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An Intuitive Explanation of Bayes'
Theorem
Bayes' Theorem
for the curious and bewildered;
an excruciatingly gentle introduction.

Your friends and colleagues are talking about something called "Bayes'
Theorem" or "Bayes' Rule", or something called Bayesian reasoning. 
They sound really enthusiastic about it, too, so you google and find a
webpage about Bayes' Theorem and...

It's this equation.  That's all.  Just one equation.  The page you found
gives a definition of it, but it doesn't say what it is, or why it's useful, or
why your friends would be interested in it.  It looks like this random
statistics thing.

So you came here.  Maybe you don't understand what the equation
says.  Maybe you understand it in theory, but every time you try to
apply it in practice you get mixed up trying to remember the difference
between p(a|x) and p(x|a), and whether p(a)*p(x|a) belongs in
the numerator or the denominator.  Maybe you see the theorem, and
you understand the theorem, and you can use the theorem, but you
can't understand why your friends and/or research colleagues seem to
think it's the secret of the universe.  Maybe your friends are all wearing
Bayes' Theorem T-shirts, and you're feeling left out.  Maybe you're a
girl looking for a boyfriend, but the boy you're interested in refuses to
date anyone who "isn't Bayesian".  What matters is that Bayes is cool,
and if you don't know Bayes, you aren't cool.

Why does a mathematical concept generate this strange enthusiasm in
its students?  What is the so-called Bayesian Revolution now sweeping
through the sciences, which claims to subsume even the experimental
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method itself as a special case?  What is the secret that the adherents
of Bayes know?  What is the light that they have seen?

Soon you will know.  Soon you will be one of us.

While there are a few existing online explanations of Bayes' Theorem,
my experience with trying to introduce people to Bayesian reasoning is
that the existing online explanations are too abstract.  Bayesian
reasoning is very counterintuitive.  People do not employ Bayesian
reasoning intuitively, find it very difficult to learn Bayesian reasoning
when tutored, and rapidly forget Bayesian methods once the tutoring is
over.  This holds equally true for novice students and highly trained
professionals in a field.  Bayesian reasoning is apparently one of those
things which, like quantum mechanics or the Wason Selection Test, is
inherently difficult for humans to grasp with our built-in mental faculties.

Or so they claim.  Here you will find an attempt to offer an intuitive
explanation of Bayesian reasoning - an excruciatingly gentle
introduction that invokes all the human ways of grasping numbers, from
natural frequencies to spatial visualization.  The intent is to convey, not
abstract rules for manipulating numbers, but what the numbers mean,
and why the rules are what they are (and cannot possibly be anything
else).  When you are finished reading this page, you will see Bayesian
problems in your dreams.

And let's begin.

Here's a story problem about a situation that doctors often encounter:

1% of women at age forty who participate in routine screening
have breast cancer.  80% of women with breast cancer will get
positive mammographies.  9.6% of women without breast cancer
will also get positive mammographies.  A woman in this age
group had a positive mammography in a routine screening. 
What is the probability that she actually has breast cancer?

What do you think the answer is?  If you haven't encountered this kind
of problem before, please take a moment to come up with your own
answer before continuing.

Next, suppose I told you that most doctors get the same wrong answer
on this problem - usually, only around 15% of doctors get it right. 
("Really?  15%?  Is that a real number, or an urban legend based on an
Internet poll?"  It's a real number.  See Casscells, Schoenberger, and
Grayboys 1978; Eddy 1982; Gigerenzer and Hoffrage 1995; and many



other studies.  It's a surprising result which is easy to replicate, so it's
been extensively replicated.)

Do you want to think about your answer again?  Here's a Javascript
calculator if you need one.  This calculator has the usual precedence
rules; multiplication before addition and so on.  If you're not sure, I
suggest using parentheses.

Calculator: 

(1 + 2) * 3 + 4  Result: 

13  Compute!

On the story problem above, most doctors estimate the probability to be
between 70% and 80%, which is wildly incorrect.

Here's an alternate version of the problem on which doctors fare
somewhat better:

10 out of 1000 women at age forty who participate in routine
screening have breast cancer.  800 out of 1000 women with
breast cancer will get positive mammographies.  96 out of 1000
women without breast cancer will also get positive
mammographies.  If 1000 women in this age group undergo a
routine screening, about what fraction of women with positive
mammographies will actually have breast cancer?

Calculator: 

(1 + 2) * 3 + 4  Result: 

 Compute!

And finally, here's the problem on which doctors fare best of all, with
46% - nearly half - arriving at the correct answer:

100 out of 10,000 women at age forty who participate in routine
screening have breast cancer.  80 of every 100 women with
breast cancer will get a positive mammography.  950 out of 
9,900 women without breast cancer will also get a positive
mammography.  If 10,000 women in this age group undergo a
routine screening, about what fraction of women with positive
mammographies will actually have breast cancer?

Calculator: 

(1 + 2) * 3 + 4  Result: 

13  Compute!



The correct answer is 7.8%, obtained as follows:  Out of 10,000
women, 100 have breast cancer; 80 of those 100 have positive
mammographies.  From the same 10,000 women, 9,900 will not have
breast cancer and of those 9,900 women, 950 will also get positive
mammographies.  This makes the total number of women with positive
mammographies 950+80 or 1,030.  Of those 1,030 women with positive
mammographies, 80 will have cancer.  Expressed as a proportion, this
is 80/1,030 or 0.07767 or 7.8%.

To put it another way, before the mammography screening, the 10,000
women can be divided into two groups:

Group 1:  100 women with breast cancer.
Group 2:  9,900 women without breast cancer.

Summing these two groups gives a total of 10,000 patients, confirming
that none have been lost in the math.  After the mammography, the
women can be divided into four groups:

Group A:  80 women with breast cancer, and a positive
mammography.
Group B:  20 women with breast cancer, and a negative
mammography.
Group C:  950 women without  breast cancer, and a positive
mammography.
Group D:  8,950 women without breast cancer, and a negative
mammography.

Calculator: 

80 + 20 + 950 + 8950  Result: 

 Compute!

As you can check, the sum of all four groups is still 10,000.  The sum of
groups A and B, the groups with breast cancer, corresponds to group 1;
and the sum of groups C and D, the groups without breast cancer,
corresponds to group 2; so administering a mammography does not
actually change the number of women with breast cancer.  The
proportion of the cancer patients (A + B) within the complete set of
patients (A + B + C + D) is the same as the 1% prior chance that a
woman has cancer: (80 + 20) / (80 + 20 + 950 + 8950) = 100 / 10000 =
1%.

The proportion of cancer patients with positive results, within the group
of all patients with positive results, is the proportion of (A) within (A +
C):   80 / (80 + 950) = 80 / 1030 = 7.8%.  If you administer a
mammography to 10,000 patients, then out of the 1030 with positive
mammographies, 80 of those positive-mammography patients will have
cancer.  This is the correct answer, the answer a doctor should give a
positive-mammography patient if she asks about the chance she has



breast cancer; if thirteen patients ask this question, roughly 1 out of
those 13 will have cancer.

The most common mistake is to ignore the original fraction of women
with breast cancer, and the fraction of women without breast cancer
who receive false positives, and focus only on the fraction of women
with breast cancer who get positive results.  For example, the vast
majority of doctors in these studies seem to have thought that if around
80% of women with breast cancer have positive mammographies, then
the probability of a women with a positive mammography having breast
cancer must be around 80%.

Figuring out the final answer always requires all three pieces of
information - the percentage of women with breast cancer, the
percentage of women without breast cancer who receive false
positives, and the percentage of women with breast cancer who receive
(correct) positives.

To see that the final answer always depends on the original fraction of
women with breast cancer, consider an alternate universe in which only
one woman out of a million has breast cancer.  Even if mammography
in this world detects breast cancer in 8 out of 10 cases, while returning
a false positive on a woman without breast cancer in only 1 out of 10
cases, there will still be a hundred thousand false positives for every
real case of cancer detected.  The original probability that a woman has
cancer is so extremely low that, although a positive result on the
mammography does increase the estimated probability, the probability
isn't increased to certainty or even "a noticeable chance"; the
probability goes from 1:1,000,000 to 1:100,000.

Similarly, in an alternate universe where only one out of a million
women does not have breast cancer, a positive result on the patient's
mammography obviously doesn't mean that she has an 80% chance of
having breast cancer!  If this were the case her estimated probability of
having cancer would have been revised drastically downward after she
got a positive result on her mammography - an 80% chance of having
cancer is a lot less than 99.9999%!  If you administer mammographies
to ten million women in this world, around eight million women with
breast cancer will get correct positive results, while one woman without
breast cancer will get false positive results.  Thus, if you got a positive
mammography in this alternate universe, your chance of having cancer
would go from 99.9999% up to 99.999987%.  That is, your chance of
being healthy would go from 1:1,000,000 down to 1:8,000,000.

These two extreme examples help demonstrate that the mammography
result doesn't replace your old information about the patient's chance of



having cancer; the mammography slides the estimated probability in
the direction of the result.  A positive result slides the original probability
upward; a negative result slides the probability downward.  For
example, in the original problem where 1% of the women have cancer,
80% of women with cancer get positive mammographies, and 9.6% of
women without cancer get positive mammographies, a positive result
on the mammography slides the 1% chance upward to 7.8%.

Most people encountering problems of this type for the first time carry
out the mental operation of replacing the original 1% probability with the
80% probability that a woman with cancer gets a positive
mammography.  It may seem like a good idea, but it just doesn't work. 
"The probability that a woman with a positive mammography has breast
cancer" is not at all the same thing as "the probability that a woman
with breast cancer has a positive mammography"; they are as unlike as
apples and cheese.  Finding the final answer, "the probability that a
woman with a positive mammography has breast cancer", uses all
three pieces of problem information - "the prior probability that a woman
has breast cancer", "the probability that a woman with breast cancer
gets a positive mammography", and "the probability that a woman
without breast cancer gets a positive mammography".

Fun
Fact!

Q.  What is the Bayesian Conspiracy?
A.  The Bayesian Conspiracy is a multinational,
interdisciplinary, and shadowy group of
scientists that controls publication, grants,
tenure, and the illicit traffic in grad students. 
The best way to be accepted into the Bayesian
Conspiracy is to join the Campus Crusade for
Bayes in high school or college, and gradually
work your way up to the inner circles.  It is
rumored that at the upper levels of the
Bayesian Conspiracy exist nine silent figures
known only as the Bayes Council.

To see that the final answer always depends on the chance that a
woman without breast cancer gets a positive mammography, consider
an alternate test, mammography+.  Like the original test,
mammography+ returns positive for 80% of women with breast cancer. 
However, mammography+ returns a positive result for only one out of a
million women without breast cancer - mammography+ has the same
rate of false negatives, but a vastly lower rate of false positives. 
Suppose a patient receives a positive mammography+.  What is the
chance that this patient has breast cancer?  Under the new test, it is a



virtual certainty - 99.988%, i.e., a 1 in 8082 chance of being healthy.

