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Abstract

Highway fatalities are a leading cause of death in the U.S. and other industrialized

countries. Using highly detailed accident, speed and flow data, we show highway travel

and motor vehicle accidents fell substantially in California during the response to the

COVID-19 pandemic. However, we also show the frequency of severe accidents in-

creased due to lower traffic congestion and higher highway speeds. This “speed effect”

is largest in counties with high pre-existing levels of congestion, and we show it par-

tially or completely offsets the “VMT effect” of reduced vehicle miles traveled on total

fatalities. During the first eleven weeks of the COVID-19 response, highway driving

decreased by approximately 22% and total accidents decreased by 49%. While average

speeds increased by a modest 2 to 3 miles-per-hour across the state, they increased be-

tween 10 and 15 miles-per-hour in several counties. The proportion of severe accidents

increased nearly 5 percentage points, or 25%. While fatalities decreased initially fol-

lowing restrictions, increased speeds mitigated the effect of lower vehicle miles traveled

on fatalities, yielding little to no reduction in fatalities later in the COVID period.
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1 Introduction1

Each year more than 30,000 motor vehicle fatalities occur in the United States (National2

Highway Traffic Safety Administration, National Center for Statistics and Analysis, 2019),3

with 1.35 million deaths worldwide World Health Organization (2018). Fatal accidents re-4

flect a tremendous amount of driving, over 3 trillion vehicle miles traveled (VMT) (United5

States Department of Transportation, Bureau of Transportation Statistics, 2020), and a6

large number of accidents, over 6 million, each year in the U.S. (National Highway Traffic7

Safety Administration, National Center for Statistics and Analysis, 2020). During the na-8

tional response to the COVID-19 pandemic, travel restrictions substantially reduced driving9

and, anecdotally, motor vehicle accidents in the US. We exploit detailed data on driving,10

accidents, weather and fatalities in California to study the effect of COVID-19-related re-11

strictions on traffic accidents and fatalities. We show these restrictions in California led12

to large reductions in VMT and accidents, while increasing highway speeds and accident13

severity. More generally, we document and quantify an important trade-off that emerges for14

any reduction in traffic congestion.15

While increased VMT and higher speeds should clearly affect motor vehicle fatalities, iso-16

lating and quantifying their individual effects is empirically challenging due to the interplay17

between the demand for driving, traffic congestion, speeds and accidents. Cross-sectional18

analysis of the effect of these factors on fatalities is prone to omitted variable bias (e.g.19

differences in road conditions, funding, policing, underlying attitudes, etc.). Time-series20

analysis is complicated by reverse causality in the timing of accidents and congestion related21

speed reductions - that is, accidents that cause congestion, or time-varying trends in driving,22

accidents and fatalities (e.g. changes in vehicle technologies and safety).23

We overcome these challenges by exploiting the reduction in travel due to COVID-1924

restrictions to estimate the causal effects of VMT and average vehicle speeds on accidents and25

motor vehicle fatalities. Decreased demand for driving led to large reductions in VMT and26

higher average vehicle speeds in congested urban areas. We measure these shifts using hourly27

data on VMT and traffic speeds at thousands of locations across California from the Freeway28

Performance Measurement System (PeMS) (California Department of Transportation, 2020).29
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We combine these data with reports from the California Highway Patrol (CHP) Incident1

Report System, also collected through PeMS. Using a text analysis of these detailed incident2

reports (several tens of millions of individual entries at the minute time-scale), we categorize3

accidents by severity and whether a fatality occurs. Because weather plays a role in many4

accidents, we collect hourly weather data from the NOAA ISD-lite system (National Oceanic5

and Atmospheric Administration, 2020) and match station-level observations to California6

counties based on proximity. Combined, these are the most comprehensive micro-level data7

on motor vehicle-related fatalities available - a key factor in selecting California for this8

analysis.9

Trends in driving and accidents before and after COVID-19 restrictions for six large Cal-10

ifornia counties show large decreases in vehicle miles traveled and accidents, as well as large11

increases in average speeds. The share of severe accidents increases substantially. Regression12

analysis across all California counties in our PeMS dataset show travel restrictions decreased13

VMT by approximately 22 percent and total accidents by approximately 49 percent. Av-14

erage highway speeds increased by 2 to 3 miles per hour across all counties, but increased15

as much as 10 to 15 miles per hour during peak hours in some counties. The share of se-16

vere accidents increased nearly 5 percentage points, or approximately 25 percent, during the17

COVID period.18

We use the shift in travel demand due to COVID-19 restrictions to estimate the causal19

effects of VMT and average vehicle speed on fatalities. We find a 1 percent increase in VMT20

increases fatalities by about 1 percent and cannot reject an elasticity of one. A 1 percent21

increase in average speed increases fatalities by about 4 percent. These parameter estimates22

imply reduced VMT during the COVID period would have reduced fatalities in California23

by approximately 50 percent. However, higher average speeds due to reduced congestion24

mitigates this effect by half, such that the total decrease in fatalities is approximately 2525

percent. Further, increases in VMT several weeks after initial COVID-19 restrictions, which26

were not coupled with substantial speed decreases, contributed to a rise in fatalities later27

in our sample. This result follows from the convex relationship between travel time and28

congestion - when traffic is uncongested, changes in the number of cars on the road have29
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little-to-no effect on average speed.1

Using detailed data on the characteristics of drivers and accidents in California during2

this period, we investigate the potential role of compositional shifts in increased fatalities.3

For example, if lower congestion allowed riskier drivers to drive at higher speeds, then the4

observed increase in accident severity may reflect compositional shifts in driver types. During5

the COVID period, younger drivers and male drivers make up a larger share of parties6

involved in accidents. Vehicles involved in accidents are older, and alcohol and poor weather7

are more likely to contribute to accidents during the COVID period. An analysis of the8

fatality age distributions for single car accidents indicates an increase in fatalities among9

both younger and middle-age drivers. This suggests the increase in accident severity we10

document is not isolated to younger and potentially riskier drivers.11

We contribute to a large literature that investigates the causes of motor vehicle fatalities.12

Earlier cross-sectional studies have explored the relationship between VMT and fatalities13

(Clark and Cushing, 2004; Yeo, Park, and Jang, 2015). The relationship between vehicle14

speeds and fatalities has been studied in the context of increases in speed limits on rural15

interstates during the 1980s and 1990s following changes to U.S. national speed limits. While16

a 10 mph higher speed limit increases average speed between 2 and 4 mph (Ashenfelter and17

Greenstone, 2004; McCarthy, 2001; Retting and Greene, 1997; Van Benthem, 2015), fatalities18

increase substantially, between 15 and 60 percent (Ashenfelter and Greenstone, 2004; Baum,19

Wells, and Lund, 1990; Farmer, Retting, and Lund, 1999; Farmer, 2017; Greenstone, 2002;20

Van Benthem, 2015). However, extending these results to urban areas or metro-area highways21

has been challenging in part because urban vehicle speeds are often limited by congestion22

rather than speed limits (Burger and Kaffine, 2009). Further, systematic differences in factors23

such as hospital access, emergency vehicle response times, vehicle fleet composition and the24

prevalence of divided highways imply the effect of speed on fatalities is likely different in25

urban areas. Understanding effects in urban areas is especially important as over 80 percent26

of U.S. population lives in urban areas (United States Census Bureau, 2018).27

Our results have implications beyond the current COVID crisis. State and local policies28

that reduce congestion and increase average highway speeds are likely to experience similar29
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increases in accident severity. In contrast to earlier studies that identified the effects of1

higher speed limits on fatalities on rural highways, the effects identified here are largest2

on congested urban highways, which carry a substantial fraction of total vehicles. Further,3

since the effects we estimate move in opposite directions (decreased VMT reduces fatalities,4

increased speed increases fatalities), we note that our results have important implications5

for the choice of congestion relief policy. For example, highway expansions that increase6

both the amount of driving and vehicle speeds will increase fatalities through both channels.7

By contrast, congestion charges that reduce VMT but increase speeds can either increase or8

decrease fatalities depending on the relative strength of these channels.9

2 Data10

We combine detailed data on motor vehicle travel and fatalities from several sources. Vehi-11

cle miles traveled and average speeds are from the California Department of Transportation12

Performance Measurement System (PeMS) (California Department of Transportation, 2020).13

PeMS reports hourly traffic data for major highways in 42 of California’s 58 counties (addi-14

tional information on PeMS monitoring network is provided in the appendix). Hourly data15

are collected for the period from March 1, 2015 through May 31, 2020. Observations are16

county-level VMT totals and mean speeds calculated from thousands of traffic sensors (loop17

detectors) throughout the state. We sum hourly VMT to the daily total within each county.18

