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Abstract

Energy efficiency improvements can create rebound effects that increase energy use. We

study rebound in U.S. freight transportation and show substitution across transporta-

tion modes can be an important rebound channel. The sign of the rebound effect de-

pends on whether improved efficiency induces substitution to more or less fuel-efficient

modes. We use detailed U.S. micro data to model shippers’ freight mode choices and

simulate how these choices change under energy efficiency standards. Under a policy

approximating U.S. heavy duty truck fuel economy standards, we find rebound can be

positive or negative in individual market segments. However, the overall effect substan-

tially reduces gains from improved truck fuel efficiency. Energy savings are reduced

by approximately 19% because shipments switch from rail service to improved, but

still less fuel-efficient, truck service. Similar substitution rebound effects could occur

in other settings where producers choose between technologies with different energy

efficiencies.

∗This research was partially supported by a grant from the Sloan Foundation. The authors have no
other disclosures. The authors thank Akshaya Jha and seminar participants at the UC Berkeley Energy
Institute at Haas and the National Bureau of Economic Research conference on Transporting Energy for
helpful comments.

1Department of Economics, University of California at Davis and National Bureau of Economic
Research, jbbushnell@ucdavis.edu. 2Department of Economics, University of Colorado at Boulder,
jonathan.e.hughes@colorado.edu.



Main

An extensive literature has examined the extent to which rebound could undermine the

benefits of increased energy efficiency1–5. In this literature, the rebound effect typically

describes the increase in energy consumption due to the perceived lower cost, induced by

improved efficiency, of using of an energy-intensive good. For instance, when air conditioners

become more efficient, cooling costs decrease. Rebound occurs if consumers lower their

thermostats in response, partially off-setting the efficiency gains.

There is a related but distinct form of rebound that has received considerably less atten-

tion in both the academic and policy communities: the substitution from other production

technologies, modes or appliances. In many settings, firms or consumers can choose not only

the intensity of use but also the technologies to deploy. For example, when air conditioners

become more efficient, some users may switch from fans to air conditioning, increasing overall

energy consumption.

We study this substitution rebound effect in an important setting for energy and cli-

mate policy: the U.S. freight transportation sector. The freight sector is large, represent-

ing approximately 10% of total U.S. energy consumption and between 30% to 35% of U.S.

transportation energy consumption6. To address the sector’s growing share of energy use and

greenhouse gas emissions, in 2011 the U.S. Environmental Protection Agency (EPA) adopted

heavy-duty vehicle fuel economy standards7 for the 2014 through 2018 vehicle model years

(phase 1). These standards were revised in 2016 to target model years 2018 through 2027

(phase 2), though implementation has been delayed by a series of challenges in the federal

courts.

The standards target heavy duty trucks (class 7 and class 8 tractors) for efficient vehicle,

engine and trailer technologies. The U.S. EPA predicts the phase II standards will improve

new truck fuel efficiency 19% to 25% by 20277. Because new trucks are incorporated over

time as the fleet turns over, EPA estimates that by 2025 the average fuel intensity across

the fleet will fall by approximately 5% to 6% relative to business as usual.

The effectiveness of these measures depends in large part on the magnitude of rebound
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effects7. Energy intensities differ by an order of magnitude across production technologies

(modes) such as air, truck and rail. Improvements in the energy efficiency of one mode can

change shippers’ mode choices leading to substitution rebound effects that can be positive

or negative. For instance if improved truck fuel efficiency causes some shippers to substitute

from rail to truck, this shift would increase fuel consumption since, in general, truck ship-

ments are more energy intensive. Alternatively, substitution from air to truck would reduce

fuel consumption. These substitution effects are noteworthy compared to settings such as

automobiles where rebound manifests mainly as an increase in driving8–10.

We investigate mode substitution rebound effects in freight shipments using microdata

on goods movement from the U.S. Commodity Flow Survey (CFS)11 and estimate a series

of multinomial logit models for shippers’ mode choices. Using our parameter estimates, we

simulate the 2016 fuel efficiency standards that lower truck energy intensity 5%. We hold

the number and size of shipments constant to focus on mode substitution effects. Truck fuel

economy regulations shift freight shipments from rail to truck, increasing truck output by 15

billion ton miles per year or approximately 1.3%. This shift reduces fuel savings from more

efficient trucks from 653 million gallons per year to 489 million gallons, implying a rebound

effect of approximately 25%, which is comparable to recent estimates for the total rebound

effect in heavy-duty trucks12–14. When we account for reduced fuel consumption in other

modes (from shipments that substitute to truck) total fuel savings are approximately 527

million gallons per year. This equates to an aggregate rebound effect from modal substitution

across all freight shipments of approximately 19%. For some types of goods this effect is

substantially larger, 40% to 50%. For other goods, the substitution rebound effect is negative

because more efficient trucks cause some shipments that previously went by air to move

instead by truck.

Our work informs energy policy in the U.S. domestic freight sector by providing in-

sight into how fuel prices and energy policies affect shippers’ substitution patterns across

modes15,16. Our results also have implications for international trade, where we expect

analogous effects and where energy consumption and emissions are increasingly important

concerns17. Finally, similar substitution rebound effects can occur in other settings where
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producers choose between technologies with different energy intensities.

Freight transportation in the U.S.

Freight transportation is a critical input to production linking farmers, raw material, in-

termediate and final goods producers to consumers. Domestic freight and goods movement

contributes approximately 4% to U.S. GDP18. Common transportation modes include air,

truck, rail, barge, ship, pipeline and parcel/courier. Truck shipments represent approxi-

mately 46% of total ton miles. Rail, including shipments that combine truck and rail service,

accounts for approximately 48% of ton miles. Inland water (barge) share, including ship-

ments that combine water with truck and rail service, is approximately 4%. Finally, air and

parcel/courier service account for about 0.2% and 1%, respectively19. In terms of shipment

value, truck share of total shipment value is approximately 73%, compared to 5% for rail, 3%

for air, 1.7% for barge and 14.2% for parcel/courier. Energy efficiency varies substantially by

mode. Average fuel economy for a rail shipment is approximately 500 ton-miles per gallon

of fuel compared to approximately 100 ton-miles per gallon for heavy-duty truck and 0.1

ton-miles per gallon for air freight.