Calculator: 

80 / [80 + (9900 * 0.000001)]  Result: 

0.9998  Compute!

Remember, at this point, that neither mammography nor
mammography+ actually change the number of women who have
breast cancer.  It may seem like "There is a virtual certainty you have
breast cancer" is a terrible thing to say, causing much distress and
despair; that the more hopeful verdict of the previous mammography
test - a 7.8% chance of having breast cancer - was much to be
preferred.  This comes under the heading of "Don't shoot the
messenger".  The number of women who really do have cancer stays
exactly the same between the two cases.  Only the accuracy with which
we detect cancer changes.  Under the previous mammography test, 80
women with cancer (who already had cancer, before the
mammography) are first told that they have a 7.8% chance of having
cancer, creating X amount of uncertainty and fear, after which more
detailed tests will inform them that they definitely do have breast
cancer.  The old mammography test also involves informing 950
women without breast cancer that they have a 7.8% chance of having
cancer, thus creating twelve times as much additional fear and
uncertainty.  The new test, mammography+, does not give 950 women
false positives, and the 80 women with cancer are told the same facts
they would have learned eventually, only earlier and without an
intervening period of uncertainty.  Mammography+ is thus a better test
in terms of its total emotional impact on patients, as well as being more
accurate.  Regardless of its emotional impact, it remains a fact that a
patient with positive mammography+ has a 99.988% chance of having
breast cancer.

Of course, that mammography+ does not give 950 healthy women false
positives means that all 80 of the patients with positive mammography+
will be patients with breast cancer.  Thus, if you have a positive
mammography+, your chance of having cancer is a virtual certainty.  It
is because mammography+ does not generate as many false positives
(and needless emotional stress), that the (much smaller) group of
patients who do get positive results will be composed almost entirely of
genuine cancer patients (who have bad news coming to them
regardless of when it arrives).

Similarly, let's suppose that we have a less discriminating test,
mammography*, that still has a 20% rate of false negatives, as in the
original case.  However, mammography* has an 80% rate of false
positives.  In other words, a patient without breast cancer has an 80%



chance of getting a false positive result on her mammography* test.  If
we suppose the same 1% prior probability that a patient presenting
herself for screening has breast cancer, what is the chance that a
patient with positive mammography* has cancer?

Group 1:  100 patients with breast cancer.
Group 2:  9,900 patients without breast cancer.

After mammography* screening:
Group A:  80 patients with breast cancer and a "positive"
mammography*.
Group B:  20 patients with breast cancer and a "negative"
mammography*.
Group C:  7920 patients without breast cancer and a "positive"
mammography*.
Group D:  1980 patients without breast cancer and a "negative"
mammography*.

Calculator: 

80 / (80 + 7920)  Result: 

0.01  Compute!

The result works out to 80 / 8,000, or 0.01.  This is exactly the same as
the 1% prior probability that a patient has breast cancer!  A "positive"
result on mammography* doesn't change the probability that a woman
has breast cancer at all.  You can similarly verify that a "negative"
mammography* also counts for nothing.  And in fact it must be this way,
because if mammography* has an 80% hit rate for patients with breast
cancer, and also an 80% rate of false positives for patients without
breast cancer, then mammography* is completely uncorrelated with
breast cancer.  There's no reason to call one result "positive" and one
result "negative"; in fact, there's no reason to call the test a
"mammography".  You can throw away your expensive mammography*
equipment and replace it with a random number generator that outputs
a red light 80% of the time and a green light 20% of the time; the
results will be the same.  Furthermore, there's no reason to call the red
light a "positive" result or the green light a "negative" result.  You could
have a green light 80% of the time and a red light 20% of the time, or a
blue light 80% of the time and a purple light 20% of the time, and it
would all have the same bearing on whether the patient has breast
cancer: i.e., no bearing whatsoever.

We can show algebraically that this must hold for any case where the
chance of a true positive and the chance of a false positive are the
same, i.e:

Group 1:  100 patients with breast cancer.
Group 2:  9,900 patients without breast cancer.

Now consider a test where the probability of a true positive and the
probability of a false positive are the same number M (in the example



above, M=80% or M = 0.8):
Group A:  100*M patients with breast cancer and a "positive"
result.
Group B:  100*(1 - M) patients with breast cancer and a
"negative" result.
Group C:  9,900*M patients without breast cancer and a
"positive" result.
Group D:  9,900*(1 - M) patients without breast cancer and a
"negative" result.

The proportion of patients with breast cancer, within the group of
patients with a "positive" result, then equals 100*M / (100*M + 9900*M)
= 100 / (100 + 9900) = 1%.  This holds true regardless of whether M is
80%, 30%, 50%, or 100%.  If we have a mammography* test that
returns "positive" results for 90% of patients with breast cancer and
returns "positive" results for 90% of patients without breast cancer, the
proportion of "positive"-testing patients who have breast cancer will still
equal the original proportion of patients with breast cancer, i.e., 1%.

You can run through the same algebra, replacing the prior proportion of
patients with breast cancer with an arbitrary percentage P:

Group 1:  Within some number of patients, a fraction P have
breast cancer.
Group 2:  Within some number of patients, a fraction (1 - P) do
not have breast cancer.

After a "cancer test" that returns "positive" for a fraction M of patients
with breast cancer, and also returns "positive" for the same fraction M
of patients without cancer:

Group A:  P*M patients have breast cancer and a "positive"
result.
Group B:  P*(1 - M) patients have breast cancer and a
"negative" result.
Group C:  (1 - P)*M patients have no breast cancer and a
"positive" result.
Group D:  (1 - P)*(1 - M) patients have no breast cancer and a
"negative" result.

The chance that a patient with a "positive" result has breast cancer is
then the proportion of group A within the combined group A + C, or P*M
/ [P*M + (1 - P)*M], which, cancelling the common factor M from the
numerator and denominator, is P / [P + (1 - P)] or P / 1 or just P.  If the
rate of false positives is the same as the rate of true positives, you
always have the same probability after the test as when you started.

Which is common sense.  Take, for example, the "test" of flipping a
coin; if the coin comes up heads, does it tell you anything about
whether a patient has breast cancer?  No; the coin has a 50% chance
of coming up heads if the patient has breast cancer, and also a 50%



chance of coming up heads if the patient does not have breast cancer. 
Therefore there is no reason to call either heads or tails a "positive"
result.  It's not the probability being "50/50" that makes the coin a bad
test; it's that the two probabilities, for "cancer patient turns up heads"
and "healthy patient turns up heads", are the same.  If the coin was
slightly biased, so that it had a 60% chance of coming up heads, it still
wouldn't be a cancer test - what makes a coin a poor test is not that it
has a 50/50 chance of coming up heads if the patient has cancer, but
that it also has a 50/50 chance of coming up heads if the patient does
not have cancer.  You can even use a test that comes up "positive" for
cancer patients 100% of the time, and still not learn anything.  An
example of such a test is "Add 2 + 2 and see if the answer is 4."  This
test returns positive 100% of the time for patients with breast cancer.  It
also returns positive 100% of the time for patients without breast
cancer.  So you learn nothing.

The original proportion of patients with breast cancer is known as the
prior probability.  The chance that a patient with breast cancer gets a
positive mammography, and the chance that a patient without breast
cancer gets a positive mammography, are known as the two conditional
probabilities.  Collectively, this initial information is known as the priors. 
The final answer - the estimated probability that a patient has breast
cancer, given that we know she has a positive result on her
mammography - is known as the revised probability or the posterior
probability.  What we've just shown is that if the two conditional
probabilities are equal, the posterior probability equals the prior
probability.

Fun
Fact!

Q.  How can I find the priors for a problem?
A.  Many commonly used priors are listed in the
Handbook of Chemistry and Physics.

Q.  Where do priors originally come from?
A.  Never ask that question.

Q.  Uh huh.  Then where do scientists get
their priors?
A.  Priors for scientific problems are established
by annual vote of the AAAS.  In recent years
the vote has become fractious and
controversial, with widespread acrimony,
factional polarization, and several outright
assassinations.  This may be a front for
infighting within the Bayes Council, or it may be
that the disputants have too much spare time. 
No one is really sure.



Q.  I see.  And where does everyone else get
their priors?
A.  They download their priors from Kazaa.

Q.  What if the priors I want aren't available
on Kazaa?
A.  There's a small, cluttered antique shop in a
back alley of San Francisco's Chinatown.  Don't
ask about the bronze rat.

Actually, priors are true or false just like the final answer - they reflect
reality and can be judged by comparing them against reality.  For
example, if you think that 920 out of 10,000 women in a sample have
breast cancer, and the actual number is 100 out of 10,000, then your
priors are wrong.  For our particular problem, the priors might have
been established by three studies - a study on the case histories of
women with breast cancer to see how many of them tested positive on
a mammography, a study on women without breast cancer to see how
many of them test positive on a mammography, and an epidemiological
study on the prevalence of breast cancer in some specific
demographic.

Suppose that a barrel contains many small plastic eggs.  Some eggs
are painted red and some are painted blue.  40% of the eggs in the bin
contain pearls, and 60% contain nothing.   30% of eggs containing
pearls are painted blue, and 10% of eggs containing nothing are
painted blue.  What is the probability that a blue egg contains a pearl? 
For this example the arithmetic is simple enough that you may be able
to do it in your head, and I would suggest trying to do so.

But just in case... 

(1 + 2) * 3 + 4  Result: 

13  Compute!

A more compact way of specifying the problem:
p(pearl) = 40%
p(blue|pearl) = 30%
p(blue|~pearl) = 10%
p(pearl|blue) = ?

"~" is shorthand for "not", so ~pearl reads "not pearl".

blue|pearl is shorthand for "blue given pearl" or "the probability that
an egg is painted blue, given that the egg contains a pearl".  One thing
that's confusing about this notation is that the order of implication is



read right-to-left, as in Hebrew or Arabic.  blue|pearl means "blue<-
pearl", the degree to which pearl-ness implies blue-ness, not the
degree to which blue-ness implies pearl-ness.  This is confusing, but it's
unfortunately the standard notation in probability theory.

Readers familiar with quantum mechanics will have already
encountered this peculiarity; in quantum mechanics, for example,
<d|c><c|b><b|a> reads as "the probability that a particle at A goes
to B, then to C, ending up at D".  To follow the particle, you move your
eyes from right to left.  Reading from left to right, "|" means "given";
reading from right to left, "|" means "implies" or "leads to".  Thus,
moving your eyes from left to right, blue|pearl reads "blue given
pearl" or "the probability that an egg is painted blue, given that the egg
contains a pearl".  Moving your eyes from right to left, blue|pearl
reads "pearl implies blue" or "the probability that an egg containing a
pearl is painted blue".

The item on the right side is what you already know or the premise, and
the item on the left side is the implication or conclusion.  If we have
p(blue|pearl) = 30%, and we already know that some egg
contains a pearl, then we can conclude there is a 30% chance that the
egg is painted blue.  Thus, the final fact we're looking for - "the chance
that a blue egg contains a pearl" or "the probability that an egg contains
a pearl, if we know the egg is painted blue" - reads p(pearl|blue).

