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1 Introduction

Achieving first-best consumption of common property resources is challenging in many set-

tings. Open access management of common property resources is generally expected to lead

to inefficient over-consumption, i.e. the “tragedy of the commons” (Gordon, 1954; Hardin,

1968; Smith, 1968; Brown, 1974; Stavins, 2011). While in some cases users have constructed

formal or informal institutions to more efficiently manage the commons (Acheson, 1988; Os-

trom, 1990; Kaffine, 2009; Anderson and Parker, 2013), economists have generally advocated

pricing or assignment of property rights as a remedy to over-consumption. Unfortunately, in

many or perhaps even most contexts, these first-best solutions are infeasible due to coordina-

tion costs, opposition to pricing mechanisms, or the public trust doctrine. Management can

be further complicated if users sort amongst many substitute common property resources,

altering consumption levels across the commons.

In this paper, we consider the allocation of consumption across substitute common-

property resources. Importantly, we focus on cases where first-best instruments to limit

entry and thus total consumption are unavailable, but a regulator can manage an individual

resource and thereby indirectly affect consumption across substitute resources. These policies

are important in a number of contexts ranging from fisheries to recreation and transporta-

tion. For example, a fisheries manager who cannot implement an ITQ system to manage

total fishing effort, but may influence the allocation of effort through fishermen relocation

programs. Similarly, consider a park manager who cannot limit total usage with an access

fee, but can influence visitation patterns across park sites, or a transportation planner who

cannot limit total driving with a congestion toll but can adopt policies to increase the number

of carpoolers.

We use the term “linked common-property resources” to describe substitute resources

that are rival and non-excludable with heterogenous access costs and congestion externalities.

Here, the term “linked” refers not to a physical connection, but to the fact users substitute

across resources such that the congestion level of one resource influences congestion across the
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other resources. Congestion externalities are broadly defined to include any external costs

arising from the intensity of use that affect the production or consumption costs of other

users. Surprisingly, we find common property resources may be over or under -consumed in

the decentralized equilibrium. In other words, a regulator may want to increase consumption

of some common-property resources.

To illustrate the type of problem we study here, consider the example of recreation

demand. Imagine two recreation sites, a nearby low access cost (LAC) site and a more

distant high access cost site (HAC), which are otherwise identical. Because of the difference

in access costs, the LAC site will be more heavily utilized than the HAC site. Further,

imagine users of either site impose congestion costs on other users, for instance due to

crowding. Given that users at both sites fail to account for the costs they impose on others,

one may conclude that each site is over -consumed under open-access. This view, taken

by much of literature in natural resource economics, implies a regulator should discourage

consumption of both resources.1

On the other hand, because of the difference in access costs, the LAC site is more con-

gested than the HAC site. As such, shifting users from the more congested LAC site to the

less congested HAC site could lower total congestion costs. Intuitively, equating marginal ex-

ternal congestion costs across sites would minimize total congestion.2 In this case, one would

conclude the HAC resource is under -consumed and policy makers would want to encourage

consumption.

How is it these competing viewpoints lead to such different policy recommendations? We

show the correct policy prescription depends on the extent to which entry of new users from

alternative outside options mitigates the benefits from reallocating users across resources.

For instance, in the example above, users may also choose to stay at home instead of visiting

either site. Reducing congestion could entice some who would have otherwise stayed home

1For an excellent review see Stavins (2011).
2Equating marginal costs minimizes total costs, and is analogous to the cost-effectiveness of pollution

taxes and emissions permits in environmental economics (Baumol and Oates, 1988).
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to visit one of the sites. In this case, the benefits of encouraging users to reallocate from the

more congested to the less congested site would be eroded by entry from new users. We use

the term “induced demand” to describe the entry of new users in response to lower congestion

costs. Many resource models assume these entry effects are large.3 If entry effects are large,

there is little to no congestion benefit of reallocating users across resources and both sites

are over-consumed. However, if there is little to no entry, the equimarginal principle implies

the high access cost resource is under-consumed.

Here, we propose a consistent framework for evaluating the allocation of users across

substitute common property resources with congestion, entry, and differences in access costs

in the case where the social planner cannot limit entry. We begin by developing a simple

analytical model consisting of two rival and non-excludable goods, a LAC resource and a

HAC resource. Users also have uncongestible outside alternatives, and thus can elect to not

consume either resource if congestion costs are too large. Reductions in congestion levels

may therefore lead to entry via induced demand. We compare outcomes under competition,

where users weigh access and congestion costs and independently choose which resource to

consume, against the allocations of a constrained social planner.

Under these assumptions we derive the following results analytically and graphically.

First, because higher access costs imply the HAC resource is less congested in the decentral-

ized equilibrium, in the case of no induced demand the HAC resource is under -consumed.

This is because there is a net “congestion relief” benefit if some users are shifted from the

LAC to the less congested HAC resource. Second, in the case of full induced demand, the

HAC resource is over -consumed as new entrants negate any congestion relief benefits for

the LAC resource. Third, for intermediate levels of induced demand, the decentralized equi-

librium may be identical to the constrained social optimum. Finally, we derive a simple

expression that can be used to test whether HAC resources are over or under-consumed

for a given level of induced demand depending on the equilibrium number of users and the

3For instance, Gordon (1954) assumes perfectly elastic entry from an outside alternative.
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marginal congestion cost of each resource. The greater the difference in equilibrium usage

levels, the more likely it is the HAC resource is under-consumed, providing a rationale for a

regulator to increase HAC use.

We illustrate the implications of our analytical results with a simple numerical applica-

tion. We adapt our model to a California fishery with thirteen distinct patches. The patches

differ by growth rate and carrying capacity, factors that affect productivity. The distance

between each patch and the nearest harbor creates differences in access costs across patches.

Consistent with our analytical results, we show that for patches with higher access costs,

the optimal policy would often increase consumption. Decreasing the magnitude of induced

demand increases the likelihood high access cost patches are under-consumed.

Our analysis contributes to several literatures. The model is similar in spirit to the re-

cent work by Fischer and Laxminarayan (2010) which considers price versus quantity instru-

ments for managing common-property resources under uncertainty. In particular, they focus

on cases where some resources are privately managed and some are open-access. Costello,

Quérou, and Tomini (2015) similarly examine a partial enclosure of the commons, with an

emphasis on spatial externalities and resource heterogeneity. In contrast to these papers, we

focus on partial incentive-based management as opposed to partial privatization or enclosure.

Further, we model differences in access costs, which drive differences in consumption and

congestion levels across resources. We also incorporate induced demand effects, which we

show to be crucial for calculating the social costs from changes in consumption. Our analyt-

ical model is most similar to Verhoef, Nijkamp, and Rietveld (1996) who study second-best

highway pricing. However, by incorporating differences in access costs, we explicitly explain

differences in congestion across substitute resources.4 Further, we explore implications of a

more general model with multiple common property resources.

The linked common-property problem appears to have implications in a broad and diverse

set of markets. For example, grazing on public lands where both low-elevation (LAC) and

4Given that access costs across resources differ, consumption and marginal external congestion costs will
vary across resources even in the special case where congestion cost functions are identical.
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high-elevation (HAC) pastures exists, or in fisheries, where the proximity to shore or the

harvest technology used create differences in access costs and congestion. In recreational

demand, users may weigh congestion and travel costs when choosing between near (LAC)

and distant (HAC) locations. In each of these examples, a regulator may pursue policies to

shift some consumers from the LAC good to the HAC good. However if induced demand

effects are large, the reduction in congestion may be eroded by new entrants. We explore

potential applications of our model in more detail following our analytical and simulation

results.