We calculate mean speed as the average across all detectors within a given county.19

Detailed accident data are collected by the California Highway Patrol (CHP) Incident20

Report System and made available through PeMS (California Department of Transportation,21

2020). Each record contains the time, location, duration and a description of the accident.22

The CHP data also include police dispatch codes that we use to classify accidents as minor,23

severe or unknown. Severe accidents are those where the dispatch code reports a fatality24

(1144), requests an ambulance (1179, 1141) or reports a major injury (1180). Minor accidents25

are those with dispatch codes reporting minor injuries (1181) or no injuries (1182, 20002)26

and accidents classified as unknown are those reported with unknown injuries (1183, 20001).27
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Fatality data are also derived from a text analysis of the CHP incident reports. Dispatch1

codes reported in CHP incident reports denote probable fatalities (1144). However, many2

incidents with different initial dispatch codes ultimately result in a fatality. More detailed3

notes accompanying each incident report indicate whether a fatality subsequently occurred.4

Therefore, we scrape CHP’s detailed incident notes and perform a text analysis to determine5

an accurate fatality count. Specifically, we search the detailed incident notes for words such6

as “coroner” and “veh 1144” to determine whether a fatality has occurred.7

Because weather, in particular rainfall, is a key factor in many traffic accidents (Saha8

et al., 2016), we collect weather data from the National Oceanic and Atmospheric Admin-9

istration (2020). We collect hourly precipitation, cloud cover, wind speed, wind direction,10

temperature and pressure. Hourly data are collapsed to daily average precipitation, wind11

speed, wind direction, cloud cover, temperature and pressure. Stations are matched to coun-12

ties based on the shortest distance between each station and county’s population-weighted13

centroid. Because the effect of rainfall on accidents may be non-linear, our main empirical14

results include an indicator variable that equals one if the daily total rainfall in a county15

exceeds 5mm. In specifications using weekly data, heavy rainfall is defined as weeks with16

weekly total rainfall greater than 10mm. Robustness checks presented in Section 4.3 include17

additional weather controls.18

Finally, for our analysis of compositional changes we obtain detailed data on the char-19

acteristics of drivers involved in accidents from the California Highway Patrol Statewide20

Integrated Traffic Records System (California Highway Patrol, 2021). These data report21

driver characteristics such as sex, age and ethnicity as well as accident characteristics such22

as vehicle type, weather, crash severity and whether alcohol was involved. We calculate the23

mean values of driver and accident characteristics immediately before and then during the24

initial COVID period and interpret differences in these values as evidence of compositional25

shifts during COVID-19 driving restrictions.26
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3 Traffic changes during initial COVID-19 related re-1

strictions2

Figure 1 plots daily vehicle miles traveled, average highway speeds, weekly accidents and3

accident severity for Los Angeles, Sacramento, San Diego, San Francisco and Santa Clara4

Counties (these represent approximately 44% of highway VMT in the state - authors’ cal-5

culations using PeMS data). We note three dates: First, March 4, 2020, the day California6

Governor Gavin Newsom declared a state of emergency related to the COVID-19 pandemic.7

Second, March 12, 2020, the date of the Governor’s executive order limiting large gather-8

ings and enacting social distancing measures. Third, March 19, 2020, the beginning of the9

California stay-at-home order. Each of these events likely had a different effect on driving10

within the state and their relative importance is not clear a priori.11

The VMT and accident data in Figure 1 are normalized to account for differences in12

scale across cities. For VMT, panel a, we account for daily traffic patterns by first regressing13

VMT on day-of-week fixed-effects, using observations from 2020 prior to the Governor’s14

executive order. We estimate the model separately for each city to account for differences in15

daily traffic patterns and mean VMT levels across cities, and then plot the ratio of observed16

VMT to predicted VMT. For accidents, panel b, we aggregate accidents to the weekly level17

to smooth day-to-day variability and better illustrate the county-level trends. We again18

estimate separate models for each county and plot the ratio of observed accidents to model19

predictions based on rainfall and week-of-year fixed effects. For accident severity, panel d,20

we expand the sample to five years prior to March 2020 to preserve statistical power. We21

predict the mean severe accident share for each week and county during 2020 and plot the22

difference between the observed and predicted shares, based on week-of-year fixed effects23

and an indicator for heavy rainfall. This measure gives the change in the share of severe24

accidents, in percentage points, over time.25

Panel a of Figure 1 shows VMT trends for the six counties, which are are essentially26

constant through the state of emergency declaration and are decreasing only slightly prior27

to the March 12 executive order. However, following the executive order, VMT decreased28
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Figure 1: Time-series of traffic patterns in six California counties before and after COVID-
19 related travel restrictions. a.) vehicle miles traveled; b.) weekly accident totals; c.)
average highway speeds; and d.) changes in the share of severe accidents.

sharply for several weeks, falling as much as 50 percent by the beginning of April. The1

largest decreases are for Santa Clara and San Diego counties, while the decline in VMT is2

smaller in Alameda and Los Angeles Counties. Following several weeks of declining VMT,3

driving begins to increase during the month of April. By the end of May, VMT rises to4

near 75 percent of pre-COVID levels. Panel b of Figure 1 shows similar accident trends for5

the six counties. Accident totals are noisy but essentially constant during the first part of6

2020. Accidents begin to decrease around the time of the executive order, falling to below7

50 percent of pre-COVID levels. However, by week 16, 4 to 5 weeks following the executive8

order, accidents begin to increase slightly.9
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Panel c of Figure 1 shows average speeds for the six counties increased as VMT declined.1

Prior to COVID-19 restrictions, average speeds in counties such as Los Angeles do not reach2

free flow levels, even on weekends, and range between 55 mph and 60 mph. Speeds begin3

to increase in the week before the Governor’s executive order. Following the order, average4

speeds are 5 to 10 mph higher across the six counties, which suggests that when accidents5

do occur, they are likely more severe. Throughout the month of April, speeds remain high6

despite the increase in VMT, as highways were still largely uncongested. However, by May7

average speeds begin to decrease, indicating a return to congested conditions.8

Panel d of Figure 1 shows the share of severe accidents in the six counties over time, coded9

based on police dispatch codes from the CHP incident reports. The share of severe accidents10

post COVID-19 restrictions increases between 5 and 10 percentage points, providing evidence11

of a substantial increase in accident severity, as this represents a doubling of severe accident12

share in some counties. The largest effects are in San Francisco and Santa Clara, counties13

that saw the largest speed increases in panel c. Overall, the trends illustrated in Figure 114

suggest COVID-19 restrictions had large effects on vehicle travel and accidents in California.15

We quantity the average effects across all PeMS counties in the section below.16

4 Empirical analysis17

To quantify the mean effects of COVID-19 travel restrictions on traffic, accidents and fatal-18

ities across California, we estimate a series of models of the form:19

yit = β0 + EOt + δhrit + εi + εit, (1)

where yit is an outcome of interest (VMT, average speed, accidents or accident severity) in20

county i on date t. We account for mean differences across counties using county fixed-effects21

εi. We model the effect of rainfall on traffic patterns and accidents with an indicator variable22

δhrit that is equal to 1 if rainfall is heavy, as described above. We show in Section 4.3 that the23

results presented below are robust to alternate specifications. The main parameter of interest24

is an indicator variable for the start of COVID-19 travel restrictions EOt. Observations25
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occurring after Governor Newsom’s March 12, 2020 executive order are coded as 1, based1

on the timing of the VMT decline in Figure 1 panel a. Therefore, EOt measures the mean2

effect of the COVID-19 travel restrictions across all counties during the treated period.3

For VMT, we specify the dependent variable as the natural logarithm of vehicle miles4

traveled to account for differences in scale in the treatment effect across counties with widely5

varying levels of driving. We account for changes in the size of the PeMS monitoring network6

over time by including the number of PeMS “lane-points” (or lanes-monitoring locations) in7

each county on each day as an additional explanatory variable in our VMT model.8

We model average highway speed in miles per hour, i.e. levels. Because the effect9

of changes in speed on fatalities also varies with the number of drivers exposed to these10

changes in speed, we estimate a weighted average treatment effect using weighted least-11

squares where the weights are county-level VMT. Accident severity is modeled as the share12

of severe accidents as indicated by CHP dispatch codes on each day in each county. We13

model the number of accidents and fatalities per day in each county as count variables and14

estimate Equation 1 using Poisson regression.15

Table 1 presents results for our estimates of Equation 1. Column 1 shows that log daily16