Figure 1 provides summary statistics from the CFS to motivate our approach. The

mean characteristics of shipments vary substantially by the type of good shipped. Figure

1a summarizes ton-mile weighted-average shipment characteristics for a number of different

goods. The first three columns show shipment value in dollars per pound, distance in miles

and weight in tons. The remaining columns show ton-mile weighted-average modal shares

for major freight modes within the CFS. Mean shipment value per pound varies from ap-

proximately $0.01 per pound for coal to nearly $25 per pound for pharmaceuticals. Mean

shipment distances vary from approximately 450 miles for fuel oil to nearly 1,500 miles for

pharmaceuticals. Mean shipment weights vary from about 9 tons for pharmaceuticals to

over 17,000 tons for coal and over 30,000 tons for metallic ores.

The modal shares shown in Figure 1a highlight important trends in how different types

of freight shipments move within the United States. Higher value goods such as pharma-
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ceuticals, mixed freight and machinery travel mainly by faster modes such as air and truck.

Lower value goods tend to travel via slower more fuel efficient modes, such as rail and water,

particularly when shipment distances are large. For example, rail and water modal shares

are relatively high for metallic ores, grain, coal and basic chemicals. These trends are further

highlighted in Figure 1b where we plot the mean shipment value per pound against shipment

size in ton miles for different transportation modes. We see air and truck shipments tend to

be smaller, higher value shipments. On the other hand, pipeline, rail and water shipments

tend to be larger shipments of lower value goods.

These trends are consistent with the large literature on freight mode choice. For instance,

while truck dominates short shipments of high-value goods, rail is competitive for longer

shipments of these goods and dominates shorter shipments of low-value goods20,21. The

value of goods being shipped drives inventory costs, i.e. the time costs associated with

goods “in-transit” and not available for sale. Shippers’ prefer faster modes that minimize

these costs, all else equal. Larger shipments, in terms of either tons or miles, require more

energy to transport. Shippers’ prefer more fuel efficient modes that minimize the share of

fuel costs reflected in rates, all else equal. However, more fuel efficient modes tend to be

slower. Our empirical model below attempts to capture these trade-offs.

Finally, and importantly for our empirical strategy, average trends across goods hide

important variation in shipment size, value and mode choice across shipments. For instance,

Figure 1c plots mode shares for grain shipments by the deciles of shipment size in ton miles.

We see smaller shipments are made almost exclusively by truck. However after the sixth

decile, the share of shipments made by rail and barge grows. For the largest shipments,

in the tenth decile, nearly all grain shipments are made by rail, with less than 10% of

shipments made by truck. Other goods show similar trends, namely that within a particular

good category, larger shipments tend to travel by different modes than smaller shipments.

Similarly, if value per pound varies within a good, higher value shipments tend to travel

on faster modes than lower value shipments. We exploit this variation to estimate the

relationship between fuel costs and mode choice.
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a
Commodity Group Value ($/lb.) Miles Tons Air Pipeline Rail Truck Inland Water Parcel/Courier

Basic Chemicals 0.60$           1,148    420           0.00 0.01 0.55 0.34 0.10 0.00

Coal 0.01$           1,165    17,160      0.00 0.00 0.95 0.02 0.04 0.00

Fertilizers 0.25$           1,088    221           0.00 0.01 0.62 0.34 0.03 0.00

Fuel 0.41$           680       4,709        0.00 0.24 0.37 0.38 0.01 0.00

Fuel Oil 0.44$           454       3,030        0.00 0.26 0.02 0.59 0.13 0.00

Grain 0.14$           1,156    4,703        0.00 0.00 0.81 0.10 0.09 0.00

Machinery 6.44$           1,270    17             0.01 0.00 0.03 0.92 0.00 0.03

Metallic Ores 0.27$           880       30,078      0.00 0.00 0.62 0.07 0.31 0.00

Mixed Freight 2.31$           766       14             0.01 0.00 0.04 0.91 0.02 0.02

Non-Metallic Mineral Products 0.39$           683       140           0.00 0.00 0.20 0.79 0.01 0.00

Pharmaceuticals 24.91$         1,471    9               0.02 0.00 0.00 0.88 0.00 0.10

Primary Base Metal 0.98$           955       52             0.00 0.00 0.29 0.71 0.00 0.00

Sand 0.03$           688       173           0.00 0.00 0.46 0.54 0.00 0.00

Vehicles 4.52$           1,250    30             0.01 0.00 0.18 0.78 0.00 0.03

Ton Mile Wgt. Avg Mode Share

b c

Figure 1: Characteristics of shipments contained in the Commodity Flow Survey.
a, ton-mile weighted mean shipment value, distance, weight and transportation mode share
for several representative goods. b, mean shipment value and size in ton-miles by mode. c,
transportation mode shares for grain shipments by decile of shipment size in ton-miles.

Rebound and mode substitution

Here we introduce the concept of a mode substitution rebound effect. In the Supplementary

information we derive our model for producer behavior in a manner analogous to earlier

models of rebound in consumer settings22. Consider a firm that produces a single output y

using N+1 inputs (freight modes) denoted x = x0, . . . , xN . The firm’s production function

is y = f(x) and the output price is p. The firm is a price taker in freight markets and

faces rates w = w0, . . . , wN for each transportation mode. The firm’s (compensated) factor

demand function for each freight mode is xn(w, p) = un(w, y(w, p)). Each mode xn also has

an energy intensity ( 1
fuel efficiency

) of en. Assume each freight rate is an increasing monotonic

function of energy intensity, i.e. wn = w(en). For an improvement in energy efficiency that
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lowers the energy intensity of x0 to ẽ0 the change in energy consumption is:

x0(ẽ0 − e0)︸ ︷︷ ︸
Static Effect

+ ẽ0
∂u0
∂y

∂y

∂w0

(w̃0 − w0) +
N∑
n=1

en
∂un
∂y

∂y

∂w0

(w̃0 − w0)︸ ︷︷ ︸
Expansion Effect

+ (1)

ẽ0
∂u0
∂w0

(w̃0 − w0) +
N∑
n=1

en
∂un
∂w0

(w̃0 − w0)︸ ︷︷ ︸
Substitution Effect

The static effect captures the change in energy consumption from an improvement in fuel

efficiency of mode x0, e.g. trucks, ignoring any rebound effect. The expansion effect is an

intensive margin rebound effect due to changes in the quantity or size of freight shipments.

