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I. BASICS AND HEAT CAPACITY

We are now going to treat the problem of the harmonic crystal quantum mechanically. For concreteness and
simplicity, we will focus throughout on the case of a 3d monatomic Bravais lattice. We have already shown that we
can break the problem into 3N decoupled harmonic oscillators. Schematically, if the normal mode coordinates are qi
and pi, then the Hamiltonian is H =

∑3N
i=1 Hi, and

Hi =
p2i
2M

+
1

2
Mω2

i q
2
i . (1)

More specifically, the normal mode coordinates are uR
λ (k), u

I
λ(k), the normal mode momenta are pPλ (k), p

I
λ(k), and

the frequencies are ωλ(k). The wavevector k ranges over half of the Brillouin zone, where, say, kx ≥ 0. Doing things
this way, we should say there are two oscillators for every (k, λ) – corresponding to the real and imaginary parts of
the coordinates and momenta.
However, since ωλ(k) = ωλ(−k), it is often more convenient to let k range over the entire Brillouin zone. Then we

should say that, for every (k, λ), there is a single oscillator with frequency ωλ(k). We will follow this convention.
The energy spectrum of each oscillator is

Ekλ = ~ωλ(k)(nkλ + 1/2), (2)

where nkλ = 0, 1, 2, . . . . The integer nkλ is the number of quanta (of energy) in the oscillator labeled by (k, λ). We
adopt the useful convention of thinking about these quanta of energy like particles, called phonons. Then we can
equivalently say that nkλ is the number of phonons that have crystal momentum k and polarization λ. (Sometimes
nkλ is referred to as the phonon occupation number, since it tells us how many phonons occupy a given state.)
The total energy is

E =
~

2

∑

k,λ

ωλ(k) +
∑

kλ

~ωλ(k)nkλ. (3)

The first term is the zero point energy.
There are a number of ways to see that the thermal average of the occupation number is

〈nkλ〉 =
1

eβ~ωλ(k) − 1
. (4)

This is just the Bose distribution with the chemical potential µ = 0. The reason it’s the Bose distribution is that
the state counting and energy spectrum of the phonon system is exactly the same as a system of bosons with energy
Ekλ = ~ωλ(k). The reason µ = 0 is that here, unlike for bosons, the number of phonons is not a conserved quantity.
It’s also possible to directly calculate 〈nkλ〉 using the partition function of the harmonic oscillator – this is essentially
what is done in Ashcroft & Mermin.
We are interested in calculating the specific heat, which is given by

cV =
1

V

(∂Ē

∂T

)

V
, (5)

where Ē = 〈E〉 is the thermal average of the energy. (Note that this is related to the heat capacity CV by CV = V cV .)
To calculate Ē we can use the above result and drop the zero-point energy, which doesn’t give any temperature
dependence. We have

Ē =
∑

k,λ

~ωλ(k)

eβ~ωλ(k) − 1
= V

∑

λ

∫

d3k

(2π)3
~ωλ(k)

eβ~ωλ(k) − 1
. (6)

The integral over k is taken over the Brillouin zone.
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Even if we actually knew everything about the frequencies ωλ(k), in general this integral can only be evaluated
analytically in certain limits. One simple limit is high temperature, where β~ωλ(k) ≪ 1 for all frequencies. In this
limit,

1

eβ~ωλ(k) − 1
≈

1

β~ωλ(k)
, (7)

and so

Ē ≈ V
∑

λ

∫

d3k

(2π)3
1

β
= 3NkBT , (8)

where we used the fact that the volume of the Brillouin zone is (2π)3/a3, where a3 is the volume of a primitive
cell of the Bravais lattice. This gives the classical Dulong-Petit result that CV = 3NkB, which is exactly what the
equipartition theorem gives when we treat the harmonic crystal classically.
We can also evaluate Ē in the low-temperature limit. The integral will be dominated by k where ωλ(k) is small.

The contributions from other frequencies are exponentially suppressed for low temperature. This means that, in the
limit of asymptotically low temperature, we can make two approximations. First, we replace the frequencies by the

form near k = 0: ωλ(k) = cλ(k̂)|k|. Here, cλ(k̂) is the phonon velocity, which in general depends on the direction

of k, represented by the unit vector k̂. Second, we integrate not just over the Brillouin zone, but over all k. This is
okay because the contributions from large-k are exponentially suppressed anyway. With these approximations,

Ē = V
∑

λ

∫

d3k

(2π)3
~cλ(k̂)|k|

eβ~cλ(k̂)|k| − 1
. (9)

To evaluate this integral, we go to spherical coordinates. We introduce the notation k̂ = Ω̂, which reminds us that

k̂ only depends on the angular coordinates of the integration. We have

Ē =
V

(2π)3

∑

λ

∫

dΩ

∫ ∞

0

dkk2
~cλ(Ω̂)k

eβ~cλ(Ω̂)k − 1
. (10)

Note how we have chosen the order of integration here. To do the k-integral, we make the change of variables
u = β~cλ(Ω̂)k, obtaining

Ē =
V

(2π)3

∑

λ

∫

dΩ
1

β4~3c3λ(Ω̂)

∫ ∞

0

du
u3

eu − 1
(11)

=
V

(2π)3
π4(kBT )

4

15~3

∑

λ

∫

dΩ
1

c3λ(Ω̂)
. (12)

In the last line, we used the fact that the u-integral is equal to π4/15. Defining

1

c3
=

1

3

∑

λ

∫

dΩ

4π

1

c3λ(Ω̂)
, (13)

we have

Ē =
π2

10

V (kBT )
4

(~c)3
. (14)

This gives the T 3 low-temperature specific heat observed in many insulators:

cV =
2π2

5
kB

(kBT

~c

)3

(15)

In principle, we can use Eq. (6) to calculate cV (T ) over a wide temperature range, if we know the phonon frequencies.
Of course, in general we would have to do such an integral numerically. What we would find by doing this, or by
doing a measurement of cV (T ) in an insulator, is that the specific heat crosses over at low temperature from its T 3

behavior, to a roughly constant behavior at high temperature. The temperature scale characterizing this crossover is
called the Debye temperature, ΘD, and can range from 100 K to 1000 K depending on the material in question. For
T ≪ ΘD not very many phonons are thermally excited, and their quantum nature is important. On the other hand,
for T ≫ ΘD, many phonons are excited, and it should be legitimate to think about them classically.
Another useful way to think about the Debye temperature is that it roughly is an average phonon energy, ΘD ∼

~ω̄/kB, where ω̄ is the average of all the ωλ(k).
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A. Density of States

Much of the previous analysis can be redone in terms of a useful quantity called the density of states. It is defined
as

g(ω) =
∑

λ

∫

d3k

(2π)3
δ(ω − ωλ(k)). (16)

The meaning of this quantity is that g(ω)dω is the number of phonon modes (per unit volume), with frequencies lying
in the range [ω, ω + dω]. It can be shown that

Ē/V =

∫ ∞

−∞

dω
g(ω)~ω

eβ~ω − 1
. (17)

This means that, in particular, cV only depends on the form of the phonon spectrum through g(ω).


