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There are many situations where we will want to consider a system (say, a crystal) with finite volume V . Real
systems have surfaces and edges, and including these in calculations is usually unpleasant. Fortunately it is also often
unnecessary. If the volume V is large (and it usually is in condensed matter physics), and we are interested in “bulk”
properties to which all the atoms contribute, then the contribution of atoms near surfaces is negligible. This is true
simply because the surface-to-volume ratio goes to zero when V gets large – there are comparatively very few atoms
near the surface.

Given this discussions, we often take advantage of a mathematical trick that gets rid of surfaces entirely: we imagine
our system fills a box with periodic boundary conditions. For simplicity, in these notes we will assume this box is
a cube with sides of length L (V = L3); later on we will see that this works just about the same for more general
periodic boxes. We will often need to work in Fourier space, so it is important to recall how to do that for a system
with periodic boundary conditions.

Consider a function f(r) defined in infinite, three-dimensional space. (It is not hard to generalize the discussion

here to dimensions other than 3.) This function has a Fourier transform f̃(k), defined by

f(r) =

∫

d3k

(2π)3
eik·rf̃(k) (1)

f̃(k) =

∫

d3r e−ik·rf(r), (2)

where both the r- and k-integrals are taken over infinite three-dimensional space. The fact that these two equations
are consistent with one another follows from the Dirac delta-function identity

(2π)3δ(k − k′) =

∫

d3r ei(k−k
′)·r. (3)

Now instead suppose f(r) is some physical property of our periodic system. This means that

f(r) = f(r + Lx) = f(r + Ly) = f(r + Lz). (4)

If we take a look back at Eq. (1), we see that, for the right-hand side to be consistent with periodicity [Eq. (4)], we
need to have

eik·r = eik·(r+Lx) =⇒ eiLkx = 1, (5)

and similarly for ky and kz . The most general k that satisfies this constraint is

k =
2π

L
(nxx + nyy + nzz), (6)

where nx, ny, nz are integers. We see that periodicity in real space makes Fourier space discrete. Also, as V (and
hence L) gets large, Fourier space gets more and more continuous, because the allowed values of k get closer together.

To deal with this discreteness, we can define the Fourier transform of our periodic function as follows:

f(r) =
1

V

∑

k

eik·r f̃(k) (7)

where the sum is over all allowed k-values. We can also invert this to find

f̃(k) =

∫

r∈cube

d3r e−ik·rf(r), (8)

where the integral is over a single cube, that is the region 0 ≤ rx, ry, rz ≤ L. This can be derived from Eq. (7) by
using the identity

1

V

∫

r∈cube

d3r ei(k−k
′)·r = δk,k′ , (9)



2

where δk,k′ is the Kronecker delta defined by

δk,k′ =

{

1, k = k′

0, k 6= k′ . (10)

In the limit V → ∞, the allowed points in k-space get closer and closer together, and we can approximate this by
allowing k to be continuous. In this limit, using the fact that the density of points in k-space is V/(2π)3, we have the
very important identity

∑

k

→ V

∫

d3k

(2π)3
. (11)

It is also useful to understand what happens to δk,k′ in this limit, because a Kronecker delta does not make much
sense for a continuous variable. To do this, note that

∑

k

δk,k′ = 1. (12)

Since the sum goes to an integral according to Eq. (11), we must have

δk,k′ →
(2π)3

V
δ(k − k′), (13)

where the Kronecker delta has become a Dirac delta. This is the correct choice because it vanishes for k 6= k′, and
because we have

1 =
∑

k

δk,k′ → V

∫

d3k

(2π)3
(2π)3

V
δ(k − k′) = 1. (14)


