity, or more precisely

with the invariance of the squared length of four vectors, and to see spin-1
2
appear as part

of a general discussion of the properties of states under Lorentz transformations. This

is very much like constructing states which are eigenstates of J2 and Jz by considering

irreducible representations of the rotation group, rather than writing down solutions to

partial differential equations and studying their properties.

Along the way, we will encounter the Dirac equation. The approach I am taking has

an advantage that we can see the extent to which the Dirac equation is “unique” as a

description of spin-1
2
particles – as well as other ways that spinors appear in the context of

special relativity.

And we cannot stop there. Relativistic quantum mechanics is internally inconsistent,

and so the Dirac equation, as well as other formulations of spinors in special relativity, are

just ingredients in relativistic quantum field theories. We have to complete that connection,

too.

8.2 The Lorentz group and relativistic quantum field

theories

Reference: Ramond, pp 6-32.

We all know that the squared length of a four-vector

s2 = xµxνgµν = t2 − r2 (8.1)

is unchanged under Lorentz transformations. We want to find the most general set of linear

transformations

x′µ = Λµνx
ν (8.2)
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which preserves s2. We require that

gµνx
′µx′ν = gµνΛ

µ
ρΛ

ν
σx

ρxσ = gρσx
ρxσ (8.3)

or

gµνΛ
µ
ρΛ

ν
σ = gρσ. (8.4)

We can classify the transformations as proper or improper depending on whether Λ has an

infinitesimal limit. To do this, consider x as a four-component column vector and L the

matrix generalization of Λ,

x′ = Lx. (8.5)

Space inversions such as

L =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











(8.6)

are improper. Boosts, such as

L =











γ 0 0 βγ

0 1 0 0

0 0 1 0

βγ 0 0 γ











, (8.7)

are proper. We will be concerned almost exclusively with proper transformations in the next

few pages – boosts and rotations.

Consider an infinitesimal Lorentz transformation

Λµν = δµν + ǫµν . (8.8)

δµν is a Kroneker delta, δµµ = 1 for all µ. The parameter ǫ characterizes the Lorentz transfor-

mation. It is constrained by Eq. 8.4,

gρσ = gµνΛ
µ
ρΛ

ν
σ

= gµν [δ
µ
ρ + ǫµρ ][δ

ν
σ + ǫνσ]

= gρσ + gµν(ǫ
µ
ρδ

ν
σ + δµρ ǫ

ν
σ)

= gρσ + ǫρσ + ǫσρ.

(8.9)
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This means that ǫσρ + ǫρσ = 0 or that ǫµν is an antisymmetric tensor, This in turn means

that it has six nonzero components. These will correspond to the magnitudes of the boosts

and the rotations in each of the three dimensions.

We can introduce a sort of “generalized angular momentum” as a generator of Lorentz

transformations:

Lµν ≡ i[xµ∂ν − xν∂µ] (8.10)

(recall ∂µ = (∂/∂t, ~∇)) in terms of which the change in x can be written as

δxµ =
1

2
ǫρσLρσx

µ (8.11)

(this is δxµ = ǫµνx
ν after taking the derivatives, of course.) Again, because of antisymmetry,

Lµν has six nonzero components; the number of generators is equal to the number of ǫ’s. It’s

easy but tedious to work out the commutator,

[Lµν , Lρσ = igνρLµσ − igµρLνσ − igνσLµρ + igµσLνρ. (8.12)

This says that the L’s are the generators of a Lie algebra, This should not be surprising,

since for the space-like components, we can define

Li ≡
1

2
ǫijkLjk (8.13)

and Eq. 8.12 says

[L1, L2] = [L23, L31] = ig33L21 = −iL21 = iL12 = iL3 (8.14)

(µ = 2, ν = 3, ρ = 3, σ = 1) which is one of the usual commutation relations for the ordinary

angular momentum operators.

In an analogy with the relation between spin and ordinary orbital angular momentum,

we can imagine more generators Sµν which act on the internal structure of our states, with

the same commutation relations among themselves, and with [Lµν , Sρσ] = 0, We can write

the most general representation of the generators of Lorentz transformations as

Mµν = Lµν + Sµν . (8.15)

Let’s pull the commutator Eq. 8.12 apart so we can make sense of it. Define

Ji =
1

2
ǫijkMjk

Ki = M0i

(8.16)
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so that the six nonzero M ’s are recast as three J ’s and three K’s, and then take linear

combinations

Ai =
1

2
(Ji + iKi)

Bi =
1

2
(Ji − iKi).

(8.17)

Then we find

[Ai, Bj ] = 0 (8.18)

[Ai, Aj] = iǫijkAk (8.19)

[Bi, Bj] = iǫijkBk. (8.20)

This says that the A and B’s obey the algebra of SU(2)!

In the case of ordinary angular momentum, states which transform irreducably under

rotations may be characterized by a single set of angular momentum quantum numbers, J2

and Jz, and for example J2 |ψj〉 = j(j + 1) |ψj〉. States transforming as irreducable repre-

sentations under the Lorentz group may be classified by two angular momentum quantum

numbers, a and b:

A2 |ψab〉 = a(a + 1) |ψab〉
B2 |ψab〉 = b(b+ 1) |ψab〉

(8.21)

Note also that the two SU(2)’s are not independent. Under a parity transformation Ji → Ji

(or Mjk → Mjk) – the J ’s form an axial vector, while Ki → −Ki, the K’s form a vector.

This means that a parity reflection is equivalent to exchanging A with B and vice versa. In

general, representations of the Lorentz group are neither parity nor Hermitian conjugation

eigenstates (Bi = A†
i).

And since Ji = Ai+Bi we can identify the ordinary spin of the representation as J = a+b.

Rotation matrices transform states: Working in momentum space for a while, and imag-

ining that we have some state which depends on p, the transformation law is

ψ(Λp) = D(Λ)ψ(p). (8.22)
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The usual quantum mechanical rotation matrix is

D(φ) = exp(−i~φ · ~J)
≃ 1− i~φ · ~J
= 1− iφi(

1

2
ǫijkMjk)

= 1− i

2
(ǫijkφi)Mjk

(8.23)

regrouping indices, to make the formula involve two-index generators. If φ is a rotation

about the z−axis,

ǫijkφi =







0 φ 0

−φ 0 0

0 0 0






(8.24)

and we see that ǫijkφi = ǫjk = −ǫkj is the parameter characterizing the rotation. The natural

generalization of a rotation to the Lorentz group is then

D(Λ) = 1− i

2
ǫµνMµν . (8.25)

Let’s work this out for a boost along the z direction,

B(θ) =











γ 0 0 βγ

0 1 0 0

0 0 1 0

βγ 0 0 γ











, (8.26)

where we introduce the rapidity angle θ to write γ = cosh θ, βγ = sinh θ. We can write this

as a product if infinitesimal boosts [B(θ/n)]n where

B

(

θ

n

)

=











1 0 0 θ
n

0 1 0 0

0 0 1 0
θ
n

0 0 1











. (8.27)

The infinitesimal rotation is

D

(

θ

n

)

= 1− i

2
[ω30M30 + ω03M03] (8.28)
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and ω30 = θ/n, M30 = −K3, Ki = Ai − Bi, so the rotation matrix is

D

(

θ

n

)

= 1 +
1

2

θ

n
2(A3 − B3) (8.29)

combining µν and νµ and the i’s. This exponentiates to

D(B(θ)) = lim
n→∞

[1 +
θ

n
(A3 − B3)]

n

= exp(θ(A3 − B3))

→ exp[θ( ~A− ~B) · n̂]
(8.30)

generalizing to a pure boost along direction n̂.

What does this mean? (A,B) representations of the Lorentz group can be written as

ψ =

(

ψA

ψB

)

≡ ψab (8.31)

where, in turn, if A = JA then ψA is a column vector with 2A+ 1 entries, and similarly for

ψB. The transformation law is

ψa′b′(p
′, s′) = [exp(θn̂ · ~A)]a′a[exp−θn̂ · ~B)]b′bψab(p.s). (8.32)

For example, if the states are A = B = 1
2
, then the operators A = B = 1

2
σ and

D(Λ) =

(

exp(1
2
θn̂ · ~σ) 0

0 exp(−1
2
θn̂ · ~σ)

)

. (8.33)

Now we can classify states in terms of their transformation properties under boosts and

rotations.

The simplest states are scalars, with A = B = 0. They have a single component. The

Lagrange density should be a scalar under Lorentz transformations and should be built of

scalar functions of the field variables.These could be polynomials in φ. And we can combine

operators which transform nontrivially under Lorentz transformations into scalars. This is

the analog of combining objects with nonzero angular momenta into (rotational) scalars. For

example, ∂µ transforms as a four-vector operator; ∂µφ is a four vector (if φ is a scalar), so

its square

LK = (∂µφ)(∂
µφ) (8.34)

is a scalar. It could be part of a Lagrange density for scalar fields. Since I’ve already written

quite a bit about quantum field theory for scalars, there isn’t much more to say.



Quantum Field Theory 108

8.3 Technology for spinors

Maybe it is time to talk about spinors. The easiest ones to describe have two components.

Possible states can be the (A,B) = (1
2
, 0) or (0, 1

2
) combinations. These objects describe a

left handed or a right handed fermion, respectively. These states are not parity eigenstates,

since under parity, P (A,B) = (B,A). To get a parity eigenstate we need to combine two of

these objects, (1
2
, 0)⊕ (0, 1

2
) into a four component “Dirac spinor.” The transformation rules

for the two component spinors are

(
1

2
, 0) → ψL(x); ψ′

L(x
′) = ΛLψL(x)

(0,
1

2
) → ψR(x); ψ′

R(x
′) = ΛRψR(x)

(8.35)

where

ΛL,R = exp(
i

2
~σ · (~ω ± i~ν)) (8.36)

for a rotation about direction ~ω and a boost along direction ~ν.

Let’s record some useful properties of the rotation matrices. Note that ΛL ∼ 1+ i
2
~σ · ~ω+

1
2
~σ · ~ν and Λ−1

L = 1− i
2
~σ · ~ω − 1

2
~σ · ~ν = Λ†

R.

Property 1: Λ−1
L = Λ†

R.

Since σzσiσz = −σ∗
i , we have Property 2: σ2ΛLσ2 = Λ∗

R and σ2Λ
∗
Lσ2 = ΛR.

More Pauli matrix identities! (σ2σiσ2)
T = −(σ∗

i )
T , so with ΛTL = 1 − i

2
~σT · ~ω + 1

2
~σT · ~ν,

we have Property 3 is σ2Λ
−1
L σ2 = ΛTL or σ2Λ

T
Lσ2ΛL = 1.

Finally, property 4: ΛTLσ2ΛL = σ2 and ΛTRσ2ΛR = σ2.

These odd identities have their uses. First, σ2Λ
∗
Lψ

∗
L = σ2Λ

∗
Lσ2σ2ψ

∗
L = ΛR(σ2ψ

∗
L). This

says that, given a ψ which transforms as ψ′
L = ΛLψL, (alternatively , it is an (1

2
, 0) object)

call it

(

a

b

)

, one can construct a σ2ψ
∗
L =

(

−ib∗
ia∗

)

which transforms as (0, 1
2
). This

expands our set of states: ψL and σ2ψ
∗
R are (1

2
, 0), ψR and σ2ψ

∗
L are (0, 1

2
).

This relation has a potential use. If we have a set of left handed and right handed spinors,

we can always trade in the right hand ones for left hand ones, and vice versa. In words,

the physics is that the antiparticle of a left handed fermion is a right handed antifermion,

plus the additional statement that the whole notion of particle versus antiparticle in some
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absolute sense is ambiguous. In the Standard Model, left handed fermions and right handed

fermions have different weak charges. W bosons don’t couple to right handed fermions, only

to left handed ones. If we want, (and there are people who work this way), we never have to

talk about right handed fermions. We can work with left handed anti fermions, instead. In

this way of doing things, the electron (a four component Dirac particle) is built of two left

handed fields, an e(x) and an ē(x).

Another use of these relations is to construct combinations of spinors which transform

as scalars and vectors.

Suppose we have two left handed spinors, χL and ψL. The quantity S = χTLσ2ψL trans-

forms into χTLΛ
T
Lσ2ΛLψL which (from property 4) is S = χTLσ2ψL – that is, S is unchanged

under a Lorentz transformation. This means that S is a scalar! To write it in another way,

let χL = σ2ψ
∗
R and then S = −ψ†

RψL. This is not necessary real, but ψ†
RψL+ψ†

Lψr is always

real. Moral: the product of a left handed fermion and a right handed fermion is a scalar.

Now we want vectors. ψ†
LψL is invariant under rotations (the transformation is unitary)

but not under boosts. Under a boost

ψ†
LψL → ψ†

lΛ
†
LΛLψL = ψ†

L exp(~σ · ~ν)ψL. (8.37)

If we Taylor expand this expression, it is ψ†
LψL + ~ν · ψ†

L~σψL + . . . . Similarly ψ†
LσiψL →

ψ†
l e
σ·ν/2σie

σ·ν/2ψl which is ψLσiψl + νiψ
†
LψL + . . . . That is, the changes are

δψ†
LψL = νiψ

†
LσiψL

δψ†
LσiψL = νiψ

†
LψL.

(8.38)

This is δV µ = ǫµνV
ν with ǫ0i = −νi as the boost parameters. Thus the following objects are

four vectors

ψ†
Lσ

µψL = (ψ†
LψL, ψ

†
L~σψL)

ψ†
Rσ̄

µψR = (ψ†
RψR,−ψ†

R~σψR)

(8.39)

(And note for future reference the definitions of σµ = (1, ~σ) and σ̄µ = (1,−~σ).)

Now we are in business. Suppose we want to write down a Lagrangian for left handed

fermions. There are two terms which are quadratic in the fields. One of them is a kinetic

term

LK = ψ†
Lσ

µ∂µψL (8.40)
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(the right hand fermion analog is ψ†
Rσ̄

µ∂µψR). The other term is a Majorana mass term –

maybe!

LMM =
m

2
(ψ†

Lσ2ψ
∗
L + ψTLσ2ψL) (8.41)

Why “maybe?” If ψ carries a charge Q, then ψ† must have charge −Q in order that LK is

charge neutral. For Majorana fermions, the particle is the antiparticle (we’ll see that, below)

so we had better have Q = 0 because ψT carries the same charge as ψ and LMM had better

also be neutral. More on this, later, but I can’t resist remarking that neutrinos could be

Majorana fermions, but electrons can’t.

Finally we come to four component (Dirac) spinors, which are what we need when our

interactions conserve parity - electrodynamics by itself, quantum chromodynamics. Recall

that parity takes L into R, PψL = ψR and vice versa, so if we want an action which respects

parity, we have to have both ψL and ψR bundled together into four component spinor. We

can write

ψ =

(

ψL

ψR

)

. (8.42)

Notice

Pψ =

(

ψR

ψL

)

=

(

0 1

1 0

)(

ψL

ψR

)

. (8.43)

To simplify notation, we define (careful, each entry is 2× 2)

γ0 =

(

0 1

1 0

)

(8.44)

and say Pψ = γ0ψ. Left and right hand projectors are 1
2
(1± γ5) where

γ5 =

(

1 0

0 −1

)

. (8.45)

Recall that that a scalar is ψ†
RψL+ψ

†
LψR = ψ†γ0ψ ≡ ψ̄ψ. (Note the definition ψ̄ = ψ†γ0.)

Vector operators come from the two component vectors:

V µ = ψ†(γ0γµ)ψ ≡ ψ̄γµψ (8.46)

where

γi =

(

0 −σi
σi 0

)

. (8.47)
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The four by four objects γµ = (γ0, γi) are referred to as the “Dirac matrices” (with further

adjectives, see below.) The Dirac matrices obey the anticommutation algebra

{γµ, γν} = 2gµν (8.48)

which is a property which descends from the Pauli matrices.

Recall that we could also bundle left handed and right handed fields as

ψc =

(

σ2ψ
∗
R

−σ2ψ∗
L

)

∝ γ2ψ∗. (8.49)

This is called the “charge conjugate spinor.” Under Lorentz transformations it transforms

exactly like ψ. Do it twice: (ψc)c = ψ. The transformation itself is called “charge conjuga-

tion.” We will see what it is used for, shortly.

The Majorana spinor

ψM =

(

ψL

−σ2ψL

)

(8.50)

is equal to its conjugate, ψM = (ψM)c – check it! We will shortly show that the charge

conjugation operator turns a fermion into its antiparticle, so we have just discovered that

Majorana fermions are their own antiparticles. Also, like ψR and ψL, the “Weyl spinors,”

Majorana fermions only have two independent components. The Majorana mass term can

also be written in terms of the Majorna spinor as

Lmm =
m

2
ψ̄MψM . (8.51)

“The” Dirac Lagrangian is built from ∂µV
µ and the scalar term,

L = ψ̄(x)[iγµ∂µ −m]ψ(x). (8.52)

Incidentally, when L is embedded in an action, there are many choices for derivative opera-

tors, all related by integration by parts. The derivative could act only on the ψ, or only on

the ψ̄ or half on each. In Eq. 8.52 just varying δL/δψ̄ = 0 gives “the” Dirac equation

[iγµ∂µ −m]ψ(x) = 0. (8.53)

For future use, there is an alternative “slash notation:” /p = γµp
µ and so on.
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8.4 Technical details about solutions of the Dirac equa-

tion

Let’s develop some technology for dealing with solutions of the Dirac equation. We will need

the Hamiltonian, which in turn will need a canonical field momentum; It is

π =
∂L
∂ψ̇

= iψ̄γ0 = iψ†. (8.54)

The Hamiltonian density is

H = ψ†[−i~α · ~∇+ βm]ψ (8.55)

where (this is the first of several annoying changes in definition) γ0 = β, ~α = β~γ. To continue

being annoying, there are several competing version of the Dirac matrices. We began with

what is called Weyl basis,

γ5 =

(

1 0

0 −1

)

; γµ =

(

0 σµ

−σµ 0

)

. (8.56)

This is a natural basis for talking about left handed and right handed fermions. In Bjorken-

Drell convention, γ0 is diagonal

γ0 =

(

1 0

0 −1

)

; ~γ =

(

0 ~σ

~σ 0

)

; γ5 =

(

0 1

1 0

)

(8.57)

The anticommutation relation Eq. 8.48 is basis-independent, of course.

(Why are there competing versions? because the Dirac equation simplifies in various

limits, m/E → 0 or m/E → 1, and the solutions are simpler in these limits in different

bases.)

Let’s look at solutions of the free Dirac equation. We assume

ψ(x) = ψ(p) exp(−i(Et− ~p · ~x)) = ψ(p)e−ipx (8.58)

where ψ(p) is a four component function of p. We work in Weyl basis, where ψ(p) =

(

ψL

ψR

)

.

The Dirac equation becomes

m

(

ψL

ψR

)

=

(

0 E + p · σ
E − p · σ 0

)(

ψL

ψR

)

(8.59)
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We could, of course, keep going, but let’s set m = 0. Then the equation factorizes into a

pair of two-component equations

(E + ~p · ~σ)ψL = 0

(E − ~p · ~σ)ψR = 0

(8.60)

Also, (E − ~p · ~σ)(E + ~p · ~σ)ψL = (E2 − p2)ψL = 0 tells us that we have a massless particle,

E = |~p|. Calling n̂ = ~p/E we have

n̂ · σψL = −ψL (8.61)

which tells us that the axis of quantization of the spin lies along the direction of motion of

the particle, antiparallel to it for ψL and parallel for ψR. Hence the L,R label we had earlier

introduced – it is physics. The solutions of the Dirac equation are massless two-component

states of definite helicity.

Next, let’s consider the nonzero mass case and work in Bjorken-Drell basis for a change

of pace. Begin with p = 0:

i
∂ψ

∂t
= βmψ =











m

m

−m
−m











ψ (8.62)

There are obviously four solutions: two of them are

ψ1 = C











1

0

0

0











e−imt; ψ2 = C











0

1

0

0











e−imt; (8.63)

Recall that is i∂ψ/∂t = Eψ, ψ ∼ exp(−iEt), so these are positive energy solutions, E =

+mc2, restoring the c’s for psychological purposes Looking at the two upper components,

they apparently have different internal states, which we can associate with spin up and spin

down.

But there are two negative energy solutions, with E = −mc2,

ψ3 = C











0

0

1

0











eimt; ψ4 = C











0

0

0

1











eimt; (8.64)
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Who ordered these? Let’s do some more technical manipulations, then deal with the inter-

pretation of these states. You can wait. After all, it took three years from Dirac’s invention

of the original Dirac equation to the discovery of the positron.