VMT decreases by -0.249 across all counties, or about 22 percent, after implementation17

of the COVID restrictions. Column 2 presents results for accidents, which fall by -0.64718

or approximately 48 percent. While accidents decrease overall, Column 3 shows that the19

share of severe accidents increases by 4.8 percentage points, or about 25 percent during20

this period. In column 4 we see average speeds decrease by about 2.0 mph as a result of21

COVID-19 restrictions. However, this figure ignores the fact speed increases are greater when22

more drivers are affected, i.e. in the more congested counties with greater traffic volumes.23

Column 5 presents the estimated speed increase from a weighted least squares regression24

where counties are weighted by daily VMT, whereby the estimated effect is over 50 percent25

larger, approximately 3.1 mph. While decreases in VMT reduce fatalities, the corresponding26

increase in speed and accident severity likely increase fatalities. The estimate in Column 627

shows the net effect of these factors could be slightly positive, about 7 percent, though the28

estimate is not statistically significant.29
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ln(VMT) ln(Accidents) Severe Share Avg. Speed Avg. Speed 
VMT Wgt. ln(Fatalities) ln(Fatalities)

Post Exective Order -0.249*** -0.647*** 0.048*** 2.033*** 3.066*** 0.072
(0.0480) (0.0370) (0.0060) (0.2710) (0.5520) (0.1130)

Daily rainfall > 5mm -0.040** 0.475*** -0.017*** -0.508*** -0.583*** 0.182** -0.352
(0.0160) (0.0360) (0.0040) (0.1640) (0.0940) (0.0890) (0.5750)

ln(VMT) 1.048***
(0.1080)

ln(Speed) 4.352**
(1.8980)

Lanepoints Yes No No No No No No
County Fixed-Effects Yes Yes Yes Yes Yes Yes Yes
Observations 78990 77488 58048 78990 78990 70341 6074
Adj. R-sq. 0.97 0.05 0.41 0.48

COVID-Related Traffic Effects

Table 1: Regression analysis of COVID-19 related travel restrictions on VMT, accidents,
highway speeds and fatalities. Notes: Vehicle miles traveled (VMT) measured in millions of
miles per county per day for PeMs counties. Accidents are the sum of CHP severe, minor
and unknown incidents by CA county and day. The severe share is the share of all accidents
classified as severe according to CHP dispatch codes. Average speed is the average speed
on PeMs highways over all hours of the day. Weights are total county level daily VMT.
Fatalities are CHP reported deaths by county and date for 2020. Standard errors clustered
at the date level. ***, ** and * denote significance at the 1 percent, 5 percent and 10 percent
levels.

To identify the relationships between driving, vehicle speeds and traffic deaths we model1

fatalities as:2

ln(Fatalitiesit) = β0 + β1lnV MTit + β2lnSpeedit + δhrit + εi + εit, (2)

where lnV MTit is the natural logarithm of vehicle miles traveled and lnSpeedit is the natural3

logarithm of average speed in county i on date t. Again, δhrit is an indicator variable for days4

with heavy rainfall and εi are county fixed-effects. A common challenge in modeling fatalities5

is that unobserved factors that are correlated with vehicle miles traveled and speeds may also6

be correlated with fatalities leading to omitted variable bias. Here, we exploit the COVID-7

19 travel restrictions to isolate exogenous variation in VMT and highway speeds. We focus8

on a narrow window of time, approximately ten weeks prior and ten weeks following the9

implementation of travel restrictions to isolate plausibly exogenous shifts in travel behavior.10

We estimate Equation 2 using Poisson regression. Parameter estimates are reported in11

column 7 of Table 1. The coefficient β1 can be interpreted as the “VMT effect” on fatalities,12
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while the coefficient β2 can be interpreted as the “speed effect” on fatalities. The relationship1

between vehicle flow or VMT and speed is well known to be backward bending, i.e. at2

high levels of congestion speed and flow decrease simultaneously. The reduction in driving3

during the COVID period shifted many California counties out of these highly congested4

hyper-congestion conditions to less-congested travel. Because of these shifts, the data have5

sufficient variation in both VMT and speed to allow separate estimation of both effects.6

Specifically, we find a 1 percent increase in VMT increases fatalities by about 1 percent. A7

1 percent increase in average speed increases fatalities by approximately 4 percent.8

To gauge whether these estimates are reasonable, consider a conceptual model for traffic9

fatalities where the probability a driver is involved in an accident is a constant ρ (per mile10

driven), such that the product ρ × VMTit is the expected number of accidents in county i11

and day t. Some fraction of these accidents will be severe enough to result in a fatality. For12

simplicity, assume the likelihood of a fatal accident is proportional to the amount of kinetic13

energy in the collision (proportional to vehicle speed squared). Under these assumptions,14

the expected number of fatalities is:15

Fatalitiesit = αρVMTit × Speed2it, (3)

where α is a constant. Taking the natural logarithm yields the following equation, where

γ = ln(αρ):

lnFatalitiesit = γ + 1 × lnVMTit + 2 × lnSpeedit.

Under this model, the VMT coefficient would be 1, and if one could measure each vehicle’s16

speed, the speed coefficient would be approximately 2. However, since the relative infre-17

quency of fatal accidents requires some amount of aggregation, our regression analysis only18

measures changes in average speed at the daily level. This average reflects relatively larger19

increases in speed in congested counties during hours with the most driving and a near-zero20

change during uncongested evening and early morning hours. Therefore, we expect the speed21

coefficient to be somewhat larger than 2, as found in Table 1.22
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4.1 Heterogeneity and aggregate effects1

The mean effects presented in Table 1 hide important heterogeneity in the data, as counties2

with different baseline levels of driving and congestion have different impacts from COVID-193

restrictions. Figure 2 decomposes the effect of COVID-19 restrictions on speed into different4

periods of the day (AM peak, mid-day, PM peak, and night) for county quintiles based5

on historical (5 year) measures of congestion. In the most congested counties (top row,6

Q5), there are large increases in average speeds during the daytime periods, ranging from7

5 to over 15 mph. The largest increases occur during the afternoon peak. Less congested8

counties experience smaller speed increases, on the order of 5 to 10 mph for counties in the9

fourth quintile of congestion and 0 to 5 mph for counties in the third quintile. The least-10

congested counties (bottom row, Q1) see little-to-no change in average speeds, and there are11

no nighttime effects outside of the fifth quintile.12

Figure 3 uses the estimates from Equation 2 to decompose county-level changes in fa-13

talities into a VMT effect and a speed effect. To facilitate comparisons across counties,14

the VMT effect is the decrease in fatalities solely due to VMT reductions under COVID-1915

restrictions normalized relative to a no-COVID counterfactual. The speed effect is defined16

as the increase in fatalities due to higher speeds under COVID-19 restrictions relative to17

the no-COVID baseline counterfactual. The x-axis shows percentage reductions in fatalities18

due to lower driving and the y-axis shows percentage increases due to higher speeds, such19

that the 45-degree line is where the two effects exactly cancel, implying no net effect on20

fatalities. In most counties, reduced VMT lowers fatalities between 20 and 40 percent. In21

uncongested counties (green), the speed effect is essentially zero. In moderately congested22

counties, higher speeds increase fatalities between 10 and 20 percent, negating about half of23

the VMT effect. In the most congested counties (red), the speed effect increases to between24

20 and 35 percent. This implies San Francisco and Alameda counties experience a small25

reduction in fatalities, while Los Angeles experiences a small increase in fatalities due to26

COVID-19 restrictions.27

Figure 4 shows the total fatalities and model predictions for all California PeMS counties28

over time. We compare predicted fatalities under COVID-19 restrictions that include both29

13
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Figure 2: Average COVID-19 related speed effects (change in mph) by time of day: AM
Peak is 6 am to 9 am, Mid-day is 9 am to 4 pm, PM Peak is 4 pm to 7 pm and Night is 7 pm
to 6 am. The counties are grouped into quintiles of traffic congestion defined as historical
average delay using a free-flow speed of 65 mph. Q5 is the most congested quintile, Q1 is
the least.
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Figure 3: Decomposition of total fatalities into decreases from lower vehicle miles traveled
and increases due to higher speeds. County-level estimates are shown based on Equation 2.
The 45-degree line indicates no net change in fatalities. Color coding is based on quintiles
in Figure 2
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Figure 4: Estimated effects of COVID-19 related travel restrictions on California motor
vehicle fatalities. Observed fatalities are shown in light-gray. The estimated no-COVID
counterfactual based on Equation 2 is plotted in dark gray. Plotted in red are (smoothed)
fatalities under COVID restrictions, i.e. taking into account the combined effects of reduced
VMT and increased speed. Plotted in orange is the counterfactual prediction assuming no
average speed increase due to COVID-19 restrictions. The difference between the red and
orange plots shows the estimated increase in daily fatalities due to higher speeds from lower
traffic congestion during the treated period.
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the speed and VMT effects (red), with the no-COVID counterfactual (dark grey) and a1

counterfactual excluding the speed effect (orange). Fatalities fall by approximately 30 percent2

during the initial COVID-period relative to the counterfactual. By May, as VMT increases3

but speeds remain high, the COVID fatality rate increases to a level comparable with the4

no-COVID counterfactual. Importantly, without the COVID-19 speed effects (orange) the5

fatality rate during the COVID period would have been substantially lower, by approximately6