The substitution effect is a rebound effect due to shifts in freight demand for truck ∂u0
∂w0

(w̃0−

w0) and substitute modes ∂un
∂w0

(w̃0 − w0). Below, we estimate the static and substitution

effects from an improvement in truck fuel efficiency and hold the expansion effect constant.

Effects fuel of costs on mode choices

We first estimate the relationship between fuel consumption and shippers’ mode choices.

Using our parameter estimates we then predict shippers’ mode choices with and without

fuel efficiency regulation. We illustrate our approach using results for several representative

goods. Parameter estimates for these goods are presented in the Supplementary information.

Figure 2 shows the effect of a 5% improvement in truck fuel-efficiency on mode choices for

shipments of grain, coal, alcohol and precision instruments. The probabilities of selecting

truck, rail, inland water or air for individual shipments are plotted as points. The lightly

shaded points are for the initial level of fuel efficiency and the darkly shaded points reflect

the improvement in truck fuel-efficiency. The dotted and solid lines are non-parametric fits

to choice probabilities for the initial and more-efficient scenarios, respectively. Intuitively,

we see the probability truck is selected increases with improved fuel-efficiency as indicated

by the upward shifts in the points and fitted curves. This shift grows in magnitude for larger

and longer shipments, but decreases for the largest shipments, i.e. those most suitable for
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rail. Conversely, the likelihood rail is selected decreases as indicated by the downward shift

in the predicted probabilities. Note, there is little impact on barge choice probability, likely

due to river access constraints.

Contrast these effects to those for coal. Figure 2b plots the mode choice probabilities for

truck, rail and barge for the same truck fuel efficiency scenario. Here we see increasing truck

efficiency has essentially no effect on mode choices. Truck is a poor substitute for rail service,

given the relatively large shipment sizes and energy-intensive nature of coal transportation.

a

b

c

d

Figure 2: Truck, rail, barge and air mode probabilities with and without a 5%
reduction in truck fuel intensity for four representative goods. Panels a and b show
grain and coal shipments by truck, rail or inland water. Panel c shows alcohol shipments
by truck or rail and panel d shows shipments of precision instruments by truck or air.
Lightly shaded points are the logit model mode choice probabilities at the initial level of fuel
efficiency. The darkly shaded points are predicted probabilities incorporating the reduction
in truck fuel intensity. The dotted and solid lines represent non-parametric fits to estimates
for the initial and more-efficient scenarios, respectively.

8



For alcohol and precision instruments, fuel expenditure matters for mode choice. For al-

cohol, truck and rail are good substitutes and a reduction in truck fuel intensity substantially

shifts mode choice probabilities as indicated in Figure 2c. For precision instruments, truck

efficiency improvements yield only small shifts in the truck versus air probabilities, Figure 2d.

However, the large difference in energy intensity across modes still yields a modest reduction

in overall fuel consumption as indicated in Figure 4, below.

To summarize the heterogenous effects across the different goods in the sample, Figure 3a

plots the cross-price elasticities from changes in fuel cost between rail and truck shipments

and Figure 3b plots elasticities for air and truck shipments. The full set of own and cross-

price elasticity estimates for each good are presented in the Supplementary information.

Manufactured products, paper and textiles are most responsive to changes in truck fuel costs

when substituting truck for rail service with elasticities between 1.72 and 2.9. Coal, metallic

ores and waste and scrap, with elasticities from approximately zero to 0.04, are relatively

insensitive to changes in truck fuel costs. For goods shipped by air, live animals are most

responsive when substituting truck for air service with an elasticity of approximately 1.6.

a b

Figure 3: Estimated average cross-price elasticities between a rail and truck ship-
ments and b air and truck shipments for different goods. Elasticities are calculated using the
logit model parameter estimates for each good and each shipment’s observed characteristics
and then averaged over all shipments.
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Fuel economy policy simulations

Results of our simulation exercise are shown in Table 1. The first column shows business

as usual (BAU) estimates without truck fuel economy improvements. The middle column

shows the static effect (without mode substitution rebound) of a 5% improvement in truck

fuel efficiency. Fuel economy standards reduce truck fuel consumption 5% from 13,060 to

12,407 or approximately 653 million gallons per year. The overall effect is approximately

4.0% of transportation fuel consumption.

Results with mode substitution are in the third column. Truck fuel economy improve-

ments shift freight from rail to truck, 14.7 billion ton miles or approximately 1.2% of business-

as-usual rail freight output. There are smaller shifts from air and inland water to truck. We

categorize these effects in two different ways. First, we calculate rebound based only on fuel

consumption in the trucking sector, i.e. the first term in the substitution effect in Equation

1. This measure is most comparable to existing estimates of the heavy-duty vehicle rebound

effect but only accounts for changes in fuel consumption due to substitution into trucking.

Second, we calculate rebound in terms fuel consumption across all modes, i.e. both terms

in the substitution effect in Equation 1. This measure accounts for all substitution-induced

changes and best illustrates the overall effect on energy consumption.

Focusing on trucking alone, with mode substitution the decrease in truck fuel consump-

tion is smaller, approximately 3% or 489 million gallons per year. This implies a rebound

effect of approximately 25%. Recent estimates for the total heavy-duty truck rebound effect

in the U.S. range from effectively zero23 to between 20 and 30%13. Therefore, our results

suggest modal substitution represents a substantial share of the total rebound effect.

Looking across modes, more efficient heavy-duty vehicles reduce fuel consumption for air,

water and rail when these shipments substitute to truck. These shifts equate to an additional

38 million gallons per year in fuel savings, for a total reduction of 527 million gallons per

year or approximately 3.3%. This implies a rebound effect, across the entire freight sector, of

approximately 19% and highlights the importance of accounting for effects across all modes.

The aggregate effects discussed above also hide important heterogeneity across the types
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Table 1: Simulated ton-miles, fuel use and emissions under 5% truck fuel econ-
omy regulation.