What about arbitrary momentum? We can find these solutions by boosting; recall

ψ(p′/m, s′) = D(Λ)ψ(p/m, s). (8.65)

The only annoyance is that we worked out D in Weyl basis, while now we are in Bjorken -

Drell basis. But no worries, RγµABR
−1 = γµBD, where

R = R−1 =
1√
2

(

1 1

1 −1

)

(8.66)

and “1” is the 2× 2 identity matrix. Then. we just have a little matrix multiplication

ψ(p/m, s) = R

(

e
1

2
θp̂·σ 0

0 e−
1

2
θp̂·σ

)

R−1ψ(0, s0) (8.67)

and after some algebra, we find that the rotation matrix in Bjorken - Drell basis is

D(Λ) =

(

cosh θ
2

p̂ · σ sinh θ
2

p̂ · σ sinh θ
2

cos θ
2

)

(8.68)

where there are a plethora of definitions built on cosh θ = E/m and sinh θ = p/m: in

particular

cosh
θ

2
=

√

E +m

2m

sinh
θ

2
= =

p

E +m
cosh

θ

2
(8.69)

so that

ψ(p/m, s) =

√

E +m

2m

(

1 p·σ
E+m

p·σ
E+m

1

)

ψ(0, s) (8.70)

The four ψ(0, s)’s of Eqs. 8.63 and 8.64 are so simple that the boosted wave functions can

be read off from the individual columns of Eq. 8.70. For example, starting with ψ1(p = 0),

we have

ψ1(x) = C

√

E +m

2m











1

0
pz

E+m
px−ipy
E+m











. exp(−i(Et− ~p · ~x) (8.71)
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Let’s pull off the plane wave and write ψi(x) = wi(p) exp(−iǫi(pµxµ) where ǫ1 = ǫ2 = 1

and ǫ3 = ǫ4 = −1; w is the four-component Dirac spinor. To keep going, the w’s are

actually not the most convenient states. Let’s define the two positive energy solutions as

u(p, s) = w(p, s). They obey

(/p−m)u(p, s) = 0 (8.72)

The adjoint of this equation is

((/p−m)u(p, s))† = u†(γ†µp
µ† −m) = 0 (8.73)

and there is (once again) a magic identity, γ0γ
†
µγ0 = γµ. Along with γ20 = 1 this gives

0 = u†γ0(γ0γ
†
µγ0p

µ −m)γ0

= ū(/p−m).

(8.74)

For the negative energy solutions we define v(p, s) to be a negative energy solution with spin

(−s) in the rest frame, that is

w3(p) = v(p, ↓) ≡ v(p,−s)
w4(p) = v(p, ↑) ≡ v(p, s).

(8.75)

We thus label an arbitrary spinor by its momentum, the sign of its energy, and the spin

direction in the rest frame s. This seemingly odd definition of the v’s will be very convenient

when we come to interpret the negative energy states in the field operators. The v’s obey

(/p+m)v(p, s) = 0 (8.76)

and

v̄(p, s)(/p+m) = 0. (8.77)

Now for some useful properties of the u’s and v’s. One can show explicitly that

ūiuj = −v̄ivj = |C|2δij (8.78)

(so these objects are scalars). A completeness relation is

∑

i

(uiūi − viv̄i)αβ = δαβ |C|2 (8.79)
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where α and β are Dirac indices. The minus sign can be motivated from 1 = u†u+ v†v plus

the minus sign in the Bjorken-Drell γ0.

Projection operators are useful. If we have some general state ψ, it can contain both

positive energy and negative energy solutions. Perhaps we only want the positive energy

ones? Write
∑

i

uiūi − viv̄i = Λ+ + Λ− (8.80)

where
∑

i uiūi = Λ+ and
∑

i−viv̄i = Λ−. W can find Λ+ and Λ− “by inspection:”

Λ+uj =
∑

i

uiūiuj =
∑

i

ui(ūiuj) =
∑

i

ui|C|2δij = |C|2uj. (8.81)

And we know (/p+m)uj = 2muj so Λ+ must be proportional to (/p+m). The answer is

Λ+ =
/p+m

2m
|C|2 (8.82)

and then

Λ− =
−/p +m

2m
|C|2 (8.83)

The sign is so that Λ+ + Λ− = |C|2δij .

Finally, what about |C|2 There are two choices in the literature. First, one can take

|C|2 = 1. Then
∑

i ψ
†
iψi = 1. This means that |ψ|2 is a probability, just like in ordinary

quantum mechanics. This choice is made in old books like Bjorken and Drell and, more

generally, in calculations where the fermions are taken to be heavy.

The other choice is |C|2 = 2m so that Λ± = ±/p+m. In this convention, u†(p, s)u(p, s′) =

Eδss′. Remember that u†u is the zeroth component of the current four vector. E is the zeroth

component of the momentum four vector. The two components have to be proportional to

each other if we are dealing with plane waves. This is a very useful normalization convention

for states with E ≫ m, since we can just set m = 0 in our calculation and move on. With

the first choice, and a 2m in the denominator, we have to do this cautiously. My convention

is this one, |C|2 = 2m, Λ± = ±/p + m. Note that this is the same choice as was taken for

scalar fields as described in the Appendix.

We are getting close writing down the field variables we will actually use in calculations.

Define a plane wave state containing positive and negative energy states as

ψ(x, t) =

∫

d3k

(2π)3/2
√

2E(k)

∑

s

[b(k, s)u(k, s)e−ik·x + d†(k, s)v(k, s)eik·x] (8.84)
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The conjugate momentum is π = iψ̄γ0 or π = ψ†. b(p, s) and d†(p, s) start out as classi-

cal Fourier coefficients. We make the usual conversion of the field ψ into a field operator

by treating the classical Fourier coefficients as quantum operators. We want a theory of

fermions, so we need to impose anticommutaton relations on them. The nonzero ones are

[b(k, s), b†(k′, s′)]+ = [d(k, s), d†(k′, s′)]+ = δss′δ
3(~k − ~k′) (8.85)

and we take all other anticommutators to vanish. It is a long boring exercise to show that

this choice reproduces the appropriate anticommutator for π and ψ; the calculation involves

all the projector identities we just wrote down.

And now for the Hamiltonian. It is easy:

H = πψ̇ − L
= ψ†[−i~α · ∇ + βm]ψ

= ψ†i
∂ψ

∂t
(8.86)

where the last line uses the Dirac equation. Plugging in the appropriate field definitions and

recalling that the Hamiltonian is related to the its density by H =
∫

d3xH, we eventually

arrive at

H =
∑

s

∫

d3pE(p)[b†(p, s)b(p, s)− d(p, s)d†(p, s)]. (8.87)

This is straightforward to derive, but we have a problem due to the d(p, s)d†(p, s) term.

By creating negative energy particles we can arbitrarily lower the energy of any state. The

spectrum of H is unbounded from below.

Couldn’t we forbid transitions to negative energy? Dirac’s 1930 resolution of the problem

was to assume that in nature all the negative energy levels are filled,

|vacuum〉 =
∏

d†(p, s) |0〉 (8.88)

and the Pauli principle forbids further occupying them. But we could remove states from

this “Dirac sea.” States we can access are ones like b†(k1, s1)d(k2, s2) |vacuum〉. This is a

state with one positive energy particle and with the absence of a negative energy particle –

a “hole.” But physically, what were the holes? (This was an issue before the discovery of

the positron.) Were they protons? (This was before the discovery of charge conjugation.)
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Nowadays we just work with a normal ordered Hamiltonian

: H :=
∑

s

∫

d3pE(p)[b†(p, s)b(p, s) + d†(p, s)d(p, s)]. (8.89)

The vacuum is just |0〉, annihilated by both b(k, s) and d(k, s). It has zero energy; states

like b†(k1, s1)d
†(k2, s2) |0〉 have (positive) energy E(k1) + E(k2).

We had a homework problem earlier this semester involving electrons in a one dimensional

solid which connects the two descriptions. The physics is identical to what we face now.

Just workng with the normal ordered Hamiltonian means that at the end of the day, we

have a lowest state, the vacuum, containing no fermions and no antifermions, and we have

excitations all of whose energies are positive with respect to it. The spinor factors in v(p, s)

are designed to encode this reasonable situation as seamlessly as possible.

To reinforce the point (and hopefully not to belabor it), consider the Dirac equation for

a particle of negative charge, coupled to electromagnetism:

[i/∂ − e/A−m]ψ = 0 (8.90)

For a positron, a particle which has positive charge, it would be

[i/∂ + e/A−m]ψc = 0. (8.91)

We could have equally as well began the story of the Dirac particle with positrons and

interpreted the positive energy electrons as the absence of negative energy positrons. In

fact, there is a symmetry which encodes this fact.

Do you recall the charge conjugation operator, which transforms Eq. 8.90 into Eq. 8.91?

Let’s construct the operator it again, but this time with a more physical argument. We have

to flip the relative sign between /∂ and e/A to toggle between the two equations. Use the

fact (we’ll get to this in a while) that the vector potential operator creates and annihilates

photons,

Aµ =

∫

[b(k, ǫ) + b†(k, ǫ)] = A† (8.92)

(or classically, Aµ = A∗
µ). Complex conjugate Eq. 8.90 and multiply by −1:

[(i∂µ + eAµ)γ
µ∗ +m]ψ∗ = 0. (8.93)

If we can find a transformation (Cγ0) such that (Cγ0)γ
µ∗(Cγ0)

−1 = −γµ, Eq. 8.93 becomes

[i/∂ + e/A−m](Cγ0ψ
∗) = 0. (8.94)
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and we find Cγ0ψ
∗ = ψc. The result: C = iγ2γ0 does the job.

To see what is happening, look at a negative energy electron, spin down, at rest, Bjorken

and Drell γ convention,

ψ =











0

0

0

1











eimt (8.95)

The explicit form of the operator is

Cγ0 = iγ2 = i

(

0 σy

σy 0

)

(8.96)

and, just doing the multiplication and complex conjugation, the transformed field is

ψc = ψ =











1

0

0

0











e−imt (8.97)

Charge conjugation takes the negative energy electron into a positive energy one. Note that

the absence of a spin down state is the same as the presence of a spin up state, in the spin

counting. This is the origin of the flipped spin in the relation between v(p, s) and w(p, s) as

previously alluded to.

The complete charge conjugation transformation includes

• Aµ → −Aµ (effectively flipping the sign of e)

• ψ → Cγ0ψ
∗

And, why are the masses of the electron and positron the same? Charge conjugation is a

symmetry of the Dirac Lagrangian!

Finally, note that diagrams involving an odd number of external photons vanish due to

charge conjugation. This happens because A is c-odd and

〈T (AAA)〉 =
〈

T (CAC−1CAC−1CAC−1)
〉

= −〈T (AAA)〉 = 0 (8.98)

This is called “Furry’s theorem.” A process where a photon splits into two photons is not

allowed.
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8.5 The spin-statistics theorem (j = 0 and j = 1/2 only)

When we wrote down Eq. 8.84 we simply stated that the field creation operators anticom-

mute. Now we can check that that must be the case, that spin 1
2
fields must be fermions.

The argument parallels our demonstration that scalar fields, which annihilated particles, also

created antiparticles.

To begin: in order that the S-matrix be Lorentz invariant, we needed that [H(x), H(y)] =

0 if (x − y)2 < 0. Since H (and any other observable) is usually a bilinear or higher power

in the field variables, we need either

[φ(x), φ†(y)] = 0 (8.99)

or

[φ(x), φ†(y)]+ = 0 (8.100)

for spacelike separation, in order to satisfy this relation. We know that Eq. 8.99 is true for

spin-zero fields when [a(k), a†(k′)] = δ3(k − k′), but it is not true if the a’s anticommute.

Recall the formula for scalars:

[φ(x), φ†(y)]± =

∫

d3kd3k′

(2π)3
√
4EE ′

(

[a(k)e−ikx + ac†(k)eikx][a†(k′)eik
′y + a(k′)e−ik

′y]± . . .
)

=

∫

d3kd3k′

(2π)3
√
4EE ′

(

e−i(kx−k
′y)[a(k), a†(k′)]± + ei(kx−k

′y)[ac†(k), ac(k′)]±

)

(8.101)

If the a’s commute, the object in the large parentheses becomes e−ik(x−y) − eik(x−y) and the

integral will vanish because ∆(x) = ∆(−x) at spacelike separations. However, if the a’s

anticommute, we get a sum of ∆’s, which will not vanish for spacelike separations and our

requirement that the Hamiltonian commutes will fail.

Now we repeat the argument for spinors: relabela→ b, ac → d.

[ψ(x), ψ̄(y)]± =

∫

d3kd3k′

(2π)3
√
4EE ′

(
∑

ss′

u(k, s)ū(k′, s′)[a(k, s), a†(k′, s′)]±e
−i(kx−k′y)

+
∑

ss′

v(k, s)v̄(k′, s′)[ac†(k, s), ax(k′, s′)]±e
i(kx−k′y)).

(8.102)
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If we assume that [a, a†]± = δss′δ
3(k − k′), we get

[ψ(x), ψ̄(y)]± =

∫

d3k′

(2π)32E

(

∑

s

u(k, s)ū(k, s)e−ik(x−y) ± v(k, s)v̄(k, s)eik(x−y)

)

. (8.103)

The ± goes with the reverse order of a and a† in the second (anti)commutator. We now use

∑

s

u(k, s)ū(k, s) = /k +m

∑

s

v(k, s)v̄(k, s) = /k −m

(8.104)

to simplify

[ψ(x), ψ̄(y)]± =

∫

d3k

(2π)32E

(

/k[e−ik(x−y) ± eik(x−y)] +m[e−ik(x−y) ∓ eik(x−y)]
)

(8.105)

With a commutator (the lower sign) the m terms add, but recall

∫

d3k

2E
eik(x−y) (8.106)

is even under exchange of x and y, for spacelike x − y, and so the commutator is nonzero.

With the anticommutator, it vanishes. The first /k term is

∫

d3k

2E
e−ik(x−y)/k = i/∂

∫

d3k

2E
e−ik(x−y) (8.107)

and so with the anticommutator we get /∂x[∆(x−y)−∆(y−x)]; the argument in the brackets

is zero because ∆(x − y) is even, and we get zero again. With the comutator, this term is

nonzero. Thus, for spin-1
2
particles, only the anticommutator of the fields vanishes outside

the light cone.

This is a specific example of the spin statistics theorem: Systems with integer spin must

be quantized with commutation relations and hence are bosons. Systems with half integer

spin require anticommutation relations and hence are fermions.

The original proof of the theorem was by Pauli, Phys. Rev. 58 716 (1940). The article

is reprinted in Schwinger, “Selected Papers on Quantum Electrodynamics,” Dover Publi-

cations, 1958, ISBN 978-0-486-60444-2, 978-0-486-60444-2 (which also contains most of the

seminal papers on QED). Incidentally, long before this, in 1924, he had proposed the exclu-

sion principle for fermions, as an empirical observation.
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8.6 The fermion propagator

The fermion propagator is

iSF (x− y) =
〈

0|T (ψ(x), ψ̄(y))|0
〉

(8.108)

Field operators anticommute. It is necessary for the time-ordered product to respect this

fact, so it must be that

T (ψ(x), ψ̄(y)) = ψ(x)ψ̄(y); tx > ty

= −ψ̄(y)ψ(x) ty > tx

(8.109)

Then

iSF (x− y) =

∫

d3p

(2π)32E(p)
[θ(t)Λ+(p)e

−ipx + θ(−t)Λ(p)e
ipx] (8.110)

where (again)

Λ+ =
∑

s

u(p, sP ū(p, s) = /p+m

Λ− =
∑

s

v(p, sP v̄(p, s) = −/p+m

(8.111)

and, repeating the derivation for the propagator of the scalar field, we find

iSF (q) = i
/q +m

q2 −m2 + iǫ
. (8.112)

The denominator is exactly as for a scalar field. The numerator reflects spinor structure –

iSF (q) is a 4× 4 matrix in spinor space.

8.7 A sample problem – an electron in an external field

We imagine that we have an electron which is scattered by an external (non-dynamical)

electromagnetic field. The differential cross section will presumably resemble the case of

Rutherford scattering. Let’s do the calculation, as a way of introducing some necessary

technology as much as for an answer to a physical question. Let’s just assume that the
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electromagnetic current is equal to −e times the probability current, so that we have an

interaction Hamiltonian

H(x) = JµA
µ = −eψ̄(x)γµψ(x)Aµ(x). (8.113)

You can show that this definition of the current is not unique – there are many possible

terms in the most general expression for a current – but this is the only one whose integral

corresponds to a conserved charge

Q =

∫

d3xJ0(x). (8.114)

And it is the actual electromagnetic current for a point particle, as we will later see.

We write the field operator as

ψ(x, t) =
∑

s

∫

d3p

(2π)3/2
√

2E(p)
[b(p, s)u(p, s)e−ipx + d†(p, s)v(p, s)eipx] (8.115)

and our states are

|ψ(pσ)〉 = b†(p, σ) |0〉 . (8.116)

The first order T−matrix is

T (p′, σ′; p, σ) = −i
∫

d4xAµ(x) 〈ψ(p′σ′)|Jµ(x)|ψ(pσ)〉 (8.117)

where

〈ψ(p′σ′)|Jµ(x)|ψ(pσ)〉 = e
ei(p−p

′)x

(2π)3
√

2E(p)2E(p′)
ū(p′, σ′r)|γµu(p, σ) (8.118)

To proceed, we take A to be time independent and do the time integral. This is scattering

in an external field, just like potential scattering in nonrelativistic quantum mechanics. The

electron’s energy is conserved, but its momentum is not. We get

T (p′, σ′; p, σ) = −ieū(p′, σ′)γµu(p, σ)Aµ(p− p′)
1

2E(p)
[2πδ(E(p)− E(p′)] (8.119)

where

Aµ(q) =

∫

d3x

(2π)3
e−iqxAµ(x). (8.120)

To find the differential cross section, drop the 2πδ() and square:

dσ = e2|u(p′, σ′)γµu(p, σ)Aµ(p− p′)|2 1

4E2

(2π)4

vrel
d3p′ (8.121)
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(To get the right factor of powers of 2π, think of the scattering as p + P1 → p′ + P2 where

p1 = P2 = (M, 0, 0, 0) andM is large; include fields for the two heavy states. The alternative

is to set up the calculation from the start along the lines of nonrelativistic potential scattering

in Born approximation.) We can then do the phase space integral, d3p′ = p′2dp′dΩ =

p′(E ′dE ′)dΩ, so
δ(E − E ′)p′dE ′

4E2vrel
=

p

4Evrel
(8.122)

With vrel = p/E, the differential cross section is

dσ

dΩ
= (2π)4

e2

4
|u(p′, σ′)γµu(p, σ)Aµ(p− p′)|2. (8.123)

We have now hit the technical issue we always encounter when dealing with Dirac fermions

– all these Dirac matrices and spinors. How can we evaluate the expression as painlessly as

possible? Dealing with this issue involves a set of manipulations which go under the heading

called the “trace calculus.” Let’s use this problem as an introduction to these manipulations.

The situation is simplest when we sum over final spins and average over initial spins of

the fermions. Then, noting that [ū(p′, σ′)γµu(p, σ)]† = [ū(p, σ)γνu(p′, σ′)], we have

dσ

dΩ
= (2π)4

e2

4

∑

σ,σ′

AµA
∗
ν [ū(p

′, σ′)γµu(p, σ)][ū(p, σ)γνu(p′, σ′)]. (8.124)

Let’s re-introduce the spinor indices on the fermionic terms: they are

Fµν =
∑

σ′

ū(p′, σ′)αγ
µ
αβ

∑

σ

u(p, σ)βū(p, σ)γγ
ν
γδu(p

′, σ′)δ. (8.125)

Recall the projector definition:
∑

σ u(p, σ)βū(p, σ)γ = (/p+m)βγ . Using this lets us write

Fµν = γµαβ(/p+m)βγγ
ν
γδ(/p

′ +m)δα. (8.126)

Look at the indices – this expression is a trace:

dσ

dΩ
= (2π)4

e2

4

∑

σ,σ′

AµA
∗
νTr [γ

µ(/p+m)γν(/p′ +m)]. (8.127)

There are a set of tricks which are used again and again to reduce expressions like

Eq. 8.127 – the “trace rules.” They descend from the fundamental relation

γµγν + γνγµ = 2gµν. (8.128)
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Trace over this: because Tr 1 = 4 and because the trace is cyclic,

Tr γµγν = Tr γνγµ = 4gµν . (8.129)

This allows us to write the useful result that

Tr /a/b = aµbνTr γ
µγν

= aµbν4g
µν

= 4a · b.
(8.130)

Another useful rule is that the trace of an odd number of γ’s is zero. Check this for three

γ’s:

Tr /a/b/c = Tr /a/b/cγ5γ5

= Tr γ5/a/b/cγ5

= −Tr /a/b/cγ5γ5

= 0.

(8.131)

In the first line, γ25 = 1. Then in the second line, the trace is cyclic, and in the third line,

anticommute γ5 with all the other γ’s to return it to where it started.

Not a trace rule, but another useful fact is /a/b/c . . . = . . . /c/b/a. And finally (for now) can

you show this one?

Tr /a/b/c/d = 4[(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)]. (8.132)

Our expression Eq. 8.127 thus simplifies to

Tr γµ/pγν/p′ +m2γµγν = 4[gµνm2 + pνp′ν + pνp′µ − gµνp · p′] (8.133)

so that the differential cross section is

dσ

dΩ
= (2π)4

e2

2
AµA

∗
ν(p

νp′ν + pνp′µ − gµν(p · p′ −m2)).

= (2π)4
e2

2
[(A · p)(A∗ · p′) + (A · p′)(A∗ · p)− |A|2(p · p′ −m2)].

(8.134)
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An interesting special case of this expression is Coulomb scattering, ~A = 0, A0 =

Ze/(4πr). (I am working in Lorentz - Heaviside units where e2/(4π) = α = 1/137.) The

Fourier transform is

A0(q) =
Ze

4π

∫

[
eiqr cos θ

r
]
2πr2drd cos θ

(2π)3

=
Ze

4π

2π

(2π)3

∫ ∞

0

rdr

[

eiqr − e−iqr

iqr

]

e−ǫr

=
Ze

4π

1

(2π)2
1

iq

[

1

−iq + ǫ
− 1

iq + ǫ

]

=
Ze

4π

2

(2π)2
1

|~q|2
(8.135)

This gives
dσ

dΩ
= (2π)4

e2

2
(
Ze

4π
)2

4

(2π)4
1

|~q|4 [2E
2 − (p · p′ −m2)2] (8.136)

With q2 = −~q2 = (p− p′)2 = 2m2 − 2p · p′, p · p′ −m2 = q2/2, and the expression in square

brackets is 2E2 − ~q2/2. We arrive at the Mott formula (1929),

dσ

dΩ
=

4Z2α2

|~q|4 [E2 − ~q2

4
]. (8.137)

Note that as q ≪ E, we have E ≈ m and

dσ

dΩ
=

4Z2α2m2

|~q|4 , (8.138)

which is the Rutherford formula.