2 Analytical model of linked common-property resources

We define a “linked common-property resource” as a good with the following characteristics.

Consumption is rival and non-excludable, such that congestion arising from the intensity of

use raises a user’s cost of consumption and serves to ration demand. There exists one or

more substitute goods with similar characteristics but different access costs. As noted in the

introduction, resources may be spatially distinct where, for example, access costs represent

different travel costs depending on distance. Changes in the level of consumption of one of

these substitute goods affects congestion, and in turn consumption and congestion levels of

the other goods in equilibrium, forming a link between the costs of consuming each good. A

reduction in the level of congestion may entice users who had previously consumed none of

these goods to enter the market via an “induced demand” effect. Finally, we assume policy

makers cannot limit total consumption but can influence the allocation across substitute

resources. This assumption reflects the political realities in many common-property markets

where there may be public resistance to “closing the commons.”5

To illustrate the properties of these goods, we begin by building a simple analytical model

5Public opposition to access fees, in particular, is quite common. Recent examples include user fees
for highways (McFadden, 2016; Whaley, 2015), beaches (Hewitt, 2015; Meagher, 2012; Moore, 2012) and
recreation on Federal public lands (Burns, 2004).
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that highlights the essential features of the linked common property resource problem.6 More

formally, we consider N̄ total cost-minimizing users. Users make discrete choices, selecting

between a HAC good and a LAC good, where nh is the number of HAC users and nl

is the number of LAC users. Because both goods are congestible, users may also choose

to not consumer either good, and instead pursue some uncongestible alternative outside

option, where na is the number of outside option users. The outside option captures users’

next best alternative to consuming the common property goods. For example, an alternate

leisure activity that offers an equivalent recreation benefit. Everyone must be allocated,

such that N̄ − nh − nl − na = 0. Finally, because users of the common-property resources

and alternative option receive the same benefit from consumption, cost minimization implies

utility maximization.

Users who choose the LAC good face only the congestion cost of use, given by Tl(nl).

Users who choose the HAC good face both a congestion cost of use Th(nh) as well as an

access cost τ(nh).
7 Users who choose the outside option face heterogenous costs given by

A(na). The function A(na) is an ordering of users from lowest to highest outside option

costs. Because the alternative outside option is uncongestible, each user pays her cost (i.e

there are no inframarginal users). Thus, the outside option user with the lowest cost pays

A(0) and the highest cost user faces a cost A(na). As a result, changes in na generate no

rents for users of the alternative option.8 Similarly, access costs τ(nh) may also vary by user.

Ordering subsequent users based on their access costs generates the function τ(nh), whereby

each user pays their individual cost. Finally, congestion cost functions are assumed to be

increasing and strictly convex.

6Section 4.1 develops a model variant that recasts our model in a production framework where congestion
affects users’ productivity instead of costs.

7If both goods are costly to access, this can represent the difference in access costs between the HAC and
LAC goods. Further, the resources could be spatially distinct areas indexed by i as in our application. Here,
we focus on two resources and drop the i subscript for ease of notation.

8Because the HAC resource is congestible, HAC users with low access costs do receive some rents, which
are accounted for in our analysis below.
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2.1 Decentralized equilibrium

We begin by analyzing a decentralized equilibrium, where users minimize costs by sorting

across their three options (LAC, HAC, alternative option).9 In the decentralized equilibrium,

no user can improve their welfare by choosing another option, i.e. users achieve a Nash

Equilibrium, such that:

Tl(nl)− Th(nh) = τ(nh) (1)

Tl(nl) = A(na)

N̄ = nh+nl + na.

The first condition says that the marginal user equates the private benefit of using the

HAC good (congestion savings) with the private cost of the HAC good (the access cost).

The second condition describes entry from the outside option. It requires the marginal user

of the LAC good be indifferent between the congestion cost in the LAC and the cost of the

outside option. In other words, users will consume the LAC good until the congestion cost

equals the cost of the next best alternative.

2.2 Constrained social planner

Next, we consider the allocation of users by a cost-minimizing social planner. We use the term

“constrained social planner” to denote the fact the planner cannot limit total consumption

of the resources. The constrained social planner chooses nh, nl, na to minimize total costs,

subject to the constraints that all users must be allocated, and the fact that congestion relief

for the LAC good will induce users from the outside option until congestion costs in the LAC

9Given our interest in substitution and entry, we focus on interior solutions. However, corner solutions
where the set of users of a particular resource is empty are possible. For instance, if access costs τ are
prohibitively large, we would find no users of the HAC resource.
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are equal to the cost of the outside option:

min
nh,nl,na

Th(nh)nh +

∫ nh

0

τ(n)dn+ Tl(nl)nl +

∫ na

0

A(n)dn (2)

s.t. N̄ − nh − nl − na = 0

Tl(nl) = A(na)

with the corresponding Lagrangian:

Th(nh)nh +

∫ nh

0

τ(n)dn+ Tl(nl)nl +

∫ na

0

A(n)dn (3)

+λ1(N̄ − nh − nl − na) + λ2(Tl(nl)− A(na))

and first-order conditions:

Th + nhT
′
h + τ − λ1 = 0 (4)

Tl + nlT
′
l − λ1 + λ2T

′
l = 0 (5)

A− λ1 − λ2A
′ = 0, (6)

which define the constrained socially optimal allocation of users nh, nl, and na across the

three options.10,11 The arguments in (4)-(6) are suppressed for simplicity.

With some iterative substitution, the first FOC can be written as:

Tl − Th = τ + nhT
′
h − nlT ′l

A′

A′ + T ′l
(7)

which states the marginal private benefit of an additional HAC user equals the marginal

10This allocation satisfies the second-order sufficient conditions for a local constrained minimization.
11For the purposes of comparison, the FOC’s for the first-best (unconstrained) social planner’s problem can

be written as Tl +nlT
′
l = Th +nhT

′
h + τ = A, which yields the familiar result that the first-best consumption

of each resource should reflect the marginal external costs, here nlT
′
l and nhT

′
h. The key difference in our

setting comes from the fact the constrained social planner is unable to restrict entry, and thus must be
mindful of induced demand when allocating users to the HAC resource.
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private cost plus the marginal net external cost.12 Alternatively, Equation 7 can be written

as:

Tl + nlT
′
l

A′

A′ + T ′l
= Th + τ + nhT

′
h (8)

which makes it clear that the constrained social optimum equilibrates marginal social costs

across the resources.

