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Abstract

We exploit newly available microdata on goods movement in the U.S. to model ship-

pers’ freight mode choices. Because freight modes have vastly different fuel intensities,

shippers’ choices have large implications for fuel consumption and emissions. We find

higher fuel prices yield substantial shifts from less to more fuel-efficient modes, partic-

ularly rail. We extend our model to analyze recently enacted fuel economy standards.

Fuel economy standards can increase emissions and fuel consumption by shifting ship-

ments to less fuel-efficient modes. Our results suggest mode-shifting makes up a large

share of the total rebound effect in heavy-duty vehicles.
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1 Introduction

After several years of decline, recent estimates suggest U.S. carbon dioxide emissions are

again on the rise. This reversal is due in large part to increases in energy consumption and

emissions from transportation. Transportation has recently surpassed electricity generation

as the largest source of U.S. carbon dioxide emissions (U.S. Energy Information Adminis-

tration, 2018). While improvements in light-duty vehicle fuel economy have helped to offset

increases in driving, freight-sector emissions have increased substantially over the past sev-

eral years. As a result, freight now represents approximately a third of transportation sector

energy consumption and emissions. Despite these trends, relatively little attention has been

paid to understanding the factors that affect emissions from freight. This fact is particularly

striking in contrast to the vast literature related to passenger vehicles.

The transportation technology, or mode, plays a central role in determining the emissions

intensity of goods shipments. Energy intensities across modes such as air, truck and rail

differ by an order of magnitude. Therefore, understanding how shippers choose which mode

to use and how changes in fuel prices and shipment characteristics affect these choices has

important implications for energy policy. In this paper, we exploit newly available microdata

on goods movement in the U.S. to model shippers’ freight mode choices during 2012.1 The

data contain detailed information on the type of good shipped, shipment characteristics and

the mode used for each movement. We model cost-minimizing shippers who trade-off freight

rates, that vary with fuel prices, against inventory costs, that reflect the average speeds of

different freight modes. We estimate a series of discrete choice models for freight mode choice

allowing rate, inventory and fixed cost parameters to vary across the type of good shipped.

Using our parameter estimates we simulate mode choices, fuel use and emissions under

different fuel price scenarios. We find higher fuel prices yield substantial shifts from less to

more fuel efficient modes, particularly rail. For instance, a 10% increase in fuel price increases

rail ton miles by 1.7%, increases barge ton-miles by 4.0% and reduces truck ton miles by 2.9%.

Combined, this translates to a 1.6% decrease in freight sector fuel consumption and emissions.

1These data are being made public on a trial basis and as such, are unfortunately only available for a
single survey year.
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In some goods categories, reductions can be as large as 3 to 3.5%. The largest effects

are for intermediate-sized shipments of moderately-valued goods such as paper products,

alcohol, fertilizers and chemicals. Because our approach focuses on short-run responses and

because we hold shipments fixed, these estimates are likely a lower bound on actual emissions

reductions due to modal substitution.

Shippers’ mode choices can have important consequences for transportation-sector car-

bon policies. We illustrate this by considering hypothetical heavy duty vehicle fuel economy

standards that approximate recent U.S. policies. Because shippers’ mode choices implicitly

depend on the fuel intensities of different modes via rates, policies to improve truck fuel

economy could have the perverse effect of shifting freight from more efficient to less efficient

modes (Winebrake et al., 2012). Intuitively, if truck fuel economy improves, marginal ship-

pers who previously paid lower rail rates but higher inventory costs may now shift to truck.

Because rail is four times more fuel efficient than truck, these shifts increase fuel consumption

and emissions of those shipments. We call this effect the “cross-rebound” effect to recognize

that this mechanism is a component of the total rebound effect coming from substitution

across modes.

We adapt our modeling framework to quantify this effect by imposing mode-specific

mean fuel intensities and estimating a mixed-logit model for mode choice. We first verify

this approach yields predictions consistent with our base model. Then, we use the model

to simulate shippers’ mode choices under a fuel economy standard that lowers truck energy

intensity by 5 percent. This level corresponds to EPA estimates for the improvement in

truck fleet fuel efficiency in 2025 due to the recently enacted Tier II heavy duty vehicle fuel

efficiency standards.

Truck fuel economy regulations result in modest shifts from rail to truck, approximately

1.3% of rail freight output (ton-miles). However, these shifts dramatically reduce fuel and

emissions savings from fuel economy regulations. Ignoring modal substitution and applying

a 5% reduction in truck fuel intensity (zero rebound) suggests fuel economy regulations lower

total freight sector fuel consumption and emissions by approximately 4%. However, once we

account for shipments that switch from truck to rail, the estimated reduction falls to only
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3.3%, implying a cross-rebound effect of 18%. The effects vary substantially across the types

of goods shipped. For goods such as paper products, alcohol, fertilizers and chemicals, the

cross-rebound effect is 40 to 50%. For some goods, such as animals and precision instruments,

the cross-rebound effect is negative because more efficient trucks entice some shipments that

previously went by air to move instead by truck.

Our work contributes to three main literatures. First, we add to the large economics and

engineering literatures modeling freight demand going back decades.2 While this literature

has established the main trade-offs faced by shippers in deciding how to move their goods,

major industry changes over the past several decades have likely shifted these relationships.

For example, computerization and improvements in information technology have reduced

shipping costs, enabled realtime tracking, and improved service quality, particularly for

trucking. Containerization has increased intermodal shipments that combine water, rail and

truck modes. Major investments in infrastructure have made railroads more competitive

with trucks on long-haul shipments of containerized freight. Here, we estimate parameters

that reflect these changes and describe how shippers’ choose modes today.

We also exploit substantially better data than has been used in the past to study freight

mode choices. The 2012 U.S. Commodity Flow Survey Public Use Microdata file (CFS

PUM) is the largest publicly available micro data set on U.S. freight shipments and was,

2This literature is generally divided into aggregate and disaggregate studies (Winston, 1985), where the
former focus on estimating modal shares and the later on modeling individual or representative shipments.
Examples of aggregate models include Friedlaender and Spady (1980) and Oum (1979), who model freight
demand of cost-minimizing firms. Disaggregate data from surveys and waybills has led to the development
of richer behavioral models that focus on shipment and shipper characteristics as well as the geography
of freight transportation. Winston (1981) develops an early model using disaggregate data and estimates
demand elasticities for rates, mean travel times and service quality for different commodity groups. Wilson,
Wilson, and Koo (1988) model competition between rail and truck for grain shipments in the U.S. Upper
Great Plains to investigate rail market power and pricing around the time of deregulation. Rich, Holmblad,
and Hansen (2009) use a weighted discrete choice framework to estimate shippers’ value of time for different
modes and commodity groups. Norojono and Young (2003) use stated preference data to understand how
factors related to service quality such as safety and reliability affect mode choice. Similarly, Wilson, Bisson,
and Kobia (1986) use survey data to explore how shipment and shipper characteristics affect mode choice for
general freight in Canada. Jiang, Johnson, and Calzada (1999) model for-hire and private freight shipping in
France using a nested logit approach. Abdelwahab and Sargious (1992), Abdelwahab (1998), Holguin-Veras
(2002) and McFadden, Winston, and Boersch-Supan (1985) model freight mode choice allowing shippers to
simultaneously choose shipment size. Train and Wilson (2007) model shipments by rail and barge, where
geography limits shippers’ access to these modes. Arunotayanun and Polak (2011) and Greene and Hensher
(2003) employ latent class and mixed-logit approaches to relax assumptions of the multinomial logit models
typically used with disaggregate data and to allow for heterogeneity in shippers’ preferences.
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until recently, unavailable. These data show substantial variation in shipment size and value,

both across goods and across shipments within a particular type of good. This heterogeneity,

which has been largely absent in earlier studies using more aggregate data, reveals more

realistic substitution patterns across modes. Further, the 2012 CFS PUM provides much

more comprehensive coverage of geographic areas, goods and modes compared to data used

previously and therefore paints a more accurate picture of recent U.S. freight patterns.3

Second, we contribute to the large literature on energy prices and carbon policy in the

transportation sector. This literature has largely focused on passenger vehicles.4 However,

for the reasons noted above, understanding the role of freight transportation in emissions

and energy consumption is increasingly important. While there is a literature exploring the

environmental characteristics of freight in international trade, less is known about domestic

goods movement.5 The main focus of U.S. research to date has been on engineering estimates

for emissions characteristics of different modes or future technologies. Two exceptions related

to what we present here are Nealer, Matthews, and Hendrickson (2012) and Austin (2018).

Nealer, Matthews, and Hendrickson (2012) use the 2002 CFS aggregate files to predict fuel

and emissions reductions under different policy scenarios. However, their approach uses an

input-output framework based on elasticities of substitution across modes for different goods.

Austin (2018) studies the effects of fuel and per mile taxes on modal shares and freight-related

externalities using historical elasticity estimates and aggregate data on shipments from the

2007 CFS. Here, we model the mode choice decisions of shippers and estimate mode choice

parameters directly using detailed microdata from the 2012 CFS PUM, rather than relying

on prior estimates.