For completeness, let’s look at Coulomb scattering for positrons. We begin with

〈p′, s′|Jµ(x)|p, s〉 =
〈

0|d(p′, s′)ψ̄γµψd†(p, s)|0
〉

(8.139)

ψ is still given by Eq. 8.115, but the contraction of creation and annihilation operators is

−e
〈

0|d(p′, s′)d(k2, s2)d†(k1, s1)d†(p, s)|0
〉

v̄(k2, s2)γ
µv(k1, s1)

= +ev̄(p, s)γµv(p′, s′) exp(−i(p− p′)x)

(8.140)

There is a minus sign after anticommuting the creation and annihilation operators in the

ψ’s to contract against the states, and the momentum order is reversed from the case of
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electrons because the ψ field annihilates fermions but creates antifermions. The differential

cross scattering for Coulomb scattering becomes

dσ

dΩ
=

2Z2α2

|~q|4
∑

ss′

|v̄(p, s)γ0v(p′, s′)|2. (8.141)

The trace is evaluated as before, but with projection operators
∑

σ v(p, σ)αv̄(p, σ)β = (−/p+
m)αβ so that we must evaluate

Tr [γ0(−/p+m)γ0(−/p′ +m)] = Tr [γ0(/p−m)γ0(/p′ −m)] (8.142)

compared to the electron trace. This will give our previous answer since the result only

depended on m2, not m.

There is a conventional shorthand for handling ordering problems like this, which is to

follow the fermion world line. See Fig. 8.1. The idea is that an electron is a fermion going

forward in time. An amplitude with a forward-going fermion is

M(p→ p′′) ∝ −eū(p′)γu(p) ≡ −ef̄(p′)γf(p). (8.143)

A positron is a fermion going backward in time, so

M(p→ p′′) ∝ ev̄(p)γv(p′) ≡ ef̄(−p)γf(−p). (8.144)

The polarization sum for a fermion is

∑

s

f(p)f̄(p) = /p +m (8.145)

which takes care of the sign flip between the projection formula for u’s and v’s. With this

convention, there is no problem getting the propagator correct: see the example in the figure.
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Figure 8.1: Following the fermion world line.



Chapter 9

Quantum electrodynamics, for itself

and as a example of a gauge theory

129
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9.1 Symmetries and conservation laws

It is often useful to identify symmetries of the classical Lagrangian. It turns out that for each

continuous symmetry of L there is an associated conserved current and conserved charge.

The relation is called “Noether’s theorem.” In quantum systems these conserved quantities

often become constraints on physical states.

Let’s work this out for fields φ and Lagrangfe density L(φj, ∂µφj). Recall ∂µφ = ∂φ/∂xµ.

The Lagrange equation of motion is

∂L
∂φj

= ∂µ

[

∂L
∂(∂µφj)

]

. (9.1)

Imagine a transformation φj → φj + δφj. The change in the Lagrangian is

δL =
∑

j

∂L
∂φj

δφj +
∂L

∂(∂µφj)
δ(∂µφj) (9.2)

which becomes, invoking the equation of motion,

δL =
∑

j

∂µ

[

∂L
∂(∂µφj)

]

δφj +
∂L

∂(∂µφj)
δ(∂µφj). (9.3)

The two generic situations of symmetry transformations involve space-time transformations

or internal ones. An example of a space-time symmetry is a translation xµ → xµ+ǫµ. L does

not depend directly on coordinates. It depends on field variables which themselves depend

on coordinates. Varying x gives the variations

δL = ǫµ∂µL
δφ = ǫµ∂µφ

δ(∂µφ) = ǫν∂ν(∂µφ) = ǫν∂µ∂νφ

(9.4)

Then

δL = ǫµ∂µL =
∑

j

∂µ

[

∂L
∂(∂µφj)

]

ǫν∂νφ+
∂L

∂(∂µφj)
ǫν∂µ∂νφ (9.5)

or

ǫν∂µ[δ
µ
νL] = ǫν

∑

j

∂µ

[[

∂L
∂(∂µφj)

]

∂νφj

]

(9.6)
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or

ǫν∂µ

[

δµνL −
∑

j

∂L
∂(∂µφj)

∂νφj

]

= 0. (9.7)

This is a conservation law for the quantity in the square brackets. Mixed incides are awkward,

so raise the “ν” with a gνλ to write the conservation law as

∂µT
µν = 0 (9.8)

wherea the conserved quantity

T µν = −gµνL+
∑

j

∂νφj

[

∂L
∂(∂µφj)

]

] (9.9)

is called the “energy-momentum” or “stress” tensor. Its conservation is encoded in Eq. 9.8.

Integrals of T µν are familiar (?) conserved quantities (see Jackson, for example),

P ν =

∫

d3xT 0ν (9.10)

with dP ν/dt = 0. Another element of the tensor is

T 00 = −L+
∑

j

φ̇jπj = H (9.11)

and
d

dt

∫

d3xH = 0 (9.12)

is energy conservation.

Now for an example.

In the Dirac equation, ψ is the dynamical variable, the Lagrange density is L = ψ̄[iγµ∂µ−
m]ψ, the canonical momentum is π = iψ̄γ0 = iψ† and

T 00 = iψ† ∂ψ

∂xν
(9.13)

and the conserved total energy is

P 0 =

∫

d3xT 00 = −
∫

d3x
1

i
ψ† ∂ψ

∂x0
=

∫

d3xψ†i
∂ψ

∂t
. (9.14)

Internal symmetries are often more interesting. Here we imagine a change of field vari-

ables

δφi(x) = −iǫλijφj(x) (9.15)
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The index i is internal. An example would be a situation with N identical scalar fields φi and

the symmetry transformation would be a rotaton in basis among them. The i on the right

hand side of Eq. 9.15 is conventional and the λij’s are a set of coefficients which are constant

in space (so we are dealing with what is called a “global” symmetry transformation.) If the

transformation leaves L invariant, then

δL = 0 =
∑

i

∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi) (9.16)

and δ(∂µφi) = ∂µ(δφi) = −iǫλij∂µφj . Again, the equation of motion

∂L
∂φi

= ∂µ

[

∂L
∂(∂µφi)

]

(9.17)

can be used to rewrite the conservation law as

0 = −i
∑

j

∂µ

[

∂L
∂(∂µφi)

]

ǫijφj +

[

∂L
∂(∂µφi)

]

ǫij∂µφj (9.18)

which is a statement that there is a conserved current

∂µJ
µ = 0 (9.19)

where

Jµ = −i ∂L
∂(∂µφi)

λijφj . (9.20)

Associated with the current there is a conserved charge

Q =

∫

J0(x)d3x. (9.21)

For example, ordinary quantum mechanics is invariant under a global phase rotation ψ(x) →
eiθψ(x). If θ is small, we can write this as ψ(x) →= (1 + iθ)ψ(x), i. e. δψ = iθψ. The

conserved current is the usual probability current.

In the Dirac Lagrangian L = ψ̄[iγµ∂µ −m]ψ, so the conserved current is

Jµ = (−i)(iψ̄γµ)ψ = ψ̄γµψ (9.22)

(note iψ̄γµ = ∂L/∂(∂µψ)).

One could also think of a complex φ as two real fields, φ = φ1 + iφ2. φ(x) → eiθφ(x) is

equivalent to

δφ1 = −θφ2

δφ2 = θφ1

(9.23)
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or −iλ12 = θ, −iλ21 = θ in Eq. 9.15. A potential term such as V (ψ) = V (ψ2
1 +ψ

2
2) obviously

preserves the symmetry. Can you check that this is also true for a derivative term (∂µφ)
†∂µφ?

9.2 Beginning to think about quantum electrodynam-

ics

We can now begin to think about quantum electrodynamics, an interacting system of a

charged matter fields (which we will take to a fermion) and a vector field (the photon). The

outline of our plan of attack is as follows:

1. Motivate a L by thinking about gauge invariance

2. Pass from an interaction L to a H suitable for perturbative calculations

3. Work out the photon propagator

4. Perform some sample calculations

Let us return to our example of a global symmetry transformation, but this time with a

slight change of notation. Here we have N kinds of fermions, and rotate each of them via

δψn = iǫqnψn; that is, θn ↔ ǫqn. Obviously, we have a set of conserved currents Jµn ∝ ψ̄nγ
µψn.

To proceed to describe electrodynamics, we promote ǫ from a global symmetry to a local

one, by imagining it to be coordinate dependent. We imagine making a local transformation

δψn(x) = iǫ(x)qnψn(x) (9.24)

and ask whether this could be a symmetry. Following our noses, we compute

δL =
∑

n

∂L
∂ψn

iǫ(x)qnψn +
∑

n

∂L
∂(∂µψn)

∂µ(iǫ(x)qnψn)

= i∂λ

(

∑

n

∂L
∂(∂λψn)

qnǫ(x)ψn

)

= −∂λ[ǫ(x)Jλ]
= −(∂λǫ)J

λ

(9.25)
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where the last line is what we get because ∂λJ
λ = 0. Eq. 9.24 does not appear to be a viable

symmetry transformation on its own.

However, suppose we add another ingredient to L, a vector field, whose simultaneous

variation cancels the δL of the matter fields:

δAµ = ∂µǫ(x). (9.26)

Then, writing LM as the matter Lagrangian which was invariant under global transforma-

tions, we have

δL = δLM +
∂L
∂Aλ

δλǫ+
∂L

∂(∂νAλ
∂ν∂λǫ (9.27)

We already found that δLM = −(∂λǫ)J
λ, so δL′ = 0 as long as

∂L
∂Aλ

= Jλ (9.28)

that is, the vector field couples to the conserved matter-field current which arose from the

global symmetry transformation, and derivatives of Aµ are present in the Lagrangian with

the constraint that
∂L

∂(∂µAν)
= − ∂L

∂(∂νAµ)
. (9.29)

We solve the first constraint with an interaction term

LI = JµA
µ. (9.30)

We solve the second constraint by specifying some Lagrangian only involving the A’s.

The true symmetry we have encoded involves both the matter fields and the new vector

(or gauge) fields,

Aµ(x) → Aµ + ∂µχ(x)

ψn(x) = exp(iqnχ(x))ψn(x)

(9.31)

The symmetry is called a “local gauge transformation.” We introduce quantum electrody-

namics by imposing the symmetry from the start and constructing a dynamics which respects

it. (A similar story, with a more conplicated local gauge symmetry, would also give us the

entire Standard Model.

So to summarize: we start with

L = LG + LM (9.32)
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(absorbing LI into LM for the moment). We solve the constraint Eq. 9.29 with

LG(A) = LG(Fµν = ∂µAν − ∂νAµ) (9.33)

that is, the vector potential only appears in the action through the field strength tensor Fµν .

The simplest quadratic scalar Lagrangian (which of course gives us Maxwell electrodynamics)

is

LG = −1

4
FµνF

µν . (9.34)

The prefactor of −1/4 gives us electrodynamics in Lorentz-Heaviside units. To build LM , we

can simply replace ∂µ by the covariant derivative Dµ = ∂µ− iqnAµ. This compactly encodes

gauge invariance: The expression Dµψn transforms covariantly (and identically to how ψn

transforms),

D′
µψ

′
n = [∂µ − iqn(Aµ + ∂µχ)]e

iqnχψn

= eiqnχ[∂µ − iqnAµ − iqn∂µχ+ iqn∂µχ]ψn

= eiqnχDµψn.

(9.35)

Then a gauge invariant LM is

LM = iψ̄γµDµψ −mψ̄ψ

= iψ̄γµ(∂µ − ieAµ)ψ −mψ̄ψ.

(9.36)

Looking ahead to perturbative calculations, we can write this as

LM = L0 + LI (9.37)

where the free Lagrange density is

L0 = iψ̄γµ∂µψ −mψ̄ψ (9.38)

and

LI = eψ̄γµψAµ ≡ JµAµ (9.39)

is the interactxaooin term. L0 gives us the fermion propagator, which we have already

determined. LI gives us a vertex. But we have one new ingredient, the vector field Aµ, and

its new symmetry, the local gauge transformation. Let’s look at these objects more closely.
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9.3 Quantizing gauge theories

Let’s look at the photon by itself. “Quantizing a gauge theory” means passing from a

Lagrangian to a Hamiltonian (and then to a propagator, if we want to do perturbative cal-

culations). This turns out to be complicated. The issue is local gauge invariance. Problems

appear working either with a Hamiltonian or with the path integral. The source of the

problem is that gauge theories have redundant degrees of freedom. The statement that

Aµ → Aµ + ∂µχ (9.40)

is a symmetry says that a gauge transformation of A does not change the physics. We have

to preserve this symmetry as we proceed from Lagrangian to Hamiltonian to propagator.

Let’s now restrict the discussion to consider only an Abelian gauge theory (QED), since

the case of non-Abelian gauge theories is much more difficult to deal with.

Let’s start with the Lagrangian

L = −1

4
FµνF

µν . (9.41)

The field variable is Aµ(x). We need a canonical momentum for each Aµ,

πµ(x) =
∂L
∂Ȧµ

. (9.42)

For Ai this is actually the electric field ~π = ~E, or πi = F0i = Ei. However, there is no Ȧ0

in L, so there is no π0 conjugate to A0. We have a mismatch between the number of fields

(four Aµ’s) and conjugate momenta (three Ei’s). In fact, it is worse: Gauss’ law tells us that
~∇· ~E = ρ. This says that the three πi’s are not independent. We only have two independent

field momenta.

One way to deal with this issue is to make a direct attack on the gauge symmetry problem

and do a complete gauge fixing before we go any further. One such choice is Coulomb gauge,

~∇ · ~A = 0. (9.43)

We live with the fact that A0 is constrained by directly solving

∇2A0 = 4πρ (9.44)

and then invoking ~E = −~∇A0 − ∂ ~A
∂t
. Then

~∇ · ~E = −∇2A0 −
∂

∂t
(~∇ · ~A) = −4πρ. (9.45)
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so that A0 is just a solution of the (static) equation

∇2A0 = −4πρ. (9.46)

A0 is not an independent dynamical variable in Coulomb gauge.

We can expand the time dependent and transverse vector potential in terms of Fourier

modes:

~A(x, t) =
∑

λ

∫

d3k

(2π)3
√
2ωk

[

a(k, λ)ǫ(k, λ)e−ikx + a∗(k, λ)ǫ(k, λ)e−kx
]

(9.47)

(summing over polarizations ǫ(k, λ) for the two choices labeled by λ). The gauge choice
~∇ · ~A = 0 means that ~k · ~A = 0 or ~k · ~ǫ = 0, the usual transversality condition. Then there

are two independent components of ~A. They each have a conjugate ~E, so the counting of

field and momentum degrees of freedom is consistent. All of the ~A’s and ~E’s are transverse.

So much for classical physics. As usual, the classical Fourier coefficients a(k, λ) and

a∗(k, λ)’s become the operators a(k, λ) and a†(k, λ)’s after quantization, with the usual

commutation relations

[a(k, λ), a†(k′, λ) = δλ,λ′δ
3(k − k′). (9.48)

Now for the propagator. Temporarily pretending that there are four A’s (Aµ), the photon

propagator would be

iDtr(x− x′)µν = 〈0|T (Aµ(x)Aν(x′)|0〉

=
∑

λ

∫

d3k

(2π)32ωk

[

θ(t′ − t)e−ik·(x−x
′)ǫµǫ

∗
ν + θ(t− t′)eik·(x−x

′)ǫ∗µǫν

]

(9.49)

where ǫµ has ǫ0 = 0 and ~ǫ ·~k = 0. There are two nonvanishing components of the polarization

vector. Doing the integrals, we arrive at a propagator

iDtr(x− x′)µν =

∫

d4k

(2π)4
eik(x−x

′) i

k2 + iǫ

∑

λ

ǫν(k, λ)ǫ
∗
µ(k, λ). (9.50)

What is the polarization matrix? If we pick ~k to lie in the z direction, with ~ǫ(k, 1) = x̂
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and ǫ(k, 2) = ŷ, we could define it as

πij =
∑

λ

ǫν(k, λ)ǫ
∗
µ(k, λ) =







1 0 0

0 1 0

0 0 0







= δij − n̂in̂j

= δij −
kikj

|~k|2
(9.51)

writing n̂i as a unit vector along ~ki and then generalizing our formula to an arbitrary direction

for ~k. This give a momentum space propagator

iDtr(x− x′)ij =
i

k2 + iǫ

[

δij −
kikj

|~k|2

]

(9.52)

This is obviously noncovariant, just like the gauge choice was noncovariant.

The Coulomb propagator is static, and of course it is also noncovariant. Just Fourier

transforming 1/|x− x′|, we have

Dcoul(x− x′)µν =
1

|~k|2
δµ0δν0. (9.53)

It’s a reasonably nontrivial (and to me, very contrived) exercise to show that the combi-

nation of two noncovariant propagators (the static one and the transverse one) combine to

give a covariant propagator. Many quantum field theory books work this out explicitly. Of

course, we expect things to work out because the original action was covariant, but still, it

is an annoying situation.

Let’s try writing a path integral expression for the propagator, instead. Now the problem

is that gauge invariance induces flat directions in the path integral making it impossible to

invert the expression for the action into an expression for the propagator. We’ll start with

S = −1

4

∫

d4xFµνF
µν

= −1

4

∫

d4x[∂µAν − ∂νAµ][∂µA
ν − ∂νAµ].

(9.54)

Go to momentum space, using

Aµ(x) =

∫

d4p(2π)2eip·xAµ(p). (9.55)
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Then the action is

S =
1

4

∫

d4p

(2π)4
[pµAν − pνAµ][p

µAν − pνaµ]

=
1

2

∫

d4p

(2π)4
A∗
µ(p)Aν(p)[g

µνp2 − pµpν ].

(9.56)

The propagator is the inverse of the 4 × 4 matrix in the square brackets in this expression.

This has zero eigenvalues for all values of p, so the matrix is non-invertable. As an example,

set pµ = (p, 0, 0, 0). In that case

[gµνp2 − pµpν ] =











p2 − p2 0 0 0

0 −p2 0 0

0 0 −p2 0

0 0 0 −p2











. (9.57)

which obviously has a zero determinant. We have to stop and think.
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9.4 Gaussian integrals with zero eigenvalues

Let’s consider a Gaussian integral

G(A) =

∫ ∞

−∞
dx1 . . . dxN exp(−xTAx) = 1√

detA
(9.58)

(again neglecting factors of π). This integral is well defined as long as the determinant does

not vanish. If the determinant does vanish, we have a problem – the integral blows up.

We can see the origin of this blowup if we change variables to a basis where A is diagonal.

If A is a real, symmetric N ×N matrix, then we can rotate x with an orthogonal matrix R,

y = Rx. (9.59)

The integration measure is unchanged,

N
∏

i=1

dxi =
N
∏

i=1

dyi (9.60)

so our integral becomes

G(A) =

∫

∏

dy exp(−xTRTARx)

=

∫

∏

dyi exp(−y2i di)

=

√

π
∏

i di
.

(9.61)

We have problems (we get an infinity) of one of the di’s is zero. In that case, it comes from

∫ ∞

−∞
dy = ∞. (9.62)

Can we get a sensible answer for the integral even when the determinant vanishes? If we

can divide out the culprit infinite integral, the answer is Yes. How can we do this? Suppose

we have n zero eigenvalues. Let’s define the restricted Gaussian integral

GR(A) =

∫

dy1 . . . dyN−n exp(−xTAx). (9.63)
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This is awkward, since we have to know the y’s before hand. Instead, define new variables

yN−n+1 to yN and write

GR(A) =

∫

dy1 . . . dyN−ndyN−n+1 . . . dyNδ(yN−n+1) . . . δ(yN) exp(−xTAx). (9.64)

We can now change variables back from y to x,

dy1 . . . dyN = dx1 . . . dxNdet|
∂y

∂x
| (9.65)

so that

GR(A) =

∫ N
∏

i=1

dxi{det|
∂y

∂x
|

N
∏

j=N−n+1

δ(yj)} exp(−xTAx). (9.66)

The extra factors, the terms inside the curly brackets, restrict the integration from its original

N−dimensional space to an N −n dimensional one. Of course, one must cleverly choose the

y’s to restrict the integration measure, or else the Jacobian det|∂y/∂x| will be singular.

9.5 More about gauge theories

I’ve just described the mechanical construction we will follow, to buiild the path integral for

the photon. But we can do better. Let’s try to derive some more general formulas for gauge

theories, and then really look closely at gauge invariance. I will restrict all my discussions

to the case of ordinary electrodynamics, but the language will be general enough to consider

more complicated situations (like non-Abelian gauge symmetry).

Let’s begin by looking at constant functions in a gauge theory. They actually don’t exist!

The closest one can come to a constant function φ is to define a function whose covariant

derivative is zero,

Dµφ = (∂µ + iAµ)φ = 0 (9.67)

(Note: I have set q = 1 or redefined Aµ = qAµ.) Now

φ(x+ dx) = φ(x) + dxµ∂µφ (9.68)

which, if Dµφ = 0, is

φ(x+ dx) = φ(x)− idxµAµφ(x), (9.69)

and this is also

φ(x+ dx) = exp(−idxµAµ(x))φ(x) +O(dx2). (9.70)
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Imagine performing a local gauge transformation φ(x) → exp(−iΛ(x))φ(x) ≡ V (x)φ(x).