BAU
No Rebound 

(Static Effect)
With Substitution 

Rebound

Ton-miles
Air (billion ton-miles) 1.57                1.57                    1.56                        
Inland water  (billion ton-miles) 126.90            126.90                126.77                    
Rail (billion ton-miles) 1,216.49         1,216.49             1,200.18                 
Truck  (billion ton-miles) 1,110.11         1,110.11             1,124.76                 

Fuel
Air (million gal.) 209.69            209.69                208.57                    
Inland water  (million gal.) 211.50            211.50                211.28                    
Rail (million gal.) 2,703.30         2,703.30             2,667.07                 
Truck (million gal.) 13,060.06       12,407.06           12,570.88               

Emissions
Air (MMT) 2.01 2.01 2.00
Inland water (MMT) 2.15 2.15 2.15
Rail (MMT) 27.47 27.47 27.10
Truck  (MMT) 132.69 126.06 127.72

Fuel (million gal.) 16,185            15,532                15,658                    
Emissions (MMT) 164.31            157.68                158.96                    

Percent change 4.0% 3.3%

Fuel Prices, Fuel Use and Emissions

of goods being shipped. Figure 4 plots estimates of the mode substitution-rebound effect by

good. To provide a sense of magnitudes, the size of each bubble represents business-as-usual

fuel consumption for that good. We see the substitution rebound effect varies substantially

across goods. For alcohol, basic chemicals, fertilizers and pulp newsprint paper and paper-

board, the substitution rebound effect is approximately 40% to 50%, i.e the actual emissions

reductions are approximately half of what would be expected without modal substitution.

For animal feed, grain, milled grain, other prepared foodstuffs, primary base metals, plastics

and rubber and sand, the effect is approximately 30%. Other goods show smaller effects.

The substitution effect is essentially zero for coal, machinery, mixed freight, printed products

and waste and scrap. Air freight also responds to changes in truck fuel efficiency. As a result

there are negative rebound effects for shipments of animals, pharmaceuticals and precision
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instruments due to substitution from air freight to truck. In other words, fuel savings are

larger than would be predicted not accounting for mode switching.

Discussion and conclusions

Freight transportation represents a large and increasingly important share of U.S. energy

consumption and greenhouse gas emissions. Because energy intensities differ dramatically

across freight modes, shippers’ mode choice decisions have important implications for future

energy and climate policies. We model the freight mode choices of U.S. shippers and find

heavy duty truck fuel economy regulations cause some shipments that would have traveled

by more efficient rail transport to instead travel by truck. This effect is large relative to

estimates of the total heavy-duty vehicle rebound effect and results mainly from rail to truck

substitution. This suggests a large portion of the overall heavy-duty truck rebound effect

could be due to substitution effects. An analysis of truck fuel economy standards that ignores

this mechanism can substantially overstate fuel and emissions savings.

Rebound effects that partially offset energy efficiency improvements are well known in

passenger travel, buildings and energy consuming durable goods. Analogous to our mode

choice example, substitution in production technology could make up a large part of responses

to energy efficiency policy in these and other settings.

This work also highlights a relative benefit of climate policies that target complete sec-

tors, rather than specific technologies, such as carbon taxation or cap-and-trade. There is

no inefficient substitution bias introduced from policies that impact all technologies in the

relevant choice set proportional to their environmental impact.
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Figure 4: Rebound effect due to modal substitution Estimated mode substitu-
tion rebound effects with 5% truck fuel economy regulation. Rebound calculated as:
1 − fuel savings

fuel savings with modes fixed
. Negative values indicate fuel savings exceed predictions ig-

noring mode substitution. Bubble sizes reflect business as usual fuel consumption, without
fuel efficiency standards, by good shipped.

Precision Instruments
Animals
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Metallic Ores
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Pulp, Paper, Newsprint
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Substitution Rebound Effect

Barge, Rail, Truck Rail, Truck Air, Rail, Truck Air, Truck

Methods

Data

Shipment-level data on freight movements are from the U.S. Commodity Flow Survey Public

Use Microdata (CFS PUM) file11. The CFS PUM contains administrative data on a sample

of approximately 4.5 million U.S. shipments during 2012. The data include the type of
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good shipped reported at the Standard Classification of Transported Goods (SCTG) 2-digit

level, shipment value, distance and weight. Also reported are shipment mode or modes (e.g.

rail, barge, air, truck, etc. or multiple modes, i.e. truck and rail), origin and destination

locations, whether the shipment was temperature-controlled, and sampling weights used to

expand the sample to approximate the 2012 shipment population. We focus on the major

modes for each good. We exclude pipeline shipments due to limited scope for substitution

into or out of this mode and parcel/courier shipments due to their small ton-mile share.

We combine the shipment data with U.S. national monthly average prices for diesel and

jet fuel24,25. Rail, truck and inland water modes all operate primarily on diesel and air

shipments use jet fuel prices. For fuel efficiency, we use a mean fuel intensity for rail of

1/450 gallon per ton mile26,27. We use 1/85 gallon per ton mile for truck17,7, 1/7.5 gallon

per ton mile for air17 and 1/600 gallon per ton mile for barge28.

Mode choice model

To estimate parameters describing shippers’ mode choices we follow classic models for freight

mode choice29–31,20,32, we assume shippers choose modes to minimize the sum of freight rate,

inventory cost and a mode-specific fixed cost. Specifically, the cost of shipment i by mode n

can be written as:

costin = γnenPt × tonmilesi︸ ︷︷ ︸
Rate

+ 1/σnmilesi × r × valuei︸ ︷︷ ︸
Inventory Cost

+ δn︸︷︷︸
Fixed Cost

(2)

where the first term captures freight rate, the second term represents inventory cost and the

final term is a mode-specific fixed-cost δn. We assume freight rates depend on transportation

companies’ fuel expenditures and are marked up proportionally at rate γn. Fuel expenditure

is the product of fuel price (Pt) and fuel consumption (en × tonmilesi), where en is the

mode-specific fuel intensity and tonmilesi is the size of shipment i. For each mode, en is

a constant. Inventory cost captures the time cost of transportation and depends on the

shipment distance (milesi), mode-specific speed ( 1
σn

) and the value of time (r × valuei),

where valuei is the total value of goods in the shipment and r is the discount rate. For
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goods that move by inland water, we allow mode-specific fixed cost to vary according to

whether the shipment originates in the Mississippi River Basin via incremental fixed cost

(δmn ). For goods that require temperature-controlled storage during transportation, we allow

for incremental fixed cost (δtcn ).