3Earlier studies using microdata typically focus on a small number of goods, modes or geographic areas.
For instance, the 2012 CFS PUM is the only publicly available source for the highway mode.

4For instance, Goulder, Jacobsen, and Van Benthem (2012) explore the effectiveness of incomplete reg-
ulation of automobile fuel economy. Anderson et al. (2011) explore the efficiency of different automobile
fuel economy regulations. Jacobsen and Van Benthem (2015) investigate the role of vehicle scrappage in
emissions leakage under vehicle fuel economy standards. Austin and Dinan (2005) and Anderson and Sallee
(2016) compare the costs of reducing automobile fuel consumption under fuel economy standards and a
gasoline tax. Klier and Linn (2013) and Busse, Knittel, and Zettelmeyer (2013) investigate the relationship
between fuel prices and new vehicle fuel economy.

5For instance, Shapiro (2016) investigates the efficiency and distributional effects of a carbon tax on ship-
ping in international trade. Cristea et al. (2013) estimate emissions due to freight transport in international
trade and compare with manufacturing emissions.
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Third, we add to the growing literature investigating the rebound or “backfire” effect

whereby increases in efficiency lower operating costs of durable goods and increase intensity

of use. These effects negate some of the benefits of energy efficiency in reducing overall

energy consumption (Borenstein, 2015; Gillingham, Rapson, and Wagner, 2016). In freight

markets, the rebound effect consists of changes in demand for freight services, i.e. the

intensive margin, and changes in shippers’ mode choices. Here, we focus on the effect of

mode switching, i.e. the cross-rebound effect. We show improvements in energy efficiency

of one portion of the freight sector, heavy-duty trucks, can lead to substitution away from

more efficient modes, partially offsetting gains from energy efficiency. Comparing our results

to recent estimates for the rebound effect in the trucking sector suggests mode switching

makes up a large share of the total rebound effect.

Overall, our work highlights the important role of mode choice in freight sector energy

use and emissions. The remainder of the paper proceeds as follows. Section 2 describes

the U.S. freight transportation sector and Section 3 describes our data. Section 4 describes

our empirical approach and presents our analysis of fuel prices, mode choice and emissions.

Section 5 present our analysis of truck fuel economy standards and the cross-rebound effect.

Section 6 presents an alternate identification strategy that exploits time-series variation

in fuel prices, supporting our main results that use cross-sectional variation in shipment

characteristics. Finally, Section 7 concludes.

2 Industry background

The U.S. freight sector is large and contributes substantially to U.S. carbon emissions. Do-

mestic freight and goods movement contributes approximately 4% to U.S. GDP (Bureau of

Transportation Statistics, 2018). Total transportation sector carbon emissions were 1,900

MMT in 2017, surpassing electricity sector emissions (U.S. Energy Information Adminis-

tration, 2018). Freight’s share of transportation carbon emissions is approximately 31%.6

However unlike passenger vehicles, where fuel economy improvements have largely offset

6Authors’ calculations using data from Oak Ridge National Laboratory (2018).
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demand growth, freight emissions have grown by 13% since the Great Recession.7

Domestic freight is shipped by a number of different modes including air, truck, rail,

barge, ship, pipeline and parcel/courier.8 Truck shipments represent approximately 46% of

total ton miles. Rail, including shipments that combine truck and rail service, accounts for

approximately 48% of ton miles. Inland water (barge) share, including shipments that com-

bine water with truck and rail service, is approximately 4%. Finally, air and parcel/courier

service account for about 0.2% and 1%, respectively (United States Census Bureau, 2018b).

In terms of shipment value, truck share of total shipment value is approximately 73%, com-

pared to 5% for rail, 3% for air, 1.7% for barge and 14.2% for parcel/courier.

These shares reflect the substantially different rates, accessibility, speeds, and vehicle

capacities across modes. Further, the modes also have vastly different fuel intensities. For

instance, while rail can move one ton of freight approximately 450 miles on a gallon of fuel,

trucks produce approximately 70 ton miles per gallon and air a little over 0.1 ton miles

per gallon. Therefore, shippers’ mode choices have large implications for emissions and fuel

consumption.

The U.S. freight sector is composed primarily of independent companies who transport

raw materials, intermediate and final goods, between producers and final-goods consumers.

While some manufacturers, mining and agricultural firms move products short distances

using privately-owned trucks, the vast majority of shipments use for-hire carriers.9 Rates and

the use of private contracts versus public tariffs vary by mode and the type of good shipped.

In recent years, freight carriers have also instituted fuel surcharge programs whereby total

shipping charges include an additional fee indexed to diesel prices creating an automatic

mechanism for rates to move up and down with changes in fuel costs.10

Parts of the U.S. freight industry have undergone substantial changes over the last sev-

7Whereas emissions from passenger vehicles have grown by only 5%, based on authors’ calculations using
data from U.S. Energy Information Administration (2018).

8In the Commodity Flow Survey parcel/courier include shipments of letters or small packages weighing
less than 100 lbs. including deliveries made by the U.S. Postal Service.

9Private trucks account for approximately 12% of total truck ton-miles (United States Census Bureau,
2018b). Because private and for hire fleets have similar fuel intensities our analysis below combines both
trucking segments into a single mode.

10For example, see Union Pacific Railroad (2019) and YRC Freight (2019).
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eral decades. Increased containerization has reduced costs and losses. It has also enhanced

intermodal transportation whereby individual shipments travel by different modes.11 In

the trucking sector, widespread adoption of information and communication technologies

have increased service quality and lowered costs through realtime tracking and just-in-time

inventory practices. Rail abandonment and consolidation after deregulation in the 1980s

eliminated service to some shippers. On the other hand, railroads have made major invest-

ments in intermodal terminals, upgraded tunnels and track to compete with the trucking

sector on longer distance shipments (Association of American Railroads, 2018).

Finally, the U.S. has recently enacted regulations requiring substantial fuel economy

improvements in the trucking sector. In 2011, the U.S. EPA released greenhouse gas and

fuel economy standards for medium and heavy duty trucks produced during the 2014-2018

model years. In August 2016, EPA released phase II standards for trucks produced through

the 2027 model years. The standards target vehicle, engine and trailer technologies for

improving truck fuel efficiency. The U.S. EPA predicts the phase II standards will improve

new truck tractor fuel efficiency 11% to 14% by 2021 and 19% to 25% by 2027. Standards

related to trailers are expected to improve fuel efficiency by as much as 9% by 2027 (U.S.

Environmental Projection Agency, 2016). Because new tractor-trailers are incorporated over

time as the fleet turns over, EPA estimates that by 2025 the average fuel intensity across

the tractor-trailer fleet will fall by approximately 5% to 6% relative to business as usual.12

Because improvements in fuel efficiency may increase demand for trucking, the magnitude of

the rebound effect is a major factor in determining the overall effectiveness of these policies

(U.S. Environmental Projection Agency, 2016).

3 Data

We exploit detailed shipment-level data on freight movements from the U.S. Commodity Flow

Survey Public Use Microdata (CFS PUM) file (United States Census Bureau, 2012). The

11For instance imports that arrive by sea may travel across the country by rail to lower fuel and labor
costs but may be delivered to final destinations by truck.

12Our simulations below use 5% as the average effect of truck fuel efficiency standards.
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CFS PUM contains administrative data on a sample of approximately 4.5 million shipments

that occurred within the U.S. during 2012. Currently, the CFS PUM is only available for

a single survey year, 2012. The data contain shipment characteristics including the type

of good shipped at the Standard Classification of Transported Goods (SCTG) 2-digit level,

shipment value, shipment distance, and shipment weight. Also reported are shipment mode

or modes (e.g. rail, barge, air, truck, etc. or multiple modes, i.e. truck and rail), origin and

destination locations at the state or regional level, the quarter during which the shipment

occurred, whether the shipment was temperature-controlled, and sampling weights used to

expand the sample to approximate the 2012 shipment population.13 We observe 33 different

SCTG commodity groups and several different modes. While prior studies using disaggregate

data had much more information on shipment and shipper characteristics, we observe many

more shipments for more types of goods than in earlier studies. Our analysis focuses on the

major modes, air, truck, rail and inland water, for each commodity group. We treat mixed

modes, i.e. truck and rail, and truck and barge, as drayage and aggregate these shipments

into the main modes, rail and barge.14

Table 1 summarizes shipment characteristics in the CFS PUM sample. The top panel

expands the sample using the CFS PUM sampling weights, but is otherwise unweighted.

The bottom panel reports summary statistics weighted by shipment size in ton-miles.15 The

maximum value of goods shipped is approximately $520 million. Maximum shipment dis-

tance is approximately 6,700 miles and maximum shipment weight is approximately 140,000

tons. The two sets of summary statistics diverge due to the large number of small par-

cel and courier shipments in the CFS PUM sample. Therefore, mean shipment value is

13The data come from a stratified sample of establishments originating shipments and stratified by ge-
ography, industry and establishment size. Regional location data for shipment origins and destinations are
reported at the Combined Statistical Area (CSA) level, when available, or at the Metropolitan Statistical
Area (MSA) level. The Census Bureau removes firm-level data and identifying information to protect shipper
and transportation company confidentiality.