25 percent.7

4.2 Driver and accident characteristics8

In this section, we exploit detailed accident and driver data from the California Highway9

Patrol Statewide Integrated Traffic Records System to explore potential mechanisms for the10

accident and fatality effects. We focus on characteristics that may be associated with riskier11

drivers or more dangerous driving conditions. For example, one hypothesis is that the com-12

position of drivers changed, as riskier drivers were relatively less likely to stay home during13

the COVID period. A reduction in congestion, that previously constrained these drivers’14

speeding or otherwise risky behavior, might now enable more speeding thereby increasing15

crash severity. Such compositional changes have been found in other contexts, such as Ma-16

heshri and Winston (2016) who show that changes in the composition of drivers during the17

Great Recession reduced the number of fatal highway accidents in Ohio.18

Our analysis focuses on two periods: the ten-week period in 2020 immediately before the19

California Executive order and the ten-week period immediately following the order. Our20

sample includes all accidents on all types of roadways during the period. Table 2 presents21

the mean of each characteristic in each period.22
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Pre-Covid Covid Period Change p-value

Driver Age (years) 40.06 39.00 -1.07 0.000

Driver Over 65 0.080 0.065 -0.014 0.000

Driver Under 25 0.197 0.211 0.014 0.000

Driver Male 0.614 0.674 0.060 0.000

Young Male Driver 0.119 0.140 0.021 0.000

Alcohol Involved 0.089 0.113 0.024 0.000

Speeding (Fatal Acc.) 0.169 0.194 0.025 0.244

Rain 0.021 0.060 0.039 0.000

Wet Roadway 0.059 0.140 0.081 0.000

Darkness 0.371 0.276 -0.095 0.000

Fatal Acc. 0.0048 0.0082 0.0034 0.000

Accident Characteristics

Table 2: Characteristics of drivers and accidents in the 10 weeks prior and 10 weeks following
the California Executive Order.

Beginning with driver age, we see the mean age of drivers involved in an accident in the1

pre-COVID period is approximately 40 years. The mean age falls by approximately 1 year2

during the COVID period. This change is largely driven by a decrease in the proportion of3

older drivers and an increase in younger drivers. In the pre-COVID period, approximately4

8 percent of drivers involved in accidents were over the age of 65. The share of older drivers5

involved in accidents decreased to 6.5 percent during the COVID period. For drivers under6

the age of 25, the share grew from 19.7 percent to 21.1 percent. Drivers involved in accidents7

are 6 percentage points more likely to be male during the COVID period. Overall, these8

shifts mean the proportion of accidents involving young males increases from approximately9

12 percent to 14 percent.10

There is some evidence these shifts led to riskier driving behavior. During COVID, the11

percentage of accidents where alcohol use is indicated increased from 8.9 percent to 11.312

percent. There is also suggestive evidence speed was more likely a factor in fatal accidents,13

increasing from 16.9 percent to 19.4 percent. Though this effect is not statistically significant,14

it is consistent with our regression results above indicating increases in highway speeds led15

to increases in fatalities. Further, one would expect increases in speed to be less of a factor16

in the statistics reported in Table 2, since this sample included accidents on all California17
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roadways - many of which may have seen less congestion relief during COVID than the PeMS1

sample of major highways used in the analysis above.2

If the shifts above imply riskier drivers are more likely on the road and involved in3

accidents during COVID, we would expect an increase in fatalities for these groups. We4

focus on driver age as the main risk factor, as well as single car accidents to remove the5

influence of drivers of other vehicles on fatalities, though effects for accidents involving6

multiple vehicles are quite similar to those presented here. Figure 5 plots the distribution of7

fatalities by driver age in the pre-COVID and COVID periods. During the COVID period we8

see increases in the number of fatalities among younger drivers. However, we also see similar9

increases in fatalities among middle aged drivers. There is a small decrease in fatalities for10

older drivers during the COVID period.11
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Figure 5: The distribution of driver ages involved in fatal single car accidents in the 10
weeks prior and 10 weeks following the California Executive Order.

Overall, these trends suggest substantial compositional shifts in the types of drivers12

involved in accidents in California during this period. However, the net effect on accident13

severity and fatalities is less clear. While we do observe shifts toward drivers typically14

considered risky, mainly young drivers, fatalities increase across a wide range of ages. While15

age is an imperfect proxy for riskiness, this result suggests to us the speed effects identified16

above apply more broadly than simply to a subset of risky drivers.17
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As a final check we investigate weather and daylight hours, as they are conditions typically1

associated with accident risk. These measures reflect the change in weather during the spring2

of 2020, namely rainfall increases later in the sample and the sun rises earlier and sets later3

thereby increasing hours of daylight. Since these effects are offsetting, wet roadways increase4

risk and better lighting decreases risk, it is difficult to sign the overall affect. However, the5

weather statistics underscore the need to account for rainfall as we do in our estimates above.6

Since the speed increases are greatest during uncongested mid-day hours, the effect of longer7

days seems unlikely to bias our results.8

4.3 Robustness9

Here we present alternate specifications and robustness checks for the results presented above.10

For outcomes presented in Table 1, we explore alternate controls for weather, seasonal effects11

and investigate heterogeneity in COVID-19 restriction effects by day of week.12

We begin with the results for vehicle miles traveled in Table 3. For comparison, Model 3 is13

the base model used in Table 1 of the main text. Model 1 is a more parsimonious specification14

without controls for rainfall or county-specific mean effects. We see the estimated effect of15

COVID-19 restrictions is somewhat larger in magnitude, though comparable to the main16

results. Model 2 adds county fixed-effects. The estimated reduction in vehicle miles traveled17

during the COVID is smaller in magnitude than in Model 1 but identical to the result18

presented in Table 1. Model 4 allows for different mean travel patterns by day of week using19

day of week effects and Model 5 investigates whether COVID-19 restrictions affected travel20

differently on different days of the week, by interacting the treatment dummy with day of21

week fixed effects. Sunday is the omitted category. We see very large reductions in log22

VMT during the weekend, with decreases of -0.346 on Sundays and approximately -0.312 on23

Saturdays. The weekday effects are smaller, about -0.20, consistent with a smaller share of24

discretionary travel on weekdays.25
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Table 3: Alternate specifications for COVID-19 related VMT effects.

Model 1 Model 2 Model 3 Model 4 Model 5

Post Exective Order -0.305** -0.249*** -0.249*** -0.251*** -0.346***
(0.1160) (0.0480) (0.0480) (0.0530) (0.0590)

Lanepoints 0.072*** 0.125*** 0.125*** 0.124*** 0.124***
(0.018) (0.041) (0.041) (0.041) (0.041)

Daily rainfall > 5mm -0.040** -0.014 -0.014
(0.0160) (0.0140) (0.0140)

Post E.O. * Monday 0.128***
(0.0170)

Post E.O. * Tuesday 0.127***
(0.0200)

Post E.O. * Wednesday 0.129***
(0.0180)

Post E.O. * Thursday 0.126***
(0.0170)

Post E.O. * Friday 0.138***
(0.0160)

Post E.O. * Saturday 0.034**
(0.0130)

County Fixed-Effects No Yes Yes Yes Yes
Week Fixed-Effects No No No Yes Yes
DOW Effects No No No No Yes
Observations 78990 78990 78990 78990 78990
Adj. R-sq. 0.43 0.97 0.97 0.97 0.97

traveled.  Vehicle miles traveled (VMT) measured in millions of miles per county per day for
PeMs counties. Standard errors clustered at the county level.  ***, ** and * denote significance at 
the 1 percent, 5 percent and 10 percent levels.