We estimate a reduced form of Equation 2 by replacing the individual inventory cost

parameters with coefficients to be estimated:

costin = γnenPt × tonmilesi + βgnmilesi × valuei + δgn + εin (3)

Since the rate term (γnenPt × tonmilesi) is alternative specific but the time cost term is

not, we estimate Equation 3 as an alternative specific logit model. We estimate Equation

3 separately for each good g to allow markups, mode speeds, values of time and fixed costs

to vary by the type of good shipped. The mode choice parameters are identified by cross-

sectional variation in shipment characteristics (ton-miles, miles, value, etc.) and (limited)

time-series variation in fuel prices.

Because variation in shipment costs comes mainly from changes in shipment character-

istics, the potential endongeneity problem is a bit more nuanced than the classic demand

estimation concern, i.e. that cost shocks are correlated with unobserved mode-specific de-

mand shocks. For instance, if a shock to truck shipment demand affects diesel prices, then

our estimates of the rate (fuel expenditure) term would be biased towards zero. However in

this case, our estimates are conservative in the sense that they under-estimate the effects of

changes in fuel consumption on mode switching. It could also be the case unobserved shocks

to shipment characteristics are correlated with shocks to demand for particular modes, e.g

a number of unusually large or small shipments that for some reason must be made by

truck. Here, the direction of bias is unknown. However, shocks of this type seem less likely.

Unfortunately the nature of our data, i.e. shipments occurring within a single year makes tra-

ditional instrumental variables strategies challenging and our estimates must be interpreted

in light of this potential bias. Additional information on our empirical approach and logit

model parameter estimates for the representative goods are provided in the Supplementary

information.
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Simulation of truck fuel economy standards

To see the overall effect of EPA phase two fuel economy standards we simulate shippers mode

choices with and without a 5% decrease in truck fuel intensity. We simulate three different

cases. The first case is business-as-usual (BAU) without a truck efficiency improvement.

The second imposes the 5% reduction in truck fuel intensity but assumes more fuel-efficient

trucks do not affect shippers’ mode choices. This difference between BAU and this scenario

is a measure of the direct effect in Equation 1. The third imposes the 5% reduction in

energy intensity and allows mode shares to adjust to changes in relative fuel efficiency.

The difference between the second and third scenarios shows the aggregate effect of mode

substitution rebound on energy consumption.

For each scenario, we calculate the latent value in (3) using the logit model parameter

estimates for each good and add to this value a random draw from the extreme value error

distribution. This gives choice probabilities for each mode. We assume shippers pick the

most probable mode for each shipment and each error draw. We repeat this procedure taking

new draws from the error distribution to yield 500 simulated mode choices for each shipment.

When shipments switch modes we adjust ton-miles in our fuel consumption calculations

to reflect mean differences in travel distance across models. For instance, truck distances

tend to be less between a given origin and destination due to more direct routing of truck

shipments relative to rail. We calculate the ratio of rail, air and barge to truck distances

between each origin-destination pair and apply mean values for the distance corrections.

Fuel consumption is calculated using the mean fuel efficiencies for each mode listed above.

Carbon emissions are calculated assuming 10.16 kg CO2 per gallon of diesel fuel and 9.57

kg CO2 per gallon of jet fuel. To calculate the aggregate values reported in Table 1 we first

average across the 500 simulated mode choices for each shipment and then aggregate ton

miles, fuel consumption and emissions for each mode.
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Data availability

The Commodity Flow Survey Public Use Microdata are publicly available from the U.S. Cen-

sus Bureau (https://www.census.gov/data/datasets/2012/econ/cfs/historical-datasets.html).

Fuel price data are publicly available from the U.S. Energy Information Administration

(https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=emd epd2d pte nus dpg&f=m

and https://www.eia.gov/dnav/pet/hist/eer epjk pf4 rgc dpgD.htm).

Code availability

All code used to conduct the study is available at https://github.com/jehdukeegr/Freight-

Mode-Rebound.
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Supplementary information

Framework for production rebound effects

The mode substitution rebound effects studied here belong to a class of rebound effect

related to agents’ choices of production technology. To categorize the different mechanisms

contributing to rebound in a production setting, consider a representative firm that produces

a single output y using N+1 inputs denoted x = x0, . . . , xN . The firm’s production function

is y = f(x) and the output price is p. The firm is a price taker in the input market and faces

factor prices w = w0, . . . , wN . Each input xn has an energy intensity per unit of consumption

of en. While the producer does not directly pay the embodied energy consumption, assume

the factor prices capture energy costs such that each factor price is an increasing monotonic

function of energy intensity, wn = w(en). There is an investment in energy efficiency that

lowers the energy intensity of x0 to ẽ0 such that ẽ0 < e0 and w̃0 < w0.

The effect of a price change can be decomposed into a substitution effect across the

firm’s production factors (technologies) and an expansion path effect affecting the scale

of production33–35. To see this, define the firm’s compensated factor demand function as

x(w, p) = u(w, y(w, p)). Differentiating u(w, y(w, p)) yields the effect of a change in factor

price w0 on input wn:

∂xn
∂w0

∣∣∣∣
wn 6=0

=
∂un
∂w0

∣∣∣∣
y,wn 6=0

+
∂un
∂y

∣∣∣∣
w̃0

∂y

∂w0

∣∣∣∣
w̃0,wn6=0

(4)

where ∂un
∂w0

is the substitution effect holding constant output and the other factor prices and

∂un
∂y

∂y
∂w0

is the expansion path effect. For simplicity, Equation 4 shows only the cross-price

effects. However, the own price effects can be derived in the same fashion. Equation 4 is the

production analog to the Slutsky equation for price changes in consumer theory.

To understand the implications of (4) for energy efficiency rebound effects, note total

energy consumption is just the sum of consumption across the different production tech-

nologies
∑N

n=1 enun. The energy efficiency investment lowers energy consumption for every
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unit of x0 consumed. The factor price change w̃0 −w0, produces substitution and expansion

effects across the firms inputs. Combining these effects yields:

x0(ẽ0 − e0) + ẽ0
∂u0
∂y

∂y

∂w0

(w̃0 − w0) +
N∑
n=1

en
∂un
∂y

∂y

∂w0

(w̃0 − w0) + (5)

ẽ0
∂u0
∂w0

(w̃0 − w0) +
N∑
n=1

en
∂un
∂w0

(w̃0 − w0)

This first term is the static energy efficiency effect. The second and third terms are the

expansion effects for input w0 and the other factors of production, respectively. In freight

markets, the expansion effects captures changes in the intensive margin of freight demand.