14According to United States Census Bureau (2018c) “Shipments that included a truck drayage compo-
nent are classified as Truck-Rail and Truck-Water in the CFS estimates.” Because drayage distances are
unobserved, we assume the truck share of miles is small relative to the rail or water component. Since mixed
shipments represent small shares of total ton miles, 5 percent and 1 percent for truck-rail and truck-barge,
respectively, this assumption is unlikely to substantially impact the results below.

15While the unweighted sample illustrates important features of the CFS PUM, weighting by shipment-size
is the more policy relevant metric since energy use and emissions are (roughly) proportional to shipment size
in ton-miles.
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approximately $1,400 in the unweighted sample but increases to $415,000 when weighted.

Similarly, mean shipment distance and weight are approximately 620 miles and 1.1 tons in

the unweighted sample and 1,090 miles and 5,070 tons in the weighted sample.

The bottom of each panel shows modal shares in the weighted and unweighted samples.16

Truck and parcel/courier represent 44% and 54% of shipments in the CFS PUM sample.

However in terms of shipment size, parcel/courier is relatively less important than the other

modes. Accounting for shipment size (lower panel), rail (48%), truck (46%) and water (4%)

account for over 98 percent of freight output. Pipeline accounts for approximately 1% of

shipments. However, modal substitution to pipeline is limited in the short-run due to fixed

infrastructure. Air represents approximately 0.2% of freight output, while parcel/courier

represents approximately 0.8%. We exclude pipeline and parcel/courier shipments from our

analysis below because shipments using these modes have substantially different character-

istics than those made on other modes and because pipeline and parcel/courier constitute

a small share of total freight ton-miles. Finally, we exclude a handful of SCTG categories

that are dominated by a single mode, typically with greater than 99 percent share, such that

there are insufficient observations to estimate parameters for competing modes.17

The mean characteristics of shipments vary substantially by the type of good shipped.

Table 2 summarizes ton-mile weighted-average shipment characteristics for a number of

different SCTG categories. The first three columns show shipment value in dollars per

pound, distance in miles and weight in tons. The remaining columns show ton-mile weighted-

average modal shares for major freight modes within the CFS PUM. Mean shipment value

per pound varies from approximately $0.01 per pound for coal to nearly $25 per pound for

pharmaceuticals. Mean shipment distances vary from approximately 450 miles for fuel oil to

nearly 1,500 miles for pharmaceuticals. Mean shipment weights vary from about 9 tons for

pharmaceuticals to over 17,000 tons for coal and over 30,000 tons for metallic ores.

The modal shares shown in Table 2 highlight important trends in how different types

16The “truck” mode combines shipments using private and for-hire trucks. Mixed modes, e.g. truck-rail
and truck-inland water are classified as rail and barge shipments, i.e. truck is used to connect origins and
destinations to the rail or barge service.

17These include: meat, poultry and fish; tobacco products; monumental and building stone; electronics,
other non-metallic minerals; and furniture.
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of freight shipments move within the United States. Higher value goods such as pharma-

ceuticals, mixed freight and machinery travel mainly by faster modes such as air and truck.

Lower value goods tend to travel via slower more fuel efficient modes, such as rail and water,

particularly when shipment distances are large. For example, rail and water modal shares

are relatively high for metallic ores, grain, coal and basic chemicals. These trends are further

highlighted in Figure 1 where we plot the mean shipment value per pound against shipment

size in ton miles for different transportation modes. We see air and truck shipments tend to

be smaller, higher value shipments. On the other hand, pipeline, rail and water shipments

tend to be larger shipments of lower value goods. These trends are consistent with the large

literature on freight mode choice.18

Importantly for our empirical strategy below, these trends hide important variation in

shipment size, value and mode choice across shipments. For instance, Figure 2 plots mode

shares for grain shipments by the deciles of shipment size in ton miles. We see smaller

shipments are made almost exclusively by truck. However after the sixth decile, the share

of shipments made by rail and barge grows. For the largest shipments, in the tenth decile,

nearly all grain shipments are made by rail, with less than 10% of shipments made by truck.

Other commodity groups show similar trends, namely that within a particular good category,

larger shipments tend to travel by different modes than smaller shipments. Similarly, if value

per pound varies within a commodity group, higher value shipments tend to travel on faster

modes than lower value shipments.

Finally, to understand the role of fuel prices in mode choice, we collect U.S. national

monthly average prices for diesel and jet fuel from the U.S. Energy Information Administra-

tion (2017b) and U.S. Energy Information Administration (2017a). Rail, truck and inland

water modes all operate primarily on diesel. Air shipments use jet fuel. Because diesel

fuel used in locomotives is exempt from the federal fuel excise tax and from excise taxes in

approximately 20 states, we subtract the federal and average state exemptions from retail

prices for rail shipments. We collapse the monthly data to quarterly and match the relevant

18For instance, Oum (1979) finds that while truck dominates short shipments of high-value goods, rail is
competitive for longer shipments of these goods and dominates shorter shipments of low-value goods. These
trends between shipment characteristics and modes have been highlighted by many other authors as well
going back to Meyer et al. (1959), if not earlier.
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prices (diesel or jet) to individual shipments in the CFS PUM.

4 Mode choices, fuel use and emissions

Because our shipment data are limited to 2012, and because there is relatively little fuel

price variation during that year, our empirical model exploits cross-sectional variation in

shipment value and size to estimate the relationships that predict shippers’ mode choices.

Following classic models for freight mode choice (Friedlaender and Spady, 1980, 1981; Levin,

1978; Meyer et al., 1959; Winston, 1981), we assume shippers choose modes to minimize the

sum of freight rate, inventory cost and mode-specific fixed cost.19 Specifically, the cost of

shipment i by mode j can be written as:

costij = γjηjPt × tonmilesi︸ ︷︷ ︸
Rate

+ 1/σjmilesi × r × valuei︸ ︷︷ ︸
Inventory Cost

+ δj︸︷︷︸
Fixed Cost

(1)

where the first term captures freight rate, the second term represents inventory cost and the

final term is mode-specific fixed-cost δj. We assume freight rates depend on transportation

companies’ fuel expenditures and are marked up proportionally at rate γj. Fuel expenditure

is the product of fuel price (Pt) and fuel consumption (ηj × tonmilesi), where ηj is the

mode-specific fuel intensity and tonmilesi is the size of shipment i. Inventory cost captures

the time cost of goods in transit and depends on the shipment distance (milesi), mode-

specific speed ( 1
σj

) and the value of time (r × valuei), where valuei is the total value of

goods in the shipment and r is the discount rate. For goods that move by inland water, we

allow mode-specific fixed cost to vary according to whether the shipment originates in the

Mississippi River Basin via incremental fixed cost (δmj ). This parameter accounts for the fact

some shipments have barge access via the Mississippi River system while others do not.20

For goods that require temperature-controlled storage during transportation, we allow for

19We assume shippers’ ultimate revenue does not vary by shipment mode such that cost minimization is
consistent with profit maximization.

20Though rail access also varies by establishment, the geographic areas in the data are much too coarse
to infer whether a particular shipment could be made by rail, except of course when we observe that mode
directly.
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incremental inventory cost (δtcj ).21

Our approach is explicitly short-run in that we assume transportation infrastructure is

fixed. Further, we take shipment size as exogenous, i.e., shippers first decide on the quantity

of goods to ship and then pick the cost-minimizing mode. The total demand for freight is

fixed. These assumptions reflect limitations of our data, whereby we only observe a single

year’s shipments and the actual characteristics of shipments made during that year and not

the full set of options shippers face. That said, we do not restrict possible modes based on

shipment size and mode-specific vehicle capacities. In other words, in both our model and

data, a single large shipment could potentially travel in one barge, several rail cars or many

truck trailers.

In practice, we estimate a reduced form of Equation 1 by replacing the individual unob-

served rate and inventory cost parameters with coefficients to be estimated according to:

costij = αcjPt × tonmilesi + βcjmilesi × valuei + δcj + εij (2)

Because markups, fuel intensities, mode speeds, values of time and fixed costs vary by both

the mode and the type of good shipped, we estimate Equation 2 separately for each SCTG

c. We estimate Equation 2 as a multinomial logit. Specifically, the probability mode j is

selected for shipment i is given by:

P (yi = j|X,α, β, δ) =
exp(αcjPt × tonmilesi + βcjmilesi × valuei + δcj)∑4
k=1 exp(αckPt × tonmilesi + βckmilesi × valuei + δck)

(3)

While other specifications impose weaker assumptions than the multinomial logit, our choice

is driven by the fact that characteristics for alternate modes that could be used to make a

particular shipment are unobserved. The mode choice parameters are identified by cross-

sectional variation in shipment characteristics (ton-miles, miles, value, etc.) and (limited)

time-series variation in fuel prices. Because variation in shipment costs comes mainly from

changes in shipment characteristics, the potential endongenity problem is a bit more nu-

anced than the classic demand estimation concern, i.e. that cost shocks are correlated with

21This captures factors such as the perishability of certain goods that are reflected in inventory cost.
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unobserved mode-specific demand shocks. For instance, if a shock to truck shipment demand

affects diesel prices, then our estimates of αcj would be biased towards zero. However in

this case, our estimates are conservative in the sense that they under-estimate the effects of

policies that change fuel prices or energy intensity on mode switching. It could also be the

case unobserved shocks to shipment characteristics are correlated with shocks to demand for

particular modes, e.g a number of unusually large or small shipments that for some reason

must be made by truck. Here, the direction of bias is unknown. However, shocks of this

type seem less likely.