COVID-Related VMT Effects

Notes: The depdendent variable is the natural logarithm of county-level daily vehicle miles

Results for accidents are presented in Table 4. The estimated effects of COVID-19 travel1

restrictions across different specifications that vary fixed effects are consistent with the base2

model, again presented as Model 3, ranging from -0.629 to -0.681. Model 4 employs a richer3

set of weather controls, replacing the heavy rain indicator variable of Model 3 with daily4

averages for temperature, precipitation, dew point, pressure, wind speed, wind direction and5

cloud cover. The estimated effect of COVID-19 restrictions is slightly larger in this case,6

though again comparable to the base model. Therefore, we maintain the simpler specification7

as our preferred model. Model 6 explores heterogeneity by day of week. The largest estimated8

reductions in accidents occur mid-week on Tuesdays, Wednesdays and Thursdays, consistent9

with larger reductions in driving on weekdays.10
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Table 4: Alternate specifications for COVID-19 related accident effects.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Post Exective Order -0.660*** -0.638*** -0.647*** -0.681*** -0.629*** -0.468***
(0.0470) (0.0350) (0.0370) (0.0330) (0.0370) (0.0590)

Daily rainfall > 5mm 0.475*** 0.478*** 0.468***
(0.0360) (0.0350) (0.0350)

Average Hourly Precip. 0.629***
(0.0470)

Average Temperature 0.0010
(0.0010)

Average Dewpoint 0.0010
(0.0010)

Average Pressure -0.002*
(0.0010)

Average Wind Direction -0.000***
0.0000

Average Wind Speed 0.011***
(0.0040)

Cloud Cover 0.011**
(0.0050)

Post E.O. * Monday 0.0450
(0.0850)

Post E.O. * Tuesday -0.282***
(0.0710)

Post E.O. * Wednesday -0.375***
(0.0730)

Post E.O. * Thursday -0.238***
(0.0890)

Post E.O. * Friday -0.1320
(0.0970)

Post E.O. * Saturday -0.125***
(0.0450)

County Fixed-Effects No Yes Yes Yes Yes Yes
Week Fixed-Effects No No No No Yes Yes
DOW Effects No No No No No Yes
Observations 78990 77488 77488 73655 77488 77488

errors clustered at the county level.  ***, ** and * denote significance at the 1 percent, 5 percent and 10 percent 
levels.

COVID-Related Accident Effects

Notes: Accidents are the sum of CHP severe, minor and unknown incidents by CA county and day. Standard 

Table 5 presents alternate specifications for accident severity. As before, the baseline1

specification is presented as Model 3. The estimated impacts of COVID-19 restrictions on2

accident severity is very robust to different fixed effects and a larger set of weather controls.3

Model 6 presents estimated effects by day of week. While we lack power to precisely estimate4

heterogenous effects, these estimates suggest large effects on Saturdays and Thursdays, which5

may reflect differences in the baseline severity across different days.6
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Table 5: Alternate specifications for COVID-19 related accident severity effects.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Post Exective Order 0.046*** 0.048*** 0.048*** 0.048*** 0.044*** 0.039**
(0.0060) (0.0060) (0.0060) (0.0070) (0.0070) (0.0180)

Daily rainfall > 5mm -0.017*** -0.014*** -0.014***
(0.0040) (0.0040) (0.0040)

Average Hourly Precip. -0.021***
(0.0070)

Average Temperature 0.000*
0.0000

Average Dewpoint -0.001**
0.0000

Average Pressure 0.0000
0.0000

Average Wind Direction 0.0000
0.0000

Average Wind Speed -0.0010
(0.0010)

Cloud Cover 0.0000
(0.0010)

Post E.O. * Monday 0.0020
(0.0280)

Post E.O. * Tuesday 0.0070
(0.0230)

Post E.O. * Wednesday -0.0140
(0.0220)

Post E.O. * Thursday 0.0110
(0.0280)

Post E.O. * Friday (0.0010)
(0.0240)

Post E.O. * Saturday 0.0270
(0.0270)

County Fixed-Effects No Yes Yes Yes Yes Yes
Week Fixed-Effects No No No No Yes Yes
DOW Effects No No No No No Yes
Observations 58048 58048 58048 55060 58048 58048
Adj. R-sq. 0.00 0.05 0.05 0.05 0.05 0.06

Standard errors clustered at the county level.  ***, ** and * denote significance at the 1 percent, 5 
percent and 10 percent levels.

Notes: Accidents are the sum of CHP severe, minor and unknown incidents by CA county and day. 

COVID-Related Accident Severity Effects

Table 6 shows the estimated mean speed effects are robust to alternate specifications,1

ranging from 1.9 to 2.0 mph. Again Model 6 estimates different mean effects by day of2

week. The mean weekend effect is approximately 1.1 mph. The increase in average speed3

is approximately 1 mph larger on weekdays, consistent with lower congestion on the most4

congested days of the week.5
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Table 6: Alternate specifications for COVID-19 related speed effects.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Post Exective Order 2.030*** 2.035*** 2.033*** 2.019*** 1.882*** 1.126***
(0.2720) (0.2710) (0.2710) (0.2690) (0.2970) (0.2530)

Daily rainfall > 5mm -0.508*** -0.647*** -0.638***
(0.1640) (0.1440) (0.1470)

Average Hourly Precip. -0.831***
(0.1720)

Average Temperature -0.009*
(0.0050)

Average Dewpoint -0.018***
(0.0060)

Average Pressure -0.0060
(0.0040)

Average Wind Direction 0.0000
0.0000

Average Wind Speed -0.088***
(0.0150)

Cloud Cover 0.044**
(0.0180)

Post E.O. * Monday 0.805***
(0.1520)

Post E.O. * Tuesday 1.056***
(0.2210)

Post E.O. * Wednesday 1.009***
(0.2230)

Post E.O. * Thursday 1.117***
(0.2460)

Post E.O. * Friday 1.005***
(0.1920)

Post E.O. * Saturday 0.162*
(0.0890)

County Fixed-Effects No Yes Yes Yes Yes Yes
Week Fixed-Effects No No No No Yes Yes
DOW Effects No No No No No Yes
Observations 78990 78990 78990 75113 78990 78990
Adj. R-sq. 0.02 0.40 0.41 0.41 0.42 0.53
Notes: Accidents are the sum of CHP severe, minor and unknown incidents by CA county and day. Standard 
errors clustered at the county level.  ***, ** and * denote significance at the 1 percent, 5 percent and 10
percent levels.

COVID-Related Speed Effects

Table 7 shows estimates for the reduced form effect of COVID-19 restrictions on fatalities.1

Models 1 through 5 suggest a small increase in fatalities during the COVID period, though2

none of the estimates are statistically significant.3
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Table 7: Alternate specifications for COVID-19 related fatality effects.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Post Exective Order 0.052 0.074 0.072 0.024 0.060 0.032
(0.1160) (0.1110) (0.1130) (0.1110) (0.1170) (0.2400)

Daily rainfall > 5mm 0.182** 0.231*** 0.238***
(0.0890) (0.0850) (0.0840)

Average Hourly Precip. 0.1900
(0.1600)

Average Temperature 0.006*
(0.0030)

Average Dewpoint -0.0010
(0.0050)

Average Pressure -0.0020
(0.0090)

Average Wind Direction 0.0000
0.0000

Average Wind Speed -0.0070
(0.0250)

Cloud Cover 0.040**
(0.0200)

Post E.O. * Monday -0.3700
(0.4440)

Post E.O. * Tuesday 0.0320
(0.4090)

Post E.O. * Wednesday 0.4050
(0.3620)

Post E.O. * Thursday 0.1630
(0.4790)

Post E.O. * Friday -0.0700
(0.3400)

Post E.O. * Saturday -0.1510
(0.2950)

County Fixed-Effects No Yes Yes Yes Yes Yes
Week Fixed-Effects No No No No Yes Yes
DOW Effects No No No No No Yes
Observations 78990 70341 70341 64985 70341 70341

clustered at the county level.  ***, ** and * denote significance at the 1 percent, 5 percent and 10 percent 
levels.

Notes: Fatalities are county totals by day as indictated by the CHP incident reporting system.  Standard errors 

COVID-Related Fatality Effects

Finally, Table 8 shows alternate specifications for estimating the relationships between1

vehicle miles traveled, speeds and fatalities, Equation 2. Each specification is estimated using2

Poisson regression. Recall, these estimates use only weeks from 2020 immediately before3

COVID-19 restrictions were adopted. Therefore, week of year fixed effect are (essentially)4

co-linear with the COVID-19 treatment effect.5
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Table 8: Alternate specifications for fatality model.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

ln(VMT) 0.992*** 0.992*** 1.048*** 1.000# 0.798 1.048***
(0.0780) (0.0790) (0.1080) (0.7180) (0.1330)

ln(Speed) 3.963** 4.062** 4.358** 3.995** 4.0640 2.2170
(1.5400) (1.6190) (1.8960) (1.5510) (3.5160) (2.0110)

Daily rainfall > 5mm -0.389 -0.378 -0.352 -0.360 -0.348
(0.5630) (0.5600) (0.5740) (0.5680) (0.5680)

Average Hourly Precip. -0.2360
(0.7900)

Average Temperature 0.0060
(0.0110)

Average Dewpoint 0.048*
(0.0260)

Average Pressure 0.0220
(0.0230)

Average Wind Direction 0.0020
(0.0020)

Average Wind Speed 0.135**
(0.0640)

Cloud Cover 0.0460
(0.0810)

Population Average Model No Yes No No No No
County Random-Effects No No Yes Yes No Yes
County Fixed-Effects No No No No Yes No
Observations 6226 6226 6226 6226 3949 5979
Notes: Fatalities are county totals by day as indictated by the CHP incident reporting system during 2020. 
# vmt coefficient (exposure) constrained to 1. Standard errors clustered at the county level.  ***, ** and * 
denote significance at the 1 percent, 5 percent and 10 percent levels.