The exponential in Eq. 9.70 becomes

exp(idxµAµ(x)) → exp(idxµ(Aµ(x) + ∂µΛ(x)))

= exp(−i(Λ(x+ dx) + Aµ(x)dx
µ − Λ(x)))

= V (x+ dx) exp(−idxµAµ(x))V (x)† (9.71)

with a slight overkill of notation, V † = V ∗ here – it’s just a phase rotation. (The more

complicated notation allows an immediate generalization to non-Abelian gauge theories like

QCD or the Standard Model.) Note that exp(−idxµAµ(x)) transforms by rotations V and

V † “at its ends.”

Now iterate Eq. 9.70 along any curve P from initial point x to final point y:

φ(y) = exp(−i
∫ y

x

dx′ · A(x′))φ(x) ≡ P exp(−i
∫

dx′ · A(x′))φ(x). (9.72)

As φ(x) is carried (“parallel transported,” is the jargon borrowed from General Relativity)

from point x to point y along a path P , it picks up a phase, the line integral of A along the

path. Calling φ(y) = U(y, x)φ(x) where

U(y, x) = P exp(−i
∫ y

x

dx′ · A(x′)), (9.73)

we see that under a gauge transformation φ(y)′ = V (y)φ(y), or

φ(y)′ = V (y)U(y, x)V †(x)V (x)φ(x) = U(y, x)′φ(x)′. (9.74)

U(x, y) is often called a “Wilson line,” named after Ken Wilson. Under a gauge transforma-

tion, it rotates with a phase factor at each end. Notice that this expression also implies that

U(x, x), a “Wilson loop,” is gauge invariant. (For a non-Abelian gauge theory, φ(x) would

be a column vector and U would become a matrix; the gauge invariant object is Tr U(x, x).)

Consider next an infinitesimal path of length a in the µ̂ direction, connecting the point

x− aµ̂ to x:

exp(−iaAµ(x)′) = V (x) exp(−iaAµ(x))V †(x− aµ̂). (9.75)

Expanding this,

1− iaAµ(x)
′ = V (x)[1− iaAµ(x)][V (x)† − a∂µV

†]

= 1− iaV ∂µV
† − aV AV † + . . .

(9.76)
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gives us the formula for the gauge transformation of Aµ,

A(x)′µ = V (x)Aµ(x)V (x)† − iV (x)∂µV (x)
†. (9.77)

This slightly complicated language comes into its own when considering non-Abelian

gauge theories (where φ(x) becomes a column vector and U becomes a matrix).

Now let’s focus on the gauge transformation itself

V (x) = exp iω(x). (9.78)

The V ’s are the elements of an Abelian group G parametrized by the ω’s. There is an

identity element, ω = 0 or V = 1, an inverse, V V † = 1, and a closure relation

V (x)′′ = V (x)′V (x) ∈ G. (9.79)

Mathematicians call this G the group U(1) – the group of unitary transformations in one

dimension. The group is “compact:” the size of all the elements ||V || = 1. Notice that the

U(y, x)’s are elements of G, too:

U(x, x′) = U(x, x′′)U(x′′, x) ∈ G. (9.80)

Now, remember all our issues with
∫∞
−∞ dA? If we had compact variables, we would not

encounter such integrals. All this discussion suggests that we should define gauge theories

not directly in terms of the Aµ’s, but in terms of the U ’s. We do this in the following

(roundabout) way:

First, replace the four dimensional space time continuum by a four dimensional lattice

of points, with a lattice spacing a. (This probably only makes sense for an Euclidean path

integral.) Matter fields (fermions and bosons) are replaced by fields defined on the sites of

the lattice, ψ(x) → ψ(xi). Gauge transformations are also defined only on the sites (as the

notation V (xi) indicates).

Second, gauge information is transmitted by the U(x, y)’s. The minimal size U will span

one lattice link connecting two adjacent sites x and x+ aµ̂

U(x+ aµ̂, x) ≡ Uµ(x) (9.81)

and it transforms as

U(x+ aµ̂, x)′ = V (x+ aµ̂)U(x+ aµ̂, x)V (x)† (9.82)
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Notice U(x, x+ aµ̂) ≡ Uµ(x)
†. Thus, the Uµ’s live on the links of the lattice.

Third, we define the integration measure for the path integral as an integration over all the

allowed values of the U ’s. This is called the “Haar measure” (or “invariant integration over

the group elements”) and is denoted as dU . It is invariant in the sense that if U ′ = V UV †,

then dU ′ = dU . If G is compact, the integration is over a finite range.

Two examples: in our case, where G = U(1), we can parametrize U = exp(iθ) and
∫

dU =

∫ π

−π
dθ. (9.83)

Geometrically, Haar measure is a line integral around a unit radius circle. Another simple

group is SU(2). Any element of SU(2) can be parametrized in terms of the Pauli matrices

(plus the identity) and four real numbers,

U = U01+ i~U · ~σ (9.84)

in terms of which
∫

dU =

∫ 3
∏

i=0

dUδ(1−
∑

i

U2
i ). (9.85)

Then the gauge part of the (Euclidean space) partition function is defined as

Z =

∫

∏

i,µ

dUµ(i) exp(−S(U)) (9.86)

The Minkowski space path integral would have an i in the exponent.

Now, what could S(U) be? It must be gauge invariant, and so the most general S will

be a sum of closed paths of U ’s, multiplied by a set of arbitrary coefficients,

S(U) =
∑

x

∑

path j

UPj
(x, x)cPj

(9.87)

where UPj
= U(x, x1)U(x1, x2) . . . U(xn, x).

The theory ought to have an interesting continuum limit, that is, if we take the lattice

spacing a to zero, the action ought to reduce to something proportional to

S =

∫

d4xFµνF
µν . (9.88)

Actually, that is easy to achieve. Any closed path will reduce to this form. Consider the

smallest one, a path around a 1× 1 plaquette,

U = exp(−a[Aµ(x) + Aν(x+ aµ̂)− Aµ(x+ aν̂)− Aν(x)]) (9.89)
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Write this as exp(ia∆) and Taylor expand ∆ for small a:

∆ = Aµ(x) + (Aν(x) + a∂µAν(x))− (Aµ(x) + a∂νAµ(x))−Aν(x)

= a(∂µAν − ∂νAµ)

= aFµν .

(9.90)

Then

U = i+ ia2Fµν −
a4

2
F 2
µν + . . . . (9.91)

Clearly
∑

j

(U(j) + U †(j)− 2) = −(a4
∑

j

)F 2
µν = −

∫

d4xF 2
µν . (9.92)

We could just take the action to be the left hand side of this expression, a sum over all

the “plaquettes” of U ’s. This looks like stupendous overkill, but notice that the compact

measure precludes infinities a la

∫ ∞

−∞
dx exp(−0× x2). (9.93)

We could use this formalism to study the nonperturbative behavior of gauge theories. In

fact, that is what people like me do for a living. Instead, let’s use it to study gauge theories

in perturbation theory. That’s easy here. The Haar measure for a U(1) gauge theory is, if

U = exp(iθ),
∫

dU =

∫ π

−π
dθ (9.94)

so if we take U = exp(iaA),

dU =

∫ π

−π
d(aA) → lim

a→0

∫ π/a

−π/a
dAµ →

∫ ∞

∞
dAµ (9.95)

and we are back to integration over all the values of a classical field (just like we had for

scalar fields).

Unfortunately, this is the integral which had the flat directions, so we seem to be back

to where we started.
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9.6 A well behaved path integral

The resolution to our difficulties is to eliminate the flat directions from the functional integral.

This is done precisely as was discussed in Sec. 9.4, specifically in Eq. 9.66. Gauge fixing

involves a constraint g(A) = 0 for some function g. Recall the gauge transformation formula

Eq. 9.77,

AVµ = V Aµ(x)V
† − iV ∂µV

† (9.96)

and consider the quantity

∆−1
g (Aµ) =

∫

DV δ[g(AVµ )] (9.97)

that is, integrate the gauge fixing δ−function over all the gauge transformations V at every

site. Then invoke the identity

1 = ∆g(Aµ)

∫

DV δ[g(AVµ )]. (9.98)

Our partition function is

Z(J) =

∫

DAµ{∆g(Aµ)

∫

DV δ[g(AVµ )]} exp(−iS(J)). (9.99)

The terms in the curly brackets are our “1”. Of course S(J) = S +
∫

AµJ
µ for use in

generating Green’s functions.

Now notice that ∆g(Aµ) is, in fact, gauge invariant:

∆−1
g (AV

′

µ ) =

∫

DV δ[g(AV
′V

µ )], (9.100)

but DV = D(V ′V ) (Haar measure at work) so

∆−1
g (AV

′

µ ) =

∫

DV ′′δ[g(AV
′′

µ )] = ∆−1
g (Aµ). (9.101)

This means that we can perform a gauge transformation in Z(J)

Z(J) =

∫

dV

∫

DAµ∆g(Aµ)δ[g(A)] exp(−iS(J)). (9.102)

The
∫

dV just factors out of the expression. We can drop it. What does the rest of the

expression mean? Integrate over all the Aµ’s, subject to the gauge fixing constraint δ(g),

and with the Jacobian ∆g(Aµ).
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All we have to do is groom this expression to make it useful. We start (improbably) by

changing variables from V to g itself,

DV = Dgdet(
δV

δg
) (9.103)

so that

∆−1
g (A) =

∫

Dgdet(
δV

δg
)δ(g) = det(

δV

δg
)g=0 (9.104)

or

∆g(A) = det(
δg

δV
)g=0. (9.105)

If we parametrize V = exp(iω), this is

∆g(A) = det(
δg

δω
)g=0. (9.106)

(Be patient, an example is coming.)

We are nearly done. It would be very useful to get everything into the exponential. Let’s

pick a gauge choice, with a free parameter α, which will do that for us:

g̃(A) =

∫

Dc(x)δ(g − c) exp(− i

2α

∫

d4x(c(x)2)

= exp(− i

2α

∫

d4x(g(A)2).

(9.107)

For example, g(A) = ∂µAµ corresponds to

g̃(A) = exp(− i

2α

∫

d4x(∂µA
µ)(∂νA

ν)). (9.108)

Finally, if (this is a very big IF) det( δg
δω
) does not depend on A, it also factors out of

the functional integral and we can drop it. Again, an example: g(A) = ∂µAµ. Its gauge

transformation is

g(AV (x)) = ∂µ(A
µ + ∂µω) (9.109)

so
δg

δω
= δ4(x− y)✷ (9.110)

(✷ is the d’Alembertian, ∂µ∂µ) What is this? Pick some boundary conditions, solve ✷φ = λφ,

and then

det
δg

δω
=
∏

j

λj. (9.111)
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Even more explicitly,

det
δg

δω
= det

∑

n,m

∫

d4xd4y φ†
n(x)δ

4(x− y)✷φ(y) (9.112)

which is detδnmλn. End of the example. The point is, det δg
δω

has no A dependence, so we

can factor it out and forget about it.

Coulomb gauge is similar. The gauge fixing term is δ(~∇ · ~A)det∇2.

This was a mess. I dragged you through it, because there are cases where the factorization

does not occur, and the determinant remains as part of the functional integral. Most gauge

choices for non-Abelian gauge theories pick up such extra terms. Even for QED, it is possible

to invent nonlinear gauge choices. In the literature, the extra terms involve new fields, called

“ghosts.” We will not discuss them any more.

We are nearly done. Let’s focus on the action including the gauge fixing term Eq. 9.108:

S =

∫

d4x[−1

4
FµνF

µν − 1

2α
(∂µAµ)(∂

νAν)]

= −
∫

d4x[
1

4
(∂µAν − ∂νAµ)(∂

µAν − ∂νAν) +
1

2α
(∂µAµ)(∂

νAν)]

= −
∫

d4x[
1

2
∂µAν∂

µAν − 1

2
∂µAν∂

νAµ +
1

2α
(∂µAµ)(∂

νAν)]

= −1

2

∫

d4xAρ[−∂µ∂µgρν + (1− 1

α
)∂ρ∂ν ]Aν ,

(9.113)

integrating the derivative terms by parts. Now we can go into momentum space,

S =
1

2

∫

d4pAµ(−p)Aν(p)[gµνp2 − (1− 1

α
pµpν ] (9.114)

and we see we just have a quadratic form. The propagator will be

− iDµν(p) = i[gµνX(p) + pµpνY (p)], (9.115)

where X and Y are scalar functions of p. Going through the index-pushing exercise (a

homework problem) of inverting the differential operator,

gµν = [p2gµρ − (1− 1

α
)pµpρ][gρνX(p) + pρpνY (p)], (9.116)

gives the photon propagator

− iDµν(p) =
i

p2
[gµν − (1− α)

pµpν
p2

]. (9.117)
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Our issue with “flat directions” has been removed by choosing a gauge, and our gauge choice

was covariant, so the propagator is also covariant.

The parameter α is a gauge choice. Invariant amplitudes correspond to physical processes

and they will be gauge invariant. Thus the parameter α will not be present in the final

answer. Sometimes, one carries α through the calculation, as a check against mistakes: if

it survives till the end, you have a mistake. More often, one picks a “convenient” choice

of gauge; “convenience” meaning that with that choice the calculation simplifies. Two such

choices are

• Feynman gauge: α = 1

− iDµν(p) =
igµν
p2

. (9.118)

• Landau gauge: α = 0

− iDµν(p) =
i

p2
[gµν −

pµpν
p2

]. (9.119)

Both are obviously covariant.
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9.7 Feynman rules for QED

Now we can look at some tree-level precesses in quantum electrodynamics. The Lagrangian

is

L = ψ̄(iD/ −m)ψ − 1

4
FµνF

µν (9.120)

plus gauge fixing terms, and it is more useful to rewrite the expression as

L = ψ̄(i/d−m)ψ + AµD−1
µνA

ν + eψ̄γµψA
µ (9.121)

since we can read off the Feynman rules for QED from this expression.

The vertex (see Fig. 9.1) couples an incoming fermion, an outgoing fermion, and a gauge

field. It has a factor −ieγµ. The photon propagator (in Feynman gauge) is

Dµν =
igµν
q2 + iǫ

(9.122)

The fermion propagator is

S(p) =
i(/p+m))

p2 −m2 + iǫ
(9.123)

To compute a process to any order in e, we have to draw all topologically distinct diagrams.

(This is just Wick’s theorem at work.)

Then there are factors asociated with external particles, first, forfermions

• for a particle entering an initial state – u(p)

• for a particle leaving a final state – ū(p)

• for a antiparticle entering an initial state – v̄(p)

• for a particle leaving a final state – v(p)

Incoming and outgoing photons carry a factor ǫµλ or ǫ∗µλ. This comes from

Aµ =

∫

d3p . . . [ǫµλapλe
ipx + ǫ∗µλa

†
pλe

−ipx] (9.124)

Incidentally, there are no extra “external field” factors for scalar particles.

See Fig. 9.1 for cartoon versions of these rules.
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Fermion spin averages or sums go into the trace rules with
∑

s

u(p, s)αū(p, s)β = (/p+m)αβ

∑

s

v(p, s)αv̄(p, s)β = (/p−m)αβ .

(9.125)

There are several possibilities for dealing with the photon polarization terms.

• For explicit polatization information, use physical polarizations: ǫ · k = 0 with a four-

vector ǫµ = (0,~ǫ)

• OR if you want to sum over them, use the Feynman gauge trick
∑

λ

ǫµ(k, λ)ǫ
∗
ν(k, λ) = −gµν (9.126)

This is a nice choice because identities can reduce the products of γ’s. For example

/ǫ/p/q/ǫ = −γµ/p/qγµ = −4p · q
/ǫ/p/ǫ = −γµ/pγµ = 2/p

(9.127)

You can’t use ǫ · k = 0 at the same time!

Loop factors are identical to what we found with scalars: either include a factor
∫

d4q

(2π)4
(9.128)

over all “free” momenta (conserving momenta at all vertices) or integrate
∫

d4q

(2π)4
(9.129)

over all internal momenta and include a factor of δ4(
∑

pin −
∑

pout) at all vertices.

And there are two more rules: There is an extra factor of −1 for every closed fermion

loop and a factor of −1 between diagrams differing by identical fermion exchange. These are

both antisymmetrization factors. The figure shows graphs for electron-electron scattering

illustrating this point. The initial and final wave functions are

ψin =
12− 21√

2
; ψout =

34− 43√
2

(9.130)

so

〈out|T |in〉 = 1

2
[〈34|21〉+ 〈43|21〉 − 〈34|21〉 − 〈43|12〉] = 〈34− 43|12〉 (9.131)
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Figure 9.1: Figures illustrating Feynman rules (a) Sample amplitudes (b) Minus signs due

to antisymmetry
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9.8 Scattering processes in lowest order – e+e− annihi-

lation

Our first process is electron-positron annihilation to a fermion-antifermon pair – e+e− →
µ+µ− or τ+τ− – or to quark-antiquark pairs. The Feynman graph is shown in Fig. 9.2a. I’ll

work in the center of mass and define the total energy as Q. I’ll assume that Q ≫ me, so

that I can treat the electrons as massless. The amplitude is

M = v̄(p2)(−ieγµ)u(p1)
[

igµν

Q2 + iǫ

]

ū(q1)(−ieγν)v(q2)

=
ie2

Q2
[v(p2)γµu(p1)][ū(q1)γνv(q2)].

(9.132)

so that, averaging over initial spins and summing over final ones, the invariant amplitude is

1

4

∑

ss′

|M |2 = 1

4

e4

Q4
Tr /p2γµ/p1γνTr (/q2 −m)γµ(/q1 +m)γν . (9.133)

There are two traces, one for each fermion’s world line. The first trace, for the massless

electrons, gives

4(p2µp1ν + p2νp1µ − gµνp1 · p2) (9.134)

The second trace is

4(q1µq2ν + q2µq1ν − qµνq1 · q2)− 4m2gµν . (9.135)

With e2 = 4πα the differential cross section is

dσ

dt
=

(

1

16πQ4

)

(4πα)2
16

4
×

[(pµ2p
ν
1 + pν2p

µ
1 − gµνp1 · p2)((q1µq2ν + q2µq1ν − qµνq1 · q2)−m2gµν)].

(9.136)

Recalling that gµνg
µν = 4, contracting the two expressions in the square brackets gives

2(p1 · q1)(p2 · q2) + 2(p1 · q2)(p2 · q1) + 2m2p1 · p2. (9.137)
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Figure 9.2: Tree-level scattering processes. (a) e+e− → µ+µ−; (b) Compton scattering,

γ + e− → γ + e−; (c) Pair annihilation, e+e− → γγ;
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Now we have to pick a coordinate system and write out the four vectors by components. In

the center of mass frame (and with components (E, pz, px, py)

p1 =
Q

2
(1, 1, 0, 0)

p2 =
Q

2
(1,−1, 0, 0)

q1 =
Q

2
(1, v cos θ, v sin θ, 0)

q2 =
Q

2
(1,−v cos θ,−v sin θ, 0),

(9.138)

so our kinematic expressions are

2p1 · p2 = Q2

p1 · q1 = p2 · q2 =
Q2

4
(1− v cos θ)

p1 · q2 = p2 · q1 =
Q2

4
(1 + v cos θ)

t = m2 − 2p1 · q1
dt =

Q2

2
vd cos θ

q21 = m2 =
Q2

4
(1− v2)

v2 = 1− 4
m2

Q2
.

(9.139)

Using these relations, a line or two of algebra gives the (semi-)final result

dσ

d cos θ
=
πα2

2Q2
v[1 + v2 cos2 θ + 4

m2

Q2
]. (9.140)

Maybe we can make the formula more memorable: consider the case Q/m≫ 1 where v = 1,

and then
dσ

d cos θ
=
πα2

2Q2
[1 + cos2 θ] (9.141)

or
dσ

dΩ
=

α2

4Q2
[1 + cos2 θ]. (9.142)

The total cross section is

σ =

∫

dΩ
dσ

dΩ
=

4πα2

3Q2
. (9.143)
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Note the units: α is dimensionless, a length is an inverse energy and at high energy the only

relevant scale is the center of mass energy so σ ∝ 1/Q2.

How does the cross section behave at lower q? That is easy; omitting details, it is

σ =
πα2

2Q2
v[2(1 +

4m2

Q2
) +

2

3
v2]

=
4πα2

3Q2

√

1− 4m2

Q2
(1 +

2m2

Q2
)

(9.144)

and of course the threshold value of Q is Q = 2m where the final state fermions are produced

at rest.

Now for physics.

First, at threshold the cross section is proportional to v. This is a diagnostic for the

production of a pair of spin-1
2
particles. An example of an application of this physics was

the discovery of the tau lepton. It’s useful to work in terms of the ratio

Rτ =
σ(τ+τ−)

σ(µ+µ−)
=

√

1− 4m2

Q2
(1 +

2m2

Q2
) (9.145)

where m = mτ and at Q ∼ 2mτ , mµ ≃ 0. (The tau mass ismτ = 1.77 GeV, the muon mass is

105 MeV.) The shape of the turn-on of new physics was key to the discovery that the tau was

a new spin-1
2
fermion. The situation was not so simple as this: the tau is unstable and decays

weakly, into a tau neutrino plus an additional lepton pair (an electron and its antineutrino,

or a muon and its antineutrino) or into hadrons. Neutrinos are effectively invisible in a small

detector. Plus 2mτ is near the energies of bound states of a charm-anticharm quark pair.

Everything was entangled and it was hard to tell what was going on. Take a look at the

discovery paper: Phys. Rev. Lett. 35, 1489-1492 (1975).

Next, the (1 + cos2 θ) angular distribution is diagnostic of the production of a spin-1
2

fermion-antifermion pair. This takes us to e+e− → hadrons. In QCD, the high energy

expectation for the cross section is

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑

i

e2i (9.146)

where the “3” is a color factor (quarks come in three colors) and the sum on i is a sum

over the quark flavors which are light enough to be produced: really light quarks are the
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Figure 9.3: The R ratio of Eq. 9.146 with its expectation from charge counting overlaid in

red.

up and down quarks with masses of about 4 and 7 MeV charge 2/3 and −1/3 (in units of

the electron’s charge). The strange quark at about 100 MeV and q = −1/3, and the heavy

charm quark (at about 1200 MeV and charge 2/3), then the bottom quark at about 4.5 GeV

(eb = −1/3) and the top quark at about 175 GeV with charge 2/3.