The term A′

A′+T ′l
represents the effect of induced demand on the marginal external cost

for the LAC good. If A′= ∞, this represents a case of no induced demand (vertical supply

curve for users of the outside option), and in the limit A′

A′+T ′l
= 1. Similarly, if A′= 0, this

represents a case of full induced demand (horizontal supply curve for users of the outside

option), and A′

A′+T ′l
= 0. To simplify exposition, let α = 1 − A′

A′+T ′l
where α = 0 represents

no induced demand and α = 1 represents full induced demand. In addition to simplifying

exposition, the induced demand term α has an intuitive economic interpretation. For each

additional user allocated to the HAC resource, α users enter the LAC from the alternative

outside option. With this notation the above constrained social planner’s FOC can then be

written as:

Tl − Th = τ + nhT
′
h − nlT ′l (1− α) (9)

Ultimately we are interested in comparing the distribution of users under the decentral-

ized equilibrium with that under the constrained social planner. Comparing the decentralized

equilibrium equation Th−Tl = τ with the constrained social planner’s condition in Equation

9, we see the last two terms of (9) drive a wedge between the decentralized equilibrium and

the constrained social planner’s solution. The first term reflects the costs an additional HAC

user imposes on all other HAC users by increasing congestion. The second term reflects the

benefits an additional HAC user creates for the LAC users by relieving congestion, taking

12Alternatively, one could frame the constrained social planner’s problem in terms of the costs and benefits
of resource consumption where demand, D(nl + nh), takes the place of the outside option. The constrained
social planner maximizes total benefits of consumption net of congestion and access costs subject to the
constraint the marginal user’s benefits of consumption equal her costs. In that case, the optimal allocation
of users is simply Tl − Th = τ +nhT

′
h−nlT

′
l

D′
N

D′
N−T ′

l
. While this framing is equivalent to our setup, we adopt

the outside option framework in order to more clearly emphasize the important role of entry.
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into account induced demand. Together, the terms are the marginal net external costs of

increasing HAC use:

nhT
′
h − nlT ′l (1− α) (10)

Because users do not internalize either the external congestion costs or benefits, then intu-

itively the question of whether or not the constrained social planner would want to increase

or decrease HAC good use hinges on whether the external costs to HAC users are larger or

smaller than the external benefits to LAC users.

3 Analysis and results

We now formally compare the allocation of users in the decentralized equilibrium with the

allocation selected by the constrained social planner. We focus on the role of access costs

and entry of new users via induced demand in determining the efficiency of the decentralized

allocation.

3.1 Comparison of decentralized equilibrium with constrained so-

cial planner

We begin by constructing a simple example where the total number of users of the two goods

is fixed and access costs are equal. Then, we investigate more realistic cases where access

costs differ across resources and entry occurs from the outside option via induced demand.

Throughout, we assume the congestion cost functions for each good are identical functions

of the number of users, such that if nh = nl, then Th(nh) = Tl(nl).
13 While the symmetry

assumption simplifies the proofs of Propositions 1, 2 and 4 below, the intuition developed

here also applies when functions are similar but not symmetric.

Proposition 1. If access costs are equal, such that τ(nh) = 0 ∀nh and the number of

13In our numerical example, the number of users is readily extended to the amount of fishing effort.
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users of the two common-property resources is fixed, such that α = 0, then the decentralized

equilibrium is equivalent to the allocation of the constrained social planner.

Proof. If τ(nh) = 0, the decentralized equilibrium requires Th = Tl. For symmetric cost

functions this means nh = nl, and therefore T ′h = T ′l . Since α = 0, the marginal net external

costs are given by nhT
′
h − nlT ′l , which equals zero. Finally, comparing Equation 1 against

Equation 9, the allocation of users in the decentralized equilibrium will equal the constrained

social optimum when the marginal net external costs are equal to zero.

The intuition is that if access costs are the same, congestion costs and thus the numbers

of users are equilibrated. Therefore, the congestion cost of an additional user of the HAC

good exactly balances the congestion relief benefit for the LAC good. As such, there is no

need to increase or decrease HAC use relative to the decentralized equilibrium allocation.

Moreover, the decentralized allocation is also first-best, as it is equivalent to that chosen

by an (unconstrained) social planner. While this is a useful starting point for analysis, it

assumes away any difference in access costs. Including differences in access costs will drive

a wedge between congestion costs for the two goods, which leads to our second proposition.

Proposition 2. If access costs differ such that τ(nh) > 0 and if there is no entry via induced

demand, α = 0, then the HAC good is under-consumed in the decentralized equilibrium.

Proof. The decentralized equilibrium requires Th + τ = Tl, which by symmetry requires that

nh < nl, and therefore T ′h < T ′l . If α = 0, the marginal net external costs are nhT
′
h−nlT ′l < 0.

Thus, the marginal external benefits to LAC users exceed the marginal external costs to HAC

good users. Finally, comparing Equation 1 against Equation 9, the constrained social planner

would increase the number of HAC users relative to the decentralized equilibrium.

In this case, potential users of the HAC good do not internalize the fact that the conges-

tion relief they will provide to the LAC users is larger than the congestion cost they would

impose on existing HAC users, leading to too few HAC users in the decentralized equilibrium.

Policies that move users from the more congested LAC good to the less congested HAC good
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would increase welfare, assuming the number of resource users is fixed (no induced demand

from the outside option).14

The assumption that the number of resource users is fixed is one extreme case. At the

other extreme, induced demand may be near 1; that is, for every user leaving the LAC good,

another user will ultimately replace her.15 This leads to our third proposition, considering

the efficiency of HAC use under full induced demand.

Proposition 3. If α = 1 such that there is full induced demand, then the HAC good is

over-consumed in the decentralized equilibrium.

Proof. If α = 1, the marginal net external costs are simply nhT
′
h > 0. Comparing 1 against

9, the constrained social planner would decrease the number of HAC users relative to the

decentralized equilibrium.

The intuition for this proof is that with full induced demand, additional HAC users

provide no congestion relief for the LAC good. Furthermore, HAC users do not internalize

the congestion cost they impose on other HAC users, leading to too many HAC users in the

decentralized equilibrium. In this case, policies to increase HAC use would reduce welfare,

as the HAC good is over-consumed, despite the lower level of congestion relative to the LAC

good. Note that Proposition 3 holds even when congestion cost functions are not symmetric

as full induced demand always increases HAC costs without reducing costs for LAC users.

In many cases, induced demand likely falls somewhere between the extremes of no induced

demand (α = 0) and full induced demand (α = 1).16 This leads to our fourth proposition.

14Here we focus on the effects that come from moving the marginal LAC user to the HAC resource. We
note that moving the marginal user from the LAC to HAC resource imposes a real resource cost τ on the
user. However, given the decentralized equilibrium, that user is exactly compensated by the difference in
congestion cost (Tl−Th). In Section 3.3, we explicitly consider how a policy could achieve such a reallocation.

15This is a common assumption in resource models that consider open access issues (e.g. Kaffine (2009)
and Costello, Quérou, and Tomini (2015)).

16Section 3.2 provides graphical intuition for the relationship between the alternative option cost function
and induced demand α. Thus, we can think of changes in α as arising from changes in the outside option
cost function (e.g. steeper or flatter slope).
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Proposition 4. There exists a critical level of induced demand 0 < α? < 1 such that the

decentralized equilibrium is equivalent to the constrained social optimum.

Proof. From Equation 9, marginal net external costs will be zero when
nhT

′
h

nlT
′
l

= (1− α?) for

some α?. By the decentralized equilibrium condition in Equation 1, nhT
′
h < nlT

′
l , and thus

(1− α?) and therefore α? is bounded between zero and one.

At the critical level of induced demand α?, the marginal external costs imposed on HAC

users in the decentralized equilibrium are exactly equal to the marginal external benefits

provided to LAC users. Thus, at this critical level of induced demand, the decentralized

equilibrium is equivalent to the constrained social planner’s allocation despite the fact that

users fail to internalize their congestion externalities in the decentralized equilibrium.17 Two

corollaries follow from Proposition 4.

Corollary 1. For levels of induced demand below the critical level α < α?, the HAC good

is under-consumed. For levels of induced demand above the critical level α > α?, the HAC

good is over-consumed.

