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To keep things simple, let’s consider a monatomic 3d Bravais lattice. In that case, the general form of the Hamil-
tonian in the harmonic approximation is
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Dµν(R − R′)uµ(R)uν (R′). (1)

The matrix D has the symmetry

Dµν(R − R′) = Dνµ(R′ − R), (2)

because it can be written as a second derivative
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Also, any Bravais lattice has inversion symmetry, so Dµν(R) = Dµν(−R). Combining these two symmetries implies
that Dµν(R) = Dνµ(R) – that is, D is a symmetric matrix.

As usual, we Fourier transform to find normal modes:

uµ(R) =
1√
N

∑

k∈B.Z.

eik·Ruµ(k) (4)

uµ(k) =
1√
N

∑

R

e−ik·Ruµ(R). (5)

Here, N is the number of atoms in the crystal.
Note that k is restricted to lie in the 1st Brillouin Zone (“BZ”) of the reciprocal lattice. (Note that very often we

just say “Brillouin zone” and not “1st Brillouin zone.”) To understand why this is so, suppose k′ = k + K, where

K is a reciprocal lattice vector. Then, just as in the 1d case, we can show that eik·R = eik′·R. If k′ is outside of the
Brillouin zone, then there is a unique RLV K so that k = k′−K does lie inside the Brillouin zone. So we can restrict
to k lying inside the Brillouin zone.

Another question is how many allowed values of k there are inside Brillouin zone – of course, this has to do with
the periodic boundary conditions. Suppose a1, a2, a3 are primitive vectors for the Bravais lattice. Suppose that the
crystal has a size of Ni lattice sites in the ai direction, so that R, R+N1a1, R+N2a2, R+N3a3 are all to be thought
of as the same lattice site. (And also, the total number of atoms is N = N1N2N3.) Next, suppose that b1, b2, b3 are
primitive vectors of the reciprocal lattice obtained from the ai with the usual formula. A general allowed value of k

can be written in the form
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N1
b1 +
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N2
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N3
b3, (6)

where n1, n2, n3 are arbitrary integers. If we restrict 0 ≤ ni ≤ Ni − 1, then k is restricted to lie in the parallelepiped
primitive cell defined by the bi. We can see that there are N = N1N2N3 allowed values of k in this cell. The Brillouin
zone has a different shape from this primitive cell, but it must contain the same number of allowed k-values. So there
are N allowed values of k in the Brillouin zone. This is why we use the 1/

√
N normalization in Eqs. (4,5).

Plugging Eqs. ((4,5) into Eq. (1), we get
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where

Dµν(k) =
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eik·RDµν(R) (8)
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is a real, symmetric matrix. Because D(k) is real and symmetric, it can be diagonalized by an orthogonal matrix
S(k):

S†(k)D(k)S(k) = diag(d1(k), d2(k), d3(k)). (9)

(Note that S† = ST = S−1, since S is an orthogonal matrix.) We write

uµ(R) =
1√
N

∑

k,λ

eik·RSµλ(k)uλ(k), (10)

where we have introduced the index λ = 1, 2, 3 that runs over the three different phonon polarizations. The uλ(k) are

the normal mode coordinates, each with frequency ωλ(k) =
√

dλ(k)/M .

To get a better feeling for the meaning of the uλ(k), the inverse Fourier transform is

uµ(k) =
1√
N

∑

R

e−ik·Ruµ(R) = Sµλ(k)uλ(k). (11)

Inverting this, we have

uλ(k) = Sµλ(k)uµ(k) =
Sµλ(k)√

N

∑

R

e−ik·Ruµ(R). (12)

Because S is an orthogonal matrix, its columns form an orthonormal basis. We use the symbol sλ(k) to denote the
column vectors of Sµλ(k), which are labeled by the polarization λ. So we can finally write, for the normal mode
coordinate:

uλ(k) =
1√
N

∑

R

e−ik·R
[

sλ(k) · u(R)
]

. (13)

Basically, this equation means that uλ(k) describes a wave propagating along the k-direction, where the displace-
ment is always parallel to sλ(k) everywhere along the wave, which is called the polarization vector.

In an isotropic medium there is no preferred direction, but when we are talking about a wave with wavevector k,
then k gives a preferred axis (about which there is rotational symmetry). So, in that case, we can always choose one
of the sλ(k) to be parallel to k – this is a longitudinally polarized wave. The other two are polarized perpendicular
to k, and are the transverse polarizations. The frequencies ωλ(k) of the transverse polarizations are the same (by
rotational symmetry about the k-axis), but no symmetry (even in an isotropic medium!) dictates that the longitudinal
and transverse modes need have the same frequency. Of course a crystal is not an isotropic medium, and usually the
situation with polarizations is more complicated.

What we have found is that, in a 3d monatomic Bravais lattice, there are 3 different branches of normal modes,
labeled by λ. This gives a total of 3N normal modes, which is what we expect for 3N atoms. Note that, here, having
three branches comes simply from being in three dimensions and u, p being vectors. By analogy with the 1d analysis,
then, if we have a 3d lattice with basis, with k sites per unit cell, we expect to have 3Nk branches of normal modes.

All of these three branches are acoustic phonons: they all must satisfy ωλ(k) → 0 for k → 0. The reason we
have three modes with vanishing frequency is that there are now three independent overall translations of the whole
crystal: u(R) → u(R) + δu, where δu is now an arbitrary vector. We can choose, for example, δu = x, y, z, and
repeat the argument we gave in the 1d case for each one. So we expect three modes with vanishing frequency, and
three acoustic branches.

It is very important to note that, in general, ωλ(k) = cλ(k̂)|k| when |k| is small. So each of the acoustic modes
has linear dispersion at small k, and (for a given direction) propagates with a well-defined velocity. This is explained
very clearly in Ashcroft & Mermin, and reading that discussion is highly recommended! The linear dispersion only
relies on the interactions between atoms (i.e. Dµν(R)) being sufficiently short-ranged.