To investigate how well our model captures the behavior of shippers observed in the

CFS PUM, we simulate 500 mode choices for each shipment by taking the value of the

latent variable and bootstrapping the extreme value error term. We assume shippers choose

the mode with the highest predicted probability. Table A1 in the supplementary appendix

presents the total ton-miles transported by mode for each SCTG. Beside the CFS data we

present the mean ton-miles by mode and SCTG averaged across our simulations. We see that

the mean predicted values match the CFS totals very well. For trucks, the predicted ton-

miles across SCTG’s are all within 2% of the CFS totals, with most predictions matching the

CFS totals much more closely. For rail, the predicted totals are all within 6%, though again

most estimates match the CFS totals much more closely. We somewhat over-predict truck

ton-miles and under-predict rail ton-miles, though the totals across all goods are within 0.6%

to 0.8% of CFS totals. The model does less-well fitting water and air shipments. However,

this is less of a concern since these modes make up a relatively small share of total ton-miles

and hence fuel consumption and emissions. Overall, these results suggest our model provides

a good fit to the aggregate patterns in the data.

Next, we explore how fuel prices affect mode choices on the margin. In Equation 2,

αcj captures how changes in fuel costs affect the probability mode j is selected. Therefore,

we can use our estimates of αcj to understand how changes in fuel prices, e.g. oil market

volatility or carbon pricing, impact shippers’ mode choices. Here we are relying on the fact

fuel costs are proportional to the product of fuel price and ton-miles. Since there is little fuel

price variation in 2012, αcj is identified (mainly) by cross-sectional variation in ton-miles.
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Therefore, the fuel price simulations implicitly assume changes in fuel price and shipment

size have equivalent effects on mode choice. We relax this assumption in Section 6 where

we estimate αcj using cross-sectional variation in ton-miles plus time-series variation in fuel

prices.

Because space limitations prevent us from presenting results for every SCTG, we illustrate

our approach using results for several representative goods. Other SCTGs exhibit similar

modal substitution patterns, though the specific ranges depend on characteristics of those

goods. The parameter estimates for these representative goods are presented in Table A2

of the supplemental appendix. Here, we focus our discussion on the marginal effects of fuel

price changes on mode choice probabilities.

Table 3 presents average marginal effects of a change in diesel fuel price for different bins

of grain shipment size, on the left, and coal shipment size, on the right. The columns show

the effects by mode. The first column shows the effect on truck mode choice probability.

The second and third columns show effects for rail and inland water and so on. We begin by

looking at grain shipments. For small shipments, 10,000 ton miles, an increase in fuel price

is associated with a small decrease in the probability truck is used and a small increase in

the probability rail is selected. Similarly for large shipments, 70,000 or 80,000 ton miles, an

increase in fuel price leads to a small decrease in the probability truck is used and a small

increase in the probability rail is selected. However, for intermediate-sized shipments, higher

fuel prices are associated with large changes in mode choice probabilities. For shipments of

30,000 to 40,000 ton miles, a one dollar increase in diesel price is associated with a 22 to 24

percentage point decrease in the probability truck is used and a 21 to 24 percentage point

increase in the probability the shipment moves by rail. There is also a small increase in the

probability inland water is selected.

This suggests there is a range of grain shipment size where truck and rail are close

substitutes. We see this visually in Figure 3 that plots the fitted mode choice probabilities

for grain shipments by truck, rail and inland water.22 The points above the truck curve and

below the rail curve for small shipments correspond to relatively high value goods that tend to

22To simplify Figures 3, 4 and 5 we ignore diesel excise tax exemptions for rail and use a single diesel price
for all modes.
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travel by faster modes, all else equal, consistent with the overall patterns described previously.

The gray markers show fitted mode choice probabilities for 2012 fuel prices. The colored

markers show estimates assuming a 25 percent increase in fuel prices. For small shipments,

the probability grain moves by truck is nearly one. For large shipments, the rail probability

approaches one. However for intermediate-sized shipments, the fitted probabilities for truck

and rail are roughly equal. Increasing fuel price increases the likelihood rail is selected and

decreases the likelihood truck is selected, shifting both curves to the left.

Looking at coal shipments, the righthand side of Table 3 shows marginal effects of a

fuel price increase for shipment sizes ranging from 60,000 to 200,000 ton miles. This range

corresponds to small coal shipments where truck is competitive with rail and barge. For

shipments ranging from 140,000 ton-miles to 180,000 ton miles, a one dollar increase in

diesel price is associated with an approximately 20 to 21 percentage point decrease in the

probability truck is used but a 13 to 14 percentage point increase in the probability the

shipment moves by rail and a 6 to 7 percentage point increase in the probability it moves

by barge. However for large coal shipments, rail and barge are the preferred modes and fuel

price changes have more modest effects on mode choice probabilities. We see this in Figure

4, which plots the fitted mode choice probabilities for coal shipments at 2012 prices, again

in gray, against probabilities with a 25% increase in fuel price. Truck share is essentially

zero for shipments over several hundred thousand ton miles. The probability rail is selected

grows from about 70% for shipments of several hundred thousand ton miles to over 80%

for shipments of 6 million ton-miles. Barge shipments make up the difference and decline

as shipment size increases. This feature is likely a consequence of geographic factors where

the maximum distance of barge shipments is limited by navigable waterways in the eastern

United States. While fuel price increases shift coal shipments to more efficient modes at

smaller shipment sizes, for large shipments, fuel price increases lead to small shifts from

barge to rail. Since these larger shipments are more energy intensive, overall we expect

relatively modest reductions in fuel consumption and emissions from fuel price changes in

coal transportation.

Next, we look at two relatively higher value commodity groups, alcohol and precision
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instruments. Truck is the dominant mode for shipments of both these goods. However, a

large share of alcohol moves by rail. Air is a competitive mode for some shipments of precision

instruments. Table 4 shows the marginal effects of fuel price changes for these modes over a

range of shipment sizes. For alcohol shipments of around 60,000 ton miles the probabilities

truck or rail are selected are approximately equal. In this range of shipment size, changes in

fuel price have a very large impact on mode choice probabilities. For shipments of 60,000 to

80,000 ton-miles, a one dollar increase in diesel price is associated with a 32 to 51 percentage

point increase in the probability rail is selected. We see this visually in Figure 5 that shows

a large shift from truck to rail for intermediate-sized shipments when fuel prices increase.

Shipments in this range are a mix of beverages, that are small in terms of tons but travel

long distances, often 2000 miles, and fuel ethanol shipments that can be several hundred

tons but travel shorter distances. As shipment sizes grow larger, rail dominates and fuel

price changes have little effect on mode choice. These shipments are primarily fuel ethanol

produced in the midwest and shipped by rail to East Coast and West Coast destinations.

The large marginal effects for rail and truck, and the relatively large shipment sizes, suggest

fuel price changes will lead to large shifts in fuel consumption and emissions.

In contrast, mode choices for shipments of precision instruments are relatively insensitive

to changes in fuel price. We see this both in Table 4 and Figure 6, where fuel price increases

yield small increases in the probability truck is selected across a range of shipment sizes.

There is a large range of good values within this SCTG. This appears as range of predicted

probabilities, i.e. the scatter in Figure 6 compared with, for instance, grain in Figure 3 that

is much more homogenous in terms of value. This fact, combined with the large difference

in average speed between truck and air, suggests many shipments are well suited to one

mode and the alternative is a poor substitute. For instance, the mean value of precision

instruments shipped by air is approximately $700 per pound versus $200 per pound for

precision instruments shipped by truck. This is in contrast to a good like grain where the

mean value of goods shipped by truck is $0.32 per pound versus $0.14 per pound for grain

shipped by rail. We see further evidence that truck and rail are poor substitutes on the

righthand side of Table 4. The largest marginal effects occur for shipments around 1,000 to

2,000 ton miles in size. Here, a one dollar increase in diesel price is associated with a 1 to
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2 percentage point increase in the likelihood truck is selected over air. Overall, the small

marginal effects and small shipment sizes suggest fuel price changes will have modest effects

on fuel consumption and emissions.

To understand the potential for fuel and emissions reductions, we use our parameter

estimates from the CFS PUM to simulate mode choices under several fuel price scenarios,

again employing the bootstrapping procedure outlined above. Then, for each shipment we

calculate fuel consumption and emissions from shipment size, in ton miles, and the fuel

intensity of the predicted mode.23 When shipments switch modes we adjust ton-miles to

reflect mean differences across models.24 We repeat this procedure for several fuel price

scenarios. Table 5 summarizes total ton miles, fuel consumption and emissions across the

different scenarios, averaged over the simulated mode choice experiments. Consistent with

the marginal effects discussed previously, higher fuel prices increase the share of shipments

made by rail and decrease truck share. This modal substitution yields substantial reductions

in fuel use and emissions.