Our empirical application holds these effects constant. The fourth and fifth terms are the

own and cross-price substitution effects. In the empirical application below we show the

magnitude of these substitution effects can be large and can be positive or negative depending

on the relative energy intensity of the substitute production technology.

A Freight data

We exploit substantially better data than has been used in the past to study freight mode

choices. The Commodity Flow Survey Public Use Microdata file (CFS PUM) is the largest

publicly available micro data set on U.S. freight shipments. The data come from a strat-

ified sample of establishments originating shipments and stratified by geography, industry

and establishment size. Regional location data for shipment origins and destinations are re-

ported at the Combined Statistical Area (CSA) level, when available, or at the Metropolitan

Statistical Area (MSA) level. The Census Bureau removes firm-level data and identifying in-

formation to protect shipper and transportation company confidentiality. These data show

substantial variation in shipment size and value, both across goods and across shipments

within a particular type of good. This heterogeneity, which has been largely absent in earlier

studies using more aggregate data, reveals more realistic substitution patterns across modes.

Further, the CFS PUM provides much more comprehensive coverage of geographic areas,

goods and modes compared to data used previously and therefore paints a more accurate
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picture of recent U.S. freight patterns. Earlier studies using microdata typically focus on a

small number of goods, modes or geographic areas. For instance, the CFS PUM is the only

publicly available source for the highway mode.

Our empirical model focuses on the major modes used to ship each type of good. We treat

the truck component of mixed modes, i.e. truck and rail, and truck and barge, as drayage and

aggregate these shipments into the main modes, rail and barge. According to36 “Shipments

that included a truck drayage component are classified as Truck-Rail and Truck-Water in

the CFS estimates.” Because drayage distances are unobserved, we assume the truck share

of miles is small relative to the rail or water component. Since mixed shipments represent

small shares of total ton miles, 5% and 1% for truck-rail and truck-barge, respectively, this

assumption is unlikely to substantially impact our results.

We combine the CFS shipment data with information on diesel and jet fuel prices24,25.

Rail, truck and inland water modes all operate primarily on diesel and air shipments use jet

fuel prices. Because diesel fuel used in locomotives is exempt from the federal fuel excise tax

and from excise taxes in approximately 20 states, we subtract the federal and average state

exemptions from retail prices for rail shipments. We collapse the monthly data to quarterly

and match the relevant prices (diesel or jet) to individual shipments in the CFS PUM.

Table A1 summarizes shipment characteristics in the CFS PUM sample. The top panel

expands the sample using the CFS PUM sampling weights, but is otherwise unweighted. The

bottom panel reports summary statistics weighted by shipment size in ton-miles. While the

unweighted sample illustrates important features of the CFS PUM, weighting by shipment-

size is the more policy relevant metric since energy use and emissions are (roughly) propor-

tional to shipment size in ton-miles. The maximum value of goods shipped is approximately

$520 million. Maximum shipment distance is approximately 6,700 miles and maximum ship-

ment weight is approximately 140,000 tons. The two sets of summary statistics diverge due

to the large number of small parcel and courier shipments in the CFS PUM sample. There-

fore, mean shipment value is approximately $1,400 in the unweighted sample but increases to

$415,000 when weighted. Similarly, mean shipment distance and weight are approximately

620 miles and 1.1 tons in the unweighted sample and 1,090 miles and 5,070 tons in the
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weighted sample.

The bottom of each panel shows modal shares in the weighted and unweighted samples.

The “truck” mode combines shipments using private and for-hire trucks. Mixed modes, e.g.

truck-rail and truck-inland water are classified as rail and barge shipments, i.e. truck is used

to connect origins and destinations to the rail or barge service. Truck and parcel/courier

represent 44% and 54% of shipments in the CFS PUM sample. However in terms of ship-

ment size, parcel/courier is relatively less important than the other modes. Accounting for

shipment size (lower panel), rail (48%), truck (46%) and water (4%) account for over 98%

of freight output. Pipeline accounts for approximately 1% of shipments. However, modal

substitution to pipeline is limited in the short-run due to fixed infrastructure. Air repre-

sents approximately 0.2% of freight output, while parcel/courier represents approximately

0.8%. We exclude pipeline and parcel/courier shipments from our analysis below because

shipments using these modes have substantially different characteristics than those made on

other modes and because pipeline and parcel/courier constitute a small share of total freight

ton-miles. Finally, we exclude a handful of good categories that are dominated by a single

mode, typically with greater than 99% share, such that there are insufficient observations

to estimate parameters for competing modes. These include: meat, poultry and fish; to-

bacco products; monumental and building stone; electronics, other non-metallic minerals;

and furniture.

B Empirical approach

We estimate Equation 3 using the CFS PUM data outlined above. Because there is relatively

little variation in fuel prices during the sample year (2012), the parameters in (3) are iden-

tified by cross-sectional variation in shipment characteristics (ton-miles, miles, value, etc.)

and (limited) time-series variation in fuel prices. Table A2 presents parameter estimates for

the four representative goods: grain; coal; alcohol; and precision instruments. Parameter

estimates for other goods show similar patterns.

For grain, alcohol and precision instruments estimates for the rate (fuel expenditure

25



term) are negative and statistically significant indicating an increase in energy efficiency

or decrease in fuel intensity increases the likelihood a given mode is chosen. For coal the

estimated impact is small and insignificant, consistent with the notion coal moves mainly

by rail and, to a lesser extent inland water, and truck is a relatively poor substitute for

these modes. For grain shipments, increasing the inventory (time) cost, proxied by the

produce of shipment distance and shipment value, increases the likelihood truck (a faster

mode) is selected compared with rail or inland water. The effect is similar for precision

instruments where air is more likely to be selected relative to truck as distance or shipment

value increase. For coal, the estimated time cost parameter is negative for truck and barge

indicating increased costs make these modes less likely compared to rail. Similarly for alcohol,

increased time costs make truck less likely to be selected compared to rail. The relative

advantage of rail is this setting may be due to the use of unit trains for transporting these

goods. The Mississippi term estimates indicate inland water is more likely to be selected

when grain or coal shipments originate in the basin. Finally, when alcohol shipments must

be temperature controlled, i.e. beverages as opposed to fuel ethanol, truck is more likely to

be selected compared to rail.