Experimental data for Q up to 15 GeV is shown in Fig. 9.3. The red lines show the R

ratio from Eq. 9.146 for up, down, and strange quarks from 0 < Q < 3 GeV, then adding the

charmed quark for 4 < Q < 9 GeV, and finally with the bottom quark for 10 < Q < 15 GeV.

The bumps are at the masses of quark - antiquark resonances, where the simple calculation

fails.

Hadronic jets were observed 50 years ago in e+e− annihilation into hadrons at what today

would be considered an absurdly small center of mass energy (7 GeV) and the (1 + cos2 θ)

angular distributon was a diagnostic that pairs of fermions were being produced. See Phys.



Quantum Field Theory 158

Rev. Lett. 35, 1609-1612 (1975).

9.9 Scattering processes in lowest order – Compton

scattering and related

The process of Compton scatering is the reaction γ + e− → γ + e−. The relevant graphs are

shown in Fig. 9.2b. The amplitude has two terms:

Mfi = (−ie)2ū(pf)/ǫf
i(/pi + /ki +m)

(pi + ki)2 +m2
/ǫiu(pi)

+(−ie)2ū(pf)/ǫi
i(/pi − /kf +m)

(pi − kf)2 +m2
/ǫfu(pi).

(9.147)

One can take ǫi ·ki = 0 (this physical gauge choice would be useful if one wanted to calculate

rates involving the initial or final photon polarizations). Alternatively, if one wanted to

average or sum polarisations, the Feynman gauge trick

∑

λ

ǫµ(λ)ǫν(λ) = −gµν (9.148)

is called for.

Pair annihilation into photons, e+e− → γγ uses the same diagrams, only “twisted” as

Fig. 9.2c shows. The translation dictionary

k1 → kf

k1 → kf

pi → pi

p′i → −pf
(9.149)

converts the pair annihilation graphs to the Compton ones. This says that the amplitudes

are related when written in terms of invariants:

MCompton(s = (pi + ki)
2, t = (ki − kf)

2, u = (ki − pf )
2) =

Mpair(t = (pi − k1)2, s = (k1 + k2)
2, u = (−k2 − p′i)

2).

(9.150)
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Relations like these are called “crossing relations.” It’s a general result that the processes

AB → CD and AC̄ → B̄D (plus other permutations) are related.

9.10 Bremsstrahlung

Bremsstrahlung (Fig. 9.4) is the name for the emission of radiation when a charged particle

is accelerated or decelerated (using classical language) by an external electromagnetic field.

Let’s study the process under the assumption that the emitted photon is “soft” –that it has

low energy or (equivalently) long wavelength. The one can show that the general process

factorizes as shown in Fig. 9.4. That is, almost all the radiation occurs off the initial state

or final state charged particles and not in intemediate places in the graph. Physically, if the

photon has momentum k and if the central blob has a spatial extent of O(λ), then if kλ≪ 1

the photon cannot see it. In that case we can write

M(eA → eγB) = ieū(pf )/ǫ
/pf + /k +m

(pf + k)2 −m2
M̃(pi, pf + k)u(pi)

+ieū(pf )M̃(pi − k, pf)
/pi − /k +m

(pi − k)2 −m2
/ǫu(pi).

(9.151)

The expression M̃ is the amplitude associated with the scattering without the extra photon

emission. Now if k ≪ pi and k ≪ pf we can simplify the numerators and denominators,

M ∼ ieū(pf)

[

/ǫ
/pf +m

2pf · k
M̃(pi, pf) + M̃(pi, pf)

/pf +m

−2pi · k
/ǫ

]

u(pi). (9.152)

We can further simplify this: first anticommute /pi and /ǫ

(/pi +m)/ǫ = /ǫ(−/pi +m) + 2ǫ · pi (9.153)

and then use the Dirac equation,

(−/pi +m)u(pi) = 0, (9.154)

so the matrix element becomes

M ∼ ie

[

ǫ · pf
k · pf

− ǫ · pi
k · pi

]

ū(pf )M̃(eA→ eB)u(pi). (9.155)
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Figure 9.4: Figures illustrating Bremsstrahlung (a) Simple amplitudes (b) Kinematics for

soft photon emission
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We square M to find the cross section. Squaring M̃ gives the differential cross section for

the reaction with no photon radiation, and all we have left is the photon’s phase space, so

dσ(eA→ eγB)

dΩ
× 2π

(2π)3
k2dkd cos θ

2k

=
dσ(eA→ eB)

dΩ
× e2{

[

ǫ · pf
k · pf

− ǫ · pi
k · pi

]2
2π

(2π)3
k2dkd cos θ

2k
}.

(9.156)

The long expression in the curly brackets is the soft photon piece.

This is actually a classical formula (called the Weiszaker - Williams or equivalent photon

approximation). When k is small and p is large, we can write

ǫ · p
k · p ∼ p sin θ

kp(1− cos θ)
∼ θ

kθ2/2
∼ 1

kθ
(9.157)

so the cross section is

σ(θ > θ0, k > k0) ∼ α

2π
σ(no rad)

∫ E

k0

kdk

k2

∫

θ0

d cos θ
sin2 θ

(1− cos θ)2

∼ α

2π
σ(no rad)

∫ E

k0

dk

k

∫

θ0

θ3dθ

θ4

∼ α

2π
σ(no rad)

(

ln
E

k0

)(

ln
1

θ0

)

.

(9.158)

There is a lot of physics here!

• The ratio of the rate for photon emission is equal to the rate for no emission times α

times (potentially large) logarithms (not just times α)

• The probability of radiating a soft photon is proportional to dk/k, that is, it is large,

growing inversely with k, but

• The total energy carried off by these photons is finite

〈kσ〉 = α

∫ E

k0

[kdk
1

k2
]k ∼ αE (9.159)

There are an infinite number of soft photons being radiated, but the energy they carry off

is finite and O(α). This is an example of what is called an “infrared divergence.” It looks

serious at first but it is not a problem as long as you ask the right question.
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And I cannot resist – please re-read Jackson Chapter 15. For first year graduate students

the chapter is usually a very cryptic one. The calculation we have just done was probably

in the back of Jackson’s mind when he wrote it.

The modern version of this topic is the production of jets in QCD: a produced quark

radiates soft gluons (which then radiate softer quark - antiquark pairs) and so on.



Chapter 10

Renormalization and the

renormalization group

163
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The goal of the last part of the course is to give a somewhat informal description of

renormalization. Our paradigm will be scalar field theory in D-dimensional Euclidean space,

where p2 =
∑D

i=1 p
2
i and G(p) = 1/(p2 +m2).

You recall the problem, from the study of the φ4 field theory – higher order contributions

to S-matrix elements, which we hoped would be small, had a strong dependence on processes

involving large internal momenta. For example, the “tadpole graph” (Fig. 10.3) corresponds

to an amplitude

Σ(p) = −λ0
2

∫

d4q

(2π)4
1

q2 +m2
0

. (10.1)

The integral receives a large contribution from values of q which are very large. In fact, as

it stands, the integral does not make sense; it is divergent.

10.1 Regularization

The resolution of the problem involves several steps:

1. Regularization: do something to the theory to render all integrals finite. This involves

introducing something like a cutoff in momentum, restricting |q| < Λ, or alternatively,

introducing a short distance scale a in the problem and restricting lengths to be greater

than a.

2. Then the question is, how does the cutoff Λ enter into physical processes. The answer

has two parts, first a general classification scheme, then a careful investigation of where

the Λ - dependent terms appear. At the end of the day, we will discover that two generic

things can happen, either all the Λ dependence is hidden, or it is not. The two kinds

of theories are called, respectively, “renormalizable” or “nonrenormalizable.” Either

way, the resulting theory can be used to make predictions for experiment.

Let’s list a few kinds of regularization schemes.

The first one is a so-called hard momentum cutoff:
∫

dDq →
∫

|q|2<Λ2

dDq. (10.2)

A good feature of this choice is that it is simple (at least for scalar field theory). A disadvan-

tage (if you are interested in studying a gauge theory) is that it violates gauge invariance.
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Pauli-Villars regularization makes the propagator less singular by making the replacement

1

q2 +m2
→ 1

q2 +m2
− 1

q2 +M2
=

M2 −m2

(q2 +m2)(q2 +M2)
(10.3)

The Pauli-Villars regulator mass M is typically taken to be very large.

Dimensional regularization makes the replacement
∫

d4q →
∫

dDq (10.4)

where D is not an integer. The idea is to analytically continue D so that integrals are finite

and then to express the answer for arbitrary D as a Laurant series and analytically continue

back to near D = 4. As an illustration, the integral

∫

dDq
1

q2 +m2
(10.5)

is convergent for D < 2. This is the “industry standard” of regularization schemes in the

literature, but the procedure is not very intuitive. You can learn about it later if you want.

Finally, there is the lattice: define fields on the sites (or links, for gauge fields) of a lattice

of lattice spacing a. Finite integrals result because the Brillouin zone is finite,

∫

d4q →
4
∏

i=1

∫ π/a

−π/a
dqi (10.6)

An advantage of this scheme is that it can be made gauge invariant; a disadvantage is the

propagators and vertices are very messy functions.

Let’s stick with the hard momentum cutoff and classify the cutoff dependence of various

diagrams. Generally, a graph will show power-law scaling in Λ, as Λd. (The case d = 0

corresponds to log Λ dependence.) As an example, the D-dimension tadpole graph is

I =
λ

2

∫

dDq

(2π)D
1

q2 +m2
∼
∫ Λ qD−1dq

q2
∼ ΛD−2 (10.7)

so here d = D−2. The quantity d is called the “superficial degree of divergence” of a graph.

It happens that there is a general expression for d:

Suppose we have a graph with V vertices, E external lines, and I internal lines. The

superficial degree of divergence d comes from the independent loop integrals. The number

of loops is L = I − (V − 1), as there are V δ− functions, but one of them gives an overall
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δ(
∑

k) for all the momenta entering and leaving the graph. As an example, the graph in

Fig. 10.1a has V = 2, I = 3, and E = 2, from whence L = 3−1 = 2. Each loop is associated

with a factor
∫

dDp ∼ ΛD. A propagator, 1/(p2 +m2), contributes a Λ−2. This says that

the superficial degree of divergence is

d = LD − 2I = D(I − V + 1)− 2I. (10.8)

Finally, if vertices have N legs (equivalently, there is a term in L ∼ φN), we have

NV = E + 2I, (10.9)

the “2” because each internal line connects two vertices. Again, another example in Fig. 10.1:

N = 4, V = 2, E = 4, I = 2, 4× 2 = 4 + 2× 2. Our final result uses

I =
NV −E

2
(10.10)

so our desired general expression is

d = D + E(1− D

2
) + V

(

(
D

2
− 1)N −D

)

. (10.11)

Some examples are in order. First N = 4, or L ∼ φ4, we find d = D + E(1 − D/2) +

V (D − 4). If D = 4, d = 4 − E for any number of vertices. Only two processes show

superficial cutoff dependence (see Fig. 10.1b), the two-point function, with E = 2 and d = 2,

and the four point function, with E = 4 and d = 0.

Let me make a cryptic remark for future reference: the Lagrangian for this system has

quadratic and quartic terms already in it,

L =
1

2
(∂µφ)

2 +
1

2
m2φ2 +

λ

4!
]φ4. (10.12)

A two-point function, with E = 2 and d = 2, is generated by either of the two φ2 terms in

L, while an E = 4 term comes from the φ4 term in L. This is an example of a situation with

a finite number of Λ− dependent processes, which correspond to terms already in L. Such

theories are called “renormalizable.”

Note a caveat: higher n-point functions can be Λ– dependent. An example is the φ4

graph shown in Fig. 10.1c. It has D = 2. However, the Λ dependence is localized on the

line, as it is for the two point function just described.



Quantum Field Theory 167

Figure 10.1: Graphs counting the degree of divergence. (a) examples. (b) The two professes

in D = 4 φ4 with d ≥ 0. (c) A six-point functino with d = 2. (d) A divergent graph in

D = 2.

A second example is D = 4, N > 4 (for example, from L ∼ φ6). Now

d = 4−E + V (N − 4) (10.13)

for V vertices. d grows with V at fixed E. This says that the Λ dependence increases order by

order in the perturbative expansion. This is an example of what is called a nonrenormalizable

interaction.
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Finally, suppose D = 2. Then d = 2 − 2V , so only graphs with no vertices (?) or one

vertex diverge. A V = 1 example is shown in Fig. 10.1d. It has an amplitude

(
∫

d2p

p2

)P

∼ (log λ)P (10.14)

for P closed loops. Two dimensions is obviously special.

Let’s dig a little deeper and state two facts (which we have to show):

1. All coupling constants carry an engineering dimension of energy raised to a character-

istic power ∼ Λp)

2. Because of this fact, d is related to V .

10.2 Dimensional analysis and engineering dimensions

We’ll begin by demonstrating the first item. Let’s do a little dimensional analysis, looking

at the Euclidean action (separating off the mass term for now)

S

~
=

∫

dDx[
1

2
(∂µφ)

2 +
1

2
m2φ2 + V (φ)]. (10.15)

I will use the same label as the momentum cutoff (Λ) as a generic marker for quantities

with dimensions of energy. Equivalently, I will use the cutoff to set my energy scale. I will

identify the dimensionality of an object by putting brackets around it.

The action S is dimensionless, so L scales like [length]−D or ΛD. The kinetic and mass

terms tell us that φ has an “engineering dimension” [φ] = L1−D/2 or ΛD/2−1. We can find

the dimensions of coupling constants, too: suppose we have a term [λrφ
r] = ΛD. Then

[λr] = ΛD−r( 1
2
D−1) ≡ Λδr . (10.16)

For example,

[m2] = Λ2 (10.17)

[λ3] = Λ
1

2
(6−D) (10.18)

[λ4] = Λ4−D (10.19)

[λ6] = Λ6−2D (10.20)
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and so on. This establishes fact number one, above. Note that λ4 is dimensionless in D = 4.

Green’s functions also have engineering dimensions:

[G(N)(x1, . . . xN )] = [〈φ(x1)φ(x2) . . . 〉] ∼ [φ]N = ΛN(D/2−1). (10.21)

The Fourier transform has dimensions

[G(N)(k1, k2 . . . kN)] = ΛN(D/2−1)Λ−ND = Λ−N(D/2+1) (10.22)

where the Λ−ND comes from N factors of dDx. However, recall that G(N)(k) has an overall

momentum - conserving delta function. If we clip that off, G = Ḡ×δD(k), we have (recalling
that [δ(k)] = Λ−D)

[Ḡ(N)(k1, k2 . . . kN−1; kN = −
∑

i

ki)] = Λ−N(D/2+1)ΛD

= ΛD−N(D/2+1).

(10.23)

Finally, there is a last piece of formalism. The vertex function Γ(N) is defined as the

Green’s function G(N), but with the external legs snipped off and with an extra conventional

volume factor (equivalent to cutting off the δD(k) term) also removed:

Γ(N)(x1, . . . xN ) = G(N)(x1. . . . xN )V

N
∏

i=1

G(2)(xi) (10.24)

This is easiest to visualize in momentum space, as shown in Fig. 10.2, where

G(4)(p1 . . . p4) = (2π)DδD(
∑

pi)
4
∏

i=1

1

p2i +m2
× λ (10.25)

so

Γ̄(4)(p1 . . . p4) = −λ+ . . . (10.26)

(see the figure – the lowest order vertex function is just equal to −λ). And in this convention

the two point function is

Γ(2)(p,−p) = 1

G(2)(p)
= p2 +m2 + . . . (10.27)

where the dots indicate potential higher order processes. After cutting off the δD(
∑

pi), we

have

[Γ̄(N)] = ΛN+D− 1

2
ND. (10.28)
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Figure 10.2: From G(4) to Γ̄(4).

Note that Γ(N) has the same engineering dimension as λN , the N point coupling constant.

Now let’s compute some one - loop amplitudes in the presence of a momentum cutoff Λ.

Our goal is to identify the possible sensitivity of physical processes (scattering amplitudes)

to physics at the cutoff scale.
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10.3 Renormalization in scalar field theory

We have see that it is useful to consider how the bare parameters and cutoff combine to give

renormalized parameters in a model renormalizable field theory. For a concrete example,

consider (yet again) the Euclidean Lagrangian for a scalar field

L =
1

2
(∂µφ0)

2 +
1

2
m0φ

2
0 +

λ0
4!
φ4
0 (10.29)

and a momentum cutoff Λ. We assume perturbation theory is valid, and we want to consider

various corrections to tree-level Green’s functions. With one exception, we will restrict our

calculation to the lowest nontrivial order in perturbation theory.

p

q

Figure 10.3: The self energy graph.

The simplest Green’s function is the boson self energy, given by the Feynman graph of

Fig. 10.3. It is

Σ(p) = −λ0
2

∫ Λ

0

d4q

(2π)4
1

q2 +m2
0

. (10.30)

We write d4q using four dimensinoal polar coordinates

qi = q(cos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cosφ, sin θ1 sin θ2 sinφ) (10.31)

so that the volume integral is

∫

d4q =

∫ Λ

0

q3dq

∫ π

0

sin2 θ1dθ1

∫ π

0

sin θ2dθ2

∫ 2π

0

dφ. (10.32)
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Note also that
∫ Λ

0

q3dq =

∫ Λ2

0

1

2
q2dq2. (10.33)

The integrand has no angular dependence, so (with q2 = x)

Σ = −λ0
2

π2

(2π)4

∫ Λ2

0

x

x+m2
0

dx, (10.34)

which for Λ2 ≫ m2
0 simplifies to

Σ → − λ0
32π2

[

Λ2 −m2
0 ln

Λ2

m2
0

]

. (10.35)

How does the self energy Σ contribute to the boson propagator? We can sum up its

contribution to all orders in λ0,

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · = G0
1

1− ΣG0
, (10.36)

and if G0 = 1/(p2 +m2
0),

G =
1

p2 +m2
0 − Σ

, (10.37)

i. e., we discover that the particle has an effective mass

m2 = m2
0 − Σ = m2

0 +
λ0

32π2

[

Λ2 −m2
0 ln

Λ2

m2
0

]

. (10.38)

Next, let’s look at the two-to-two scattering process shown in Fig. 10.4. We focus on the

leftmost of the M (2) graphs, M (2a),

M (2a) =
λ20
2

∫ Λ

0

d4l

(2π)4
1

[l2 +m2
0][(p− l)2 +m2

0]
, (10.39)

where p = p1 + p2. A useful way to do the integral is to use Feynman parameters. The trick

is to write
1

ab
=

∫ 1

0

dx
1

[ax+ b(1 − x)]2
. (10.40)

Then

M (2a) =
λ20

2(2π)4

∫

d4ldx
1

[l2 +m2
0 − 2l · px+ p2x]2

. (10.41)

After a change of variables, l′ = l − px, the denominator becomes [l′2 +m2
0 + p2x(1 − x)]2,

the angular dependence disappears from the integrand, the integral over l′ can be done, and

we have

M (2a) =
λ20

32π2

∫ 1

0

dx

[

ln

(

1 +
Λ2

m2
0 + p2x(1− x)

)

− Λ2

Λ2 +m2
0 + p2x(1− x)

]

. (10.42)
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Figure 10.4: One-loop scattering amplitudes in φ4 field theory.

If Λ2 ≫ m2
0, we can drop the last term and the “1” in the first term. Let’s also separate the

p2 dependence from the Λ dependence by introducing an arbitrary mass scale µ2 (µ is called

the “regularization point”). Then

M (2a) =
λ20

32π2

∫ 1

0

dx

[

ln
Λ2

µ2
− ln

m2
0 + p2x(1− x)

µ2

]

=
λ20

32π2

[

ln
Λ2

µ2
− Î(p2)

]

.

(10.43)

Note that Î(p2) is finite as Λ → ∞, but it is also arbitrary because we must specify some

value of µ. The other two diagrams are identical except for a relabeling of the external

momenta. With the tree-level term included, the complete invariant amplitude up to second

order in λ0 is

M = −λ0 +
3λ20
32π2

ln
Λ2

µ2
− λ20

32π2
[Î(s) + Î(t) + Î(u)], (10.44)

where s = (p1 + p2)
2, t = (p1 − p3)

2, and u = (p1 − p4)
2 are the Mandelstam invariants.

The momentum-independent terms in Eq. 10.44,

λ = λ0 −
3λ20
32π2

ln
Λ2

µ2
, (10.45)

always appear together in any set of diagrams. Indeed, if we computed to higher order,

we would always find the same combination of bare coupling and cutoff. Note that the Λ
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dependent terms only appear in combinations with λ0 and m0 to make up m and λ, and

these terms appear in scattering amplitudes in a way that looks identical to terms in the

original Lagrangian.

p

Figure 10.5: Lowest-order contribution to field renormalization.