Under the business as usual scenario, using 2012 fuel prices, rail output is approximately

1.27 trillion ton miles while truck output is approximately 1.12 trillion ton miles. Total fuel

consumption is approximately 16.4 billion gallons and total emissions are 166 million metric

tons of carbon dioxide. A 10% increase in fuel price increases rail ton miles to approximately

1.29 trillion and lowers truck ton miles to approximately 1.10 trillion. This shift lowers

fuel consumption and carbon emissions by approximately 1.6%. Similarly, larger fuel price

increases of 25%, 50% and 100%, lower fuel consumption by 3.7, 6.9 and 12.0%, respectively.

A doubling of fuel price increases rail’s share of ton-miles from approximately half to nearly

60 percent.

23For rail we assume a fuel intensity of 1/450 gallon per ton mile consistent with Oak Ridge National
Laboratory (2018) and Association of American Railroads (2019). There is more uncertainty about the real
world energy intensity of freight movements by heavy duty truck, air and barge. We use 1/85 gallon per ton
mile for truck (Cristea et al., 2013; U.S. Environmental Projection Agency, 2016), 1/7.5 gallon per ton mile
for air consistent with Cristea et al. (2013) and 1/600 gallon per ton mile for barge (Kruse, Warner, and
Olson, 2017).

24For instance, truck distances tend to be less between a given origin and destination, all else equal, due
to more direct routing of truck shipments relative to rail. Though this effect is reflected in the mode choice
parameter estimates (αcj), the shipment characteristics must be adjusted for the fuel use and emissions
calculations. We calculate the ratio of rail, air and barge to truck distances between each origin-destination
pair and apply mean values for the distance corrections.
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The magnitude of fuel and emissions reductions vary across the types of goods shipped.

Figure 4 shows the percentage reduction in carbon emissions by SCTG for a 10% increase

in fuel price. Panel (a) plots the percentage reduction against shipment value in dollars

per pound. Panel (b) plots the percentage reduction against shipment size in ton miles.

The relationship between value and carbon reduction has an inverted u-shape. Reductions

peak between 2.5 and 3.5 percent for pulp, newsprint, paper and paperboard; alcohol; ba-

sic chemicals; and milled grain, each with a mean value of approximately one dollar per

pound.25 Emissions decrease sharply for lower-valued goods and somewhat more flatly for

higher-valued goods. Similarly, in panel (b), emissions reductions peak for goods with mean

shipment sizes of several hundred-thousand ton-miles. Overall, this suggests moderately-

valued goods traveling intermediate distances show the greatest potential for truck to rail

switching and hence fuel use and emissions reductions.

5 Fuel economy standards and the rebound effect

The results above highlight an important mechanism in shippers’ responses to policies such

as fuel economy standards for heavy-duty vehicles. Recent estimates for the heavy-duty

vehicle rebound effect in the U.S. range from effectively zero (Winebrake et al., 2015) to

between 20 and 30 percent (Leard et al., 2015).26 Estimates from other parts of the world

suggest rebound effects of similar magnitudes. For instance Matos and Silva (2011) estimate

the total direct rebound effect for road freight in Portugal to be approximately 24 percent.

De Borger and Mulalic (2012) estimate effects between 10 and 17 percent in Denmark.

Sorrell and Stapleton (2018) estimate larger effects, between 49 and 61 percent, for the UK.

Since our cross-sectional approach lacks an intensive margin, we focus on the mode shifting

component of the total effect. However, the results below suggest the cross-rebound effect

25Emissions for shipments of animals fall by approximately 12.5%, but are omitted to simplify these figures.
26Leard et al. (2015) estimate an elasticity of vehicle miles traveled (VMT) with respect to fuel cost of

approximately -0.2. Combined with an elasticity of truck count with respect to fuel cost of approximately
-0.10, this yields an overall VMT effect of approximately 30 percent. The authors also estimate the effect in
terms of ton-miles of freight transported, which is more comparable to what we estimate here. In that case,
the ton-mile elasticity is approximately -0.20 with a small statistically insignificant effect on truck counts.
This suggests an overall effect in terms of ton-miles of approximately 20 percent.
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represents a substantial share of the overall effect.

To illustrate the importance mode choice and the rebound effect, we analyze heavy-

duty truck fuel economy standards that approximate recent U.S. policies. Our estimates

above imply improvements in truck fuel economy will shift some freight movements from

more fuel-efficient rail transportation to less fuel-efficient trucks. We adapt the approach in

Section 4 to analyze the impact of truck fuel economy standards. This requires somewhat

stronger assumptions. Because fuel economy standards change the fuel intensity of freight

movements, we must first separate out the effect of fuel intensity from the rate term in

Equation 2. Then, by varying truck fuel intensity, holding all other factors constant, we can

predict mode choices, shares, fuel use and emissions. We rewrite Equation 2 as:

costij = γjηjPt × tonmilesi + βcjmilesi × valuei + δcj + εij. (4)

Here, we use the same fuel intensities ηj as in the base model, discussed in footnote 23. Note

that we now have alternative-specific data (ηjPt × tonmilesi) on fuel expenditures across

modes. However, shipment distances and values do not vary across modes. Therefore, we

use a mixed-logit approach in estimating the parameters of Equation 4. We follow the same

simulation approach described above, first estimating the parameters of Equation 4, then

bootstrap the error to yield 500 simulated mode choices for each shipment.

Table A3 in the supplementary appendix compares the predicted modal shares using our

mixed logit parameter estimates with the CFS PUM shares. As in Table A1, we present

mean ton-miles across our simulations by SCTG. In general, the predictions match the CFS

PUM shares fairly well. Predicted total truck ton miles are within .9% of the CFS PUM

total and rail ton miles are within 3.8%. The mixed logit systematically over-predicts barge

ton-miles for a number of SCTGs including basic chemicals, coal, fertilizers and grain. As

a result, we overestimate barge share and underestimate fuel use and carbon emissions in

our baseline scenario. However, since we are mainly interested in how truck and rail shares

change with improved truck fuel economy, and since barge is a poor substitute for most truck

shipments, we do not see this as a major limitation of the mixed logit specification in this

application. That said, it is because of this limitation that we prefer the multinomial logit
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approach for our main results above.

To see the effect of fuel economy regulation we impose a 5 percent reduction in truck

fuel intensity and use our estimates to simulate shippers’ mode choices. We recalculate

the latent value with the lower fuel intensity parameter and pick the most probable mode

for each shipment and each error draw. We then compute fuel consumption and emissions

in two cases. The first imposes the 5 percent reduction in truck fuel intensity but uses the

business as usual mode choice predictions, i.e. assumes more fuel efficient trucks do not affect

shippers’ mode choices. This is equivalent to assuming zero rebound since total shipments

are fixed. The second imposes the 5 percent reduction in energy intensity and allows mode

shares to adjust to changes in relative fuel efficiency. These results are shown in Table 6

Truck fuel economy regulation shifts freight shipments from rail to truck, approximately

16 billion ton miles or approximately 1.3% of business-as-usual rail freight output. This

shift substantially reduces the effectiveness of truck fuel economy regulations. Without

mode shifts, shown in the middle column of Table 6, truck fuel consumption would decrease

by approximately 650 million gallons and total freight emissions would fall by 4%. However,

modal substitution from rail to truck erodes these gains substantially such that fuel consump-

tion and emissions fall by only 3.3%. This implies a “cross-rebound” effect of approximately

a 18%. This effect takes into account shippers’ re-optimization across modes (truck, rail,

air and barge) due to improved truck fuel economy plus the differences in energy intensi-

ties across modes. Compared to the range of estimates for the total direct rebound effect

reported above, approximately zero to 30 percent in the U.S., this suggests mode-shifting

accounts for a large share of the overall effect.27

The effects are heterogenous across SCTGs depending on where truck and rail are better

substitutes. Figure 8 plots estimates of the cross-rebound effect by SCTG. To provide a sense

of magnitudes, the size of each bubble represents business-as-usual emissions for that SCTG.

We see that the cross-rebound effect varies substantially across goods. For pulp, newsprint

paper and paperboard; basic chemicals; fertilizers; and alcohol, the cross-rebound effect is

approximately 50 percent, i.e the actual emissions reductions are approximately half of what

27The remainder coming from the intensive margin.
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would be expected without modal substitution. For other prepared foodstuffs, grain, milled

grain and sand the cross-rebound effect is approximately 30 percent. The effect is essentially

zero for commodities such as waste and scrap, coal, mixed freight and printed products.

Interestingly, air freight also responds to changes in truck fuel efficiency. As a result there

are negative cross-rebound effects for shipments of animals and precision instruments achieve

due to substitution from air freight to truck when truck fuel efficiency improves.