Proof. The proof follows intuitively from Proposition 4. If α < α?, then marginal external

costs are less than net marginal external benefits (nhT
′
h−nlT ′l (1−α) < 0) and the HAC good

is under-consumed. If α > α?, then net marginal external costs are nhT
′
h − nlT ′l (1− α) > 0

and the HAC good is over-consumed.

Corollary 1 provides a useful criterion for determining whether the HAC resource is over

or under-consumed for intermediate values of induced demand 0 < α < 1. If the equilibrium

usage levels (nh and nl) and marginal congestion costs (T ′h and T ′l ) can be determined,

one can simply compare the critical level of induced demand α? with the actual level of

17Recall that we have assumed that changes in the number of outside users do not generate any rents in
the outside option. This strikes us as a reasonable assumption in many settings. However, one may wonder
how our results might change in other contexts if rents are generated in the outside option. For the extreme
cases of induced demand, Propositions 2 and 3 hold exactly. However, for intermediate levels of induced
demand, as in Proposition 4, the additional rents in the outside option will increase the likelihood that the
HAC good is under consumed for a given α, effectively increasing α?.
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induced demand α. Note that because τ influences the equilibrium usage levels (nh and

nl), determining α? does not require knowledge of τ , which may be difficult to measure in

practice. However, this is not to say τ has no impact on the critical level of induced demand,

as the following corollary demonstrates.

Corollary 2. Let τ ? be the level of access cost at the decentralized equilibrium. The critical

level of induced demand is increasing in access cost τ , ∂α?

∂τ?
> 0.

Proof. From the decentralized equilibrium condition 1, ∂nl
∂τ

> 0 and ∂nh
∂τ

< 0. From Propo-

sition 4, the critical level α? satisfies nhT
′
h − (1 − α?)nlT

′
l = 0. By the implicit function

theorem, ∂α?

∂τ?
= −

∂nh
∂τ?

(T ′h+nhT
′′
h )−(1−α)

∂nl
∂τ?

(T ′l+nlT
′′
l )

nlT
′
l

> 0

The implication of Corollary 2 is that the greater the difference in access costs between

the different resources, the more likely it is the HAC good is under-consumed for a given

level of induced demand. In other words, more induced demand is required before the costs

of entry outweigh the benefits of reallocating users from the high congestion LAC good to

the low congestion HAC good. By contrast, if the difference in access costs is small, then

even a small amount of induced demand may outweigh the benefits of reallocating users.

In the previous results, the only externality created by decentralized consumption deci-

sions arose from changes in congestion levels. In many contexts however, users may generate

additional use-externalities. For example, loss of existence value from overconsumption of

fisheries or forests, or air pollution from vehicles. If E represents an additional external

cost-per-user, then E × (nh + nl) represents the additional external costs. In this case, it is

easy to show that:

Tl − Th = τ + nhT
′
h − nlT ′l (1− α) + αE (11)

Because the total number of users is increasing in HAC use for any positive α, the critical

level of induced demand identified in Proposition 4 will decrease (increase) as external user

costs (benefits) increase.18

18Specifically, α? = nlT
′
l−nhT ′

h

nlT ′
l +E such that α? is decreasing in the external cost per user E.
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3.2 Graphical illustration of the analytical model

Much of the intuition behind our analytical results can be obtained from the graphical

illustration of our model in Figure 1. As before, if congestion costs are symmetric, then

the presence of access costs τ > 0 means the LAC is more heavily consumed. Therefore,

the marginal private benefit (MPB) of HAC consumption is the reduction in congestion

cost relative to the more congested LAC resource, T (nl) − T (nh), as shown in Panel a.

In the decentralized equilibrium, the marginal consumer sets T (nl) − T (nh) = τ resulting

in consumption level nh,D.E.. Because the constrained social planner considers the external

costs imposed on other users, the optimal level of consumption may be larger or smaller than

nh,D.E.. The HAC resource is over-consumed in equilibrium if marginal social cost (MSC)

is greater than marginal private cost (MPC) and n∗h,1 < nh,D.E.. The HAC resource is

under-consumed in equilibrium if n∗h,2 > nh,D.E.. Intuitively, whether MSC is higher or lower

than MPC depends on whether congestion relief in the LAC resource outweighs additional

congestion from increased consumption of the HAC resource.

Figure 1 Panel b, illustrates the relationships between the alternative option, the LAC

good and induced demand. Congestion costs for the LAC good and costs for the alternative

option are shown as T (nl) and A(na), respectively. The total resource supply is the horizontal

sum of T (nl) and A(na).
19 Since all users are allocated, the sum of outside option and LAC

consumption is D1 = N̄ − nh with corresponding cost P1 and consumption levels nl,1 and

na,1. Shifting εh consumers to the HAC resource lowers costs from P1 to P2 and results in

consumption levels nl,2 and na,2. Increasing HAC consumption lowers LAC congestion and

reduces the number of consumers who choose the alternative outside option. Here, there is

induced demand since nl,1 − nl,2 < εh. Moreover, note that if A(na) is perfectly elastic, εh

leave the alternative option and there is full induced demand. However If A(na) is perfectly

inelastic, εh consumers to leave the LAC resource and induced demand is zero.

19Note that the slope of T (nl + na) defines the induced demand effect. For example, in the case where
T (cl) and A(ca) are simple linear functions, it is straightforward to show that the slope of T (nl + na) is
T ′l

A′

A′+T ′
l

= T ′l (1− α).
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3.3 Policy interventions

Here, we consider policy interventions in the setting where price and quantity instruments

to limit total consumption are unavailable. Recall from Section 3.1, a regulator may want to

increase consumption of some common property resources depending on the relative levels of

congestion and induced demand effects. These policy interventions are readily incorporated

into the framework developed above.

Consider a regulator who enacts a policy that provides an incentive θ to encourage HAC

use, such that the decentralized equilibrium in Equation 1 becomes Tl = Th + τ − θ. This

incentive could represent a variety of potential pecuniary or non-pecuniary policies that

influence how users choose amongst resources. For example, providing preferential parking

for carpoolers, improving the road to more distant campsites or subsidizing fuel cost for

users of more distant fishing grounds. Users will respond to these incentives by reallocating

consumption across the HAC and LAC goods and the alternative option. The incentive θ

decentralizes the constrained social optimum since like the constrained social planner, the

regulator can only influence the allocation of users across resources and cannot limit total

consumption.

Taking the total derivatives of the decentralized equilibrium conditions and substituting,

we can express the effect of a change in the incentive θ on consumption of each good and

the alternative option as:

dnh
dθ

=
1

T ′h + τ ′ + T ′l (1− α)
(12)

dnl
dθ

= − (1− α)

T ′h + τ ′ + T ′l (1− α)
(13)

dna
dθ

= − α

T ′h + τ ′ + T ′l (1− α)
. (14)

Note that if there is no induced demand (α = 0), dnh
dθ

= −dnl
dθ

such that increased HAC

consumption leads to an equal decrease in LAC consumption. However, if there is full

induced demand (α = 1), increasing θ has no effect on LAC consumption as every new
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HAC user is replaced by a new entrant from the alternative option, dnh
dθ

= −dna
dθ

. Further,

neither the above nor the derivations that follow require Th(nh) = Tl(nl) when nh = nl, i.e.

symmetry of the congestion cost functions is not necessary.