COVID-Related Fatality Effects

Model 1 is a simple pooled model and model 2 is a pooled population average model that1

accounts for the correlations within fatality shocks over time. Both alternate approaches2

yield VMT and speed parameter estimates comparable to the base model. Model 3 is the3

base specification and uses random effects to capture differences in baseline fatality rates4

across counties. We adopt the random effects specification as they can be more efficient5

than fixed effects in this setting, and because the fixed-effect estimator does not make use6

of data from any county where zero fatalities occur. This latter issue is less problematic7

for our accident and reduced-form fatalities specifications in Table 1 since those results8

leverage 5 years of data. Here however, our identification strategy relies on a short period9

of time around the implementation of COVID restrictions and fatalities are relatively rare10

events, and the fixed-effect estimator would exclude 15 of the 41 counties in our sample.11

The trade-off in using the random effects model is the implicit assumption that VMT and12
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average highway speeds are exogenous regressors. As a check on this assumption, model 51

replaces the county random-effects with fixed-effects, which produces unbiased estimates if2

the only correlations between independent variables and the error-term are time invariant.3

This yields a somewhat smaller estimated VMT effect, but a speed effect comparable to the4

base model. Much of the difference in the estimated VMT-effect comes from the sample5

restriction, excluding counties that do not record a fatality in 2020, and estimating model6

3 (random effects) yields a VMT point estimate of 0.88. As expected, the standard errors7

are considerably larger than in Model 3. Overall, since the point estimates are comparable,8

we adopt the more efficient-random effects model in this setting. Next, model 4 assumes9

fatalities are exactly proportional to accidents and constrains the VMT coefficient to 1. The10

estimated speed effect is quite similar to the base model. Finally, model 6 employs a richer11

set of weather controls. Here, the estimated speed effect is smaller though the estimated12

VMT effect is comparable to the base model. In general, the robustness exercises yield13

similar qualitative and quantitative insights across a battery of alternative specifications14

and assumptions.15

5 Discussion and conclusions16

While we acknowledge our point estimates for California during the COVID period may17

not translate directly to other settings, our results are roughly consistent with prior cross-18

sectional studies on VMT and fatalities (Clark and Cushing, 2004; Yeo, Park, and Jang,19

2015), and contribute to the broader empirical literature on determinants of road accidents20

and fatalities (e.g. Loeb (2001), Loeb and Clarke (2007), Welki and Zlatoper (2014), Burger,21

Kaffine, and Yu (2014), de Vries et al. (2017)). However, an important contrast is that our22

approach exploits exogenous variation in travel demand and is therefore less susceptible to23

bias as in these cross-sectional studies. Our VMT results are most comparable to causal24

estimates using changes in traffic demand from Israeli drivers observing the Jewish Sabbath25

(Romem and Shurtz, 2016). They find that a 10 percent increase in VMT leads to a 1026

percent increase in severe accidents, a figure also comparable to earlier panel data estimates27

(Michener and Tighe, 1992). More generally, since many parts of the U.S. experienced28

26



similar reductions in VMT as California (Cicala et al., 2020), our results likely generalize to1

congested urban highways outside our sample.2

To put our estimates into a broader, policy-relevant context, highway expansion and3

congestion pricing are oft-discussed policies to manage traffic demand (Lu and Meng, 2017),4

and given they reduce congestion and increase traffic speeds, they are susceptible to the5

effects highlighted here. For instance in the fall of 2010, a new 11-mile stretch of carpool6

(HOV) lane opened on route CA-60 east of Los Angeles. In the months following the opening,7

rush-hour mainline speeds increased between 10 and 20 mph (authors’ estimates from PeMS8

data). Such an expansion can increase fatalities both through increased VMT and faster9

speeds - in this case the 16% increase in average VMT would increase fatalities by 16%10

while the average speed increase of 8% would increase fatalities by 32%. Taken together,11

our estimates imply that the HOV lane expansion on CA-60 and corresponding increase in12

speeds increased the accident risk by nearly 50% on that route in the short-run - in the13

long-run, the well-known phenomenon of induced demand would likely return speeds to near14

pre-HOV lane levels.15

By contrast, congestion pricing can also increase speeds, but it does so by reducing VMT.16

For example, beginning in 2003 London levied a £5.00 daily charge on vehicles entering17

central London, which reduced car VMT by 34% and correspondingly increased traffic speeds18

by 17% (Leape, 2006). Directly applying our estimates suggests that fatalities would increase,19

on net, by 34% as the increase in fatalities from the traffic speed effect would exceed the20

reduction via the VMT effect. Noting these potentially offsetting effects of VMT reductions21

and speed increases, Green, Heywood, and Navarro (2016) empirically estimate the impact22

of the London Congestion Charge on severe accidents and fatalities using monthly data and23

find that they actually fell by 25% and 35% respectively. This discrepancy is likely due to24

the type of roads under consideration - the 17% increase in speeds was from 8.9 mph to 10.425

mph on the surface streets of central London, which is a rather different context than the26

much higher speed urban highways of California considered here. As such, while the London27

congestion charge appears to have provided substantial social benefits in the form of reduced28

fatalities on the surface streets of central London, our findings (e.g. Los Angeles county in29

27



Figure 3) suggest this would be less likely to be true in the context of urban highways.1

Finally, our analysis highlights an important secondary effect of COVID-19 travel restric-2

tions. In addition to supporting public health goals, COVID-19 restrictions led to improve-3

ments in air quality, reductions in greenhouse gas emissions and energy use (Almond, Du,4

and Zhang, 2020; Cicala et al., 2020; Le Quere et al., 2020). Here, we show how COVID-195

restrictions had dramatic impacts on vehicle miles traveled, highway speeds, accidents and6

fatalities. While there was speculation that the sharp decline in driving could lead to a sub-7

stantial reduction in traffic fatalities, the speed rebound effect we highlight here mitigated8

those benefits to some extent.9
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de Vries, Jelle, René De Koster, Serge Rijsdijk, and Debjit Roy. 2017. “Determinants of

safe and productive truck driving: Empirical evidence from long-haul cargo transport.”

Transportation research part E: logistics and transportation review 97:113–131.

29



Farmer, Charles M. 2017. “Relationship of traffic fatality rates to maximum state speed

limits.” Traffic injury prevention 18 (4):375–380.

Farmer, Charles M, Richard A Retting, and Adrian K Lund. 1999. “Changes in motor vehicle

occupant fatalities after repeal of the national maximum speed limit.” Accident Analysis

and Prevention 31 (5):537–543.

Green, Colin P, John S Heywood, and Maria Navarro. 2016. “Traffic accidents and the

London congestion charge.” Journal of Public Economics 133:11–22.

Greenstone, Michael. 2002. “A reexamination of resource allocation responses to the 65-mph

speed limit.” Economic Inquiry 40 (2):271–278.

Le Quere, Corinne, Robert B Jackson, Matthew W Jones, Adam JP Smith, Sam Abernethy,

Robbie M Andrew, Anthony J De-Gol, David R Willis, Yuli Shan, Josep G Canadell et al.

2020. “Temporary reduction in daily global CO2 emissions during the COVID-19 forced

confinement.” Nature Climate Change 10:647–653.

Leape, Jonathan. 2006. “The London congestion charge.” Journal of Economic Perspectives

20 (4):157–176.

Loeb, Peter D. 2001. “The effectiveness of seat belt legislation in reducing driver-involved

injury rates in Maryland.” Transportation Research Part E: Logistics and Transportation

Review 37 (4):297–310.

Loeb, Peter D and William A Clarke. 2007. “The determinants of truck accidents.” Trans-

portation Research Part E: Logistics and Transportation Review 43 (4):442–452.

Lu, Zhaoyang and Qiang Meng. 2017. “Analysis of optimal BOT highway capacity and

economic toll adjustment provisions under traffic demand uncertainty.” Transportation

Research Part E: Logistics and Transportation Review 100:17–37.