Let's return to the problem.  We have that 40% of the eggs contain
pearls, and 60% of the eggs contain nothing.  30% of the eggs
containing pearls are painted blue, so 12% of the eggs altogether
contain pearls and are painted blue.  10% of the eggs containing
nothing are painted blue, so altogether 6% of the eggs contain nothing
and are painted blue.  A total of 18% of the eggs are painted blue, and
a total of 12% of the eggs are painted blue and contain pearls, so the
chance a blue egg contains a pearl is 12/18 or 2/3 or around 67%.

The applet below, courtesy of Christian Rovner, shows a graphic
representation of this problem:
(Are you having trouble seeing this applet?  Do you see an image of
the applet rather than the applet itself?  Try downloading an updated
Java.)

http://www.java.com/en/index.jsp


Eliezer S. Yudkowsky
"That which can be destroyed by the truth should be." — P.C. Hodgell

Oops!

Looking at this applet, it's easier to see why the final answer depends
on all three probabilities; it's the differential pressure between the two
conditional probabilities,  p(blue|pearl) and p(blue|~pearl),
that slides the prior probability p(pearl) to the posterior probability
p(pearl|blue).

As before, we can see the necessity of all three pieces of information
by considering extreme cases (feel free to type them into the applet). 
In a (large) barrel in which only one egg out of a thousand contains a
pearl, knowing that an egg is painted blue slides the probability from
0.1% to 0.3% (instead of sliding the probability from 40% to 67%). 
Similarly, if 999 out of 1000 eggs contain pearls, knowing that an egg is
blue slides the probability from 99.9% to 99.966%; the probability that
the egg does not contain a pearl goes from 1/1000 to around 1/3000. 
Even when the prior probability changes, the differential pressure of the
two conditional probabilities always slides the probability in the same
direction.  If you learn the egg is painted blue, the probability the egg
contains a pearl always goes up - but it goes up from the prior
probability, so you need to know the prior probability in order to
calculate the final answer.  0.1% goes up to 0.3%, 10% goes up to
25%, 40% goes up to 67%, 80% goes up to 92%, and 99.9% goes up
to 99.966%.  If you're interested in knowing how any other probabilities
slide, you can type your own prior probability into the Java applet.  You
can also click and drag the dividing line between pearl and ~pearl
in the upper bar, and watch the posterior probability change in the
bottom bar.

Studies of clinical reasoning show that most doctors carry out the
mental operation of replacing the original 1% probability with the 80%
probability that a woman with cancer would get a positive
mammography.  Similarly, on the pearl-egg problem, most respondents
unfamiliar with Bayesian reasoning would probably respond that the

https://www.yudkowsky.net/


probability a blue egg contains a pearl is 30%, or perhaps 20% (the
30% chance of a true positive minus the 10% chance of a false
positive).  Even if this mental operation seems like a good idea at the
time, it makes no sense in terms of the question asked.  It's like the
experiment in which you ask a second-grader:  "If eighteen people get
on a bus, and then seven more people get on the bus, how old is the
bus driver?"  Many second-graders will respond:  "Twenty-five."  They
understand when they're being prompted to carry out a particular
mental procedure, but they haven't quite connected the procedure to
reality.  Similarly, to find the probability that a woman with a positive
mammography has breast cancer, it makes no sense whatsoever to
replace the original probability that the woman has cancer with the
probability that a woman with breast cancer gets a positive
mammography.  Neither can you subtract the probability of a false
positive from the probability of the true positive.  These operations are
as wildly irrelevant as adding the number of people on the bus to find
the age of the bus driver.

I keep emphasizing the idea that evidence slides probability because of
research that shows people tend to use spatial intutions to grasp
numbers.  In particular, there's interesting evidence that we have an
innate sense of quantity that's localized to left inferior parietal cortex -
patients with damage to this area can selectively lose their sense of
whether 5 is less than 8, while retaining their ability to read, write, and
so on.  (Yes, really!)  The parietal cortex processes our sense of where
things are in space (roughly speaking), so an innate "number line", or
rather "quantity line", may be responsible for the human sense of
numbers.  This is why I suggest visualizing Bayesian evidence as
sliding the probability along the number line; my hope is that this will
translate Bayesian reasoning into something that makes sense to
innate human brainware.  (That, really, is what an "intuitive explanation"
is.)  For more information, see Stanislas Dehaene's The Number
Sense.

A study by Gigerenzer and Hoffrage in 1995 showed that some ways of
phrasing story problems are much more evocative of correct Bayesian
reasoning.  The least evocative phrasing used probabilities.  A slightly
more evocative phrasing used frequencies instead of probabilities; the
problem remained the same, but instead of saying that 1% of women
had breast cancer, one would say that 1 out of 100 women had breast
cancer, that 80 out of 100 women with breast cancer would get a
positive mammography, and so on.  Why did a higher proportion of
subjects display Bayesian reasoning on this problem?  Probably
because saying "1 out of 100 women" encourages you to concretely
visualize X women with cancer, leading you to visualize X women with



cancer and a positive mammography, etc.

The most effective presentation found so far is what's known as natural
frequencies - saying that 40 out of 100 eggs contain pearls, 12 out of
40 eggs containing pearls are painted blue, and 6 out of 60 eggs
containing nothing are painted blue.  A natural frequencies presentation
is one in which the information about the prior probability is included in
presenting the conditional probabilities.  If you were just learning about
the eggs' conditional probabilities through natural experimentation, you
would - in the course of cracking open a hundred eggs - crack open
around 40 eggs containing pearls, of which 12 eggs would be painted
blue, while cracking open 60 eggs containing nothing, of which about 6
would be painted blue.  In the course of learning the conditional
probabilities, you'd see examples of blue eggs containing pearls about
twice as often as you saw examples of blue eggs containing nothing.

It may seem like presenting the problem in this way is "cheating", and
indeed if it were a story problem in a math book, it probably would be
cheating.  However, if you're talking about real doctors, you want to
cheat; you want the doctors to draw the right conclusions as easily as
possible.  The obvious next move would be to present all medical
statistics in terms of natural frequencies.  Unfortunately, while natural
frequencies are a step in the right direction, it probably won't be
enough.  When problems are presented in natural frequences, the
proportion of people using Bayesian reasoning rises to around half.  A
big improvement, but not big enough when you're talking about real
doctors and real patients.

A presentation of the problem in natural frequencies might be visualized
like this:

Eliezer S. Yudkowsky
"That which can be destroyed by the truth should be." — P.C. Hodgell

Oops!

In the frequency visualization, the selective attrition of the two
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conditional probabilities changes the proportion of eggs that contain
pearls.  The bottom bar is shorter than the top bar, just as the number
of eggs painted blue is less than the total number of eggs.  The
probability graph shown earlier is really just the frequency graph with
the bottom bar "renormalized", stretched out to the same length as the
top bar.  In the frequency applet you can change the conditional
probabilities by clicking and dragging the left and right edges of the
graph.  (For example, to change the conditional probability
blue|pearl, click and drag the line on the left that stretches from the
left edge of the top bar to the left edge of the bottom bar.)

In the probability applet, you can see that when the conditional
probabilities are equal, there's no differential pressure - the arrows are
the same size - so the prior probability doesn't slide between the top
bar and the bottom bar.  But the bottom bar in the probability applet is
just a renormalized (stretched out) version of the bottom bar in the
frequency applet, and the frequency applet shows why the probability
doesn't slide if the two conditional probabilities are equal.  Here's a
case where the prior proportion of pearls remains 40%, and the
proportion of pearl eggs painted blue remains 30%, but the number of
empty eggs painted blue is also 30%:

Eliezer S. Yudkowsky
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Oops!

If you diminish two shapes by the same factor, their relative proportion
will be the same as before.  If you diminish the left section of the top
bar by the same factor as the right section, then the bottom bar will
have the same proportions as the top bar - it'll just be smaller.  If the
two conditional probabilities are equal, learning that the egg is blue
doesn't change the probability that the egg contains a pearl - for the
same reason that similar triangles have identical angles; geometric
figures don't change shape when you shrink them by a constant factor.

In this case, you might as well just say that 30% of eggs are painted
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blue, since the probability of an egg being painted blue is independent
of whether the egg contains a pearl.  Applying a "test" that is
statistically independent of its condition just shrinks the sample size.  In
this case, requiring that the egg be painted blue doesn't shrink the
group of eggs with pearls any more or less than it shrinks the group of
eggs without pearls.  It just shrinks the total number of eggs in the
sample.

Fun
Fact!

Q.  Why did the Bayesian reasoner cross the road?
A.  You need more information to answer this question.

Here's what the original medical problem looks like when graphed.  1%
of women have breast cancer, 80% of those women test positive on a
mammography, and 9.6% of women without breast cancer also receive
positive mammographies.

Eliezer S. Yudkowsky
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Oops!

As is now clearly visible, the mammography doesn't increase the
probability a positive-testing woman has breast cancer by increasing
the number of women with breast cancer - of course not; if
mammography increased the number of women with breast cancer, no
one would ever take the test!  However, requiring a positive
mammography is a membership test that eliminates many more women
without breast cancer than women with cancer.  The number of women
without breast cancer diminishes by a factor of more than ten, from
9,900 to 950, while the number of women with breast cancer is
diminished only from 100 to 80.  Thus, the proportion of 80 within 1,030
is much larger than the proportion of 100 within 10,000.  In the graph,
the left sector (representing women with breast cancer) is small, but the
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mammography test projects almost all of this sector into the bottom
bar.  The right sector (representing women without breast cancer) is
large, but the mammography test projects a much smaller fraction of
this sector into the bottom bar.  There are, indeed, fewer women with
breast cancer and positive mammographies than there are women with
breast cancer - obeying the law of probabilities which requires that
p(A) >= p(A&B).  But even though the left sector in the bottom bar is
actually slightly smaller, the proportion of the left sector within the
bottom bar is greater - though still not very great.  If the bottom bar
were renormalized to the same length as the top bar, it would look like
the left sector had expanded.  This is why the proportion of "women
with breast cancer" in the group "women with positive mammographies"
is higher than the proportion of "women with breast cancer" in the
general population - although the proportion is still not very high.  The
evidence of the positive mammography slides the prior probability of
1% to the posterior probability of 7.8%.

Suppose there's yet another variant of the mammography test,
mammography@, which behaves as follows.  1% of women in a certain
demographic have breast cancer.  Like ordinary mammography,
mammography@ returns positive 9.6% of the time for women without
breast cancer.  However, mammography@ returns positive 0% of the
time (say, once in a billion) for women with breast cancer.  The graph
for this scenario looks like this:

Eliezer S. Yudkowsky
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Oops!

What is it that this test actually does?  If a patient comes to you with a
positive result on her mammography@, what do you say?
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"Congratulations, you're among the rare 9.5% of the population whose
health is definitely established by this test."