Faced with the problem of how best to allocate users across resources, the regulator can

consider the optimal θ that minimizes total costs (C).20 Differentiating (2) with respect to

θ yields:

dC

dθ
= (Th + nhT

′
h)
dnh
dθ

+ τ
dnh
dθ

+ (Tl + nlT
′
l )
dnl
dθ

+ A
dna
dθ

. (15)

Substituting (12), (13) and (14) from above into (15) we obtain an expression for the optimal

θ∗ that decentralizes the constrained social optimum:

θ∗ = −[nhT
′
h − nlT ′l (1− α)] (16)

Intuitively, θ∗ can be thought of as equivalent to the subsidy (tax) on HAC use that

achieves the constrained social optimum, if such a pricing instrument were available. Thus,

it depends on congestion costs in the HAC and LAC goods, accounting for the effects of

induced demand α.21 Notice the term in brackets on righthand side of Equation 16 is the

marginal net external cost of congestion, Equation 10, as discussed in Propositions 1 through

4.

Further examination of Equation 16 yields several interesting comparative statics. Specif-

ically, ∂θ∗

∂α
< 0, ∂θ∗

∂T ′h
< 0 and ∂θ∗

∂T ′l
> 0. The first condition comes from the fact that greater

induced demand leads to less congestion relief when LAC users are shifted to the HAC re-

source. The second and third conditions reflect how the steepness of the congestion cost

functions affect the marginal net external costs. For instance, a relatively steeper LAC con-

gestion cost function increases the net benefits of reallocating users from the LAC to the

HAC resource, implying a larger optimal incentive. In general, Equation 16 describes the

20For simplicity, we assume the cost of providing the incentive θ is exactly equal to the direct benefit to
HAC users, such that they disappear from the total cost expression.

21For comparison, an unconstrained regulator could decentralize the first-best with θ∗FB = {−nlTl,−nhTh}
for the LAC and HAC resources, i.e. the familiar Pigouvian prescription.
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optimal incentive or disincentive for HAC good consumption when the regulator is unable

to limit total consumption.

4 A model variant and application

The analysis in the preceding sections shows linked common property resources can be

over or under-consumed depending on congestion costs and entry of new users from the

outside option. Furthermore, even in the case where total consumption cannot be limited, a

regulator can improve upon the decentralized allocation by offering an appropriate incentive

that changes the allocation of users across resources. While the preceding analysis illustrates

the economic forces at work in the linked common property setting, here we show how the

model in Section 2 can be adapted to more complex settings. To do this we introduce a

“model variant” tailored to the features of a specific resource problem. In particular, we

consider the allocation of fishing effort across a fishery that consists of many different fishery

resources or “patches.”

While economists have long argued for first-best price or quantity-based instruments to

remedy over-exploitation in fisheries, these approaches remain relatively rare. For example,

Costello, Gaines, and Lynham (2008) study 11,135 commercial fisheries and find only 121

use some sort of individual transferable quota (ITQ) to limit total consumption. In light of

this, regulators may be able to improve welfare by reallocating fishing effort across patches.

The fishery example has much in common with the analytical model, as well as some

important differences. In terms of similarities, fishermen are making discrete choices regard-

ing the allocation of effort (use) across patches and these choices are influenced by the total

amount of effort allocated to individual patches (i.e. they are common property resources).

Fishermen also have outside options, namely non-fishing wages, such that fishermen can

enter or exit the fishery. The patches also vary in distance from the nearest harbor, which

creates differences in access costs.22 However, there are some important differences that need

22For example, increased fuel or labor costs spent traveling to more distant patches. If fishermen consider
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to be considered when adapting our model to this specific context. First, in the analytical

model, users face a common benefit across their choices and thus decide which choice mini-

mizes their costs. Here, fishermen face a common cost (a day’s effort), but the returns from

that effort (fishing earnings or wage earnings) vary across choices. Second, the fishery in

our application below contains thirteen distinct patches rather than two as in our analytical

model, as shown in Figure 2.

4.1 Model variant - fisheries

To see more clearly how our model can be adapted to the fishery example, first consider

the production relationship. Fishermen create production externalities for other users as

productivity, or catch per unit of effort, depends on the total fish stock. Intuitively, when one

fisherman increases fishing effort, this decreases the stock and lowers productivity for other

fishermen.23 Thus, the returns from allocating effort in any particular patch is downward-

sloping in total effort in that patch. The magnitude of this effect depends on oceanographic

and biological parameters such as the growth rate and carrying capacity, which vary across

patches. Depending on the returns from fishing effort, fishermen may also choose to allocate

their effort to the non-fishing sector (outside option), where wages may vary across fishermen.

To draw clear parallels with our previous model, we begin with a fishery consisting of only

two patches and an outside option whereby a fixed amount of effort Ē is applied across a HAC

resource, a LAC resource and an outside option. For example, the LAC resource and HAC

resource could represent near and distant fishing patches. In this context, the outside option

can be thought of as non-fishing wages. All effort is allocated such that Ē − Eh − El − Ew,

where Eh, El and Ew are effort applied to the HAC, LAC and outside option. Adopting

standard fisheries notation, total earnings in patch i equal pHi = pqXi(Ei)Ei, where Hi is

harvest in patch i, q is the catchability coefficient (subsequently normalized to one), Xi(Ei)

these access costs in deciding where to fish, we expect closer locations to be more heavily used and therefore
less productive, all else equal.

23Fishing “effort” refers to the intensity of fishing activity. For instance, the number of fishermen in a
patch, the number of boat days spent fishing or the level of investment in equipment.

19



is the population or stock with X ′i < 0, and p is the (constant) price of harvest. As before,

users of the HAC resource face heterogenous access costs τ(Eh), such that the return on

effort in the HAC resource is given by pXh(Eh) − τ(Eh) while the return on effort in the

LAC resource is given by pXl(El). Finally, users of the alternative outside option earn a

return from heterogenous wages W (Ew) with W ′ ≤ 0.

In the decentralized equilibrium, fishermen compare earnings from a day’s effort across

patches and the outside option. Users sort across the three options until no user can improve

her earnings by allocating their effort to another option, such that:

pXh(Eh)−pXl(El) = τ(Eh) (17)

pXl(El) = W (Ew)

Ē = Eh + El + Ew.

Next, consider the allocation of effort by a constrained social planner who cannot limit

total entry into the fishery from the outside (wage) option. The constrained social planner

chooses Eh, El and Ew to maximize total earnings, subject to the constraints that all effort is

allocated and that earnings in the low access cost resource equals the wage in the non-fishing

outside option, i.e. due to entry. The Lagrangian for this problem is given by:

pXl(El)El + pXh(Eh)Eh −
∫ Eh

0

τ(E)dE +

∫ Ew

0

W (E)dE (18)

+λ1(Ē − Eh − El − Ew) + λ2(pXl(El)−W (Ew))

and first-order conditions:

pXh + pX ′hEh − τ − λ1 = 0 (19)

pXl + pX ′lEl − λ1 + λ2pX
′
l = 0 (20)

W − λ1 − λ2W
′ = 0, (21)
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where the arguments in (19)-(21) are suppressed for simplicity.24 With some iterative sub-

stitution, the first FOC can be written as:

pXh(Eh)− pXl(El) = τ − pX ′h(Eh)Eh + pX ′l(El)El
W ′(Ew)

W ′(Ew) + pX ′l(El)
(22)

Equation 22 is the production analog to Equation 7 in Section 2. Note that positive access

costs imply productivity and earnings are relatively higher in the HAC resource compared

with the LAC resource. Increasing HAC consumption lowers productivity in the HAC by

pX ′h(Eh)Eh but increases earnings in the LAC resource by pX ′l(El)El
W ′(Ew)

W ′(Ew)+pX′l(El)
. As

before, the final term captures entry from the non-fishing outside option such that the

total effect on fishing earnings depends on the level of induced demand. In this production

framework, the earnings and externality terms are the negative analogs of the congestion

cost relationships in Section 2. Otherwise, the insights developed in the preceding sections

are identical in a production setting.