These results highlight the importance of considering shippers’ mode choice behavior and

the associated rebound effect in modeling the impacts of transportation sector energy and

emissions policies. Similarly, policies that affect speeds of different modes via urban traffic

congestion or infrastructure improvements are also likely to affect mode choices through

inventory costs. Overall, modal substitution has important implications for understanding

the direct and indirect impacts of transportation sector policies.

6 Validity of cross-sectional variation used to identify

main results

Our parameter estimates above rely mainly on cross-sectional variation in shipment charac-

teristics. While we argue both changes in shipment size and fuel price cause similar effects

on shippers’ incentives to use different modes, one may still be concerned fuel price changes

lead to different substitution patterns than those coming from cross-sectional variation in

shipment size. Further, longer run responses to fuel price changes may be different from

those reported above. To explore the robustness of our main results to alternate identifi-

cation, we exploit aggregate date from public tabulations of the 2002, 2007 and 2012 CFS

surveys (United States Census Bureau, 2018a).

The public CFS tabulations present a trade-off. This period provides substantial variation

in fuel prices, which range from $1.55 per gallon in 2002 to $3.77 per gallon in 2012. However,

the public tabulations only report modal totals by origin and destination state. In other

words, we observe total tons, ton miles and value by mode and SCTG between Iowa and
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Illinois, for instance, but not individual shipments. A second limitation arises because the

Census Bureau redacts a large number of observations in the public tabulations to protect

shipper confidentiality. We suspect these missing observations are not randomly distributed,

but instead disproportionally affect smaller or more concentrated freight markets. In sum,

the approach presented here gains variation in fuel prices but introduces the strong possibility

of aggregation and selection bias.

Despite these limitations, the tabulated data allow us to test our main estimation strategy.

Specifically, we estimate a model for cost-minimizing shippers analogous to Equation 2 above.

However because the data are aggregated, we model modal shares for SCTGs transported

between different geographic regions (Levin, 1978). Specifically, we rewrite Equation 2 as:

cptrjt = α′jPt ×milesrjt + β′jmilesrjt × vptrjt + δ′j + εrjt (5)

where milesrjt is the average shipment distance between origin and destination route r. Note

that data aggregation requires a different interpretation of shippers’ mode choice decisions.

Here, we imagine shippers choose modes to minimize the cost per ton (cptrjt) of transporting

a particular good along a given route r. This assumption is driven by the fact we only observe

average shipment distances and total tons, ton miles and value. Conceptually, Equation 5 is

the result of dividing Equation 2 by shipment tons and noting the data come from averages

over a number of individual shipments.

We employ a similar procedure to that described above, estimating Equation 5 separately

for each commodity group, then simulating 500 mode choices by bootstrapping the error.

This approach yields estimates of the overall effects of fuel price increases in line with, though

slightly larger than, those presented previously. Table 7 presents modal shares, total fuel

use and emissions for business as usual and different fuel price scenarios. Note the fuel,

emissions and ton miles totals are not directly comparable to those in Table 5 due to the

missing observations discussed previously and the fact we pool observations across years.

However, we see estimated fuel use and emissions reductions are comparable to those using

the 2012 microdata and cross-sectional variation. A 10% increase in fuel price is associated

with a 1.5% decrease in fuel use and emissions. Fuel price increases of 25, 50 and 100%
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are associated with reductions of 3.7, 7.1 and 13.0%, respectively. While we are hesitant

to put too much emphasis on specific magnitudes, the somewhat larger estimated effects in

the panel are consistent with longer-run responses to fuel price changes. More importantly,

the fact different data and identifying variation yield results similar to those reported above

supports our preferred estimation strategy.

7 Conclusions

Freight transportation represents a large and increasingly important share of U.S. energy

consumption and greenhouse gas emissions. Because energy intensities differ dramatically

across freight modes, shippers’ mode choice decisions have important implications for future

energy and climate policies. Yet, compared with other sectors such as passenger vehicles

or electricity, relatively little is known about freight responses to energy policies. This is

especially true in light of recent changes to freight modes and infrastructure that likely affect

how shippers choose modes.

Here, we exploit newly available shipment-level data on millions of shipments that oc-

curred in the U.S. during 2012. We estimate a series of discrete choice models describing how

changes in rates, via fuel prices, and inventory costs affect mode choice. We first document

substantial variation in shipment size and value, both across goods and across shipments

within a particular type of good. This heterogeneity, which has been largely absent in earlier

studies using more aggregate data, means many shipments are likely to shift to more fuel

efficient modes when fuel prices increase. Using our parameter estimates, we predict mod-

est fuel price changes yield substantial reductions in fuel consumption and emissions. For

instance, across all the shipments we study, we find a 10% increase in fuel price is associa-

tion with a 1.6% decrease in fuel consumption and emissions. In some goods categories, the

emissions reductions can be two to three times larger. An alternate approach using more

aggregate data but with more meaningful time-series variation in fuel prices, yields similar

though somewhat larger estimated emissions reductions.

We use the recent example of heavy-duty vehicle fuel economy regulations to highlight
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the importance of modeling freight mode choice in transportation policies. In our example,

policies that improve the fuel economy of trucks can cause some shipments that would have

traveled by more efficient rail transport to instead travel by truck. We call this effect a

“cross-rebound” effect. This effect is large relative to estimates of the total heavy-duty

vehicle rebound effect. We show how an analysis of truck fuel economy standards that

ignores this mechanism can substantially overstate fuel and emissions savings. Our model

suggests policies that change the relative speeds of modes, for instance due to changes in

traffic congestion, could lead to similar unanticipated consequences.

Overall, we demonstrate freight mode choice is an important factor in understanding

responses to energy and climate policies. Our analysis highlights the benefits of using detailed

micro-level data on a variety of goods to understand shippers’ mode choices. The short-run

analysis presented here provides valuable insight into these choices but likely represents a

lower-bound on shippers’ long-run responses to economic and policy changes in the U.S.

freight sector.
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Figures

Figure 1: Relationships between modes and mean shipment characteristics.
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Figure 2: Truck, rail and barge mode shares by grain shipment size.
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Figure 3: The effect of higher diesel prices on predicted truck, rail and barge choice prob-
abilities for grain shipments.

Figure 4: The effect of higher diesel prices on predicted truck, rail and barge choice prob-
abilities for coal shipments.
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Figure 5: The effect of higher diesel prices on predicted truck and rail choice probabilities
for alcohol shipments.

Figure 6: The effect of higher diesel prices on predicted truck and air choice probabilities
for precision instrument shipments.
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Figure 7: Heterogeneity in carbon reductions by mean good characteristics.
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(b) Mean shipment ton-miles
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Figure 8: Rebound effect due to modal substitution (“cross-rebound”) under truck fuel
economy regulations. Bubble sizes reflect BAU emissions by SCTG.
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8 Tables

Table 1: Summary statistics and modal shares in weighted and unweighted samples.

Mean Std. Dev. Min. Max.
Value 1,440$           63,700$      1$              521,000,000$  
Miles 622.31 795             1.00 6,677               
Tons 1.14 54               0.00 139,000           

Air 0.02 0.12            0.00 1.00
Pipeline 0.00 0.01            0.00 1.00
Rail 0.00 0.04            0.00 1.00
Truck 0.44 0.50            0.00 1.00
Water 0.00 0.01            0.00 1.00
Parcel/Courier 0.54 0.50            0.00 1.00

Mean Std. Dev. Min. Max.
Value 415,000$       2,750,000$ 1$              521,000,000$  
Miles 1,089.16        731             1.00 6,677               
Tons 5,066.56        12,500        0.00 139,000           

Air 0.00 0.04            0.00 1.00                 
Pipeline 0.01 0.10            0.00 1.00                 
Rail 0.48 0.50            0.00 1.00                 
Truck 0.46 0.50            0.00 1.00                 
Water 0.04 0.20            0.00 1.00                 
Parcel/Courier 0.01 0.09            0.00 1.00                 

Unweighted

Ton-Mile Weighted

Ton-Mile Share

Shipment Share

Table 2: Mean shipment value, weight, distance and mode shares for selected goods.

Commodity Group Value ($/lb.) Miles Tons Air Pipeline Rail Truck Water Parcel/Courier
Basic Chemicals 0.60$           1,148    420           0.00 0.01 0.55 0.34 0.10 0.00
Coal 0.01$           1,165    17,160      0.00 0.00 0.95 0.02 0.04 0.00
Fertilizers 0.25$           1,088    221           0.00 0.01 0.62 0.34 0.03 0.00
Fuel 0.41$           680       4,709        0.00 0.24 0.37 0.38 0.01 0.00
Fuel Oil 0.44$           454       3,030        0.00 0.26 0.02 0.59 0.13 0.00
Grain 0.14$           1,156    4,703        0.00 0.00 0.81 0.10 0.09 0.00
Machinery 6.44$           1,270    17             0.01 0.00 0.03 0.92 0.00 0.03
Metallic Ores 0.27$           880       30,078      0.00 0.00 0.62 0.07 0.31 0.00
Mixed Freight 2.31$           766       14             0.01 0.00 0.04 0.91 0.02 0.02
Non-Metallic Mineral Products 0.39$           683       140           0.00 0.00 0.20 0.79 0.01 0.00
Pharmaceuticals 24.91$         1,471    9               0.02 0.00 0.00 0.88 0.00 0.10
Primary Base Metal 0.98$           955       52             0.00 0.00 0.29 0.71 0.00 0.00
Sand 0.03$           688       173           0.00 0.00 0.46 0.54 0.00 0.00
Vehicles 4.52$           1,250    30             0.01 0.00 0.18 0.78 0.00 0.03

Ton Mile Wgt. Avg Mode Share
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Table 3: Marginal effects of a fuel price change on mode choices for grain and coal shipments.