Mammography@ isn't a cancer test; it's a health test!  Few women
without breast cancer get positive results on mammography@, but only
women without breast cancer ever get positive results at all.  Not much
of the right sector of the top bar projects into the bottom bar, but none
of the left sector projects into the bottom bar.  So a positive result on
mammography@ means you definitely don't have breast cancer.

What makes ordinary mammography a positive indicator for breast
cancer is not that someone named the result "positive", but rather that
the test result stands in a specific Bayesian relation to the condition of
breast cancer.  You could call the same result "positive" or "negative" or
"blue" or "red" or "James Rutherford", or give it no name at all, and the
test result would still slide the probability in exactly the same way.  To
minimize confusion, a test result which slides the probability of breast
cancer upward should be called "positive".  A test result which slides
the probability of breast cancer downward should be called "negative". 
If the test result is statistically unrelated to the presence or absence of
breast cancer - if the two conditional probabilities are equal - then we
shouldn't call the procedure a "cancer test"!  The meaning of the test is
determined by the two conditional probabilities; any names attached to
the results are simply convenient labels.

Eliezer S. Yudkowsky
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Oops!

The bottom bar for the graph of mammography@ is small;
mammography@ is a test that's only rarely useful.  Or rather, the test
only rarely gives strong evidence, and most of the time gives weak
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evidence.  A negative result on mammography@ does slide probability
- it just doesn't slide it very far.  Click the "Result" switch at the bottom
left corner of the applet to see what a negative result on
mammography@ would imply.  You might intuit that since the test could
have returned positive for health, but didn't, then the failure of the test
to return positive must mean that the woman has a higher chance of
having breast cancer - that her probability of having breast cancer must
be slid upward by the negative result on her health test.

This intuition is correct!  The sum of the groups with negative results
and positive results must always equal the group of all women.  If the
positive-testing group has "more than its fair share" of women without
breast cancer, there must be an at least slightly higher proportion of
women with cancer in the negative-testing group.  A positive result is
rare but very strong evidence in one direction, while a negative result is
common but very weak evidence in the opposite direction.  You might
call this the Law of Conservation of Probability - not a standard term,
but the conservation rule is exact.  If you take the revised probability of
breast cancer after a positive result, times the probability of a positive
result, and add that to the revised probability of breast cancer after a
negative result, times the probability of a negative result, then you must
always arrive at the prior probability.  If you don't yet know what the test
result is, the expected revised probability after the test result arrives -
taking both possible results into account - should always equal the prior
probability.

On ordinary mammography, the test is expected to return "positive"
10.3% of the time - 80 positive women with cancer plus 950 positive
women without cancer equals 1030 women with positive results. 
Conversely, the mammography should return negative 89.7% of the
time:  100% - 10.3% = 89.7%.  A positive result slides the revised
probability from 1% to 7.8%, while a negative result slides the revised
probability from 1% to 0.22%.  So
p(cancer|positive)*p(positive) +
p(cancer|negative)*p(negative) = 7.8%*10.3% +
0.22%*89.7% = 1% = p(cancer), as expected.

Calculator: 

7.8%*10.3% + 0.22%*89.7%  Result: 

 Compute!

Why "as expected"?  Let's take a look at the quantities involved:

p(cancer): 0.01   Group 1: 100 women with
breast cancer

Group 2: 9900 women without



p(~cancer): 0.99 breast cancer

 

p(positive|cancer): 80.0% 80% of women with breast
cancer have positive
mammographies

p(~positive|cancer): 20.0% 20% of women with breast
cancer have negative
mammographies

p(positive|~cancer): 9.6% 9.6% of women without breast
cancer have positive
mammographies

p(~positive|~cancer): 90.4% 90.4% of women without
breast cancer have negative
mammographies

 

p(cancer&positive): 0.008 Group A:  80 women with
breast cancer and positive
mammographies

p(cancer&~positive): 0.002 Group B: 20 women with
breast cancer and negative
mammographies

p(~cancer&positive): 0.095 Group C: 950 women without
breast cancer and positive
mammographies

p(~cancer&~positive): 0.895 Group D: 8950 women without
breast cancer and negative
mammographies

 

p(positive): 0.103 1030 women with positive
results

p(~positive): 0.897 8970 women with negative
results

 

p(cancer|positive): 7.80% Chance you have breast
cancer if mammography is
positive: 7.8%

p(~cancer|positive): 92.20% Chance you are healthy if
mammography is positive:
92.2%

p(cancer|~positive): 0.22% Chance you have breast
cancer if mammography is
negative: 0.22%

p(~cancer|~positive): 99.78% Chance you are healthy if
mammography is negative:
99.78%



One of the common confusions in using Bayesian reasoning is to mix
up some or all of these quantities - which, as you can see, are all
numerically different and have different meanings.  p(A&B) is the same
as p(B&A), but p(A|B) is not the same thing as p(B|A), and p(A&B)
is completely different from p(A|B).  (I don't know who chose the
symmetrical "|" symbol to mean "implies", and then made the
direction of implication right-to-left, but it was probably a bad idea.)

To get acquainted with all these quantities and the relationships
between them, we'll play "follow the degrees of freedom".  For example,
the two quantities p(cancer) and p(~cancer) have 1 degree of
freedom between them, because of the general law p(A) + p(~A) =
1.  If you know that p(~cancer) = .99, you can obtain p(cancer)
= 1 - p(~cancer) = .01.  There's no room to say that
p(~cancer) = .99 and then also specify p(cancer) = .25; it
would violate the rule p(A) + p(~A) = 1.

p(positive|cancer) and p(~positive|cancer) also have only
one degree of freedom between them; either a woman with breast
cancer gets a positive mammography or she doesn't.  On the other
hand, p(positive|cancer) and p(positive|~cancer) have two
degrees of freedom.  You can have a mammography test that returns
positive for 80% of cancerous patients and 9.6% of healthy patients, or
that returns positive for 70% of cancerous patients and 2% of healthy
patients, or even a health test that returns "positive" for 30% of
cancerous patients and 92% of healthy patients.  The two quantities,
the output of the mammography test for cancerous patients and the
output of the mammography test for healthy patients, are in
mathematical terms independent; one cannot be obtained from the
other in any way, and so they have two degrees of freedom between
them.

What about p(positive&cancer), p(positive|cancer), and
p(cancer)?  Here we have three quantities; how many degrees of
freedom are there?  In this case the equation that must hold is
p(positive&cancer) = p(positive|cancer) * p(cancer). 
This equality reduces the degrees of freedom by one.  If we know the
fraction of patients with cancer, and chance that a cancerous patient
has a positive mammography, we can deduce the fraction of patients
who have breast cancer and a positive mammography by multiplying. 
You should recognize this operation from the graph; it's the projection
of the top bar into the bottom bar.  p(cancer) is the left sector of the
top bar, and p(positive|cancer) determines how much of that
sector projects into the bottom bar, and the left sector of the bottom bar
is p(positive&cancer).
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Oops!

Similarly, if we know the number of patients with breast cancer and
positive mammographies, and also the number of patients with breast
cancer, we can estimate the chance that a woman with breast cancer
gets a positive mammography by dividing: p(positive|cancer) =
p(positive&cancer) / p(cancer).  In fact, this is exactly how
such medical diagnostic tests are calibrated; you do a study on 8,520
women with breast cancer and see that there are 6,816 (or
thereabouts) women with breast cancer andpositive mammographies,
then divide 6,816 by 8520 to find that 80% of women with breast cancer
had positive mammographies.  (Incidentally, if you accidentally divide
8520 by 6,816 instead of the other way around, your calculations will
start doing strange things, such as insisting that 125% of women with
breast cancer and positive mammographies have breast cancer.  This
is a common mistake in carrying out Bayesian arithmetic, in my
experience.)  And finally, if you know p(positive&cancer) and
p(positive|cancer), you can deduce how many cancer patients
there must have been originally.  There are two degrees of freedom
shared out among the three quantities; if we know any two, we can
deduce the third.

How about p(positive), p(positive&cancer), and
p(positive&~cancer)?  Again there are only two degrees of
freedom among these three variables.  The equation occupying the
extra degree of freedom is p(positive) = p(positive&cancer)
+ p(positive&~cancer).  This is how p(positive) is computed
to begin with; we figure out the number of women with breast cancer
who have positive mammographies, and the number of women without
breast cancer who have positive mammographies, then add them
together to get the total number of women with positive
mammographies.  It would be very strange to go out and conduct a
study to determine the number of women with positive mammographies
- just that one number and nothing else - but in theory you could do so. 
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And if you then conducted another study and found the number of
those women who had positive mammographies and breast cancer,
you would also know the number of women with positive
mammographies and no breast cancer - either a woman with a positive
mammography has breast cancer or she doesn't.  In general, p(A&B)
+ p(A&~B) = p(A).  Symmetrically, p(A&B) + p(~A&B) = p(B).
 
What about p(positive&cancer), p(positive&~cancer),
p(~positive&cancer), and p(~positive&~cancer)?  You might
at first be tempted to think that there are only two degrees of freedom
for these four quantities - that you can, for example, get
p(positive&~cancer) by multiplying p(positive) *
p(~cancer), and thus that all four quantities can be found given only
the two quantities p(positive) and p(cancer).  This is not the
case!  p(positive&~cancer) = p(positive) * p(~cancer)
only if the two probabilities are statistically independent - if the chance
that a woman has breast cancer has no bearing on whether she has a
positive mammography.  As you'll recall, this amounts to requiring that
the two conditional probabilities be equal to each other - a requirement
which would eliminate one degree of freedom.  If you remember that
these four quantities are the groups A, B, C, and D, you can look over
those four groups and realize that, in theory, you can put any number of
people into the four groups.  If you start with a group of 80 women with
breast cancer and positive mammographies, there's no reason why you
can't add another group of 500 women with breast cancer and negative
mammographies, followed by a group of 3 women without breast
cancer and negative mammographies, and so on.  So now it seems like
the four quantities have four degrees of freedom.  And they would,
except that in expressing them as probabilities, we need to normalize
them to fractions of the complete group, which adds the constraint that
p(positive&cancer) + p(positive&~cancer) +
p(~positive&cancer) + p(~positive&~cancer) = 1.  This
equation takes up one degree of freedom, leaving three degrees of
freedom among the four quantities.  If you specify the fractions of
women in groups A, B, and D, you can deduce the fraction of women in
group C.

Given the four groups A, B, C, and D, it is very straightforward to
compute everything else:  p(cancer) = A + B,
p(~positive|cancer) = B / (A + B), and so on.  Since ABCD
contains three degrees of freedom, it follows that the entire set of 16
probabilities contains only three degrees of freedom.  Remember that
in our problems we always needed three pieces of information - the
prior probability and the two conditional probabilities - which, indeed,
have three degrees of freedom among them.  Actually, for Bayesian
problems, any three quantities with three degrees of freedom between



them should logically specify the entire problem.  For example, let's
take a barrel of eggs with p(blue) = 0.40,  p(blue|pearl) =
5/13, and p(~blue&~pearl) = 0.20.  Given this information, you
can compute p(pearl|blue). 