Finally, there is one other kind of Λ dependence in Green’s functions, a contribution to

Σ(p) that is proportional to p2. It comes from the graph of Fig. 10.5, and it happens that it

is equal to
[

λ20
24(16π)2

ln
Λ2

µ2

]

p2. (10.46)

If we recalculate the φ0 propagator while including it, we find

〈φ0(−p)φ0(p)〉 =
1

(

1− λ2
0

24(16π)2
ln Λ2

µ2

)

p2 +m2
0 +

λ0
32π2 (Λ2 −m2

0 ln
Λ2

m2

0

)
(10.47)

or

〈φ0(−p)φ0(p)〉 ≡
1

Zφ

1

p2 +m2
(10.48)

where Zφ = 1 − λ2
0

24(16π)2
ln Λ2/µ2 is also cutoff-dependent. We can split Zφ into two terms,

one for each φ0, and write

φ =
1

√

Zφ
φ0, (10.49)

so

〈φ(−p)φ(p)〉 = 1

p2 +m2
. (10.50)

Thus, to this order in perturbation theory, all the cutoff dependence is confined to three

places,

m2 = m2
0 − Σ = m2

0 +
λ0

32π2

[

Λ2 −m2
0 ln

Λ2

m2
0

]

, (10.51)
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λ = λ0 −
3λ20
32π2

ln
Λ2

µ2
, (10.52)

and

φ =





1

1− 1
2

λ2
0

24(16π)2
ln Λ2

µ2



φ0. (10.53)

In higher order, the cutoff dependence continues to appear only in m2, λ, and φ – that is,

physical scattering amplitudes only involve the quantities m2, λ, and φ. Said differently,

Green’s functions parameterized in terms of m, λ and φ are finite as the cutoff is made very

large. We could imagine determiningm2, λ, and φ from experiment (by fitting the parameters

to experimental data at some value of the kinematic variables). The regularization point µ

is fixed when we (arbitrarily) choose some prescription to define the scattering amplitude.

For example, from Eq. (10.44) we could fix the value of λ knowing the value of M at some

fiducial choice of the external momenta. If we follow this train of thought, we must regard

the parameters m0, λ0, and φ0 as implicit functions of the cutoff Λ; as Λ is varied, we must

tune m0, λ0, and φ0 so that m, λ and φ are unchanged.

Let’s push on that point: but first, some vocabulary. One speaks of m0, λ0, and φ0

(which are used to compute) as “bare quantities,” and m2, λ, and φ (which are measured

in experiment) as “renormalized quantities.” Then the first question is, how do the bare

quantities depend on the cutoff Λ, assuming that the renormalized quantities are held fixed?

10.4 Towards the renormalization group

If we think of λ as being independent of Λ, then λ0 must depend on Λ. How does it vary, to

keep λ fixed? Start with

λ = λ0 −
3λ20
32π2

ln
Λ2

µ2
, (10.54)

and ask that

Λ
∂λ

∂Λ
= 0. (10.55)

This is

Λ
∂λ

∂Λ
= Λ

∂λ0
∂Λ

− 6λ0
32π2

(

ln
Λ2

µ2

)

Λ
∂λ0
∂Λ

− 6λ20
32π2

= 0 (10.56)

or

Λ
∂λ0
∂Λ

[1− 6λ0
32π2

(

ln
Λ2

µ2

)

] =
6λ20
32π2

. (10.57)
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If λ0 is small, keep only the lowest order;

Λ
∂λ0
∂Λ

=
3λ0
16π2

. (10.58)

As Λ increases, so must the bare coupling λ0, if λ is to remain fixed.

In fact, we can integrate this equation, to go beyond perturbation theory and find λ0(Λ):
∫ λ2

λ1

dλ0
λ20

= b

∫ Λ2

Λ1

dΛ

Λ
(10.59)

(where b = 3/(16π2)) and doing the integral, we find

1

λ1
− 1

λ2
= b ln

Λ2

Λ1

(10.60)

or

λ2 =
λ1

1− λ1b ln
Λ2

Λ1

. (10.61)

Again, this says that if Λ2 > Λ1 then λ2 > λ1.

So much for the theory in terms of bare quantities. What about the theory from the

point of view of the renormalized ones?

Bare and renormalized Green’s functions are proportional to each other because of the

relation between φ0 and φ:

Γ̄
(N)
R (p1 . . . pN ;λ,m, µ) = Z

N/2
φ Γ̄

(n)
0 (p1 . . . pN ;λ0, m0,Λ). (10.62)

The bare theory has cutoff dependence, so there is a Λ in the right hand expression. The

renormalized theory depends on the renormalized coupling, the renormalized mass, and the

renormalization point µ. We assume that Γ̄R is finite as Λ → ∞. Let’s evaluate the ratio

of Γ̄R’s at two different values of the renormalization point µ: we can do that because, from

the point of view of the bare theory, µ is arbitrary. We just take a ratio,

Γ̄
(N)
R (p1 . . . pN ;λ1, m1, µ1) =

[

Zφ(λ1, m1, µ1)

Zφ(λ2, m2, µ2)

]n/2

Γ̄
(N)
R (p1 . . . pN ;λ2, m2, µ2). (10.63)

Because the Γ̄R’s are finite, the ratio Z = Zφ(λ1, m1, µ1)/Zφ(λ2, m2, µ2) is finite as Λ → ∞.

(To check this point, it is

Zφ(λ1, m1, µ1)

Zφ(λ2, m2, µ2)
= 1− λ2

24(16π)2
ln
µ2
1

µ2
2

(10.64)

to leading order in perturbation theory). Thus a change in the momentum scale µ at which

the theory is normalized is equivalent to
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1. A finite rescaling of the fields

2. A transformed coupling λ1 → λ2

Let’s see what that change is, by implementing the obvious fact that the bare theory

does not know about the renormalization point: this means that

µ
dΓ̄0

dµ
= 0 (10.65)

or
[

µ
∂

∂µ
+ µ

∂λ

∂µ

∂

∂λ
+
µ

2

(

∂

∂µ
lnm2

)

m
∂

∂m
− N

2

∂ lnZφ
∂µ

]

Γ̄
(n)
R = 0. (10.66)

It’s conventional to define the quantities

β(λ) = µ
∂λ

∂µ
(10.67)

γφ =
µ

2

∂ lnZφ
∂µ

(10.68)

γm(λ) =
µ

2

∂ lnm2

∂µ
. (10.69)

Since β is dimensionless, it must depend only on the ratio m/µ.

This is not yet a useful equation. We don’t care so much how Γ̄R depends on µ as we do

on how Γ̄R depends on the momenta of the scattering particles at fixed µ. We can convert

Eq. 10.66 into a useful one if we recall that Γ̄R has an engineering dimension [mass]dn . Scale

all the momenta p→ sp and count powers of µ, s, and m – they must add up to dn:

[µ
∂

∂µ
+ s

∂

∂s
+m

∂

∂m
− dn]Γ̄

(n)
R (sp,m, λ, µ) = 0. (10.70)

Combining Eqs. 10.66 and 10.70 and solving for µ∂Γ̄R/∂µ gives
[

−s ∂
∂s

+ β(λ)
∂

∂λ
+ (γm − 1)m

∂

∂m
− nγφ + dn

]

Γ̄
(n)
R (sp1, sp2 . . . ;m, λ, µ) = 0. (10.71)

This equation (called the Callan - Symanzik equation) gives the variation in Green’s functions

as we vary the external momenta. If we could solve it, we would know Γ̄(sp) in terns of Γ̄(p).

Let’s write down the formal solution. We do this by first defining a “running” or “scale

dependent” coupling constant and mass,

dλ̄(s)

ds
= β(λ̄(s)); λ̄(1) = λ (10.72)
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and

s
dm̄(s)

ds
= [γm(λ̄(s))− 1]; m̄(1) = m. (10.73)

Then

Γ̄(n)(sp;m, λ, µ) = sdnΓ(n)(p; m̄(s), λ̄(s), µ) exp

(

−n
∫ s

1

ds′

s′
γφ(λ̄(s

′))

)

. (10.74)

To check the answer, just differentiate it. Here dn = n+D− 1
2
nD is the engineering dimension

of Γ̄(n). The formula says that a change in the momentum scale p → sp is equivalent of a

change in the amplitude of

1. multiplication (scaling) by sdn . This would be the scaling law for Γ̄ in the absence of

interactions

2. An extra factor (the last integral) which gives rise to a so-called “anomalous dimen-

sion:” a change in the scaling of Γ̄ as a result of interactions

3. A modified or “running” coupling constant and a “running” mass, whose values depend

on the momentum scale.

The third item is the most important one, especially in describing the qualitative behavior

of field theories. To introduce the physics, let’s temporarily focus on a situation where we

have one coupling λ(s) with its own beta function β(λ), and where the running mass m̄(s)

is always zero. Let’s also suppose that there is a special value of λ(s), called λ∗, where the

beta function is zero. The situation β(λ∗) = 0 is special; it is called a “fixed point.” Let

us defer a discussion of the theory at a fixed point, concentrating first on the physics of a

running coupling. Let’s imagine a simple form for β – a linear zero

s
dλ

ds
= β(λ) = (λ− λ∗)β ′(λ∗) (10.75)

If β ′(λ∗) < 0 then for λ > λ∗, sdλ/ds < 0 and for λ < λ∗ sdλ/ds > 0. Under a change of

scale λ flows into λ∗ as s increases, and then it does not move (β(λ∗) = 0). This situation

is called an “ultraviolet fixed point” or UV fixed point. Physics at large scale value s or

large p is governed by λ∗. Conversely, if ds < 0 (we are going from short distance to long

distance) we flow away from the fixed point. (See Fig. 10.6.) This situation can be called a

UV attractive, UV stable, IR (infared) repulsive or IR unstable fixed point.

In particular, note that long distance physics will be very different for λ > λ∗ or λ < λ∗

(long distance compared to the distance scale where the coupling is equal to λ). In statistical
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Figure 10.6: Examples of renormalization group flow around a linear fixed point β(λ) =

(λ− λ∗)β ′)λ∗). (a) β ′)λ∗) < 0; (b) β ′)λ∗) > 0.

mechanics, IR unstable fixed points are interesting because they characterize the locations

of second (or higher) order phase transitions. Examples include order-disorder transitions

in ferromagnets, where one long distance phase corresponds to the case where λ runs to a

small value if it is less than λ∗ or to large λ if λ > λ∗. Critical exponents are related to the

anomalous dimensions γφ evaluated at λ∗.

If β ′(λ∗) > 0 we have an IR attractive or IR stable or UV repulsive or UV unstable fixed
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point. These fixed points characterize the long distance physics for our system.

We can check these statements by integrating Eq. 10.75. Suppose that at scale factor s1

the coupling is λ(s1) and at s2 we have λ(s2). Just doing the integral, we find

λ(s1)− λ∗

λ(s2)− λ∗
=

(

s1
s2

)b

, (10.76)

which shows the evolution of the coupling toward or away from the fixed point according to

the sign of b.

Now for λφ4: what is the beta function? We can compute it starting with the bare

charge.

β(λ) = µ
dλ

dµ
(10.77)

and

λ = λ0 −
3λ20
32π2

ln
Λ2

µ2
, (10.78)

or

λ0 = λ +− 3λ2

32π2
ln

Λ2

µ2
+ . . . (10.79)

inverting Eq. 10.78. Then

µ
dλ0
dµ

= 0

= µ
dλ

dµ
− 6λ

32π2

(

ln
Λ2

µ2

)

µ
dλ

dµ
− 6λ2

32π2
(10.80)

or

µ
dλ

dµ
[1− 3λ

16π2

(

ln
Λ2

µ2

)

] =
3λ2

16π2
. (10.81)

To lowest order,

β(λ) =
3λ2

16π2
+O(λ4) (10.82)

or

s
dλ

ds
= β(λ) =

3λ2

16π2
. (10.83)

This says that as the momentum scale grows, so does the effective or running coupling.

Alternatively, as s shrinks, λ(s) falls. This says that the effective coupling becomes smaller

and smaller at longer and longer distance. This behavior is common to all field theories

except for non-Abelian gauge theories (like QCD).
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In QCD, β(λ) < 0; in fact, β(λ) ∼ −bλ2. The point λ = 0 is a UV attractive fixed

point This means that in theories like QCD the constituents become increasingly weakly

interacting at large momentum scales. We can integrate this beta function and see this

result:

s
dλ

ds
= −bλ2 (10.84)

−
∫ λ2

λ1

dλ

λ2
= b ln

s2
s1

(10.85)

or
1

λ2
− 1

λ1
= b ln

s2
s1

(10.86)

1

λ2
=

1

λ1
+ b ln

s2
s1

≡ b ln
s2
s̄

(10.87)

and finally

λ(s) =
1

b ln s
s̄

(10.88)

absorbing 1/λ1 and s1 into a common factor s̄. The coupling decreases as s rises. This

behavior is called “asymptotic freedom.”

Samll λ at large s means that processes at large s – large momentum scales – can be

calculated in perturbation theory. Indeed, in QCD predictions such as

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑

i

e2i , (10.89)

computed at large center of mass energies, are very well satisfied.

Conversely, as s → 0, λ rises and perturbation theory is no longer valid. Of course,

we know that the interactions of quarks at very long distance is very complicated. Another

active area of research is the calculation of predictions of QCD at low energy or long distance.

The behavior of φ4 theory (and the same behavior also arises in QED) is called “triviality.”

At long distance the effective λ goes to zero and the theory exhibits nearly free field behavior.

This has several interesting consequences. Here is one.

Suppose we imagine introducing a UV cutoff Λ, and we define λ0 at the cutoff scale. The

coupling λ(Q) at scales Q < Λ is smaller than λ0. Now take Λ to be very large. If λ0 is not

also taken to be very large, then λ(Q) at low Q will fall to zero. Conversely, suppose we

measure a nonzero λ at some IR scale s. This implies that there is another (higher) scale

sUV where λ has grown to be order unity. At that scale our simple perturbative picture
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breaks down and must be replaced. Some new physics must appear. We speak of the theory

“defining its own region of validity.”

Now let us return to look at physics close to a fixed point. To do this we have to generalize

a bit what we mean by a “coupling” – in addition to coefficients of φn, I will include the

mass (or squared mass) as another coupling. All these couplings flow with scale change. (I

am now always talking about IR flow.) We can make a multidimensional plot with axes λ,

m, and so on, and fill it with arrows showing the flow of the couplings in parameter space.

Fig. 10.7 is a two-dimensional cartoon illustrating this situation. There can be fixed points,

places where renormalization group flow vanishes. But the notion of stability or instability

with respect to scale changes must be generalized: is is possible (and it is often the case)

that the fixed point is repulsive in one or more directions and attractive in other directions.

This means that in order for the system to flow into a fixed point the values of the couplings

have to be tuned to take special values so that the flow is entirely attractive, into the fixed

point. We call these couplings “relevant couplings” or “relevant directions” with respect

to the fixed point. In a statistical mechanics context, the couplings in the field theory are

functions of temperature or other external probes. The long distance behavior of the system

depends on where the external probes are set. And in principle, the experimentalist can tune

them. Then, once the relevant couplings are appropriately set, as the system is observed at

ever longer distance, the other (irrelevant) couplings will flow into the fixed point and the

long distance physics of the system will be governed by physics at the fixed point.

In Fig. 10.7 we see that starting anywhere on a line which flows into the fixed point,

we will end up at the fixed point. Each of the points on that line have a different set of

short distance couplings. The long distance physics for all of these systems will be governed

by the same fixed point; it will not depend on what the short distance physics was. This

phenomenon is called “universality.” Universality generally depends on only a few quantities,

such as the dimensionality of space and the local symmetries of the short distance degrees

of freedom (real versus complex scalar fields, for example). A statistical mechanics example:

all three-dimensional isotropic ferromagnets form a universality class, close to criticality they

have identical behavior.

And what happens at a fixed point? There, since λ̄ doesn’t change, the last integral in
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g
1

g
2

Figure 10.7: A renormalization group flow with one attractive direction and one repulsive

direction.

Eq. 10.74 simplifies, and the correlation function is just

Γ̄(n)(sp) = sdnΓ(n)(p; , λ̄, µ) exp
(

−nγφ(λ̄) ln s
)

= sdn−nγ
∗

φΓ(p)

(10.90)

or

Γ(p) ∼ pdn−nγ
∗

φ. (10.91)

For example, the two-point function is

Γ(2)(p) ∼ p2−2γ∗φ . (10.92)

This behavior is called “scaling.” It says that at the fixed point, the only relevant quantity

with dimensions of energy is the common momentum scale of the particles participating
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in the correlation function. The underlying physics has no scale. It is almost a massless

theory: if there were an excitation with mass m we would expect Γ(2)(p) ∼ p2 + m2 and

Eq. 10.92 is“almost” telling us that m = 0. However, these critical systems do not really

have particles; Γ(2)(p) is not p2. And pause to Fourier transform Γ(2n(p) back to coordinate

space: all correlation functons decay with distance as a power law, not exponentially. It

turns out (but this is another story for another day) that this is the physics of statistical

systems tuned to be at a (second order) critical point.

10.5 Renormalization prescriptions

There is a fair amount of arbitrariness in defining m, λ and φ. Often a choice is made

for convenience (ease of comparison with experiment). Some schemes give rise to large

coefficients in higher orders of perturbation theory, and are disfavored. Sometimes it is

possible to directly relate the renormalized parameters to physical quantities. For example,

in QED, a physical electric charge could be defined through the Thompson cross section.

Sometimes, this cannot be done so directly. QCD is an example – because of confinement

there are no free quarks.

Here are several examples of prescriptions (all for φ4):

First, one could define Γ(2)(p,mA) = p2 +m2
A at p2 = m2

A and Γ(4)(p1, p2, p3, p4) = −λA
at pi = 0. (This fixes both the charge and field renormalization.)

Next, one could use any other momentum point. For example Γ(2)(p,mA) = p2 +m2
B at

p2 = M and Γ(4)(p1, p2, p3, p4) = −λB at pipj = M2(δij − 1/4). This is s = t = u = M2, off

mass shell, arbitrary M .)

Finally, in dimensional regularization there is the so-called modified minimal subtraction

(MS) prescription, which you will see in a later course.

These are all Euclidean space prescriptions. Let’s now return to Minkowski space: recall

pE = (p0E, ~pE) → pM = (ip0E, ~pE). The propagator transforms into

1

p2E +m2
→ 1

−p2M +m2
→ 1

−p2M +m2 − iǫ
(10.93)

using p2M = (pm0 )
2 − (~pM)2 and inserting the iǫ to have causal propagators. Of course, there
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are i’s to chase in the Dyson series, too. But recall the (Euclidean) four point amplitude:

Γ̄(4) = −λ0 +
3

32π2
λ20 ln

Λ2

µ2
− λ20

32π2
[I(s) + I(t) + I(u)] (10.94)

where

I(s) =

∫ 1

0

dx ln[
m2

0 + sx(1− x)

µ2
]. (10.95)

Let’s define our coupling by imposing the second prescription,

Γ̄(4)(s = t = u =M2) ≡ −λB

= −λ0 +
3

32π2
λ20 ln

Λ2

µ2
− 3λ20

32π2

∫ 1

0

dx ln[
m2

0 +M2x(1− x)

µ2
].

(10.96)

Away from this kinematic point the amplitude expressed in terms of λB is

Γ̄(4) = λB − λ20
32π2

∫ 1

0

dx ln[
m2

0 + sx(1 − x)

m2
0 +M2x(1− x)

] + (s→ t) + (s→ u) (10.97)

and to this order in perturbation theory, λ0 = λB andm0 = m. The Minkowski space version

of this expression is

Γ̄(4) = −[−λB − λ2B
32π2

(

∫ 1

0

dx ln[
m2 − iǫ+ sx(1− x)

m2 − iǫ+M2x(1− x)
] + (s→ t) + (s→ u). (10.98)

The new terms, beyond the λB piece, are the predictions of the theory for scattering away

from the fiducial point. Notice, by the way, that the scattering amplitude has a branch cut

beginning at s = 4m2 – but that is a story for another day.

This is a renormalizable quantum field theory. All the Λ dependence has disappeared

from predictions of physical processes. Let’s summarize what we have found.

Our bare theory was expressed in terms of four quantities, m0, λ0, φ0 and Λ. We had

a finite number (three, in this case) of cutoff dependent quantities, and their cutoff depen-

dence could be absorbed into a finite number of parameters which could be (and must be)

determined by experiment. There is no evidence of the cutoff, when Γ’s are expressed in

terms of m, λ and φ. Then we asked, how do Green’s functions change when the momentum

scale changes? The physical answer (mostly) is that the couplings λ and m become scale

dependent (λ̄(s), m̄(s)). We derived a particular renormalization group equation by varying

the bare Γ0 with respect to the renormalization point µ,
[

−s ∂
∂s

+ β(λ)
∂

∂λ
+ (γm − 1)m

∂

∂m
− nγφ + dn

]

Γ̄
(n)
R (sp1, sp2 . . . ;m, λ, µ) = 0. (10.99)
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(There are many alternative formulations of the renormalization group.)

If there are many couplings the equation for the beta function becomes a matrix equation

involving all the couplings

µ
∂λi
∂µ

=
∑

j

βij(λ1, λ2 . . . ). (10.100)

In this case, there is a many-dimensional space in which all the couplings flow. Under a

change in scale some of them may flow into a fixed point; some may flow away.