Maheshri, Vikram and Clifford Winston. 2016. “Did the Great Recession keep bad drivers

off the road?” Journal of Risk and Uncertainty 52 (3):255–280.

30



McCarthy, Patrick. 2001. “Effect of speed limits on speed distributions and highway safety:

a survey of recent literature.” Transport Reviews 21 (1):31–50.

Michener, Ron and Carla Tighe. 1992. “A Poisson regression model of highway fatalities.”

The American Economic Review 82 (2):452–456.

National Highway Traffic Safety Administration, National Center for Statistics and Analysis.

2019. “Early estimate of motor vehicle traffic fatalities for 2019.” Tech. Rep. DOT HS

812 806, United States Department of Transportation.

———. 2020. “Traffic Safety Facts 2017 - A Compilation of Motor Vehicle Crash Data.”

Tech. Rep. DOT HS 812 946, United States Department of Transportation.

National Oceanic and Atmospheric Administration. 2020. “Integrated Surface Database

(ISD).” https://www.ncdc.noaa.gov/isd, Accessed on May 31st, 2020.

Retting, Richard A and Michael A Greene. 1997. “Traffic speeds following repeal of the

national maximum speed limit.” Institute of Transportation Engineers. ITE Journal

67 (5):42.

Romem, Issi and Ity Shurtz. 2016. “The accident externality of driving: Evidence from

observance of the Jewish Sabbath in Israel.” Journal of Urban Economics 96:36–54.

Saha, Shubhayu, Paul Schramm, Amanda Nolan, and Jeremy Hess. 2016. “Adverse weather

conditions and fatal motor vehicle crashes in the United States, 1994-2012.” Environmental

health 15 (1):104.

United States Census Bureau. 2018. “Urban Area Facts.”

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-

rural/ua-facts.html, Accessed on May 5th, 2018.

United States Department of Transportation, Bureau of Transportation Statistics. 2020.

“U.S. Vehicle Miles.” https://www.bts.gov/content/us-vehicle-miles, Accessed on April

29, 2018.

31



Van Benthem, Arthur. 2015. “What is the optimal speed limit on freeways?” Journal of

Public Economics 124:44–62.

Welki, Andrew M and Thomas J Zlatoper. 2014. “The effect of cell phones on interna-

tional motor vehicle fatality rates: a panel-data analysis.” Transportation research part

E: logistics and transportation review 64:103–109.

World Health Organization. 2018. “Global status report on road safety 2018: Summary.”

Tech. rep., World Health Organization.

Yeo, Jiho, Sungjin Park, and Kitae Jang. 2015. “Effects of urban sprawl and vehicle miles

traveled on traffic fatalities.” Traffic injury prevention 16 (4):397–403.

32



Appendix

The California Department of Transportation Performance Measurement System (PeMS)

employs a vast network of thousands of loop detectors to collect detailed traffic data on

California’s major highways. Appendix Table A1 lists the freeways included in the PeMS

network, the number of detectors on each freeway, miles and lane-miles. Over 100 different

routes are monitored. Statistics are reported by route separately for mainline and high-

occupancy vehicle (HOV) or “carpool” lanes and by direction of travel. The PeMS network

has been designed to capture highway traffic conditions across the state’s major metropolitan

areas. It therefore captures a large share of California vehicle miles traveled. However, it does

not monitor surface streets or smaller roadways in rural areas. Major interstates, denoted

by a “I” or “US” prefix are monitored at hundreds or thousands of locations spanning tens

or hundreds of miles within the state. Monitoring on smaller state roads, denoted by a “SR”

prefix, is more heterogenous with smaller routes monitored in only a few locations. Overall,

the PeMS system provides a comprehensive view of highway traffic within the state.
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Table A1: California highways and the extent of the PeMS monitoring network.