As a story problem:
Suppose you have a large barrel containing a number of plastic eggs. 
Some eggs contain pearls, the rest contain nothing.  Some eggs are
painted blue, the rest are painted red.  Suppose that 40% of the eggs
are painted blue, 5/13 of the eggs containing pearls are painted blue,
and 20% of the eggs are both empty and painted red.  What is the
probability that an egg painted blue contains a pearl?

Try it - I assure you it is possible.

Calculator: 

0  Result: 

 Good luck!

You probably shouldn't try to solve this with just a Javascript calculator,
though.  I used a Python console.  (In theory, pencil and paper should
also work, but I don't know anyone who owns a pencil so I couldn't try it
personally.)

As a check on your calculations, does the (meaningless) quantity
p(~pearl|~blue)/p(pearl) roughly equal .51?  (In story problem
terms:  The likelihood that a red egg is empty, divided by the likelihood
that an egg contains a pearl, equals approximately .51.)  Of course,
using this information in the problem would be cheating.

If you can solve that problem, then when we revisit Conservation of
Probability, it seems perfectly straightforward.  Of course the mean
revised probability, after administering the test, must be the same as
the prior probability.  Of course strong but rare evidence in one
direction must be counterbalanced by common but weak evidence in
the other direction.

Because:

  p(cancer|positive)*p(positive)
+ p(cancer|~positive)*p(~positive)
= p(cancer)

In terms of the four groups:

p(cancer|positive)  = A / (A + C)
p(positive)         = A + C
p(cancer&positive)  = A



p(cancer|~positive) = B / (B + D)
p(~positive)        = B + D
p(cancer&~positive) = B
p(cancer)           = A + B

Let's return to the original barrel of eggs - 40% of the eggs containing
pearls, 30% of the pearl eggs painted blue, 10% of the empty eggs
painted blue.  The graph for this problem is:

Eliezer S. Yudkowsky
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Oops!

What happens to the revised probability, p(pearl|blue), if the
proportion of eggs containing pearls is kept constant, but 60% of the
eggs with pearls are painted blue (instead of 30%), and 20% of the
empty eggs are painted blue (instead of 10%)?  You could type 60%
and 20% into the inputs for the two conditional probabilities, and see
how the graph changes - but can you figure out in advance what the
change will look like?

If you guessed that the revised probability remains the same, because
the bottom bar grows by a factor of 2 but retains the same proportions,
congratulations!  Take a moment to think about how far you've come. 
Looking at a problem like

1% of women have breast cancer.  80% of women with breast
cancer get positive mammographies.  9.6% of women without
breast cancer get positive mammographies.  If a woman has a
positive mammography, what is the probability she has breast
cancer?
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the vast majority of respondents intuit that around 70-80% of women
with positive mammographies have breast cancer.  Now, looking at a
problem like

Suppose there are two barrels containing many small plastic
eggs.  In both barrels, some eggs are painted blue and the rest
are painted red.  In both barrels, 40% of the eggs contain pearls
and the rest are empty.  In the first barrel, 30% of the pearl eggs
are painted blue, and 10% of the empty eggs are painted blue. 
In the second barrel, 60% of the pearl eggs are painted blue,
and 20% of the empty eggs are painted blue.  Would you rather
have a blue egg from the first or second barrel?

you can see it's intuitively obvious that the probability of a blue egg
containing a pearl is the same for either barrel.  Imagine how hard it
would be to see that using the old way of thinking!

It's intuitively obvious, but how to prove it?  Suppose that we call P the
prior probability that an egg contains a pearl, that we call M the first
conditional probability (that a pearl egg is painted blue), and N the
second conditional probability (that an empty egg is painted blue). 
Suppose that M and N are both increased or diminished by an arbitrary
factor X - for example, in the problem above, they are both increased
by a factor of 2.  Does the revised probability that an egg contains a
pearl, given that we know the egg is blue, stay the same?

p(pearl) = P
p(blue|pearl) = M*X
p(blue|~pearl) = N*X
p(pearl|blue) = ?

From these quantities, we get the four groups:
Group A:  p(pearl&blue)   = P*M*X
Group B:  p(pearl&~blue)  = P*(1 - (M*X))
Group C:  p(~pearl&blue)  = (1 - P)*N*X
Group D:  p(~pearl&~blue) = (1 - P)*(1 - (N*X))

The proportion of eggs that contain pearls and are blue, within the
group of all blue eggs, is then the proportion of group (A) within the
group (A + C), equalling P*M*X / (P*M*X + (1 - P)*N*X).  The
factor X in the numerator and denominator cancels out, so increasing
or diminishing both conditional probabilities by a constant factor doesn't
change the revised probability.

Fun
Fact!

Q.  Suppose that there are two barrels, each
containing a number of plastic eggs.  In both



barrels, some eggs are painted blue and the
rest are painted red.  In the first barrel, 90%
of the eggs contain pearls and 20% of the
pearl eggs are painted blue.  In the second
barrel, 45% of the eggs contain pearls and
60% of the empty eggs are painted red. 
Would you rather have a blue pearl egg from
the first or second barrel?
A.  Actually, it doesn't matter which barrel you
choose!  Can you see why?

The probability that a test gives a true positive divided by the probability
that a test gives a false positive is known as the likelihood ratio of that
test.  Does the likelihood ratio of a medical test sum up everything there
is to know about the usefulness of the test?

No, it does not!  The likelihood ratio sums up everything there is to
know about the meaning of a positive result on the medical test, but the
meaning of a negative result on the test is not specified, nor is the
frequency with which the test is useful.  If we examine the algebra
above, while p(pearl|blue) remains constant, p(pearl|~blue)
may change - the X does not cancel out.  As a story problem, this
strange fact would look something like this:

Suppose that there are two barrels, each containing a number of
plastic eggs.  In both barrels, 40% of the eggs contain pearls
and the rest contain nothing.  In both barrels, some eggs are
painted blue and the rest are painted red.  In the first barrel, 30%
of the eggs with pearls are painted blue, and 10% of the empty
eggs are painted blue.  In the second barrel, 90% of the eggs
with pearls are painted blue, and 30% of the empty eggs are
painted blue.  Would you rather have a blue egg from the first or
second barrel?  Would you rather have a red egg from the first
or second barrel?

For the first question, the answer is that we don't care whether we get
the blue egg from the first or second barrel.  For the second question,
however, the probabilities do change - in the first barrel, 34% of the red
eggs contain pearls, while in the second barrel 8.7% of the red eggs
contain pearls!  Thus, we should prefer to get a red egg from the first
barrel.  In the first barrel, 70% of the pearl eggs are painted red, and
90% of the empty eggs are painted red.  In the second barrel, 10% of
the pearl eggs are painted red, and 70% of the empty eggs are painted
red.

Calculator: 



70%*40% / (70%*40% + 90%*60%)  Result: 

0.3414  Compute!

What goes on here?  We start out by noting that, counter to intuition,
p(pearl|blue) and p(pearl|~blue) have two degrees of freedom
among them even when p(pearl) is fixed - so there's no reason why
one quantity shouldn't change while the other remains constant.  But
we didn't we just get through establishing a law for "Conservation of
Probability", which says that p(pearl|blue)*p(blue) +
p(pearl|~blue)*p(~blue) = p(pearl)?  Doesn't this equation
take up one degree of freedom?  No, because p(blue) isn't fixed
between the two problems.  In the second barrel, the proportion of blue
eggs containing pearls is the same as in the first barrel, but a much
larger fraction of eggs are painted blue!  This alters the set of red eggs
in such a way that the proportions do change.  Here's a graph for the
red eggs in the second barrel:
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Oops!

Let's return to the example of a medical test.  The likelihood ratio of a
medical test - the number of true positives divided by the number of
false positives - tells us everything there is to know about the meaning
of a positive result.  But it doesn't tell us the meaning of a negative
result, and it doesn't tell us how often the test is useful.  For example, a
mammography with a hit rate of 80% for patients with breast cancer
and a false positive rate of 9.6% for healthy patients has the same
likelihood ratio as a test with an 8% hit rate and a false positive rate of
0.96%.  Although these two tests have the same likelihood ratio, the
first test is more useful in every way - it detects disease more often,
and a negative result is stronger evidence of health.

The likelihood ratio for a positive result summarizes the differential
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pressure of the two conditional probabilities for a positive result, and
thus summarizes how much a positive result will slide the prior
probability.  Take a probability graph, like this one:
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Oops!

The likelihood ratio of the mammography is what determines the slant
of the line.  If the prior probability is 1%, then knowing only the
likelihood ratio is enough to determine the posterior probability after a
positive result.

But, as you can see from the frequency graph, the likelihood ratio
doesn't tell the whole story - in the frequency graph, the proportions of
the bottom bar can stay fixed while the size of the bottom bar
changes.  p(blue) increases but p(pearl|blue) doesn't change,
because p(pearl&blue) and p(~pearl&blue) increase by the
same factor.  But when you flip the graph to look at p(~blue), the
proportions of p(pearl&~blue) and p(~pearl&~blue) do not
remain constant.

Of course the likelihood ratio can't tell the whole story; the likelihood
ratio and the prior probability together are only two numbers, while the
problem has three degrees of freedom.

Suppose that you apply two tests for breast cancer in succession - say,
a standard mammography and also some other test which is
independent of mammography.  Since I don't know of any such test
which is independent of mammography, I'll invent one for the purpose
of this problem, and call it the Tams-Braylor Division Test, which checks
to see if any cells are dividing more rapidly than other cells.  We'll
suppose that the Tams-Braylor gives a true positive for 90% of patients
with breast cancer, and gives a false positive for 5% of patients without
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cancer.  Let's say the prior prevalence of breast cancer is 1%.  If a
patient gets a positive result on her mammography and her Tams-
Braylor, what is the revised probability she has breast cancer?

One way to solve this problem would be to take the revised probability
for a positive mammography, which we already calculated as 7.8%, and
plug that into the Tams-Braylor test as the new prior probability.  If we
do this, we find that the result comes out to 60%.

Calculator: 

(1 + 2) * 3 + 4  Result: 

 Compute!

But this assumes that first we see the positive mammography result,
and then the positive result on the Tams-Braylor.  What if first the
woman gets a positive result on the Tams-Braylor, followed by a
positive result on her mammography.  Intuitively, it seems like it
shouldn't matter.  Does the math check out?

First we'll administer the Tams-Braylor to a woman with a 1% prior
probability of breast cancer.  

Calculator: 

(1 + 2) * 3 + 4  Result: 

 Compute!

Then we administer a mammography, which gives 80% true positives
and 9.6% false positives, and it also comes out positive.

Calculator: 

(1 + 2) * 3 + 4  Result: 

 Compute!

Lo and behold, the answer is again 60%.  (If it's not exactly the same,
it's due to rounding error - you can get a more precise calculator, or
work out the fractions by hand, and the numbers will be exactly equal.)