Truck Rail Inland Water Truck Rail Inland Water

10,000 Ton-Miles -0.020 0.019 0.001 60,000 Ton-Miles -0.041 0.029 0.013
(0.008) (0.008) (0.000) (0.046) (0.033) (0.015)

20,000 Ton-Miles -0.096 0.093 0.003 80,000 Ton-Miles -0.074 0.051 0.023
(0.042) (0.041) (0.001) (0.083) (0.059) (0.028)

30,000 Ton-Miles -0.219 0.214 0.005 100,000 Ton-Miles -0.116 0.080 0.036
(0.053) (0.053) (0.002) (0.120) (0.084) (0.042)

40,000 Ton-Miles -0.2420 0.2380 0.0040 120,000 Ton-Miles -0.160 0.110 0.050
(0.046) (0.043) (0.003) (0.132) (0.091) (0.050)

50,000 Ton-Miles -0.144 0.142 0.0020 140,000 Ton-Miles -0.196 0.134 0.062
(0.095) (0.093) (0.002) (0.098) (0.067) (0.047)

60,000 Ton-Miles -0.060 0.059 0.001 160,000 Ton-Miles -0.213 0.145 0.068
(0.063) (0.062) (0.001) (0.029) (0.027) (0.036)

70,000 Ton-Miles -0.022 0.021 0.000 180,000 Ton-Miles -0.208 0.140 0.067
(0.029) (0.029) (0.000) (0.089) (0.068) (0.040)

80,000 Ton-Miles -0.007 0.007 0.000 200,000 Ton-Miles -0.185 0.125 0.060
(0.012) (0.012) (0.000) (0.166) (0.118) (0.057)

Observations 24817 24817 24817 10602 10602 10602
Notes: Average marginal effects for a change in diesel price on mode choice probability evaluated at different shipments sizes
(ton-miles). Marginal effect evaluated at the means of shipment value and miles.  Stardard errors clustered at the route-level in
parentheses. 

Coal Shipments

Effect of Diesel Price on Mode Choice Probabilities

Grain Shipments
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Table 4: Marginal effects of a fuel price change on mode choices for alcohol and precision
instrument shipments.

Truck Rail Truck Air

30,000 Ton-Miles -0.009 0.009 500 Ton-Miles 0.020 -0.020
(0.003) (0.003) (0.004) (0.004)

40,000 Ton-Miles -0.037 0.037 1,000 Ton-Miles 0.023 -0.023
(0.014) (0.014) (0.002) (0.002)

50,000 Ton-Miles -0.128 0.128 1,500 Ton-Miles 0.018 -0.018
(0.054) (0.054) (0.004) (0.004)

60,000 Ton-Miles -0.332 0.332 2,000 Ton-Miles 0.013 -0.013
(0.110) (0.110) (0.006) (0.006)

70,000 Ton-Miles -0.508 0.508 2,500 Ton-Miles 0.009 -0.009
(0.031) (0.031) (0.005) (0.005)

80,000 Ton-Miles -0.405 0.405 3,000 Ton-Miles 0.005 -0.005
(0.122) (0.122) (0.004) (0.004)

90,000 Ton-Miles -0.201 0.201 3,500 Ton-Miles 0.003 -0.003
(0.116) (0.116) (0.003) (0.003)

100,000 Ton-Miles -0.079 0.079 4,000 Ton-Miles 0.002 -0.002
(0.060) (0.060) (0.002) (0.002)

121138 121138 Observations 40807 40807
Notes: Average marginal effects for a change in diesel price on mode choice probability evaluated at
different shipments sizes (ton-miles). Marginal effect evaluated at the means of shipment value and 
miles.  Stardard errors clustered at the route-level in parentheses.  

Precision InstrumentsAlcohol

Effect of Diesel Price on Mode Choice Probabilities

Table 5: Simulated fuel and emissions reductions from modal substitution for 2012 Public
Use Microdata file.

BAU 10% 25% 50% 100%

Air (billion ton-miles) 1.68           1.58           1.47           1.34          1.16            
Inland water  (billion ton-miles) 97.65         101.75       108.31       119.37      138.26        
Rail (billion ton-miles) 1,265.09    1,292.23    1,329.13    1,381.85   1,466.52     
Truck  (billion ton-miles) 1,121.88    1,095.38    1,058.54    1,004.59   916.89        

Fuel (million gal.) 16,397       16,138       15,783       15,267      14,431        
Emissions (MMT) 166.46       163.84       160.24       155.01      146.53        

Percent change -1.6% -3.7% -6.9% -12.0%

Fuel Prices, Fuel Use and Emissions
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Table 6: Simulated ton-miles, fuel use and emissions under truck fuel economy regulation.

BAU No Rebound With Modal Sub.

Ton-miles
Air (billion ton-miles) 1.58              1.58                1.57                  
Inland water  (billion ton-miles) 126.56          126.56            126.43              
Rail (billion ton-miles) 1,216.82       1,216.82         1,200.55           
Truck  (billion ton-miles) 1,110.11       1,110.11         1,124.74           

Fuel
Air (million gal.) 210.01          210.01            208.84              
Inland water  (million gal.) 210.93          210.93            210.71              
Rail (million gal.) 2,704.04       2,704.04         2,667.89           
Truck (million gal.) 13,060.15     12,407.14       12,570.59         

Emissions
Air (MMT) 2.01 2.01 2.00
Inland water (MMT) 2.14 2.14 2.14
Rail (MMT) 27.47 27.47 27.11
Truck  (MMT) 132.69 126.06 127.72

Fuel (million gal.) 16,185          15,532            15,658              
Emissions (MMT) 164.32          157.68            158.96              

Percent change 4.0% 3.3%

Fuel Prices, Fuel Use and Emissions

Table 7: Simulated fuel and emissions reductions from modal substitution for the 2002,
2007 and 2012 public tabulations.

BAU 10% 25% 50% 100%

Air (billion ton-miles) 45.62         45.59         45.56         45.51        45.45          
Inland water  (billion ton-miles) 610.82       635.27       668.51       714.49      778.88        
Rail (billion ton-miles) 3,431.56    3,489.38    3,573.58    3,711.50   3,962.24     
Truck  (billion ton-miles) 2,327.30    2,259.63    2,162.59    2,009.17   1,743.06     

Fuel (million gal.) 42,106       41,476       40,572       39,144      36,670        
Emissions (MMT) 424.21       417.81       408.63       394.12      368.99        

Percent change -1.5% -3.7% -7.1% -13.0%

Fuel Prices, Fuel Use and Emissions
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Supplementary appendix

A Abatement costs of freight mode substitution

To get a sense for the cost-effectiveness of freight mode substitution relative to our sources of

carbon reduction, we construct marginal abatement cost curves by simulating mode choices

and carbon emissions reductions for incremental carbon taxes up to $100 per MT CO2.

We assume the tax is levied upstream and is fully passed through to transportation firms.28

Appendix Figure A1 shows marginal abatement cost (MAC) curves for several representative

SCTGs, panel (a), and the aggregate MAC curve, panel (b). Over this range of taxes,

the marginal abatement cost curve is approximately linear, a tax of $50/MT CO2 yields

approximately 3.3 MMT while a tax of $100/MT CO2 produces approximately 6.4 MMT

of abatement. As before, the curves for individual SCTGs reveal interesting heterogeneity.

The curves for coal and grain are quite steep owing to the fact the largest, and therefore

most carbon intensive shipments of these goods already travel by rail. Similarly, the curve

for precision instruments is steep as fuel price increases are insufficient to outweigh the high

inventory costs these high-value goods would incur if switched from air to truck. A tax of

$50/MT CO2 yields reductions less than 0.05 MMT in each case. Basic chemicals, prepared

foodstuffs and primary base metals are moderately less steep. A tax of $50/MT CO2 yields

abatement of approximately 0.25 to 0.50 MMT in each case.

Because our estimates focus on modal substitution, it is difficult to compare our results

to prior studies that allow for more responses to carbon policy. Specifically, because we hold

total shipments fixed, we ignore responses on the extensive margin. That said, comparisons

with recent estimates of the heavy-duty vehicle rebound effect suggest the intensive margin

response is small. Therefore, while it seems reasonable to interpret our estimates as a lower

bound for emissions reductions from mode shifting in the U.S. freight sector, the mechanism

we study here likely represents a substantial share of the overall response to higher fuel or

28Recent work by Marion and Muehlegger (2011) shows that while the pass-through rate of a diesel fuel
tax depends on market conditions, on average the rate is approximately one. We use 10.16 kg CO2 per
gallon as the carbon intensity of diesel fuel.
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carbon prices.
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B Appendix figures

Figure A1: Marginal abatement costs of a CO2 tax.
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C Appendix tables

Table A1: Observed (CFS PUM) ton miles by SCTG and mode compared with mean
predicted values, multinomial logit.