10.6 More general couplings

Let’s suppose we have more complicated couplings. Dimensional analysis tells us that

[λnφ
n] = L−D = ΛD (10.101)

and since the engineering dimension of φ is

[φ] = L1−D/2 = Λ−(1−D/2), (10.102)

we know that the dimension of the coupling is

[λn] = Λn+D−nD/2 ≡ Λǫ. (10.103)

Generally, couplings are dimensional. We can parameterize a coupling as λn = λ0Λ
ǫ using

the cutoff to set the energy scale. Then λ0 is dimensionless number. How does the pure

number λ0 vary if we vary Λ (holding λn fixed? This is easy:

Λ
∂λn
∂Λ

= 0 = ǫΛǫλ0 + ΛǫΛ
∂λ0
∂Λ

(10.104)

or

Λ
∂λ0
∂Λ

= −ǫλ0 = β(λ0) (10.105)

in this case
λ0(Λ

′)

λ0(Λ)
=

(

Λ′

Λ

)−ǫ
(10.106)

so if ǫ > 0, if we increase Λ we must decrease the bare coupling λ0 to keep the renormalized

coupling fixed.
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Now suppose Λ is fixed but the momentum scale s varies.Our theory has all these cou-

plings, but how do they run? We have just computed the beta function, so we know that

s
∂λn
∂s

= β(λn) = −ǫλn (10.107)

or

λn(s) = λn(1)s
−ǫ (10.108)

The UV flow of λn is toward greater values if ǫ < 0 or to lesser values if ǫ > 0. The IR flow

is opposite, λn flows to the origin if ǫ < 0. Table 10.6 gives some examples.

interaction n ǫ(D = 4) IR flow

m2φ2 2 2 > 0 increases

λ4φ
4 4 0 stagnant (logarithmic, β(λ) = .O(λ2)

λ6φ
6 6 −2 < 0 decreases

Table 10.1: Flows for various couplings

Suppose we are in D = 4 in a theory defined with a UV cutoff Λ, and the theory has

nonrenormalizable interactions, n > 4 φn terms. We are interested in computing processes

at energy scales far below Λ. As we go to long distance or low energy scales, the nonrenor-

malizable couplings run to zero! The long distance effective scalar field theory has only m2

and λ4 couplings. All other couplings are small like Λǫ. Green’s functions for processes at

scale p pick up contributions of size (p/Λ)|ǫ| (this is p2/Λ2 for a φ6 coupling). This result is

also called “universality” and it is a specific example of physics we saw earlier: an arbitrary

V0(φ0) looks like m
2φ2 + λφ4 at a small momentum scale p ≪ Λ. This inspires a rhetorical

question I heard in class from Weinberg around 1973: “Why are the theories that describe

Nature renormalizable quantum field theories?” and his answer, from 5-6 years later, was

“Because the scale of new physics (Λ) is at very high energy.”

.

10.7 Where do Lagrangians come from, or the story of

effective field theories

Imagine that we had a Theory of Everything, and also imagine that we were atomic physicists.

Should we use the Theory of Everything to make predictions? That would be an expensive
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undertaking, since the Theory of Everything presumably includes physics at very high energy

scales.

A better alternative is to somehow remove high energy degrees of freedom from the

theory and construct a “low energy” or “effective” theory, which we then use to compute

atomic properties. The effective theory is only supposed to be valid up to some maximum

energy scale, and it only includes the low energy degrees of freedom which are relevant for

the calculations we want to do.

“Remove” has three possibilities. The first one is to integrate out degrees of freedom.

For this example, work with the path integral. We start with a theory with an energy cutoff

Λ whose partition function is

ZΛ =

∫

[dφk]k<Λ exp(−S(φ)Λ. (10.109)

The functional integral includes fields defined at all energy scales up to the cutoff. We then

break the integration variables [dφk]k<Λ apart and perform the functional integral over the

higher energy modes of φ, leaving behind a theory which only includes low energy degrees

of freedom.

ZΛ1
=

∫

[dφk]k<Λ1

(
∫

[dφk]Λ1<k<Λ exp(−S(φ)Λ
)

=

∫

[dφk]k<Λ1
exp(−S(φ)Λ1

).

(10.110)

The original theory had an action S(φ)Λ and a set of operators with an associated set of

couplings gn(Λ). The lower energy action S(φ)Λ1
is characterized by its own set of operators

with couplings gm(Λ1) which of course are functions of the gn(Λ)’s. (S(φ)Λ1
is called the low-

energy or Wilsonian effective action.) An analog of renormalization group flow as described

in earlier sections of these notes would be to ask what is the relation of the low scale couplings

to the high scale ones, gm(Λ1, gn(Λ)).

A second way to proceed would be to determine the couplings gm(Λ1) from targeted

calculations in the Theory of Everything. An example of such a calculation wold be to

determine the magnetic moment of a nonrelativistic electron starting with QED and a rela-

tivistic electron.

The first possibility is very hard to do, but sometimes the construction of S(φ)Λ1
can be

carried out. The second possibility can also be very hard to implement. So there is a third
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possibility: simply to ask, what is the most general low energy theory? And then to work

with it. This is easy: the partiton function is built only in terms of the low energy degrees

of freedom and the action is

S(φ)Λ1
=

∫

dDx
∑

i

giOi (10.111)

where the sum runs over all local operators of the low energy degrees of freedom which are

allowed by symmetry. This does not seem to be such a good idea at first glance, since the

sum could in principle include an infinite number of operators (and couplings). We need

some way to organize the problem, that will give us a (good) approximate action. Let’s

consider dimensional analysis again.

If the typical energy scale in the problem is E we can use the kinetic term to set the

scale. We assume that S0 is O(1) and the relevant length scale is 1/E, so field variables scale

as

S0 =
1

2

∫

dDx(∂µφ)
2 → [φ] = E−1+D/2. (10.112)

Then if an operator O is built of M φ’s and N derivatives, Oi scales as E
δi where

δi =M(−1 +
D

2
) +N (10.113)

The corresponding gi has to have dimension ΛD−δi to compensate. Now we replace the gi’s

by dimensionless couplings λi = Λδi−Dgi. We presume that the λi’s are just a set of numbers

whose size is order unity. Now, for a process occurring at scale E, we estimate that

∫

dDxOi ∼ Eδi−D (10.114)

so that a term in the action is of order

giOi ∼ Λi

(

E

Λ

)δi−D
. (10.115)

We see that if δi > D, this term is less and less important at small energy (where E/Λ < 1)

– it is “irrelevant.” Here is the vocabulary: if δi < D the size of the term in S grows as E

falls. Such terms are called “relevant” or (old language) “super-renormalizable”. If δi = D,

the size of the term remains constant as E falls. Such operators are called “marginal” or

“renormalizable.” Finally, operators with δi > D shrink as E falls; they are “irrelevant”

or “nonrenormalizable.” We have already seen the words “renormalizable” and “nonrenor-

malizable” when we discussed the dependence of observables on the cutoff Λ; here they are
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again, but with a twist. The nonrenormalizable operators are less and less important as we

go to ever smaller values of E.

And now for the punch line: typically, there are only a finite number of relevant and

marginal operators, since the condition for not being irrelevant is

δ =M(−1 +
D

2
) +N ≤ D. (10.116)

For example, in D = 4 scalar field theory there is one relevant operator, m2φ2 and one

marginal one, λφ4.

Why do we emphasize the free action Eq. 10.112 in this analysis? It is because we are

assuming that the theory is weakly coupled, so the free action determines the size of the

typical fluctuations of the field variables, and then of the sizes of matrix elements. It’s

necessary that the coefficient of the dominant term in S is dimensionless when we rescale in

order to see this. And in 1
2
(∂µφ)

2, M = N = 2, δ = D.

Another way to say this is that we are comparing the size of all operators to that of the

kinetic term.

And another variation on this idea: assume that the kinetic term dominates. Scale all

energies and momenta by a factor s, so lengths and time scale by 1/s. The volume and

derivatives in Eq. 10.112 scale as s2−D, and fluctuations in φ scale as s−1+D/2. Then the ith

interaction term scales as sδi−D. If s < 1 and δi > D, the operator scales to irrelevancy.

Sometimes there can be more than one “kinetic term.” In membranes, for example, there

are ∇2 tension terms and ∇4 rigidity terms, but at any given momentum, one of these will

dominate and set the scaling.

high energy theory scale low energy theory

(1) string theory Mstring ∼ 1018 GeV field theory of

gravity and matter

(2) grand unified theory MGUT ∼ 1016 GeV SU(3)× SU(2)× U(1)

(3) Weinberg-Salam model MW ∼ 80 GeV Fermi theory

(4) QCD 0.5-1 GeV pions (and nucleons)

(5) lattice field theory (lattice spacing)−1 continuum field theory

Table 10.2: Examples of effective field theories

There are many cases where we know the high energy theory and its low energy effective

field theory. Some examples of effective field theories are given in Table 10.7. In cases (2)
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and (3), the high energy and low energy theories are both perturbative. In QCD, the high

energy fields (quarks and gluons) are not the low energy fields (pions and nucleons). At

really long distances, QCD becomes strongly interacting. The only light modes are pions.

They are Goldstone bosons: Goldstone’s theorem says that if a continuous global symmetry

is broken, there will be massless modes corresponding to the unbroken degrees of freedom.

More about case (3) in the Table: Consider muon decay, µ− → νµeν̄e, which proceeds

through a virtual W boson. The amplitude is

M = (−ig)2ūeΓµvνe
igµν

q2 −M2
W

v̄νµΓ
νuµ (10.117)

with Γµ = γµ(1− γ5). The fundamental interaction is L = gf̄iΓ
µfjWµ with a dimensionless

coupling g. At very low energies, where q2 ≪ m2
W the expression simplifies,

igµν
q2 −M2

W

→ − igµν
M2

W

(10.118)

which is a four-fermion interaction. We could generate it from an effective Lagrangian

containing the term

L = GF (f̄1Γ
µf2)(f̄3Γµf4) (10.119)

and GF = g2/M2
W is a dimensionful coupling, the “Fermi coupling constant,” with a value

Gf ∼ 10−5 GeV−2. The gauge boson has disappeared from the theory. This is called “Fermi

theory,” and it is what Fermi wrote down in the 1930’s to describe the weak interactions.

Let’s check dimensions. The kinetic term gives us [ψ̄∂ψ] = Λ4 so [ψ̄ψ] = λ3 or [ψ] = Λ3/2.

[(f̄Γf)2] = Λ4×3/2 = [Λ]6. (we call this a “dimension-6 operator.”). The units of GF are

Λ−2 to compensate. This is an irrelevant operator, which means that it grows as the energy

rises. There will be an energy scale where Fermi theory breaks down and it must be replaced

by something new. The “‘something new” is the W boson, of course. This sounds like we

are just closing a circle, but in olden times, before the W , all we had was Fermi theory.

Considerations like this, looking from the Fermi theory to higher energy, could be – and

were – used to estimate the “scale of new physics” or to be more mundane, the mass of the

W boson.

There are other similar stories to be told. Searches for the electron electric dipole moment

are done in terms of a search for new dimension-six operators, and the limits are typically

quoted as lower bounds on Λ, the scale of the new physics.

Finally, in condensed atom gases which form Bose - Einstein condensates, the high energy

system is electrons and nuclei, or maybe atoms, the low energy system are the collective

excitations of the BEC, a superfluid (as we saw earlier).
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Presumably no field theory we encounter is complete up to arbitrarily high energies. They

are all effective field theories, valid up to some cutoff scale. If that is the case, is renormaliza-

tion unimportant, since the cutoff scale renders all integrals finite? No, renormalization tells

us about scale dependent couplings, so we know how to move around in energy while remain-

ing in our effective field theory description. It also tells us that low energy physics depends

on the short distance theory only through its relevant and marginal couplings, and possibly

through some leading irrelevant couplings, if one measures to sufficiently high accuracy.

And what are these operators? Naive scaling tells us – except that if a coupling gets

large, naive scaling can fail. Recall the expression for an n-point amplitude at a fixed point

Γ̄(n)(sp) = sdnΓ(n)(p; λ̄, µ) exp
(

−nγφ(λ̄) ln s
)

= sdn−nγ
∗

φΓ(p)

= sd
′

n .

(10.120)

If γφ(λ
∗) is large (O(1)), δ′n 6= δn. If all we have is perturbation theory, we may lose control

of the calculation. We may not know which operators are relevant, marginal or irrelevant.

Marginal operators show the most important corrections to naive scaling. We can write

E
∂g

∂E
= β(g) = bg2 +O(g3). (10.121)

The case where β(g) = 0 exactly is really marginal. In the case b > 0, g falls as E falls.

This is a “marginally irrelevant” coupling. The other case of b < 0 where g rises as E falls,

is called “marginally relevant.’ Then

g(E) =
g(Λ)

1 + bg(Λ) ln Λ
E

(10.122)

and g becomes large at E ∼ Λ exp(1/(bg(Λ)). Something new has to happen at or below

that energy. In QCD, the effects of confinement set in.

Irrelevant couplings are useful because they tell us the range of validity at high energy.

When they grow to be O(1), new physics has to appear.

Relevant operators are dangerous. Think about φ2 in a D = 4 scalar field theory:

D−δ = 2. In SΛ(φ) there is a term (λφ2Λ
2)φ2. Why shouldn’t the pure number λφ2 be order

unity? There has to be some kind of story to make it small, some un-natural fine tuning. But

if λφ2 ∼ 1, the φ particle is heavy and it should not appear in the low energy effective theory
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at all. This leads to an (esthetic?) rule: effective field theories must be “natural,” meaning

that masses should be forbidden by symmetries. Gauge interactions are allowed because

gauge invariance forbids the gauge bosons from developing a mass. A symmetry like chiral

symmetry, if present, forbids fermions from getting a mass. Scalars should be Goldstone

bosons, or something else, like supersymmetry, should prevent them from acquiring large

masses. i

In the condensed matter context, the situation is that we want to make correlation lengths

large with respect to some short distance cutoff distance. To make correlation lengths diverge,

the relevant operators must be tuned by hand. The analog of m2 is presumed to vary with

temperature like T − Tc and only by tuning to T = Tc does the system exhibit criticality.

Is the Standard Model natural? No. The high scale is either some grand unification scale

(Λ = 1016 GeV) or the Planck scale Λ = 1019 GeV). The Higgs mass is 120 GeV, far below

either of these values of Λ. But we saw from our calculation of Σ that radiative corrections

could shift the squared mass of the Higgs by an amount Λ2. Why is the Higgs (at 120 GeV)

so light?

And two final questions, with answers, courtesy Joe Polchinski, hep-th/9210046:

Q1: Doesn’t the infinite set of irrelevant operators mean that effective field theory has

no predictive power?

A1: No, you can do calculations which are accurate to (E/Λ)δ−D, and if Λ is known, you

know how accurate your calculation will be.

Q2: Does that mean that quantum field theory is an approximation which might have

little to do with some underlying, more fundamental description of nature? And isn’t renor-

malization a bad thing, because it implies that we can only probe the high energy theory

through a small number of parameters?

A2 (from Joe): Nobody ever promised you a rose garden.
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10.8 A few words about renormalization in QED

The Lagrangian for QED is

L = −1

4
FµνF

µν + iψ̄D/ψ −mψ̄ψ (10.123)

(plus gauge fixing terms). We are interested first in determining the superficial degree of

divergence of processes in QED. We imagine that we have a Feynman diagram in D = 4

dimensions with

• N vertices, which give N − 1 delta-functions

• (Ie + Iγ − (N − 1))
∫

d4k aggregate internal integrations, each counting as Λ4

• Eγ external photons

• Ee external fermions

• Iγ internal photon lines – these count as Λ−2 from 1/q2 propagators

• Ie internal fermion lines. Each counts as Λ−1 since the propagator is 1//p

This gives a degree of divergence of

d = 4[Ie + Iγ − (N − 1)]− 2Iγ − Ie

= 4 + 3Ie + 2Iγ − 4N.

(10.124)

Each vertex brings two fermion lines and one photon line together, so counting photons gives

the relation

N = Eγ + 2Iγ (10.125)

(each internal photon connects two vertices) and for electrons, count the number of electrons

per vertex, two, times the number of vertices N to discover

2N = 2Ie + Ee. (10.126)

Putting the last three equations together, we find that

d = 4− 3

2
Ee −Eγ . (10.127)
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This is independent of the order of perturbation theory since it is independent of N . This

tells us that QED is a renormalizable theory.

There are four physical quantities at our disposal: e, m, ψ and Aµ. And it turns out that

there are four divergent quantities (see Fig. 10.8):

The vertex function (Ee = 2, Eγ = 1) has d = 0 and is logarithmically divergent.

The electron self energy appears superficially to have d = 1 but that is not quite correct.

We can write

Σ(p) = A +B/p+ Cm+ finite (10.128)

However, chiral symmetry says that A = 0. If it happened that the bare m0 were zero, the

electronic part of L would factorize into two terms, one involving only ψL and ψ̄L and a

second term involving the right handed fields. A mass term couples left handed and right

handed fields and such a term cannot be generated by radiative processes. This means that

A=0 in Eq. 10.128. If there is a nonzero mass to start with, interactions can shift it, so there

can be a Cm term in Σ. The factors of m and /p in the numerator of Σ(p) means that B and

C have d = 0: they are each logarithmically divergent.

Finally, we have the photon self energy,

Πµν = Dgµν + qµqνC
′ + Cq2gµν + finite. (10.129)

Again, appearances are deceiving. Current conservation (equivalently, transversality) says

qµΠµν = 0 so D = 0 and

Πµν = Π̄µν(q
2)[qµqν − q2gµν ] (10.130)

where Π̄µν(q
2) is logarithmically divergent. Thus there are four divergent quantities (L in

the vertex, B and C in Σ, and Π̄µν(q
2)), to be absorbed into renormalization of the bare

quantities e0, m0, ψ0 and Aµ0 to give the (renormalized) observable ones.

We have two final processes, shown in the figure. The “photon splitting” term 〈T (AAA)〉
vanishes due to charge conjugation symmetry. The light by light scattering term has Eγ = 4

and Ee = 0 so it has d = 0 at first glance, but a transversality argument says that there are

additional factors of q in the amplitude which make it finite (and very small, the amplitude

begins at order e4). (A physical argument: the process has to involve products of Fµν ’s in

order to be gauge invariant, and Fµν ∼ qµAν−qνAµ; the factors of q have to be compensated

by additional momentum terms in the denominators of the Feynman graphs which render

them finite.)



Quantum Field Theory 196

Figure 10.8: Fundamental processes in QED.

The semester is rapidly coming to an end, so let us just jump to the two “classical”

(1940’s) tests of QED, the anomalous magnetic moment of the electron and the Lamb shift.

Both of these were discovered in atomic physics experiments.

First, g − 2. The electron-electron-photon vertex can be parameterized as

Γµ = e[γµL+ 2iσµνqνF2] (10.131)



Quantum Field Theory 197

Figure 10.9: Graphs for g − 2.

The first term gives the Dirac g-factor of two for the magnetic moment. The second term,

which begins at order e2, gives the so-called anomalous magnetic moment: the real magnetic

moment is equal to the Dirac value plus a small correction,

µ = µDirac(1 +
α

2π
+ . . . ) (10.132)
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with µDirac = e/(mc) = ge/(2mc) so that the Dirac value is g = 2. We can rewrite the

expression for µ in terms of g − 2: the answer is

g − 2

2
=

α

2π
+ . . . . (10.133)

The lowest order coefficient was first computed by Schwinger in 1947. The QED result is

known to order (α/π)4 and at present theory and experiment (done with trapped electrons)

agree to a part in 1012. The (α/π)4 calculation involved 891 diagrams, individually all

gauge dependent, most of them infrared and ultraviolet divergent. These days the magnetic

moment of the muon is more newsworthy, since non-QED effects (the strong interactions,

mostly) make a bigger contribution to the muon than they do to the electron. This makes

muonic g − 2 a potential place to see new physics.The most recent experimental result is in

arXiv:2506.03069 and a recent white paper with a theory discussion is is arXiv:2505.21476.

Let’s do a skim into the calculation. With the kinematics in Fig. 10.9 we imagine writing

the matrix element of the current in terms of the most general operator we can construct

〈p′τ |eJµ|pσ〉 = ū(p′, τ)Oµ(p
′, p)u(p, σ), (10.134)

and we can build it with a term parameterizing the size of every vector-valued quantity in

the amplitude

Oµ(p
′, p) = γµFi(q

2) + 2iσµνq
νF2(q

2) + qµF3(q
2) (10.135)

with q = p′ − p being the photon’s four momentum. The Fi’s are form factors which in

principle can be arbitrary functions of q2. Here σµν = γµγν − γνγµ. Current conservation

requires ∂µJµ = 0 or in momentum space qµJµ = 0. Expanding out Eq. 10.135, we must

have

0 = ū(p′, τ)[/qF1 + 2iσµνq
µqνF2 + q2F3]u(p, σ). (10.136)

By antisymmetry, 2iσµνqµqν = 0. We can rewrite /q = /p′ − /p and use the Dirac equation to

see that

ū(p′)(/p′ − /p)u(p) = ū(p′)(m−m)u(p) = 0. (10.137)

So, to satisfy Eq. 10.136, it must be that F3(q
2) = 0. Finally, at q = p− p′ = 0 the current

is Jµ = ūγµuF1(0) and this says that F1(0) must be equal to the renormalized charge er.

The second term gives us the anomalous magnetic moment. To see this, use

σij =

(

σk 0

0 σk

)

, (10.138)
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and pick the direction µ = ẑ. Then

JµA
µ = − ~J · ~A

= 2iF2(q
2)

(

σxqy − σyqx 0

0 σxqy − σyqx

)

Az

= 2F2(q
2)

(

~σ · (i~q × ~A) 0

0 ~σ · (i~q × ~A)

)

= 2Fs(q
2)~σ · ~B

= µ~S · ~B
(10.139)

with the relation between form factor and magnetic moment

µ = 4F2(0). (10.140)

The lowest order graph is shown in Fig. 10.9. Formally, it is logarithmic divergent. However,

the presence of the σµνq
ν in the definition of the form factor means that the integrand has

to have an additional negative power of the loop momentum to make the dimensions work

out. This renders the magnetic moment piece of the diagram actually finite. This can be

seen if one is willing to do the calculation in a devious way!

Next, we have the Lamb shift. In the Schrödinger equation, and in the Dirac equation,

the 2S 1

2

and 2P 1

2

levels of a Coulomb bound state are degenerate. In reality, they are

slightly split, with an experimental value ∆E(2S − 2P ) = 1040 MHz. JILA people might

enjoy reading the discovery paper, Lamb and Retherford, Phys. Rev. 72, 241 (1947). The

splitting is due to the virtual emission and absorption of a photon by the electron. The effect

is mostly nonrelativistic and was worked out first by Bethe (while riding on a train coming

back from the meeting where the experimental result was announced) – see H. Bethe, Phys.