An algebraic proof that both strategies are equivalent is left to the
reader.  To visualize, imagine that the lower bar of the frequency applet
for mammography projects an even lower bar using the probabilities of
the Tams-Braylor Test, and that the final lowest bar is the same
regardless of the order in which the conditional probabilities are
projected.

We might also reason that since the two tests are independent, the
probability a woman with breast cancer gets a positive mammography
and a positive Tams-Braylor is 90% * 80% = 72%.  And the probability



that a woman without breast cancer gets false positives on
mammography and Tams-Braylor is 5% * 9.6% = 0.48%.  So if we wrap
it all up as a single test with a likelihood ratio of 72%/0.48%, and apply
it to a woman with a 1% prior probability of breast cancer:

Calculator: 

(1 + 2) * 3 + 4  Result: 

 Compute!

...we find once again that the answer is 60%.

Suppose that the prior prevalence of breast cancer in a demographic is
1%.  Suppose that we, as doctors, have a repertoire of three
independent tests for breast cancer.  Our first test, test A, a
mammography, has a likelihood ratio of 80%/9.6% = 8.33.  The second
test, test B, has a likelihood ratio of 18.0 (for example, from 90% versus
5%); and the third test, test C, has a likelihood ratio of 3.5 (which could
be from 70% versus 20%, or from 35% versus 10%; it makes no
difference).  Suppose a patient gets a positive result on all three tests. 
What is the probability the patient has breast cancer?

Here's a fun trick for simplifying the bookkeeping.  If the prior
prevalence of breast cancer in a demographic is 1%, then 1 out of 100
women have breast cancer, and 99 out of 100 women do not have
breast cancer.  So if we rewrite the probability of 1% as an odds ratio,
the odds are:

1:99

And the likelihood ratios of the three tests A, B, and C are:

8.33:1 = 25:3
18.0:1 = 18:1
 3.5:1 =  7:2

The odds for women with breast cancer who score positive on all three
tests, versus women without breast cancer who score positive on all
three tests, will equal:

1*25*18*7:99*3*1*2 =
3,150:594

To recover the probability from the odds, we just write:
3,150 / (3,150 + 594) = 84%

This always works regardless of how the odds ratios are written; i.e.,
8.33:1 is just the same as 25:3 or 75:9.  It doesn't matter in what order
the tests are administered, or in what order the results are computed. 



The proof is left as an exercise for the reader.

E. T. Jaynes, in "Probability Theory With Applications in Science and
Engineering", suggests that credibility and evidence should be
measured in decibels.

Decibels?

Decibels are used for measuring exponential differences of intensity. 
For example, if the sound from an automobile horn carries 10,000 times
as much energy (per square meter per second) as the sound from an
alarm clock, the automobile horn would be 40 decibels louder.  The
sound of a bird singing might carry 1,000 times less energy than an
alarm clock, and hence would be 30 decibels softer.  To get the number
of decibels, you take the logarithm base 10 and multiply by 10.

decibels = 10 log10 (intensity)
    or

intensity = 10(decibels/10)

Suppose we start with a prior probability of 1% that a woman has
breast cancer, corresponding to an odds ratio of 1:99.  And then we
administer three tests of likelihood ratios 25:3, 18:1, and 7:2.  You could
multiply those numbers... or you could just add their logarithms:

10 log10 (1/99) = -20
10 log10 (25/3) = 9
10 log10 (18/1) = 13
10 log10 (7/2)  = 5

It starts out as fairly unlikely that a woman has breast cancer - our
credibility level is at -20 decibels.  Then three test results come in,
corresponding to 9, 13, and 5 decibels of evidence.  This raises the
credibility level by a total of 27 decibels, meaning that the prior
credibility of -20 decibels goes to a posterior credibility of 7 decibels. 
So the odds go from 1:99 to 5:1, and the probability goes from 1% to
around 83%.

In front of you is a bookbag containing 1,000 poker chips.  I
started out with two such bookbags, one containing 700 red and
300 blue chips, the other containing 300 red and 700 blue.  I
flipped a fair coin to determine which bookbag to use, so your
prior probability that the bookbag in front of you is the red
bookbag is 50%.  Now, you sample randomly, with replacement



after each chip.  In 12 samples, you get 8 reds and 4 blues. 
What is the probability that this is the predominantly red bag?

Just for fun, try and work this one out in your head.  You don't need to
be exact - a rough estimate is good enough.  When you're ready,
continue onward.

According to a study performed by Lawrence Phillips and Ward
Edwards in 1966, most people, faced with this problem, give an answer
in the range 70% to 80%.  Did you give a substantially higher
probability than that?  If you did, congratulations - Ward Edwards wrote
that very seldom does a person answer this question properly, even if
the person is relatively familiar with Bayesian reasoning.  The correct
answer is 97%.

The likelihood ratio for the test result "red chip" is 7/3, while the
likelihood ratio for the test result "blue chip" is 3/7.  Therefore a blue
chip is exactly the same amount of evidence as a red chip, just in the
other direction - a red chip is 3.6 decibels of evidence for the red bag,
and a blue chip is -3.6 decibels of evidence.  If you draw one blue chip
and one red chip, they cancel out.  So the ratio of red chips to blue
chips does not matter; only the excess of red chips over blue chips
matters.  There were eight red chips and four blue chips in twelve
samples; therefore, four more red chips than blue chips.  Thus the
posterior odds will be:

74:34 = 2401:81
which is around 30:1, i.e., around 97%.

The prior credibility starts at 0 decibels and there's a total of around 14
decibels of evidence, and indeed this corresponds to odds of around
25:1 or around 96%.  Again, there's some rounding error, but if you
performed the operations using exact arithmetic, the results would be
identical.

We can now see intuitively that the bookbag problem would have
exactly the same answer, obtained in just the same way, if sixteen
chips were sampled and we found ten red chips and six blue chips.

You are a mechanic for gizmos.  When a gizmo stops working, it
is due to a blocked hose 30% of the time.  If a gizmo's hose is
blocked, there is a 45% probability that prodding the gizmo will
produce sparks.  If a gizmo's hose is unblocked, there is only a
5% chance that prodding the gizmo will produce sparks.  A



customer brings you a malfunctioning gizmo.  You prod the
gizmo and find that it produces sparks.  What is the probability
that a spark-producing gizmo has a blocked hose?

Calculator: 

0  Result: 

 Compute!

What is the sequence of arithmetical operations that you performed to
solve this problem?

(45%*30%) / (45%*30% + 5%*70%)

Eliezer S. Yudkowsky
"That which can be destroyed by the truth should be." — P.C. Hodgell

Oops!

Similarly, to find the chance that a woman with positive mammography
has breast cancer, we computed:

p(positive|cancer)*p(cancer)
_______________________________________________

p(positive|cancer)*p(cancer) +
p(positive|~cancer)*p(~cancer)

    which is
p(positive&cancer) / [p(positive&cancer) +
p(positive&~cancer)]
    which is
p(positive&cancer) / p(positive)
    which is
p(cancer|positive)

The fully general form of this calculation is known as Bayes' Theorem
or Bayes' Rule:
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p(A|X) =
        p(X|A)*p(A)        

  p(X|A)*p(A) + p(X|~A)*p(~A)

Given some phenomenon A that we want to investigate, and an
observation X that is evidence about A - for example, in the previous
example, A is breast cancer and X is a positive mammography - Bayes'
Theorem tells us how we should update our probability of A, given the
new evidence X.

Eliezer S. Yudkowsky
"That which can be destroyed by the truth should be." — P.C. Hodgell

Oops!

By this point, Bayes' Theorem may seem blatantly obvious or even
tautological, rather than exciting and new.  If so, this introduction has
entirely succeeded in its purpose.

Fun
Fact!

Q.  Who originally discovered Bayes'
Theorem?
A.  The Reverend Thomas Bayes, by far the
most enigmatic figure in mathematical history. 
Almost nothing is known of Bayes's life, and
very few of his manuscripts survived.  Thomas
Bayes was born in 1701 or 1702 to Joshua
Bayes and Ann Carpenter, and his date of
death is listed as 1761.  The exact date of
Thomas Bayes's birth is not known for certain
because Joshua Bayes, though a surprisingly
wealthy man, was a member of an unusual,
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esoteric, and even heretical religious sect, the
"Nonconformists".  The Nonconformists kept
their birth registers secret, supposedly from fear
of religious discrimination; whatever the reason,
no true record exists of Thomas Bayes's birth. 
Thomas Bayes was raised a Nonconformist and
was soon promoted into the higher ranks of the
Nonconformist theosophers, whence comes the
"Reverend" in his name.

In 1742 Bayes was elected a Fellow of the
Royal Society of London, the most prestigious
scientific body of its day, despite Bayes having
published no scientific or mathematical works at
that time.  Bayes's nomination certificate was
signed by sponsors including the President and
the Secretary of the Society, making his election
almost certain.  Even today, however, it remains
a mystery why such weighty names sponsored
an unknown into the Royal Society.

Bayes's sole publication during his known
lifetime was allegedly a mystical book entitled
Divine Benevolence, laying forth the original
causation and ultimate purpose of the
universe.  The book is commonly attributed to
Bayes, though it is said that no author appeared
on the title page, and the entire work is
sometimes considered to be of dubious
provenance.

Most mysterious of all, Bayes' Theorem itself
appears in a Bayes manuscript presented to the
Royal Society of London in 1764, three years
after Bayes's supposed death in 1761!

Despite the shocking circumstances of its
presentation, Bayes' Theorem was soon
forgotten, and was popularized within the
scientific community only by the later efforts of
the great mathematician Pierre-Simon Laplace. 
Laplace himself is almost as enigmatic as
Bayes; we don't even know whether it was
"Pierre" or "Simon" that was his actual first
name.  Laplace's papers are said to have
contained a design for an AI capable of
predicting all future events, the so-called
"Laplacian superintelligence".  While it is



generally believed that Laplace never tried to
implement his design, there remains the fact
that Laplace presciently fled the guillotine that
claimed many of his colleagues during the
Reign of Terror.  Even today, physicists
sometimes attribute unusual effects to a
"Laplacian Operator" intervening in their
experiments.

In summary, we do not know the real
circumstances of Bayes's birth, the ultimate
origins of Bayes' Theorem, Bayes's actual year
of death, or even whether Bayes ever really
died.  Nonetheless "Reverend Thomas Bayes",
whatever his true identity, has the greatest
fondness and gratitude of Earth's scientific
community.

So why is it that some people are so excited about Bayes' Theorem?

"Do you believe that a nuclear war will occur in the next 20 years?  If
no, why not?"  Since I wanted to use some common answers to this
question to make a point about rationality, I went ahead and asked the
above question in an IRC channel, #philosophy on EFNet.