A final issue in adapting our model relates to the fact the fishery application consists

of many distinct patches. In Appendix A, the two resource model above is extended to

multiple resources in order to illustrate how to accommodate a multi-patch fishery. From an

examination of the first-order conditions, it turns out that the intuitions developed above

also apply to the case of multiple resources; however, analytical solutions are intractable due

to the complicated changes in productivity that arise from re-sorting effort across resources

and entry from the outside option. Given this complexity, we turn to numerical methods to

examine the effects of policies to reallocate effort across the fishery.

4.2 Numerical example: Southern Californian fishery

We apply the model variant in the previous section to a California fishery consisting of

thirteen distinct patches. The patches, indexed by j, vary by biological factors that affect

24Similar to footnote 11, the FOC’s of the first-best (unconstrained) solution for this model variant can
be written as pXl + pX ′lEl = pXh + pX ′hEh − τ = W .
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productivity and by distance from the nearest port (access cost τj). We consider how policies,

such as those in Section 3.3, can improve upon the decentralized equilibrium. The term θi

corresponds to the incentives considered in Section 3.3 for a particular patch i, whereby

a regulator can influence the allocation of effort across resources as a means of improving

total earnings. Specifically, we consider cases where θi 6= 0 for some patch i, but where

θj = 0 ∀j 6= i. In other words, effort in one particular patch receives a subsidy while

all other patches are unsubsidized (though earnings in other patches may be affected via

reallocation of effort).25

From the decentralized equilibrium conditions (17) and given θi 6= 0 for patch i, effort

enters each patch and will be distributed across resources such that no user of patch j could

improve her earnings by substituting to any other patch or by choosing the outside (wage)

option such that:

pXi(Ei)−pXj(Ej) = (τi − θi)− τj ∀j 6= i, (23)

pXj(Ej)− τj = W (Ew) ∀j 6= i,

Ē =
∑
j

Ej + Ew,

or noting that θj = 0 ∀j 6= i, more simply:

pXj(Ej)−W (Ew)− (τj − θj) = 0 ∀j. (24)

For a given incentive θi applied to patch i, one can then determine total earnings, given by

the sum of returns to fishing across all patches plus wages earned in the non-fishing outside

option. The optimal θi maximizes total earnings and can be positive or negative depending

on whether the regulator wishes to encourage or discourage effort in patch i.

25While we focus on the constrained social optimum for a single patch, the model can readily be solved for
the case where the regulator instead jointly incentivizes several resources. While such cases do not provide
much additional insight beyond what is presented here, of course the more instruments available to the
regulator, the closer the constrained social optimum is to first-best.
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We adopt functional forms and parameterize the model above with values from Costello,

Quérou, and Tomini (2015). While Costello, Quérou, and Tomini (2015) allow for between-

patch dispersal, to be consistent with the analytical model, we assume zero between-patch

dispersal. We assume logistic growth, such that the steady-state fish stock in patch j, Xj

depends on carrying capacity Kj, the intrinsic growth rate rj and total fishing effort Ej

according to: Xj(Ej) = Kj(1− Ej
rj

). Access costs τj vary linearly with the distance between

the patch and the nearest harbor, Santa Barbara. We model the outside option as follows.

Wages are assumed to be linearly downward sloping in Ew such that W (Ew) = w0 − a1Ew.

Denoting total fishing effort Ef as the sum of fishing effort across all patches (Ef =
∑

j Ej),

then W (Ew) = w0 − a1(Ē − Ef ) = w0 + w1Ef , yielding an upward sloping wage curve in

terms of total fishing effort.26 Substituting these functional forms and parameterizations

into Equation 24 yields the following equilibrium equation as a function of the incentive θi,

which we take to our numerical simulation:

pKj(1−
Ej
rj

)− (w0 + w1Ef )− (τj − θj) = 0 ∀j. (25)

The numerical algorithm is as follows: For a given patch i, the optimal θ∗i that maximizes

total earnings is calculated. This procedure is repeated for a given patch but with different

levels of induced demand via varying the slope of the wage curve, w1. We then move on to

the next patch and repeat the above procedures for determining θ∗i in new patch i for varying

levels of induced demand. Figure 3 shows optimal policies θ∗i across the thirteen patches as

a function of induced demand. Darker shaded areas indicate cases where the optimal policy

is to discourage effort in a particular patch, while lighter shaded areas indicate cases where

effort should be encouraged in that patch. The patches are sorted by access cost from low

to high along the y-axis. Consistent with our analytical model, the optimal policy tends

26The intuition is straightforward - fishermen with poor outside options (low wages) will enter the fishery
first, with increasingly higher returns from fishing required to coax higher wage fishermen out of their outside
option. A flat slope parameter (w1) indicates a flat wage profile, while a steep slope parameter implies greater
heterogeneity in outside options for fishermen. Thus, increasing the slope of the wage curve w1 will effectively
decrease induced demand/entry.
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to encourage effort in high access cost patches and to discourage effort in low access cost

patches. Similarly, encouraging effort in a particular patch is more likely to increase total

earnings when induced demand is low relative to when induced demand effects are large.

Based on our parameterization, the regulator would want to increase effort in the two most

distant patches, twelve and thirteen, for moderate levels of induced demand.

Our application has two notable exceptions to the trends above. In our example, patches

six and seven are always over-consumed (the darkest lines in Figure 3). Both patches have

high carrying capacity (K) and growth (r) parameters, but near-average access costs (see

Figure 2). Intuitively, these are very high productivity patches and most likely to have

relatively high consumption levels and congestion externalities. Nonetheless, the optimal

policy in these patches does respond to entry concerns, as effort is discouraged less for lower

levels of induced demand. More formally, we investigate the relationships between optimal

fishery policies and patch characteristics by regressing the values in Figure 3 on growth rate,

carrying capacity, access costs and the slope of the wage curve. Patches are more likely

over-consumed (should discourage effort) when growth rate, carrying capacity and induced

demand are large. They are more likely under-consumed (should encourage effort) when

access costs are large.27

Finally, we consider the differences between the constrained social optimum and the

unconstrained first-best. Table 1 presents simulation results for various slopes of the wage

curve, where w1 = 0 implies full induced demand and w1 = 25 implies low induced demand.

In the results below we report the range of values across patches for each level of induced

demand. The first-best policies shown are the maximum and minimum incentives (θ∗FB)

across patches that decentralize the first-best, normalized by the mean access cost (τ) across

the thirteen patches. We note that all values are positive, i.e. effort is taxed, and vary from

about 5 percent to about 94 percent of mean access costs.28

27All parameters are statistically significant with p < 0.05. Regression results available upon request.
28While not presented here, the relative levels of patch-specific taxes follow the general pattern shown in

Figure 3.
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Policies that achieve the constrained social optimum are smaller in magnitude than the

first-best, and can be negative, i.e effort is subsidized for low levels of induced demand. The

constrained policies are always smaller because the marginal costs of reallocated effort are

greater compared to the first-best.29 Next, we see the percent deadweight loss, defined as

social welfare under the decentralized (unregulated) equilibrium divided by social welfare

under the first-best, can be quite substantial, up to 52 percent. Intuitively, the percent

deadweight loss decreases with a steeper wage curve due to lower effort levels across patches.