C Model predictions of aggregate mode shares

We assess the overall fit of our modeling by comparing predicted freight ton-miles with totals

reported in the CFS. Table A3 presents the total ton-miles transported by mode for each

good. Beside the CFS data we present the mean ton-miles by mode and good averaged across

our simulations. In general, the predictions of the alternative specific logit model match the

CFS PUM shares well. The model tends to slightly over-predict truck ton-miles and under-

predicts rail ton-miles. Predicted total truck ton miles are within .9% of the CFS PUM total

and rail ton miles are within 3.8%. The alternative specific logit systematically over-predicts

barge ton-miles for a number of goods including basic chemicals, coal, fertilizers and grain.

As a result, we overestimate barge share and underestimate fuel use in our baseline scenario.

However, since we are mainly interested in how truck and rail shares change with improved

truck fuel economy, and since barge is a poor substitute for most truck shipments, we do not
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see this as a major limitation of the alternative specific logit specification in this application.

D Supplementary tables

Table A1: Summary statistics and modal shares in weighted and unweighted samples.

Mean Std. Dev. Min. Max.
Value 1,440$           63,700$      1$              521,000,000$  
Miles 622.31 795             1.00 6,677               
Tons 1.14 54               0.00 139,000           

Air 0.02 0.12            0.00 1.00
Pipeline 0.00 0.01            0.00 1.00
Rail 0.00 0.04            0.00 1.00
Truck 0.44 0.50            0.00 1.00
Water 0.00 0.01            0.00 1.00
Parcel/Courier 0.54 0.50            0.00 1.00

Mean Std. Dev. Min. Max.
Value 415,000$       2,750,000$ 1$              521,000,000$  
Miles 1,089.16        731             1.00 6,677               
Tons 5,066.56        12,500        0.00 139,000           

Air 0.00 0.04            0.00 1.00                 
Pipeline 0.01 0.10            0.00 1.00                 
Rail 0.48 0.50            0.00 1.00                 
Truck 0.46 0.50            0.00 1.00                 
Water 0.04 0.20            0.00 1.00                 
Parcel/Courier 0.01 0.09            0.00 1.00                 

Unweighted

Ton-Mile Weighted

Ton-Mile Share

Shipment Share
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Table A2: Alternative specific logit model parameter estimates for grain, coal, alcohol and
precision instruments.

Grain Coal Alcohol Precison Inst.

Rail Rail/Truck

Fuel Int. * Ton-Miles * Fuel P. -3182.505 -0.358 Fuel Int. * Ton-Miles * Fuel P. -3058.709 -3067.157
(4.744) (1.067) (4.767) (7.102)

Truck Truck
Miles * Shipment Value 0.010 -0.292 Miles * Shipment Value -0.007

(0.000) (0.001) (0.000)

Mississippi Basin -1.010 1.027 Temperature Controlled 0.308
(0.004) (0.009) (0.012)

Constant 4.337 3.398 Constant 7.986
(0.003) (0.003) (0.005)

Inland Water Air
Miles * Shipment Value -0.026 -0.007 Miles * Shipment Value 0.011

(0.000) (0.000) (0.000)

Mississippi Basin 2.522 1.249 Constant (1.283)
(0.024) (0.011) (0.000)

Constant -5.472 -0.951
(0.023) (0.005)

Observations 74451 31806 192658 81614
Pseudo R2 0.883 0.810 0.995 0.256

Notes: Alternative specific logit model estimates for grain and coal shipments.  Shipment size measured in million ton-miles.  
Shipment value measure in million dollars.  Stardard errors clustered at the route-level in parentheses. 

(Base Outcome) (Base Outcome)

Grain, Coal, Alcohol and Precision Instruments Mode Choice Results
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Table A3: Observed (CFS PUM) ton miles by good and mode compared with mean simu-
lated values using alternative specific logit parameter estimates.

Commodity Group CFS Pred. CFS Pred. CFS Pred. CFS Pred.
Agricultural Products 38.5 38.7 28.9 26.5 16.1 18.4 0.0 0.0
Alcohol 20.6 20.6 12.9 12.9 0.0 0.0 0.0 0.0
Animal Feed 33.3 33.5 19.9 19.8 0.0 0.0 0.0 0.0
Animals 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0
Articles of Base Metal 33.8 33.9 6.1 5.9 0.0 0.0 0.0 0.0
Basic Chemicals 45.8 46.6 72.9 68.2 13.1 17.1 0.0 0.0
Coal 9.8 11.2 603.2 576.7 23.2 48.3 0.0 0.0
Fertilizers 17.8 18.1 32.0 31.5 1.5 1.7 0.0 0.0
Grain 17.5 17.9 136.8 131.7 15.3 20.0 0.0 0.0
Gravel 39.4 39.7 12.6 12.6 7.8 7.6 0.0 0.0
Logs and Other Wood in the Rough 3.2 3.2 0.3 0.3 0.0 0.0 0.0 0.0
Machinery 32.6 32.6 1.1 1.1 0.0 0.0 0.4 0.3
Metallic Ores 2.1 2.1 18.0 17.9 0.0 0.0 0.0 0.0
Milled Grain 34.3 34.5 15.1 14.8 0.0 0.0 0.0 0.0
Miscellaneous Manufactured Products 25.6 24.9 1.2 1.9 0.0 0.0 0.3 0.3
Mixed Freight 66.9 69.4 3.1 0.9 0.0 0.0 0.8 0.4
Non-Metallic Mineral Products 67.8 68.1 17.2 17.0 0.0 0.0 0.0 0.0
Other Chemical Products 36.3 36.5 8.2 8.0 0.0 0.0 0.0 0.0
Other Coal and Petroleum 47.6 47.8 26.8 24.9 9.3 10.9 0.0 0.0
Other Prepared Foodstuffs 126.9 127.3 68.0 67.5 0.0 0.0 0.0 0.0
Paper 21.1 21.2 3.9 3.8 0.0 0.0 0.0 0.0
Pharmaceuticals 6.6 6.6 0.0 0.0 0.0 0.0 0.1 0.1
Plastics and Rubber 54.4 54.7 43.5 43.2 0.0 0.0 0.0 0.0
Precision Instruments 3.7 3.8 0.0 0.0 0.0 0.0 0.4 0.3
Primary Base Metal 72.1 72.6 29.5 29.1 0.0 0.0 0.0 0.0
Printed Products 12.6 12.7 0.0 0.0 0.0 0.0 0.1 0.1
Pulp, Newsprint, Paper, and Paperboard 40.0 40.3 27.4 27.0 0.0 0.0 0.0 0.0
Sand 20.2 20.4 17.3 17.0 0.0 0.0 0.0 0.0
Textiles 21.3 21.3 0.8 0.7 0.0 0.0 0.0 0.0
Transportation Equipment, not elsewhere classified2.1 2.1 1.5 1.4 0.1 0.1 0.0 0.0
Vehicles 49.1 49.3 11.5 11.3 0.0 0.0 0.0 0.0
Waste and Scrap 43.5 44.4 17.5 15.4 1.7 2.8 0.0 0.0
Wood Products 52.6 52.8 27.3 27.1 0.0 0.0 0.0 0.0
Notes: Commidity Flow Survey (CFS) ton miles by SCTG and mode (in millions of ton miles).  Predicted ton-miles by SCTG and mode are 
average values across our simulated mode choices, Section 7, in millions of ton miles.