One EFNetter who answered replied "No" to the above question, but
added that he believed biological warfare would wipe out "99.4%" of
humanity within the next ten years.  I then asked whether he believed
100% was a possibility.  "No," he said.  "Why not?", I asked.  "Because
I'm an optimist," he said.  (Roanoke of #philosophy on EFNet wishes to
be credited with this statement, even having been warned that it will not
be cast in a complimentary light.  Good for him!)  Another person who
answered the above question said that he didn't expect a nuclear war
for 100 years, because "All of the players involved in decisions
regarding nuclear war are not interested right now."  "But why extend
that out for 100 years?", I asked.  "Pure hope," was his reply.

What is it exactly that makes these thoughts "irrational" - a poor way of
arriving at truth?  There are a number of intuitive replies that can be
given to this; for example:  "It is not rational to believe things only
because they are comforting."  Of course it is equally irrational to
believe things only because they are discomforting; the second error is
less common, but equally irrational.  Other intuitive arguments include
the idea that "Whether or not you happen to be an optimist has nothing
to do with whether biological warfare wipes out the human species", or
"Pure hope is not evidence about nuclear war because it is not an



observation about nuclear war."

There is also a mathematical reply that is precise, exact, and contains
all the intuitions as special cases.  This mathematical reply is known as
Bayes' Theorem.

For example, the reply "Whether or not you happen to be an optimist
has nothing to do with whether biological warfare wipes out the human
species" can be translated into the statement:

p(you are currently an optimist | biological war occurs within ten years
and wipes out humanity) =
p(you are currently an optimist | biological war occurs within ten years
and does not wipe out humanity)

Since the two probabilities for p(X|A) and p(X|~A) are equal, Bayes'
Theorem says that p(A|X) = p(A); as we have earlier seen, when
the two conditional probabilities are equal, the revised probability
equals the prior probability.  If X and A are unconnected - statistically
independent - then finding that X is true cannot be evidence that A is
true; observing X does not update our probability for A; saying "X" is
not an argument for A.

But suppose you are arguing with someone who is verbally clever and
who says something like, "Ah, but since I'm an optimist, I'll have
renewed hope for tomorrow, work a little harder at my dead-end job,
pump up the global economy a little, eventually, through the trickle-
down effect, sending a few dollars into the pocket of the researcher
who ultimately finds a way to stop biological warfare - so you see, the
two events are related after all, and I can use one as valid evidence
about the other."  In one sense, this is correct - any correlation, no
matter how weak, is fair prey for Bayes' Theorem; but Bayes' Theorem
distinguishes between weak and strong evidence.  That is, Bayes'
Theorem not only tells us what is and isn't evidence, it also describes
the strength of evidence.  Bayes' Theorem not only tells us when to
revise our probabilities, but how much to revise our probabilities.  A
correlation between hope and biological warfare may exist, but it's a lot
weaker than the speaker wants it to be; he is revising his probabilities
much too far.

Let's say you're a woman who's just undergone a mammography. 
Previously, you figured that you had a very small chance of having
breast cancer; we'll suppose that you read the statistics somewhere
and so you know the chance is 1%.  When the positive mammography
comes in, your estimated chance should now shift to 7.8%.  There is no
room to say something like, "Oh, well, a positive mammography isn't
definite evidence, some healthy women get positive mammographies
too.  I don't want to despair too early, and I'm not going to revise my



probability until more evidence comes in.  Why?  Because I'm a
optimist."  And there is similarly no room for saying, "Well, a positive
mammography may not be definite evidence, but I'm going to assume
the worst until I find otherwise.  Why?  Because I'm a pessimist."  Your
revised probability should go to 7.8%, no more, no less.

Bayes' Theorem describes what makes something "evidence" and how
much evidence it is.  Statistical models are judged by comparison to the
Bayesian method because, in statistics, the Bayesian method is as
good as it gets - the Bayesian method defines the maximum amount of
mileage you can get out of a given piece of evidence, in the same way
that thermodynamics defines the maximum amount of work you can get
out of a temperature differential.  This is why you hear cognitive
scientists talking about Bayesian reasoners.  In cognitive science,
Bayesian reasoner is the technically precise codeword that we use to
mean rational mind.

There are also a number of general heuristics about human reasoning
that you can learn from looking at Bayes' Theorem.

For example, in many discussions of Bayes' Theorem, you may hear
cognitive psychologists saying that people do not take prior frequencies
sufficiently into account, meaning that when people approach a
problem where there's some evidence X indicating that condition A
might hold true, they tend to judge A's likelihood solely by how well the
evidence X seems to match A, without taking into account the prior
frequency of A.  If you think, for example, that under the mammography
example, the woman's chance of having breast cancer is in the range
of 70%-80%, then this kind of reasoning is insensitive to the prior
frequency given in the problem; it doesn't notice whether 1% of women
or 10% of women start out having breast cancer.  "Pay more attention
to the prior frequency!" is one of the many things that humans need to
bear in mind to partially compensate for our built-in inadequacies.

A related error is to pay too much attention to p(X|A) and not enough to
p(X|~A) when determining how much evidence X is for A.  The degree
to which a result X is evidence for A depends, not only on the strength
of the statement we'd expect to see result X if A were true, but also on
the strength of the statement we wouldn't expect to see result X if A
weren't true.  For example, if it is raining, this very strongly implies the
grass is wet - p(wetgrass|rain) ~ 1 - but seeing that the grass
is wet doesn't necessarily mean that it has just rained; perhaps the
sprinkler was turned on, or you're looking at the early morning dew. 
Since p(wetgrass|~rain) is substantially greater than zero,
p(rain|wetgrass) is substantially less than one.  On the other
hand, if the grass was never wet when it wasn't raining, then knowing
that the grass was wet would always show that it was raining,
p(rain|wetgrass) ~ 1, even if p(wetgrass|rain) = 50%; that



is, even if the grass only got wet 50% of the times it rained.  Evidence
is always the result of the differential between the two conditional
probabilities.  Strong evidence is not the product of a very high
probability that A leads to X, but the product of a very low probability
that not-A could have led to X.

The Bayesian revolution in the sciences is fueled, not only by more and
more cognitive scientists suddenly noticing that mental phenomena
have Bayesian structure in them; not only by scientists in every field
learning to judge their statistical methods by comparison with the
Bayesian method; but also by the idea that science itself is a special
case of Bayes' Theorem; experimental evidence is Bayesian evidence. 
The Bayesian revolutionaries hold that when you perform an
experiment and get evidence that "confirms" or "disconfirms" your
theory, this confirmation and disconfirmation is governed by the
Bayesian rules.  For example, you have to take into account, not only
whether your theory predicts the phenomenon, but whether other
possible explanations also predict the phenomenon.  Previously, the
most popular philosophy of science was probably Karl Popper's
falsificationism - this is the old philosophy that the Bayesian revolution
is currently dethroning.  Karl Popper's idea that theories can be
definitely falsified, but never definitely confirmed, is yet another special
case of the Bayesian rules; if p(X|A) ~ 1 - if the theory makes a
definite prediction - then observing ~X very strongly falsifies A.  On the
other hand, if p(X|A) ~ 1,  and we observe X, this doesn't definitely
confirm the theory; there might be some other condition B such that
p(X|B) ~ 1, in which case observing X doesn't favor A over B.  For
observing X to definitely confirm A, we would have to know, not that
p(X|A) ~ 1, but that p(X|~A) ~ 0, which is something that we can't
know because we can't range over all possible alternative
explanations.  For example, when Einstein's theory of General
Relativity toppled Newton's incredibly well-confirmed theory of gravity, it
turned out that all of Newton's predictions were just a special case of
Einstein's predictions.

You can even formalize Popper's philosophy mathematically.  The
likelihood ratio for X, p(X|A)/p(X|~A), determines how much
observing X slides the probability for A; the likelihood ratio is what says
how strong X is as evidence.  Well, in your theory A, you can predict X
with probability 1, if you like; but you can't control the denominator of
the likelihood ratio, p(X|~A) - there will always be some alternative
theories that also predict X, and while we go with the simplest theory
that fits the current evidence, you may someday encounter some
evidence that an alternative theory predicts but your theory does not. 
That's the hidden gotcha that toppled Newton's theory of gravity.  So
there's a limit on how much mileage you can get from successful
predictions; there's a limit on how high the likelihood ratio goes for
confirmatory evidence.



On the other hand, if you encounter some piece of evidence Y that is
definitely not predicted by your theory, this is enormously strong
evidence against your theory.  If p(Y|A) is infinitesimal, then the
likelihood ratio will also be infinitesimal.  For example, if p(Y|A) is
0.0001%, and p(Y|~A) is 1%, then the likelihood ratio
p(Y|A)/p(Y|~A) will be 1:10000.  -40 decibels of evidence!  Or
flipping the likelihood ratio, if p(Y|A) is very small, then
p(Y|~A)/p(Y|A) will be very large, meaning that observing Y greatly
favors ~A over A.  Falsification is much stronger than confirmation. 
This is a consequence of the earlier point that very strong evidence is
not the product of a very high probability that A leads to X, but the
product of a very low probability that not-A could have led to X.  This is
the precise Bayesian rule that underlies the heuristic value of Popper's
falsificationism.

Similarly, Popper's dictum that an idea must be falsifiable can be
interpreted as a manifestation of the Bayesian conservation-of-
probability rule; if a result X is positive evidence for the theory, then the
result ~X would have disconfirmed the theory to some extent.  If you try
to interpret both X and ~X as "confirming" the theory, the Bayesian
rules say this is impossible!  To increase the probability of a theory you
must expose it to tests that can potentially decrease its probability; this
is not just a rule for detecting would-be cheaters in the social process of
science, but a consequence of Bayesian probability theory.  On the
other hand, Popper's idea that there is only falsification and no such
thing as confirmation turns out to be incorrect.  Bayes' Theorem shows
that falsification is very strong evidence compared to confirmation, but
falsification is still probabilistic in nature; it is not governed by
fundamentally different rules from confirmation, as Popper argued.

So we find that many phenomena in the cognitive sciences, plus the
statistical methods used by scientists, plus the scientific method itself,
are all turning out to be special cases of Bayes' Theorem.  Hence the
Bayesian revolution.

Fun
Fact!

Q.  Are there any limits to the power of
Bayes' Theorem?
A.  According to legend, one who fully grasped
Bayes' Theorem would gain the ability to create
and physically enter an alternate universe using
only off-the-shelf equipment and a short
computer program.  One who fully grasps
Bayes' Theorem, yet remains in our universe to
aid others, is known as a Bayesattva.



p(A|X) =
        p(X|A)*p(A)        

  p(X|A)*p(A) + p(X|~A)*p(~A)

Why wait so long to introduce Bayes' Theorem, instead of just showing
it at the beginning?  Well... because I've tried that before; and what
happens, in my experience, is that people get all tangled up in trying to
apply Bayes' Theorem as a set of poorly grounded mental rules;
instead of the Theorem helping, it becomes one more thing to juggle
mentally, so that in addition to trying to remember how many women
with breast cancer have positive mammographies, the reader is also
trying to remember whether it's p(X|A) in the numerator or p(A|X),
and whether a positive mammography result corresponds to A or X,
and which side of p(X|A) is the implication, and what the terms are in
the denominator, and so on.  In this excruciatingly gentle introduction, I
tried to show all the workings of Bayesian reasoning without ever
introducing the explicit Theorem as something extra to memorize,
hopefully reducing the number of factors the reader needed to mentally
juggle.