Interestingly, despite intervening in only a single patch, policies that achieve the constrained

social optimum can reduce deadweight loss by approximately one quarter. Note also, across

the thirteen patches the minimum reduction in deadweight loss is small, suggesting that in

some patches the regulator would not wish to increase or decrease effort, consistent with

Proposition 4.

We view this example as a good illustration of the economic forces at work in our model

rather than a detailed analysis of a particular set of resources. In particular, we have made

several simplifying assumptions that likely affect the specific earnings and optimal effort

values we estimate. For instance, we assume fish in this location do not move across patches.

If this is not the case, policy recommendations may be somewhat different.30 Further to

maintain consistency with our analytical model, we collapse the dynamic aspects of the

fishery problem to steady-state outcomes. This may ignore important temporal aspects of

fisheries management. Therefore, while this example is not intended to provide specific

policy recommendations, it serves to illustrate how our model can be applied to a real world

resource problem.

29It may seem surprising that the constrained policies are less aggressive at reallocating effort. However,
the intuition is that reducing effort in one patch leads to greater effort and thus lower productivity in
substitute patches. Moreover, note that with full induced demand the constrained optimal policies are
identical to the first-best policies since there is no benefit from reallocating effort across resources, consistent
with Proposition 3.

30Of course, one could find other examples where dispersal is almost certainly zero and our model applies
directly without this assumption.
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5 Potential applications

In this section we discuss potential applications to other markets. Like the fisheries example,

each application may require tailoring to suit the features of the specific resource problem.

However, each example exhibits economic forces consistent with the linked common property

resource problem and the models we develop above.

Recreational demand has many features of the linked common property resource problem.

Congestion likely plays an important role in recreational site choice via crowding effects and

can lead to degradation of protected resources. Differences in travel costs across sites can

lead to differences in access costs. Gramann (2002) shows crowding contributes to spatial

and temporal displacement of visitors to Mount Rainier and Olympic National Parks. The

author finds 20.3 percent of Rainier visitors surveyed and 24.7 percent of Olympic visitors

used less popular locations within the parks to avoid crowds. Of users who visited during off-

peak seasons, over 50 percent of respondents in each park visited off-peak to avoid crowds. In

our model, both effects represent substitution between linked common-property resources.

At the extreme, some visitors may choose not to recreate at either park, i.e., chose the

alternative option. Gramann (2002) finds 5.6 percent of Rainier visitors surveyed and 4.1

percent of Olympic visitors stated they would not return because of crowded conditions.

We note in many cases, for example the recently announced management plan for the

Merced River in Yosemite National Park, limiting total consumption has not been a viable

option (National Park Service, 2014). Instead, park managers seeking to improve users’ expe-

rience have pursued a variety of non-price strategies to reduce crowding at specify locations.

In a recent survey of 93 national park unit managers, 38 percent report encouraging use of

less popular access points and backcountry areas (Leung and Marion, 1999). Similarly, 13

percent report encouraging or requiring camping on sites with no evidence of use. Whether

these policies reduce congestion depends on the entry of users from alternative recreational

options via induced demand.

In commercial fisheries, empirical studies of location choice and capital allocation suggest
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fisherman do substitute effort across resources based on expected profits.31 Further, more

distant locations with higher access costs are less likely to be fished (Smith, 2002; Holland

and Sutinen, 2000). There is also evidence of induced demand. For example, Smith (2002)

shows the intensity of fishing in the California sea urchin fishery depends in part on the

state unemployment rate, which suggests substitution to alternative options consistent with

our model. A policy for changing effort across fisheries similar to the type we imagine is

the Faeroe Island licensing program. The program limited commercial fishermen to a set

number of fishing days and distinguished between “inner” and “outer” fisheries. A license

for a fishing day in the inner territory could be exchanged for a three days in the outer

territory, thus lowering access costs in the more distant fishery. Importantly, the system

was designed to encourage Faeroese vessels to “target deep-water species rather than the

traditional demersal stocks” (Gezelius and Raakjaer, 2008).

In subsistence fisheries, programs such as the “Fishermen Relocation Programme in

Peninsular Malaysia” (Hotta and Wang, 1985; Omar et al., 1992; Mohamed, 1991) have

been developed to reduce poverty and the negative effects of overfishing.32 The program

used fishing vessel buy-backs, credit schemes, vocational programs and aquaculture to move

users out of congested inshore fisheries and into offshore fisheries or alternative employment

(Hotta and Wang, 1985).33 The success of these policies depends on the extent to which relo-

cated fishermen are replaced by new entrants. The possibility of induced demand effects was

recognized by program designers who noted “limiting or reducing the new entry to fishing...

could be effective in achieving improvement in individual catches (for remaining fishermen)”

(Hotta and Wang, 1985). While we are not aware of a detailed assessment of the program,

Teh and Teh (2014) suggest overexploitation of Malaysia’s inshore fisheries continues today.

Our model also has implications beyond traditional natural resource settings. For in-

31In some cases, habits or other sources of behavioral “inertia” may limit this response (Boyce, 1993;
Holland and Sutinen, 2000; Abbott and Wilen, 2011)

32A similar program existed in Thailand.
33For instance, the “Special Fisheries Loan Scheme” operated by the national Agriculture Bank aimed to

modernize and develop the off-shore fishing industry in Malaysia easing overfishing in the inshore resource
(Mohamed, 1991).
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stance in transportation, resistance to congestion pricing in the U.S. has led policy makers

to pursue alternatives such as high occupancy vehicle (HOV) lanes as a way to reduce traffic

congestion.34 During peak periods, both mainline and HOV lane use are rationed by conges-

tion (Bento et al., 2014). Transaction costs of carpool formation lead to differences in access

costs across the mainline and HOV lanes. As a result, mainline lines are generally more

heavily used and therefore more congested. Finally, travelers have outside alternatives such

as telecommuting, public transit or forgoing discretionary trips. Evaluation of programs to

promote carpooling, such as informational campaigns, preferential parking and guaranteed

ride home programs, should account for the substitution and entry effects modeled above.

6 Conclusions

We show that in the linked common-property resource setting high access cost resources can

be over or under -consumed. Because differences in access costs lead to higher congestion

costs for low access cost resources, a reallocation of users may reduce overall costs. Crucially,

whether increasing consumption of the high access cost resource improves welfare depends

on the amount of entry from induced demand. The finding that increasing consumption of

some common-property resources may be desirable is novel in light of models which consider

individual resources in isolation or assume full induced demand. On the other hand, because

positive induced demand negates some or all of the congestion relief benefit from reallocating

users from LAC to HAC resources, equating marginal congestion costs across resources may

not always be optimal.

We highlight the implications of our model with a simple application to a Southern

California fishery with multiple distinct patches. Specifically, we show how our approach

could be applied to a real world resource problem. Consistent with our analytical model, the

optimal policy tends to encourage effort in high access cost patches and to discourage effort

34While congestion pricing has found support in some parts of the world, the vast majority of U.S. roadways
are un-priced. A handful of exceptions include high occupancy toll (HOT) lanes in California, Colorado,
Florida, Georgia, Minnesota, Washington, Utah and Texas.
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in low access cost patches. Similarly, encouraging effort in a particular patch is more likely

to increase total earnings when induced demand is low relative to when induced demand

effects are large.