AirWaterRailTruck
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Table A4: Estimated own and cross-price elasticities for goods moving by barge, rail or
truck.

Truck Rail Barge Truck Rail Barge Truck Rail Barge
Truck -0.3087 0.3918 0.0849 Truck -0.5961 0.4029 0.0165 Truck 0.0000 0.0000 0.0000

Rail 0.0512 -7.5574 10.7419 Rail 0.1101 -0.2476 0.6892 Rail 0.0000 -0.0024 0.0282
Barge 116.1375 215.7415 353.2747 Barge 183.0777 93.3057 672.6492 Barge 0.0000 0.0024 -0.0280

Truck Rail Barge Truck Rail Barge Truck Rail Barge
Truck -0.5784 0.3314 0.0000 Truck -0.4266 0.0575 0.0039 Truck -0.1373 0.4196 0.0206

Rail 0.1149 -0.0836 0.3336 Rail 0.0966 -4.4154 29.0532 Rail 0.0279 -4.2745 6.9892
Barge 183.7579 62.6101 2965.7030 Barge 0.0007 3.9681 -26.1886 Barge 0.0009 3.9597 -6.6151

Truck Rail Barge Truck Rail Barge Truck Rail Barge
Truck -0.2983 0.5557 0.0388 Truck -0.2702 0.3883 0.1249 Truck -0.0125 0.0358 0.0012

Rail 0.0467 -1.0258 2.1421 Rail 0.0432 -0.7465 6.8850 Rail 0.0018 -0.0271 0.1186
Barge 74.8693 235.6501 667.9596 Barge 0.0021 0.5004 -5.0803 Barge 0.0000 0.0875 -0.4763

Other Coal and Petroleum Transportation Equipment Waste and Scrap

Agricultural Products Basic Chemicals Coal

Fertilizers Grain Gravel
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Table A5: Estimated own and cross-price elasticities for goods moving by rail or truck.

Truck Rail Truck Rail Truck Rail
Truck -0.5590 0.8969 Truck -0.3434 0.5822 Truck -0.1771 1.0080

Rail 0.1011 -0.1623 Rail 0.0674 -0.1142 Rail 0.0313 -0.1780

Truck Rail Truck Rail Truck Rail
Truck -0.0732 0.8031 Truck -0.3531 0.0414 Truck -0.4502 1.0482

Rail 0.0116 -0.1270 Rail 0.0682 -0.0080 Rail 0.0843 -0.1964

Truck Rail Truck Rail Truck Rail
Truck -0.2580 1.0334 Truck -0.3167 1.4393 Truck -0.4322 0.8137

Rail 0.0496 -0.1988 Rail 0.0612 -0.2783 Rail 0.0774 -0.1457

Truck Rail Truck Rail Truck Rail
Truck -0.3457 1.9298 Truck -0.3749 0.4754 Truck -0.3891 0.9697

Rail 0.0645 -0.3603 Rail 0.0695 -0.0881 Rail 0.0748 -0.1864

Truck Rail Truck Rail Truck Rail
Truck -0.6261 0.9342 Truck -0.4116 0.4930 Truck -0.0998 2.8797

Rail 0.1221 -0.1822 Rail 0.0816 -0.0978 Rail 0.0009 -0.0246

Truck Rail Truck Rail
Truck -0.0512 0.2224 Truck -0.3253 0.6328

Rail 0.0101 -0.0439 Rail 0.0607 -0.1181

Alcohol Animal Feed Articles of Base Metal

Logs and Wood in the Rough Metallic Ores Milled Grain

Non-Metallic Mineral Products Other Chemical Products Other Prepared Foodstuffs

Paper Plastics and Rubber Primary Base Metal

Pulp, Paper and Newsprint Sand Textiles

Vehicles Wood Products

Table A6: Estimated own and cross-price elasticities for goods moving by air or truck.

Truck Air Truck Air
Truck -0.0524 1.5944 Truck -0.0006 0.0388

Air 0.4436 -13.4936 Air 0.0094 -0.5867

Truck Air Truck Air
Truck -0.0080 0.0922 Truck -0.0002 0.0306

Air 0.0546 -0.6261 Air 0.0035 -0.5176

Animals Pharmaceuticals

Precision Instruments Printed Products
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Table A7: Estimated own and cross-price elasticities for goods moving by air, rail or truck.

Truck Rail Air Truck Rail Air
Truck -0.0016 0.1039 0.0431 Truck -0.0376 1.0654 0.0548

Rail 0.0002 -0.0156 0.0000 Rail 0.0068 -0.1967 0.0000
Air 0.0034 0.1216 -0.8438 Air 0.0078 0.0512 -0.9186

Truck Rail Air
Truck -0.1345 1.7215 0.1026

Rail 0.0215 -0.2777 0.0005
Air 0.0065 0.0043 -0.6549

Mixed Freight Machinery

Misc. Manufactured Products
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