Even if you happen to be one of the fortunate people who can easily
grasp and apply abstract theorems, the mental-juggling problem is still
something to bear in mind if you ever need to explain Bayesian
reasoning to someone else.

If you do find yourself losing track, my advice is to forget Bayes'
Theorem as an equation and think about the graph.  p(A) and p(~A) are
at the top.  p(X|A) and p(X|~A) are the projection factors.  p(X&A) and
p(X&~A) are at the bottom.  And p(A|X) equals the proportion of p(X&A)
within p(X&A)+p(X&~A).  The graph isn't shown here - but can you see
it in your mind?

And if thinking about the graph doesn't work, I suggest forgetting about
Bayes' Theorem entirely - just try to work out the specific problem in
gizmos, hoses, and sparks, or whatever it is.

Having introduced Bayes' Theorem explicitly, we can explicitly discuss
its components.

p(A|X) =
        p(X|A)*p(A)        

  p(X|A)*p(A) + p(X|~A)*p(~A)



We'll start with p(A|X).  If you ever find yourself getting confused about
what's A and what's X in Bayes' Theorem, start with p(A|X) on the left
side of the equation; that's the simplest part to interpret.  A is the thing
we want to know about.  X is how we're observing it; X is the evidence
we're using to make inferences about A.  Remember that for every
expression p(Q|P), we want to know about the probability for Q given P,
the degree to which P implies Q - a more sensible notation, which it is
now too late to adopt, would be p(Q<-P).

p(Q|P) is closely related to p(Q&P), but they are not identical. 
Expressed as a probability or a fraction, p(Q&P) is the proportion of
things that have property Q and property P within all things; i.e., the
proportion of "women with breast cancer and a positive mammography"
within the group of all women.  If the total number of women is 10,000,
and 80 women have breast cancer and a positive mammography, then
p(Q&P) is 80/10,000 = 0.8%.  You might say that the absolute quantity,
80, is being normalized to a probability relative to the group of all
women.  Or to make it clearer, suppose that there's a group of 641
women with breast cancer and a positive mammography within a total
sample group of 89,031 women.  641 is the absolute quantity.  If you
pick out a random woman from the entire sample, then the probability
you'll pick a woman with breast cancer and a positive mammography is
p(Q&P), or 0.72% (in this example).

On the other hand, p(Q|P) is the proportion of things that have property
Q and property P within all things that have P; i.e., the proportion of
women with breast cancer and a positive mammography within the
group of all women with positive mammographies.  If there are 641
women with breast cancer and positive mammographies, 7915 women
with positive mammographies, and 89,031 women, then p(Q&P) is the
probability of getting one of those 641 women if you're picking at
random from the entire group of 89,031, while p(Q|P) is the probability
of getting one of those 641 women if you're picking at random from the
smaller group of 7915.

In a sense, p(Q|P)really means p(Q&P|P), but specifying the extra P
all the time would be redundant.  You already know it has property P, so
the property you're investigating is Q - even though you're looking at
the size of group Q&P within group P, not the size of group Q within
group P (which would be nonsense).  This is what it means to take the
property on the right-hand side as given; it means you know you're
working only within the group of things that have property P.  When you
constrict your focus of attention to see only this smaller group, many
other probabilities change.  If you're taking P as given, then p(Q&P)
equals just p(Q) - at least, relative to the group P.  The old p(Q), the
frequency of "things that have property Q within the entire sample", is
revised to the new frequency of "things that have property Q within the



subsample of things that have property P".  If P is given, if P is our
entire world, then looking for Q&P is the same as looking for just Q.

If you constrict your focus of attention to only the population of eggs
that are painted blue, then suddenly "the probability that an egg
contains a pearl" becomes a different number; this proportion is
different for the population of blue eggs than the population of all eggs. 
The given, the property that constricts our focus of attention, is always
on the right side of p(Q|P); the P becomes our world, the entire thing
we see, and on the other side of the "given"  P always has probability 1
- that is what it means to take P as given.  So p(Q|P) means "If P has
probability 1, what is the probability of Q?" or "If we constrict our
attention to only things or events where P is true, what is the probability
of Q?"  Q, on the other side of the given, is not certain - its probability
may be 10% or 90% or any other number.  So when you use Bayes'
Theorem, and you write the part on the left side as p(A|X) - how to
update the probability of A after seeing X, the new probability of A given
that we know X, the degree to which X implies A - you can tell that X is
always the observation or the evidence, and A is the property being
investigated, the thing you want to know about.

The right side of Bayes' Theorem is derived from the left side through
these steps:

p(A|X) = p(A|X)

p(A|X) =
 p(X&A) 

p(X)

p(A|X) =
     p(X&A)      
p(X&A) + p(X&~A)

p(A|X) =
        p(X|A)*p(A)         
  p(X|A)*p(A) + p(X|~A)*p(~A)

The first step, p(A|X) to p(X&A)/p(X), may look like a tautology. 
The actual math performed is different, though.  p(A|X) is a single
number, the normalized probability or frequency of A within the
subgroup X.  p(X&A)/p(X) are usually the percentage frequencies of
X&A and X within the entire sample, but the calculation also works if
X&A and X are absolute numbers of people, events, or things. 
p(cancer|positive) is a single percentage/frequency/probability,
always between 0 and 1.  (positive&cancer)/(positive) can be
measured either in probabilities, such as 0.008/0.103, or it might be
expressed in groups of women, for example 194/2494.  As long as both
the numerator and denominator are measured in the same units, it
should make no difference.



Going from p(X) in the denominator to p(X&A)+p(X&~A) is a very
straightforward step whose main purpose is as a stepping stone to the
last equation.  However, one common arithmetical mistake in Bayesian
calculations is to divide p(X&A) by p(X&~A), instead of dividing
p(X&A) by [p(X&A) + p(X&~A)].  For example, someone doing the
breast cancer calculation tries to get the posterior probability by
performing the math operation 80 / 950, instead of 80 / (80 + 950).  I
like to think of this as a rose-flowers error.  Sometimes if you show
young children a picture with eight roses and two tulips, they'll say that
the picture contains more roses than flowers.  (Technically, this would
be called a class inclusion error.)  You have to add the roses and the
tulips to get the number of flowers, which you need to find the
proportion of roses within the flowers.  You can't find the proportion of
roses in the tulips, or the proportion of tulips in the roses.  When you
look at the graph, the bottom bar consists of all the patients with
positive results.  That's what the doctor sees - a patient with a positive
result.  The question then becomes whether this is a healthy patient
with a positive result, or a cancerous patient with a positive result.  To
figure the odds of that, you have to look at the proportion of cancerous
patients with positive results within all patients who have positive
results, because again, "a patient with a positive result" is what you
actually see.  You can't divide 80 by 950 because that would mean you
were trying to find the proportion of cancerous patients with positive
results within the group of healthy patients with positive results; it's like
asking how many of the tulips are roses, instead of asking how many of
the flowers are roses.  Imagine using the same method to find the
proportion of healthy patients.  You would divide 950 by 80 and find that
1,187% of the patients were healthy.  Or to be exact, you would find
that 1,187% of cancerous patients with positive results were healthy
patients with positive results.

The last step in deriving Bayes' Theorem is going from p(X&A) to
p(X|A)*p(A), in both the numerator and the denominator, and from
p(X&~A) to p(X|~A)*p(~A), in the denominator.

Why?  Well, one answer is because p(X|A), p(X|~A), and p(A)
correspond to the initial information given in all the story problems.  But
why were the story problems written that way?

Because in many cases, p(X|A), p(X|~A), and p(A) are what we actually
know; and this in turn happens because p(X|A) and p(X|~A) are often
the quantities that directly describe causal relations, with the other
quantities derived from them and p(A) as statistical relations.  For
example, p(X|A), the implication from A to X, where A is what we want
to know and X is our way of observing it, corresponds to the implication
from a woman having breast cancer to a positive mammography.  This
is not just a statistical implication but a direct causal relation; a woman
gets a positive mammography because she has breast cancer.  The



mammography is designed to detect breast cancer, and it is a fact
about the physical process of the mammography exam that it has an
80% probability of detecting breast cancer.  As long as the design of
the mammography machine stays constant, p(X|A) will stay at 80%,
even if p(A) changes - for example, if we screen a group of woman with
other risk factors, so that the prior frequency of women with breast
cancer is 10% instead of 1%.  In this case, p(X&A) will change along
with p(A), and so will p(X), p(A|X), and so on; but p(X|A) stays at 80%,
because that's a fact about the mammography exam itself.  (Though
you do need to test this statement before relying on it; it's possible that
the mammography exam might work better on some forms of breast
cancer than others.)  p(X|A) is one of the simple facts from which
complex facts like p(X&A) are constructed; p(X|A) is an elementary
causal relation within a complex system, and it has a direct physical
interpretation.  This is why Bayes' Theorem has the form it does; it's not
for solving math brainteasers, but for reasoning about the physical
universe.

Once the derivation is finished, all the implications on the right side of
the equation are of the form p(X|A) or p(X|~A), while the implication
on the left side is p(A|X).  As long as you remember this and you get
the rest of the equation right, it shouldn't matter whether you happened
to start out with p(A|X) or p(X|A) on the left side of the equation, as long
as the rules are applied consistently - if you started out with the
direction of implication p(X|A) on the left side of the equation, you
would need to end up with the direction p(A|X) on the right side of the
equation.  This, of course, is just changing the variable labels; the point
is to remember the symmetry, in order to remember the structure of
Bayes' Theorem.

The symmetry arises because the elementary causal relations are
generally implications from facts to observations, i.e., from breast
cancer to positive mammography.  The elementary steps in reasoning
are generally implications from observations to facts, i.e., from a
positive mammography to breast cancer.  The left side of Bayes'
Theorem is an elementary inferential step from the observation of
positive mammography to the conclusion of an increased probability of
breast cancer.  Implication is written right-to-left, so we write
p(cancer|positive) on the left side of the equation.  The right side
of Bayes' Theorem describes the elementary causal steps - for
example, from breast cancer to a positive mammography - and so the
implications on the right side of Bayes' Theorem take the form
p(positive|cancer) or p(positive|~cancer).

And that's Bayes' Theorem.  Rational inference on the left end, physical
causality on the right end; an equation with mind on one side and
reality on the other.  Remember how the scientific method turned out to
be a special case of Bayes' Theorem?  If you wanted to put it poetically,



Digg  Del.icio.us  Stumble  Reddit

you could say that Bayes' Theorem binds reasoning into the physical
universe.
Okay, we're done.
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You are now an initiate
of the Bayesian Conspiracy.
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