Freeway Detectors Total Miles Lane Miles Total Miles Lane Miles Freeway Detectors Total Miles Lane Miles Total Miles Lane Miles Freeway Detectors Total Miles Lane Miles Total Miles Lane Miles
I10-E 1,259.0 241.6 695.8 30.6 30.6 SR132-W 32.0 76.4 21.4 0.0 0.0 SR4-E 384.0 190.9 144.4 8.6 8.6
I10-W 1,341.0 241.6 679.8 30.6 30.6 SR133-N 77.0 13.6 28.0 0.0 0.0 SR4-W 395.0 190.9 151.8 8.6 8.6
I105-E 209.0 18.1 60.3 15.9 15.9 SR133-S 63.0 13.6 29.2 0.0 0.0 SR41-N 120.0 185.6 64.6 0.0 0.0
I105-W 214.0 18.1 61.5 15.9 15.9 SR134-E 182.0 13.3 54.0 13.3 13.3 SR41-S 111.0 185.6 62.9 0.0 0.0
I110-N 269.0 31.8 122.7 10.7 10.7 SR134-W 152.0 13.3 53.8 13.3 13.3 SR46-E 8.0 110.7 20.1 0.0 0.0
I110-S 239.0 31.8 116.5 10.7 10.7 SR14-N 53.0 116.6 67.8 35.9 35.9 SR46-W 8.0 110.7 20.1 0.0 0.0
I15-N 1,127.0 293.6 903.5 19.5 23.4 SR14-S 54.0 116.6 66.9 35.9 35.9 SR47-N 10.0 3.3 6.6 0.0 0.0
I15-S 1,120.0 294.0 894.1 27.0 38.4 SR140-E 8.0 101.6 0.0 0.0 0.0 SR47-S 16.0 3.3 6.9 0.0 0.0
I205-E 58.0 14.3 60.2 0.0 0.0 SR140-W 8.0 101.6 0.0 0.0 0.0 SR49-N 6.0 294.5 15.0 0.0 0.0
I205-W 65.0 14.3 61.8 0.0 0.0 SR142-E 13.0 11.5 8.1 0.0 0.0 SR49-S 7.0 294.5 20.0 0.0 0.0
I210-E 790.0 87.2 309.5 42.2 42.2 SR142-W 13.0 11.5 7.6 0.0 0.0 SR51-N 104.0 8.9 29.4 0.0 0.0
I210-W 828.0 86.2 306.8 42.2 42.2 SR152-E 22.0 104.4 47.0 0.0 0.0 SR51-S 105.0 8.8 29.3 0.0 0.0
I215-N 367.0 55.1 169.0 5.3 5.3 SR152-W 22.0 104.4 47.1 0.0 0.0 SR52-E 59.0 14.8 43.7 0.0 0.0
I215-S 368.0 55.1 169.2 5.3 5.3 SR156-E 15.0 24.2 17.3 0.0 0.0 SR52-W 50.0 14.8 43.5 0.0 0.0
I280-N 226.0 57.5 190.3 10.7 10.7 SR156-W 14.0 24.2 20.1 0.0 0.0 SR54-E 19.0 8.6 21.4 0.0 0.0
I280-S 228.0 57.5 193.2 10.7 10.7 SR16-E 4.0 81.8 5.6 0.0 0.0 SR54-W 18.0 8.6 20.4 0.0 0.0
I405-N 1,131.0 72.4 328.9 60.5 60.5 SR16-W 3.0 81.8 3.0 0.0 0.0 SR55-N 218.0 17.9 71.1 11.3 11.3
I405-S 1,188.0 72.4 327.4 68.4 68.4 SR160-N 15.0 49.7 21.3 0.0 0.0 SR55-S 190.0 17.9 68.8 11.3 11.3
I5-N 2,345.0 796.5 1,292.1 50.6 50.7 SR160-S 14.0 49.7 11.3 0.0 0.0 SR56-E 58.0 9.3 23.7 0.0 0.0
I5-S 2,406.0 796.3 1,282.8 50.5 50.5 SR163-N 73.0 11.1 46.4 0.3 0.3 SR56-W 45.0 9.3 20.2 0.0 0.0
I580-E 527.0 76.2 311.8 5.4 5.4 SR163-S 82.0 11.1 44.2 0.0 0.0 SR57-N 340.0 24.2 109.9 16.2 16.2
I580-W 511.0 76.3 266.0 0.0 0.0 SR165-N 2.0 38.3 5.0 0.0 0.0 SR57-S 321.0 24.2 100.1 16.2 16.2
I605-N 357.0 28.1 118.5 22.3 22.3 SR165-S 2.0 38.3 5.0 0.0 0.0 SR58-E 27.0 235.3 32.8 0.0 0.0
I605-S 367.0 28.1 118.0 22.3 22.3 SR168-E 78.0 5,472.8 34.4 0.0 0.0 SR58-W 33.0 235.3 32.8 0.0 0.0
I680-N 674.0 70.3 227.8 19.6 19.6 SR168-W 85.0 5,402.9 34.2 0.0 0.0 SR59-N 2.0 33.7 0.0 0.0 0.0
I680-S 743.0 70.5 271.3 32.7 32.7 SR17-N 55.0 26.5 64.9 0.0 0.0 SR59-S 2.0 33.7 0.0 0.0 0.0
I710-N 205.0 24.2 88.3 0.0 0.0 SR17-S 49.0 26.5 55.1 0.0 0.0 SR60-E 668.0 70.6 255.7 37.2 37.2
I710-S 202.0 24.2 88.5 0.0 0.0 SR170-N 33.0 7.6 28.3 6.0 6.0 SR60-W 654.0 70.6 254.7 37.2 37.2
I780-E 8.0 6.8 14.5 0.0 0.0 SR170-S 56.0 7.6 28.9 6.0 6.0 SR65-N 48.0 94.5 29.2 0.0 0.0
I780-W 8.0 6.8 15.6 0.0 0.0 SR178-E 4.0 152.4 10.0 0.0 0.0 SR65-S 62.0 94.5 27.9 0.0 0.0
I8-E 196.0 171.9 97.8 0.0 0.0 SR178-W 8.0 152.3 10.5 0.0 0.0 SR67-N 8.0 23.8 9.7 0.0 0.0
I8-W 230.0 172.2 99.3 0.0 0.0 SR180-E 78.0 108.4 45.6 0.0 0.0 SR67-S 10.0 23.8 9.7 0.0 0.0
I80-E 1,316.0 204.0 599.6 37.5 117.5 SR180-W 105.0 108.4 43.9 0.0 0.0 SR68-E 28.0 22.0 28.3 0.0 0.0
I80-W 1,251.0 204.2 589.9 25.0 25.0 SR198-E 23.0 141.3 67.0 0.0 0.0 SR68-W 12.0 22.0 12.8 0.0 0.0
I805-N 323.0 28.7 121.8 0.5 0.5 SR198-W 23.0 141.3 67.1 0.0 0.0 SR70-E 6.0 179.9 20.0 0.0 0.0
I805-S 332.0 28.7 132.2 0.0 0.0 SR2-E 91.0 80.2 45.0 0.0 0.0 SR70-W 4.0 179.8 10.0 0.0 0.0
I880-N 592.0 46.0 196.2 21.5 21.5 SR2-W 83.0 80.2 38.6 0.0 0.0 SR71-N 101.0 16.5 39.4 8.3 8.3
I880-S 620.0 45.7 198.2 24.2 24.2 SR219-E 5.0 4.8 10.8 0.0 0.0 SR71-S 115.0 16.5 37.8 8.3 8.3
I880S-N 8.0 1.3 3.9 1.2 1.2 SR219-W 6.0 4.8 14.1 0.0 0.0 SR73-N 222.0 18.0 64.3 0.0 0.0
I880S-S 4.0 1.5 2.9 0.0 0.0 SR22-E 218.0 14.7 45.4 11.0 11.0 SR73-S 229.0 18.0 61.7 0.0 0.0
I905-E 49.0 8.7 24.6 0.0 0.0 SR22-W 222.0 14.7 47.3 11.0 11.0 SR74-E 7.0 111.5 11.5 0.0 0.0
I905-W 58.0 8.7 24.1 0.0 0.0 SR23-N 74.0 32.0 37.9 0.0 0.0 SR74-W 5.0 111.5 13.0 0.0 0.0
I980-E 27.0 2.0 6.1 0.0 0.0 SR23-S 72.0 32.0 37.3 0.0 0.0 SR76-E 11.0 52.2 19.8 0.0 0.0
I980-W 26.0 2.0 7.0 0.0 0.0 SR237-E 28.0 11.1 28.4 6.5 6.5 SR76-W 15.0 52.2 37.1 0.0 0.0
SR1-N 152.0 656.0 117.2 0.0 0.0 SR237-W 51.0 11.1 32.3 6.5 6.5 SR78-E 115.0 193.8 57.3 0.0 0.0
SR1-S 153.0 656.0 117.9 0.0 0.0 SR238-N 23.0 16.5 13.2 0.0 0.0 SR78-W 149.0 193.8 61.2 0.0 0.0
SR104-E 3.0 27.6 4.9 0.0 0.0 SR238-S 27.0 16.5 14.8 0.0 0.0 SR85-N 166.0 24.2 75.9 24.0 24.0
SR104-W 5.0 27.6 4.9 0.0 0.0 SR24-E 141.0 14.0 60.2 0.0 0.0 SR85-S 144.0 24.2 76.8 24.0 24.0
SR108-E 9.0 99.3 13.7 0.0 0.0 SR24-W 161.0 14.0 62.0 0.0 0.0 SR87-N 80.0 9.1 28.1 7.1 7.1
SR108-W 8.0 99.2 14.1 0.0 0.0 SR241-N 228.0 24.5 71.2 0.0 0.0 SR87-S 74.0 9.1 27.8 7.1 7.1
SR11-E 2.0 1.2 2.9 0.0 0.0 SR241-S 208.0 24.5 66.3 0.0 0.0 SR88-E 21.0 122.1 20.3 0.0 0.0
SR11-W 8.0 1.4 2.6 0.0 0.0 SR242-N 37.0 3.7 12.3 0.0 0.0 SR88-W 22.0 122.1 12.8 0.0 0.0
SR113-N 15.0 60.6 35.2 0.0 0.0 SR242-S 38.0 3.7 11.8 0.0 0.0 SR89-N 5.0 243.1 48.3 0.0 0.0
SR113-S 14.0 60.2 27.8 0.0 0.0 SR25-N 6.0 74.6 5.6 0.0 0.0 SR89-S 5.0 243.1 53.3 0.0 0.0
SR118-E 299.0 48.0 109.0 11.4 11.4 SR25-S 6.0 74.6 5.6 0.0 0.0 SR90-E 25.0 15.7 11.3 0.0 0.0
SR118-W 291.0 48.0 112.2 11.4 11.4 SR26-E 12.0 62.1 0.0 0.0 0.0 SR90-W 18.0 15.7 10.2 0.0 0.0
SR12-E 52.0 115.5 46.4 0.0 0.0 SR26-W 12.0 62.1 0.0 0.0 0.0 SR91-E 854.0 59.0 251.1 54.3 76.8
SR12-W 50.0 115.5 44.2 0.0 0.0 SR261-N 55.0 6.2 16.4 0.0 0.0 SR91-W 834.0 59.1 246.0 54.4 77.0
SR120-E 39.0 152.7 24.2 0.0 0.0 SR261-S 42.0 6.2 12.6 0.0 0.0 SR92-E 76.0 27.8 43.7 0.0 0.0
SR120-W 48.0 152.8 23.2 0.0 0.0 SR267-E 2.0 11.7 7.9 0.0 0.0 SR92-W 78.0 27.8 52.7 2.8 2.8
SR124-E 3.0 10.3 7.7 0.0 0.0 SR267-W 2.0 11.7 12.9 0.0 0.0 SR94-E 89.0 63.3 42.0 0.0 0.0
SR124-W 4.0 10.3 10.5 0.0 0.0 SR28-E 1.0 10.9 5.0 0.0 0.0 SR94-W 129.0 63.3 43.8 1.0 1.0
SR125-N 75.0 21.2 38.2 0.0 0.0 SR28-W 1.0 10.9 5.0 0.0 0.0 SR99-N 1,201.0 416.2 834.6 0.0 0.0
SR125-S 76.0 22.9 45.6 0.0 0.0 SR29-N 6.0 105.6 10.6 0.0 0.0 SR99-S 1,213.0 416.2 831.1 0.0 0.0
SR126-E 10.0 47.3 13.2 0.0 0.0 SR29-S 7.0 105.6 10.6 0.0 0.0 US101-N 2,411.0 808.7 1,371.9 64.0 64.0
SR126-W 6.0 47.3 10.5 0.0 0.0 SR33-N 6.0 289.7 8.2 0.0 0.0 US101-S 2,403.0 808.7 1,063.5 64.0 64.0
SR13-N 2.0 9.7 7.5 0.0 0.0 SR33-S 1.0 289.7 0.0 0.0 0.0 US50-E 355.0 108.6 201.9 25.0 97.0
SR13-S 2.0 9.7 7.5 0.0 0.0 SR37-E 34.0 21.6 32.8 0.0 0.0 US50-W 361.0 108.6 216.5 24.0 95.0
SR132-E 31.0 76.4 21.4 0.0 0.0 SR37-W 36.0 21.5 31.4 0.0 0.0

Mainline Facilities HOV Lane Facilities Mainline Facilities HOV Lane Facilities Mainline Facilities HOV Lane Facilities
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