Rev. 72, 339 (1947). Here is a sketch:

Start with a Hamiltonian for a nonrelativistic charged particle in a potential

H =
1

2m
(~p− e

c
~A)2 + V (r) (10.141)

and treat the e
mc
~p · ~A term as a perturbation. The energy shift of a level n is given by second

order perturbation theory,

∆En = e2
∫

d3k

2k(2π)3

∑

λ

∑

j

|
〈

n| ~p·~ǫλ
m

|j
〉

|2

En − Ej − k
. (10.142)
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The calculation is done exactly like the ones for electronic transitions in a good first year

graduate quantum mechanics class. Pick the two polarizations in and out of the plane defined

by ~p and ~k; the in-plane term gives a sin θ and the out of plane one vanishes. Then

∆E =
4πα(2π)

2(2π)3

∫ K

0

kdk

∫ 1

−1

d cos θ sin2 θ
∑

j

|
〈

n| ~p
m
|j
〉

|2

En − Ej − k
(10.143)

cutting of the k integral at K. This gives

∆En =
2α

3π

∫ K

0

kdk
∑

j

|
〈

n| ~p
m
|j
〉

|2

En − Ej − k
. (10.144)

If we perform the k integral, we get

∆En =
2α

3π

(

−
∑

j

| 〈n|~p|j〉 |2
m2

K +
∑

j

Ej − En
m2

| 〈j|~p|n〉 |2 ln |Ej − En +K|
|Ej − En|

)

. (10.145)

The expression is strongly cutoff dependent, especially the first term.

To make sense of the result, compare this result to the same situation for a free electron.

The shift in its energy is simple, since p is diagonal: it is the first term in Eq. 10.145.

∆E(free) = −2α

3π

p2

m2
K. (10.146)

Now pause to re-think the physics. We are asking “How is the mass of hydrogen different

from mp +me − 〈V 〉?”where me is the energy of a free electron, and the answer is that it is

∆E = ∆En −∆E(free). This quantity is

∆E =
2α

3π

∑

j

(Ej − En)|
〈

n| ~p
m
|j
〉

|2 log K

Ej − En
. (10.147)

Now for some physics. Ej − En is a number in eV. Relativity is important at k ∼ m, so

our approximations break down there. Just set K = m for the cutoff and wait for a (much

harder) fully relativistic treatment of take care of the physics up there. (This took a couple

of years to complete, but nowadays you can find it in books.) Next, replace the Ej − En

in the logarithm by an average 〈Ej − En〉 since logarithms don’t depend strongly on their

arguments. This gives

∆E =
2α

3πm2
log

m

〈Ej − En〉
∑

j

(Ej − En)| 〈j|~p|n〉 |2 (10.148)
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The sum is fun to do, reminiscent of the evaluation of the Thomas - Reiche - Kuhn sum rule

in elementary quantum mechanics. It starts with

∑

j

(Ej − En)| 〈j|~p|n〉 |2 =
∑

j

〈n|~pH −H~p|j〉 〈j|~p|n〉 . (10.149)

Evaluating the commutator eliminates the j sum,

∑

j

〈n|~pH −H~p|j〉 〈j|~p|n〉 =

〈

n|1
i
~∇V · ~p

i
|n
〉

= −
∫

d3xψ∗
n
~∇V · ~∇ψn

=
1

2

∫

d3x(∇2V )|ψn|2.

(10.150)

In a Coulomb field

∇2V = 4πZαδ3(~r) (10.151)

and the expression for the Lamb shift is

∆E =
2α

3π

1

m2

1

2
4πZα[log

m

〈Ej − En〉
]|ψ(0)|2. (10.152)

Now we recall (or look up) that for S-wave states and in terms of the Bohr radius a0

|ψ(0)|2 = Z3

πn3a30
. (10.153)

The Rydberg (Ry) is 1
2
α2m = 1

2
α/a0 so

∆E =
8α3

3π

Z4

n3
log

m

〈Ej − En〉
Ry. (10.154)

The quantity 〈Ej − En〉 is the average energy of excitation of an electron in the 2S state,

which Bethe quotes as 17.8 eV. I don’t know a clever way to get it. For the 2P state,

|ψ(0)|2 = 0, not so for the 1S state (so it is the state with the energy shift). Putting in

numbers, we arrive at a shift of about 1040 MhZ.

I highly recommend reading Bethe’s paper yourself!
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If you are reading this, then presumably the semester has been over for a while. Our

study of quantum field theory is still incomplete, of course, but time is fleeting. There

are several “foundational” topics I have left out. The most important of these are (in my

opinion)

1. How to deal with fermions in path integrals. This involves strange objects called

Grassman variables or anticommuting c− numbers: ψ1ψ2 = −ψ2ψ1, ψ1ψ1 = 0.

2. Dimensional regularization for computing loop integrals. All physicists doing such

calculations have a little table of “dim reg” integrals hidden away someplace to help

them along.

3. The physics of spontaneous symmetry breaking and its major consequences, the pres-

ence of Goldstone bosons when a continuous global symmetry is spontaneously broken,

the Higgs effect when a gauge symmetry is broken

There are a couple more topics that I would have liked to include, and which formed part

of the syllabus when I occasionally taught a second semester quantum field theory class:

1. It would be nice to come to grips with the Standard Model at a moderately high

level, including how renormalization works, the calculation of beta functions, and some

phenomenology

2. More about critical phenomena in statistical systems, more about the renormalization

group

Of course, my second set of topics reflects physics issues that I enjoy thinking about.

Other people would probably come up with a different list. But that’s not important. I

think that if you have made it this far you are ready to identify your own set of interesting

problems. While we really didn’t look at anything which is currently an active area of

research, you have some of the tools to begin to solve problems which involve quantum field

theoretic issues in your own field of research. Enjoy!
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A.1 Kinematics conventions

To begin, I’ll work in units where ~ = c = 1. (Recall that ~c = 200 MeV-fm or 200 eV-nm

for comversion to engineering units.) In these units [length] = 1/[energy] and a cross section

σ which is an area is also an inverse energy-squared.

I’ll work with “mostly minus” metric, so that momentum four vectors are

pµ = (E, ~p); pµ = (E,−~p) (A.1)

and the metric is

gµν =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











, (A.2)

so pµ = gµνp
ν . This is the standard convention in the quantum field theory or particle

physics literature, as opposed to the “mostly plus” metric used in general relativity. Note

that the energy-momentum relation for a free particle of mass m is

p2 = pµp
µ = pµpµ = E2 − |~p|2 = m2. (A.3)

A few other definitions:

xµ = (t, ~x) = (x0, ~x)

∂µ = (
∂

∂t
, ~∇)

∂µ = (
∂

∂t
,−~∇)

✷ = ∂µ∂µ =
∂2

∂t2
−∇2

(A.4)

and so on.

Typical formulas we’ll encounter involve invariants such as a · b = aµb
µ or ∂µφ∂

µφ. A

major annoyance in this subject is that many people (including me, sometimes) are sloppy

with upper versus lower indices and put them anywhere they want. This is because, subcon-

sciously, they know that every quantity they work with is actually going to be contracted to

a scalar, a · b = a0b0 −~a ·~b, with the “known” minus sign for the three-vector part of the dot

product.
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Finally, there is something called “Euclidean space” for which xµ = xµ = (x0, x1, x2, x3)

and a · b = a0b0 + a1ba + a2b2 + a3b3. Quantum field theory in Euclidean space looks very

much like (or, is identcal to) statistical mechanics in four spatial directions.

A.2 Particles in a box

Begin with free particles in a box of volume V = L3. A free particle amplitude is

ψ(x) = 〈x|k〉 = 1√
V
eikx (A.5)

The momentum in direction j is quantized as kj = 2πnj/L where nj is an integer for periodic

boundary conditions. States are normalized so

〈~k|~k′〉 = δnn′ (A.6)

and the completeness relation is

1 =
∑

n

|k〉〈k| =
∫

V

(2π)3
d3k|~k〉〈k|, (A.7)

slightly abusing notation to treat k as continuous. (It is the usual dnx = Ldkx/(2π) story.)

That is the phase space factor – the number of states between ~k and ~k + d~k is

dN =
V

(2π)3
d3k. (A.8)

If ψ(x) is a Schrödinger wave function, the probability density ρ = ψ∗ψ = 1/V . The current

density is

~J =
1

2im
ψ∗~∇ψ − (~∇ψ)∗ψ =

k

m

1

V
=
~v

V
(A.9)

where ~v is the particle’s velocity.

The Golden Rule begins by defining the transition probability per unit time dΓ in terms

of the T-matrix 〈f |T |i〉 from a state |i〉 at time t = 0 to a state |f〉 at time T ,

dΓ =
1

T
lim
T→∞

|〈f(T )|T |i(0)〉|2. (A.10)

Consider a process where |i〉 is a two particle state, i = 1 to 2, and |f〉 consists of nf outgoing
particles, j = 1 to nf . Let’s assemble all the pieces for a formula for the differential cross

section.
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First, in dΓ there is a phase space factor for each outgoing particle,

nf
∏

n=1

V
d3kn
(2π)3

. (A.11)

Next, in 〈f(T )|T |i(0)〉 there will be a factor coming from the exponentials from the time

dependence of the unperturbed states,

∫ T

0

dtei∆ωt =
ei∆ωT − 1

i∆ω
(A.12)

where ∆ω =
∑2

i=1Ei −
∑nf

j=1Ef . This will square (the usual squaring of the delta function

story) to give the Golden Rule expression

dΓ = 2πδ(∆ω)|〈f |T |i〉|2
nf
∏

n=1

V

(2π)3
d3kn. (A.13)

The cross section is defined as the ratio

dσ = dΓ× 1

flux
(A.14)

where the flux factor is flux = |J | = vrel/V and vrel = v1 − v2.

Finally, it is often the case that momentum is conserved. Component by component the

T-matrix will involve integrals of the form

〈f |T |i〉 ∝
∫

V

d3xei∆kx = V δ~nf ,~ni
=
∏

i=x,y,z

ei∆kiL − 1

i∆ki
, (A.15)

where the first identity involves the integer-counting for the wave numbers, quantized in the

box, and the second equality comes from taking k as continuous and doing the integral over

the box. We must square the T-matrix and take the volume to be large. The mathematics is

identical to what is encountered in squaring the frequency delta function and going to long

times, Eq. A.12 from the time integral, to give Eq. A.13. Putting all the pieces together,

dσ =
V

vrel
|〈f |T̂ |i〉|2 × (2π)4δ(

∑

ωf −
∑

ωi)

×V δ3(
∑

~kf −
∑

~ki)

×
nf
∏

n=1

V
d3kn
(2π)3

.

(A.16)
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The leading V is from the flux and the V in the middle is from squaring the momentum

conservation delta function. The reduced T-matrix 〈f |T̂ |i〉 is the full T-matrix 〈f |T |i〉 with
the overall momentum-conserving delta functions (pick the phrase you like best) snipped off,

or divided out, or thrown away. Typically, it will involve an integral over all the relative co-

ordinates, since overall space translation invariance is where overall momentum conservation

comes from. It is proportional to (1/
√
V )nf+2 because there are nf + 2 free particle wave

functions in it, each carrying a factor of 1
√
V (recall Eq. A.5). And it gets squared. In the

final expression, all the volume factors cancel; the final result for the cross section will be

independent of the volume (as it should be).

A.3 Delta function normalization

Alternatively, we can use delta-function normalization for plane wave states in an infinite

box. The normalization convention is

〈~k|~k′〉 = δ3(k − k′) (A.17)

so that
∫

d3k〈~k|~k′〉 = 1 (A.18)

and the completeness relation is

1 =

∫

d3k|k〉〈k|. (A.19)

It follows that the coordinate space wave function is

〈x|k〉 = 1

(2π)3/2
eikx. (A.20)

Now the phase space coounting is just

dN = d3k. (A.21)

There is a translation dictionary between the “box” T-matrix element and the “δ−function”

one, just because the definitions of the states, Eqs.A.5 and A.20, are different. Writing the

dictionary in terms of volume-independent quantities, it is

[(2π)3](nf+ni)/2〈f |T |i〉δ−fn = V (nf+ni)/2〈f |T |i〉box. (A.22)

Either way this expression has no remaining 2π’s in it. Generally, the term on each side of

this formula will be proportional to δ3(
∑

ki −
∑

kf).



Quantum Field Theory 210

To pass to the cross section, we have to square the matrix element. Unfortunately, doing

this while preserving the delta functions (note we are really squaring a delta function this

time) requires using wave packets. That is a little too much for me, but it is worked out in

Peskin and Schroeder, Sec. 4.6. The final answer involves

〈f |T |i〉 = 〈{kf}|T |{ki}〉 = (2π)4δ4(
∑

kf −
∑

ki)
T̃

(2π)3
(A.23)

and

dσ =
1

vrel
|T̃ |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj. (A.24)

Note that T̃ has factors of 2π in it, from the normalization of the states. They can be

pulled out into the phase space factor. This will give an expression identical to Eq. A.15,

but without the volume factors. (They would have cancelled anyway.)

A.4 The normalization everybody uses

Finally, suppose we choose to normalize our states so that

〈~k|~k′〉 = Cδ3(k − k′) (A.25)

where C is some convenient real constant. Then the normalization integral is

∫

d3k〈~k|~k′〉 = |C|2 (A.26)

and the coordinate space wave function is

〈x|k〉 =
√
C

1

(2π)3/2
eikx (A.27)

while the completeness relation is

1 =

∫

d3k

C
|k〉〈k|. (A.28)

The Schrödinger current (recall Eq. A.9) becomes

~J =
~k

m
C. (A.29)



Quantum Field Theory 211

This is a nonrelativistic formula, but in general the current is just C times a current defined

with some ordinary normalization, as in the earlier sections. The phase space factor is

dN =
d3p

C
(A.30)

and the cross section is

dσC = dσC=1 ×
1

C2+nf
. (A.31)

Notice that the T-matrix element will rescale–the cross section is physical and it can’t change.

This convention seems stupid, but it is actually very clever. Why? It allows one to build

in Lorentz invariance in an explicit way. The most commonly used choice in the literature is

C = 2E(k) (A.32)

where E(k) =
√
k2 +m2 is the energy. That is, a momentum eigenstate is

|~p〉 =
√

2E(p)a†p|0〉. (A.33)

(A quick check:

〈~q|~p〉 =
√

2E(q)
√

2E(p)〈0|aqa†p|0〉 (A.34)

and if we assume

[aq, a
†
p] = δ3(~q − ~p), (A.35)

the left hand side of Eq. A.34 is 2Epδ
3(~q − ~p); compare Eq. A.25.)

Why do this? It gives you several nice things:

First, the phase space factor is Lorentz invariant. It is

d3p

2E(p)(2π)3
(A.36)

per particle, evaluating the matrix element with pure exponentials and pulling out the 2π

factors from the T-matrix into the phase space. Why is this Lorentz invariant? We can write

it as
d3p

2E(p)
= d3pdEδ(E2 − p2 −m2)θ(E). (A.37)

The θ(E) picks the positive energy solution to the delta-function (E = ±
√

p2 +m2 =

±E(p)). The parts, d3pdE = d4pµ and δ(p2 +m2) are each separately Lorentz invariant, so

the product is, also. Now integrate E over the delta function, you get Eq. A.37.
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Next, recall our definition of the field operator,

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ]. (A.38)

Contract it on a state |k〉:

φ(x)|~k〉 =

∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ]
√

2E(k)a†k|0〉

=
eikx

(2π)3/2

√

2ω(k)
√

2ω(k)
|0〉.

(A.39)

The algebra is simple, the (2π)3/2 can be lumped in the phase space in Eq. A.36. This will

give nice answers when you contract field operators against states.

For the Klein-Gordon equation, the continuity equation is

∂ρ

∂t
+ ~∇ · ~J = 0 (A.40)

where

ρ = φ∗∂φ

∂t
− φ

∂φ∗

∂t
(A.41)

and
~J = φ∗~∇φ− φ(~∇φ∗). (A.42)

We expect ρ and ~J form a four vector: Eq. A.40 is ∂µJ
µ = 0 when written covariantly.

The state

φ(x) |0〉 =

∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ] |0〉

=

∫

d3p

2ω(p)
|p〉 (A.43)

(use Eqs. A.35 and A.33) is a linear superposition of single particle states. It’s almost the

same as the nonrelativistic convention, just with an extra 1/ω(p) ∼ 1/m in the nonrelativistic

limit. We can define a plane wave solution

Φk(x) = 〈0|φ(x)|k〉
= exp(ikx).

(A.44)



Quantum Field Theory 213

(Use Eq. A.39 and pull out the factors of 2π to go into the phase space integrals.) Obviously,

this is “what we would expect” for the position space wave function for the single particle

state |p〉.

Compute ρ and ~J using Φk(x). We find ρ ∝ E(p), ~J ∝ ~p, that is, the probablilty current

(ρ, ~J) ∝ pµ obviously forms a four vector, because the components are of Jµ are proportional

to pµ.

Next, look ahead to consider Lorentz transformations. p = (E, ~p) in one frame becomes

Λp = (E ′, ~p′) in another frame. States must transform unitarily,

|Λp〉 = U(Λ)|p〉 (A.45)

and operators must transform as

O → U(Λ)OU−1(Λ). (A.46)

U(Λ) is some unitary transformation.

What is awkward is that δ3(~p−~q) is not Lorentz invariant. However, Eδ3(~p−~q) is Lorentz
invariant:

Eδ3(~p− ~q) = E ′δ3(p′ − q′). (A.47)

This will mean that 〈q|p〉 = 2E(p)δ3(~p− ~q), the inner product of two states, will be Lorentz

invariant. To check the Lorentz invariance, perform a Lorentz transformation along direction

p3. Change variables in the delta function, and use the chain rule,

δ3(p− q) = δ3(p′ − q′)
dp′3
dp3

(A.48)

where p′3 = γ(p3 + βE) and E ′ = γ(E + βp3). Then

δ3(p− q) = δ3(p′ − q′)γ(1 + β
∂E

∂p3
). (A.49)

Since E2 = p23 + . . . , this is

δ3(p− q) = δ3(p′ − q′)
γ

E
(E + β

p3
E
E) = δ3(p′ − q′)

E ′

E
(A.50)

as required.

Creation operators are operators, and it happens that

U(Λ)a†pU
−1(Λ) =

√

E(Λp)

E(p)
a†Λp. (A.51)
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This follows from

U(Λ)|~p〉 = |Λ~p〉 (A.52)

or (insert 1 = U−1(Λ)U(Λ))

U(Λ)a†p
√

E(p)U−1(Λ)U(Λ)|0〉 =
√

E(Λp)a†Λp|0〉. (A.53)

This uses U |0〉 = |0〉 – we are assuming that the vacuum is simple, the same in all frames.

Anyway, now look at a field operator,

φ(x) =

∫

d3p

(2π)3/2
√

2ω(p)
[ape

ipx + . . . ] (A.54)

Transform it: x′ = Λx, p′ = Λp, substitute in aΛp,

φ(Λx) =

∫

d3p

(2π)3/2
√

2ω(p)
[

√

ω(p′)

ω(p)
aΛpe

ik(Λx) + . . . ] (A.55)

Change variables from p to p′, use d3p/(2ω(p)) = d3p′/(2ω(p′)), and you discover that

φ(Λx) =

∫

d3p′

(2π)3/2
√

2ω(p′)
[ap′e

ip′x′) + . . . ]. (A.56)

Look at this closely, and look at Eq. A.54: it says that φ(x) really is a scalar operator. Under

a Lorentz transformation, it remains unchanged. (Only its argument, x, changes.)

Box normalization is much easier to work with, but then φ(x) is not a true scalar field,

in the sense of Lorentz transformations. Think about it, what is the box doing? Of course,

if the original Lagrange density is Lorentz invariant, like

L =
1

2
(∂µφ)

2 − V (φ), (A.57)

all predictions of the theory will be Lorentz invariant. However, with a choice of normal-

ization for states which does not know about Lorentz symmetry, the intermediate steps of

a calculation will not look Lorentz invariant. The Lorentz invariance of the final result will

seem to be a miracle, if you used noncovariant definitions for fields or states. It is better to

have a formalism where everything you work with has simple, known transformation prop-

erties so that Lorentz invariance can be observed every step of the way. Miracles are not

always good things!

Finally, in this convention, the differential cross section is

dσ =
1

4E1E2vrel
|T̃ |2(2π)4δ4(

∑

kf −
∑

ki)

nf
∏

j=1

d3kj
(2π)32E(kj)

(A.58)
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and T̃ is the T-matrix with all extraneous factors of 2π, or
√
2E, and the overall momentum

conserving delta function stripped off.

( Aside: Recall v = k/E, and with equal mass particles and in the center of mass frame,

where the two incident particles have momenta (Ecm/2,±p, 0, 0), 4E1E2vrel = 4pEcm which

is 2E2
cm or 2s in the extreme relativistic limit.)

Note: I seem to have introduced a Mandelstam variable. For two-to-two scattering,

p1 + p2 → p3 + p4, the Mandelstam invariants are

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p4 − p2)

2

u = (p1 − p4)
2 = (p3 − p2)

2.

(A.59)

This discussion looks very robotic (and it is). But now you can use this set of conventions,

and you don’t need to think about where they came from. T̃ is often called the “invariant

ampltude” M . It is a scalar function of the momenta and other four vectors (like polariza-

tions) characterizing the scattering amplitude. Often, people try to construct a final answer

for it in terms of invariants. Choosing the reference frame is often the last thing which is

done.
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