Taken together, our results suggest policy makers need to carefully consider relative con-

gestion levels and the potential for induced demand when designing policies in a linked

common-property resource setting. Further empirical research into fisheries, forestry, recre-

ation, traffic and other similar markets would provide additional insight into the importance

of the mechanisms outlined in this paper.
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7 Tables

Table 1: Comparison of the constrained social optimum with first-best fishery policies.

w1

Percent	  
Deadweight	  Loss

0 0.16 -‐ 0.94 0.16 -‐ 0.94 52% 0.7% -‐ 23.7%
5 0.13 -‐ 0.92 0.06 -‐ 0.86 19% 0.1% -‐ 24.4%
10 0.11 -‐ 0.89 -‐0.01 -‐ 0.79 10% 0.0% -‐ 25.2%
15 0.08 -‐ 0.87 -‐0.06 -‐ 0.74 6% 0.0% -‐ 26.1%
20 0.07 -‐ 0.85 -‐0.10 -‐ 0.71 4% 0.0% -‐ 27.1%
25 0.05 -‐ 0.83 -‐0.14 -‐ 0.67 3% 0.0% -‐ 28.0%

Notes:	  	  	  First-‐best	  policies	  are	  the	  taxes	  on	  each	  patch	  that	  achieve	  the	  first-‐best	  allocation.	  	  The	  constrained	  
socially	  optimal	  policy	  is	  the	  incentive,	  on	  a	  single	  patch,	  that	  decentralizes	  the	  constrained	  social	  optimum.	  	  
The	  maximum	  and	  minimum	  values	  are	  presented	  across	  patches.	  	  All	  policies	  are	  normalized	  by	  the	  average
access	  cost	  (τ)	  across	  patches.	  	  Percent	  deadweight	  loss	  is	  calculated	  as	  deadweight	  loss	  at	  the	  decentralized
equilibrium	  divided	  by	  first-‐best	  welfare.	  	  Percent	  reduction	  in	  deadweight	  loss	  is	  calculated	  as	  one	  minus	  the
ratio	  of	  deadweight	  loss	  under	  the	  policy	  to	  deadweight	  loss	  under	  the	  decentralized	  equilibrium;	  the
maximum	  and	  minimum	  values	  are	  presented.

Constrained	  Optimal	  Policies	  
(θ*)

Percent	  Reduction	  in	  
Deadweight	  Loss	  at	  the	  
Constrained	  Optimum

First-‐Best	  Policies	  	  (θ*FB)
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8 Figures

Figure 1: Panel a.) Private benefits, costs and social costs for the HAC resource. Panel
b.) Congestion costs, alternative option costs and induced demand effects.
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Figure 2: Fishery study area adapted from Costello, Quérou, and Tomini (2015).

Reprinted from: Journal of Public Economics, Vol. 121, Costello, Christopher, Nicolas Querou, and Agnes
Tomini, “Partial Enclosure of the Commons,” pp. 69-78, 2015, with permission from Elsevier.
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Figure 3: Optimal policies (θj) for encouraging or discouraging effort in patch j across
different levels of induced demand in a Southern-California fishery.
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Appendix

A General model with K + 1 resources

Suppose now that instead of only two fishery patches as in Section 4.1 there are K + 1

patches. Let i represent a particular resource of interest and K the set of other common-

property resources, with k indexing the k = 1, ..., K other common-property resources. All

effort Ē is allocated such that Ē = Ei +
∑K

k=1Ek + Ew. The return on fishing in each

common-pool resource is given by pXj(Ej)− τj for j = i, 1, ..., K.35

We begin by analyzing a decentralized equilibrium, where users allocated effort across i,

k ∈ K and the outside (wage) option. Nash Equilibrium requires that no user be able to

increase their earnings by reallocating their effort, such that:

pXi(Ei)− pXk(Ek) = τi − τk ∀k (26)

pXj(Ej)− τj = W (Ew) j = i, 1, ..., K

Ē = Ei +
K∑
k=1

Ek + Ew.

The first condition says that for all K + 1 common-property resources, the difference in

fishing earnings is equal to the access cost differential, such that net returns are equilibrated

across all resources. The second condition requires that for any common-property resource,

the marginal user is indifferent between the outside option and the common-property re-

source.

Next, we consider the allocation of users’ effort by a constrained social planner. The

constrained social planner is considering the allocation of effort to the resource of interest i

to maximize total returns, while accounting for the fact that effort may enter (or exit) from

35Note that in contrast to the model in Section 2, here we simply assume τj is constant but different across
resources.
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the outside option into the remaining K common-property resources:

max
Ei,Ek,Ew

K∑
j=i,1

[pXj(Ej)Ej − τjEj] +

∫ Ew

0

W (E)dE (27)

s.t. Ē − Ei −
K∑
k=1

Ek − Ew = 0

pXk(Ek)− τk = W (Ew) ∀k

with the corresponding Lagrangian:

K∑
j=i,1

[pXj(Ej)Ej−τjEj]+
∫ Ew

0

W (E)dE+λ(Ē−Ei−
K∑
k=1

Ek−Ew)+
K∑
k=1

µk(pXk(Ek)−τk−W (Ew))

(28)

and first-order conditions:

pXi + pX ′iEi − τi − λ = 0 (29)

pXk + pX ′kEk − τk − λ+ µk(pX
′
k) = 0 ∀k (30)

W − λ−
K∑
k=1

µkW
′ = 0. (31)

which define the earnings-maximizing, constrained socially optimal allocation of effort Ei,

Ek, and Ew across all options.36 The arguments in (29)-(31) are suppressed for simplicity.

With some iterative substitution, the first FOC can be written as:

pXi + pX ′iEi − τi − pXk + τk −
W ′∑K

k=1Ek
∏K

k=1 pX
′
k∏K

k=1 pX
′
k +W ′

∑K
k=1(

∏K
m∈K�k pX

′
m)

= 0, (32)

or

pXi − pXk = τi − τk − pX ′iEi +
W ′∑K

k=1Ek
∏K

k=1 pX
′
k∏K

k=1 pX
′
k +W ′

∑K
k=1(

∏K
m∈K�k pX

′
m)
, (33)

which states that the marginal private benefit of an additional unit of effort in resource i

36This allocation satisfies the second-order sufficient conditions for a local constrained maximization.
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is equal to the marginal private cost of another unit of effort in resource i, plus the net

marginal external costs. The final term reflects the complex substitution pattern across

resources. Specifically, an increase in effort in i leads all other effort to be re-sorted across

the K other common-property resources and the outside option. The intuition from Figure 1

is readily extended to the case with K common-property resources. Note also that setting K

= 1, i = h, k = l, and τi− τk = τ recovers the expression in Equation 22 of the main text.37

Finally, while further analytical results are challenging to interpret, these effects are critical

in settings such as the numerical example analyzed in Section 4.2. There we numerically

determine optimal policies for fishing effort taking into account the complex substitution

patterns across many fishing locations.

37This is more clear when recognizing that the outside option can be thought of as ‘equivalent’ to another
common-property resource such that W ′ = pX ′K+1, K + 1 ∈ K and |K| = K + 1. In which case, the
denominator of the final term in 33 can be expressed as

∑K+1
k=1 (

∏K+1
m∈K�k pX

′
m), such that this term is equal

to W ′ + pX ′k when there is only the single common-property resource and the outside option.
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