Commodity Group CFS Pred. CFS Pred. CFS Pred. CFS Pred.
Agricultural Products 38.5 38.6 28.9 27.8 16.1 17.2 0.0 0.0
Alcohol 20.6 20.6 12.9 12.8 0.0 0.0 0.0 0.0
Animal Feed 33.3 33.5 19.9 19.8 0.0 0.0 0.0 0.0
Animals 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0
Articles of Base Metal 33.8 33.9 6.1 5.9 0.0 0.0 0.0 0.0
Basic Chemicals 45.8 46.4 72.9 72.1 13.1 13.4 0.0 0.0
Coal 9.8 9.9 603.2 601.7 23.2 24.6 0.0 0.0
Fertilizers 17.8 18.0 32.0 31.7 1.5 1.5 0.0 0.0
Grain 17.5 17.8 136.8 135.4 15.3 16.4 0.0 0.0
Gravel 39.4 39.7 12.6 12.2 7.8 7.9 0.0 0.0
Logs and Other Wood in the Rough 3.2 3.2 0.3 0.3 0.0 0.0 0.0 0.0
Machinery 32.6 32.7 1.1 1.1 0.0 0.0 0.4 0.3
Metallic Ores 2.1 2.1 18.0 17.9 0.0 0.0 0.0 0.0
Milled Grain 34.3 34.5 15.1 14.8 0.0 0.0 0.0 0.0
Miscellaneous Manufactured Products 25.6 25.7 1.2 1.2 0.0 0.0 0.3 0.2
Mixed Freight 66.9 67.1 3.1 3.1 0.0 0.0 0.8 0.6
Non-Metallic Mineral Products 67.8 68.1 17.2 17.0 0.0 0.0 0.0 0.0
Other Chemical Products 36.3 36.5 8.2 8.0 0.0 0.0 0.0 0.0
Other Coal and Petroleum 47.6 47.8 26.8 26.4 9.3 9.5 0.0 0.0
Other Non-Metallic Minerals 15.0 15.1 10.9 10.8 5.4 5.4 0.0 0.0
Other Prepared Foodstuffs 126.9 127.4 68.0 67.5 0.0 0.0 0.0 0.0
Paper 21.1 21.2 3.9 3.8 0.0 0.0 0.0 0.0
Pharmaceuticals 6.6 6.6 0.0 0.0 0.0 0.0 0.1 0.1
Plastics and Rubber 54.4 54.7 43.5 43.2 0.0 0.0 0.0 0.0
Precision Instruments 3.7 3.8 0.0 0.0 0.0 0.0 0.4 0.3
Primary Base Metal 72.1 72.6 29.5 29.1 0.0 0.0 0.0 0.0
Printed Products 12.6 12.7 0.0 0.0 0.0 0.0 0.1 0.1
Pulp, Newsprint, Paper, and Paperboard 40.0 40.3 27.4 27.0 0.0 0.0 0.0 0.0
Sand 20.2 20.4 17.3 17.0 0.0 0.0 0.0 0.0
Textiles 21.3 21.3 0.8 0.7 0.0 0.0 0.0 0.0
Transportation Equipment, not elsewhere classified2.1 2.1 1.5 1.5 0.1 0.1 0.0 0.0
Vehicles 49.1 49.2 11.5 11.4 0.0 0.0 0.0 0.0
Waste and Scrap 43.5 44.3 17.5 16.6 1.7 1.7 0.0 0.0
Wood Products 52.6 52.8 27.3 27.1 0.0 0.0 0.0 0.0
Notes: Commidity Flow Survey (CFS) ton miles by SCTG and mode (in millions of ton miles).  Predicted ton-miles by SCTG and mode are 
average values across our simulated mode choices, Section 4, in millions of ton miles.

AirWaterRailTruck
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Table A2: Multinomial logit parameter estimates for grain, coal, alcohol and precision
instruments using the CFS PUM sample.

Grain Coal Alcohol Precison Inst.

Truck Truck
Diesel Price * Ton-Miles -31.976 -5.746 Diesel Price * Ton-Miles -29.188

(6.489) (2.977) (2.547)

Miles * Shipment Value 0.010 0.013 Miles * Shipment Value -0.007
(0.002) (0.022) (0.003)

Mississippi Basin -1.044 1.142 Temperature Controlled 0.308
(0.588) (1.033) (0.355)

Rail Rail/Truck

Inland Water Air
Diesel Price * Ton-Miles 0.042 -0.050 Diesel Price * Ton-Miles -372.87

(0.035) (0.017) (114.000)

Miles * Shipment Value 0.000 -0.001 Miles * Shipment Value 0.011
(0.000) (0.001) (0.003)

Mississippi Basin 2.514 1.182
(0.860) (1.135)

Observations 24817 10602 96329 40807
Notes: Multinomial logit model estimates for grain and coal shipments.  Shipment size measured in million ton-miles.  
Shipment value measure in million dollars.  Stardard errors clustered at the route-level in parentheses. 

(Base Outcome) (Base Outcome)

Grain, Coal, Alcohol and Precision Instruments Mode Choice Results
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Table A3: Observed (CFS PUM) ton miles by SCTG and mode compared with mean
predicted values, mixed logit.

Commodity Group CFS Pred. CFS Pred. CFS Pred. CFS Pred.
Agricultural Products 38.5 38.7 28.9 26.4 16.1 18.5 0.0 0.0
Alcohol 20.6 20.6 12.9 12.8 0.0 0.0 0.0 0.0
Animal Feed 33.3 33.5 19.9 19.8 0.0 0.0 0.0 0.0
Animals 1.3 1.3 0.0 0.0 0.0 0.0 0.0 0.0
Articles of Base Metal 33.8 33.9 6.1 6.0 0.0 0.0 0.0 0.0
Basic Chemicals 45.8 46.6 72.9 68.2 13.1 17.1 0.0 0.0
Coal 9.8 11.2 603.2 577.0 23.2 48.1 0.0 0.0
Fertilizers 17.8 18.1 32.0 31.5 1.5 1.7 0.0 0.0
Grain 17.5 17.9 136.8 131.5 15.3 20.1 0.0 0.0
Gravel 39.4 39.7 12.6 12.6 7.8 7.6 0.0 0.0
Logs and Other Wood in the Rough 3.2 3.2 0.3 0.3 0.0 0.0 0.0 0.0
Machinery 32.6 32.6 1.1 1.1 0.0 0.0 0.4 0.3
Metallic Ores 2.1 2.1 18.0 17.9 0.0 0.0 0.0 0.0
Milled Grain 34.3 34.5 15.1 14.8 0.0 0.0 0.0 0.0
Miscellaneous Manufactured Products 25.6 24.9 1.2 1.9 0.0 0.0 0.3 0.3
Mixed Freight 66.9 69.4 3.1 0.9 0.0 0.0 0.8 0.4
Non-Metallic Mineral Products 67.8 68.1 17.2 17.0 0.0 0.0 0.0 0.0
Other Chemical Products 36.3 36.5 8.2 8.0 0.0 0.0 0.0 0.0
Other Coal and Petroleum 47.6 47.8 26.8 24.9 9.3 10.9 0.0 0.0
Other Prepared Foodstuffs 126.9 127.3 68.0 67.6 0.0 0.0 0.0 0.0
Paper 21.1 21.2 3.9 3.8 0.0 0.0 0.0 0.0
Pharmaceuticals 6.6 6.6 0.0 0.0 0.0 0.0 0.1 0.1
Plastics and Rubber 54.4 54.7 43.5 43.1 0.0 0.0 0.0 0.0
Precision Instruments 3.7 3.8 0.0 0.0 0.0 0.0 0.4 0.3
Primary Base Metal 72.1 72.5 29.5 29.1 0.0 0.0 0.0 0.0
Printed Products 12.6 12.7 0.0 0.0 0.0 0.0 0.1 0.1
Pulp, Newsprint, Paper, and Paperboard 40.0 40.4 27.4 27.0 0.0 0.0 0.0 0.0
Sand 20.2 20.4 17.3 17.0 0.0 0.0 0.0 0.0
Textiles 21.3 21.3 0.8 0.7 0.0 0.0 0.0 0.0
Transportation Equipment, not elsewhere classified2.1 2.1 1.5 1.4 0.1 0.1 0.0 0.0
Vehicles 49.1 49.2 11.5 11.4 0.0 0.0 0.0 0.0
Waste and Scrap 43.5 44.4 17.5 15.7 1.7 2.6 0.0 0.0
Wood Products 52.6 52.8 27.3 27.1 0.0 0.0 0.0 0.0
Notes: Commidity Flow Survey (CFS) ton miles by SCTG and mode (in millions of ton miles).  Predicted ton-miles by SCTG and mode are 
average values across our simulated mode choices, Section 7, in millions of ton miles.
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