Latest on Varieties of ℓ-Groups, Unital ℓ-Groups, and Related Things

W. Charles Holland
University of Colorado

Boulder 2013
History
Formal Logic

1847 Boolean Algebra

History
Formal Logic

1847 Boolean Algebra

~1900 Quantum things
Formal Logic

History

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic
Formal Logic

History

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem
1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem
1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

1890 Bettazzi Axioms of Size
Formal Logic

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

History

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

Lattice-Ordered Groups
Formal Logic

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic

and MV-Algebra

1958 Chang Completeness Theorem

History

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

Lattice-Ordered Groups
Formal Logic

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic and MV-Algebra

1958 Chang Completeness Theorem

History

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

1890 Bettazzi Axioms of Size

~1940 Lattice-Ordered Group

Lattice-Ordered Groups

~1940 Lattice-Ordered Group
History

1847 Boolean Algebra

~1900 Quantum things

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

~1940 Lattice-Ordered Group

1917 Łukasiewicz Multi-Valued Logic and MV-Algebra

1958 Chang Completeness Theorem

Lattice-Ordered Groups

Formal Logic
Formal Logic

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic and MV-Algebra

1958 Chang Completeness Theorem

History

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

~1940 Lattice-Ordered Group

MV-Algebras ↔ Abelian Unital Lattice-Ordered Groups

~1990
Formal Logic

1847 Boolean Algebra

~1900 Quantum things

1917 Łukasiewicz Multi-Valued Logic
and MV-Algebra

1958 Chang Completeness Theorem

History

1890 Bettazzi Axioms of Size

1901 Hölder Axioms of Quantity

1907 Hahn Totally Ordered Group

~1940 Lattice-Ordered Group

Lattice-Ordered Groups

1901 MV-Algebras

1917 Abelian Unital Lattice-Ordered Groups

~1990

MV-Algebras ↔ Abelian Unital Lattice-Ordered Groups

~1940 Lattice-Ordered Group

~1990

ΨMV-Algebras ↔ Unital Lattice-Ordered Groups

~ 2001

Pseudo Multi Valued
Lattice-ordered group G: G is a group and a lattice, and for all $x, y, z \in G$

$$x(y \lor z) = (xy) \lor (xz) \text{ and } (y \lor z)x = (yx) \lor (zx)$$

(ℓ-group G)
Lattice-ordered group G: G is a group and a lattice, and for all $x, y, z \in G$,

$$x(y \lor z) = (xy) \lor (xz) \quad \text{and} \quad (y \lor z)x = (yx) \lor (zx) \quad (\ell\text{-group } G)$$

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.
Lattice-ordered group G: G is a group and a lattice, and For all $x, y, z \in G$
\[x(y \lor z) = (xy) \lor (xz) \text{ and } (y \lor z)x = (yx) \lor (zx) \quad \text{(l-group G)} \]

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)
2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. **Unital lattice-ordered group (G, u) (u\l-group):** ℓ-group G
 With a chosen unit u such that $e \leq u \in G$, and
 \[
 \forall g \in G, \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^n
 \]
Lattice-ordered group G: G is a group and a lattice, and For all $x, y, z \in G$

$$x(y \lor z) = (xy) \lor (xz) \quad \text{and} \quad (y \lor z)x = (yx) \lor (zx) \quad (\ell\text{-group } G)$$

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. **Unital lattice-ordered group** (G, u) (ul-group): ℓ-group G

 With a chosen unit u such that $e \leq u \in G$, and

 $$\forall g \in G, \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^n$$

 Varieties of ul-groups
Lattice-ordered group G: G is a group and a lattice, and for all $x, y, z \in G$
\[x(y \lor z) = (xy) \lor (xz) \text{ and } (y \lor z)x = (yx) \lor (zx) \quad (\ell\text{-group } G) \]

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups
 which contain no nonabelian o-groups.

1. **Unital lattice-ordered group** (G, u) (ul-group): ℓ-group G

 With a chosen unit u such that $e \leq u \in G$, and
 \[\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n \]

 Varieties of ul-groups (= defined by a set of equations)
Lattice-ordered group G: G is a group and a lattice, and for all $x, y, z \in G$

$$x(y \lor z) = (xy) \lor (xz) \quad \text{and} \quad (y \lor z)x = (yx) \lor (zx) \quad (\ell\text{-group } G)$$

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. **Unital lattice-ordered group** (G, u) ($u\ell$-group): ℓ-group G with a chosen unit u such that $e \leq u \in G$, and

$$\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n$$

Varieties of $u\ell$-groups (= defined by a set of equations)

The unital ℓ-groups in any variety of ℓ-groups, and much more.
Lattice-ordered group G: G is a group and a lattice, and for all $x, y, z \in G$

$x(y \lor z) = (xy) \lor (xz)$ and $(y \lor z)x = (yx) \lor (zx)$ \hspace{1cm} (ℓ-group G)

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. **Unital lattice-ordered group** (G, u) (ul-group): ℓ-group G

 With a chosen unit u such that $e \leq u \in G$, and

 \[\forall g \in G, \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^n \]

 Varieties of ul-groups ($= \text{defined by a set of equations}$)

The unital ℓ-groups in any variety of ℓ-groups, and much more.

Examples: $\forall x$
Lattice-ordered group \(G \): \(G \) is a group and a lattice, and for all \(x, y, z \in G \)
\[x(y \lor z) = (xy) \lor (xz) \quad \text{and} \quad (y \lor z)x = (yx) \lor (zx) \quad (\ell\text{-group } G) \]

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital \(\ell \)-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of \(\ell \)-groups which contain no nonabelian o-groups.

\[\boxed{1. \quad \text{Unital lattice-ordered group } (G, u) \, (ul\text{-group})} \quad \ell\text{-group } G \]

With a chosen unit \(u \) such that \(e \leq u \in G \), and
\[\forall g \in G, \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^n \]

Varieties of \(ul \)-groups (= defined by a set of equations)
The unital \(\ell \)-groups in any variety of \(\ell \)-groups, and much more.

Examples: \(\forall x \quad C : xu = ux \)
Lattice-ordered group \(G \): \(G \) is a group and a lattice, and for all \(x, y, z \in G \):
\[
x(y \lor z) = (xy) \lor (xz) \quad \text{and} \quad (y \lor z)x = (yx) \lor (zx)
\]
(\(\ell \)-group \(G \))

Submitted papers to be discussed:
1. Darnel & Holland, More covers of the boolean variety of unital \(\ell \)-groups.
 (accepted by Algebra Universalis)
2. Darnel & Holland, Minimal non-metabelian varieties of \(\ell \)-groups which contain no nonabelian o-groups.

1. Unital lattice-ordered group \((G, u)\) (ul-group): \(\ell \)-group \(G \)
 With a chosen unit \(u \) such that \(e \leq u \in G \), and
 \[
 \forall g \in G, \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^n
 \]
 Varieties of ul-groups (= defined by a set of equations)
The unital \(\ell \)-groups in any variety of \(\ell \)-groups, and much more.

Examples:
\[
\forall x \quad C: xu = ux \\
\quad C_n: xu^n = u^n x
\]
Lattice-ordered group G: G is a group and a lattice, and For all $x, y, z \in G$

\[
x(y \lor z) = (xy) \lor (xz) \text{ and } (y \lor z)x = (yx) \lor (zx)
\]

(ℓ-group G)

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. **Unital lattice-ordered group** (G, u) (ul-group): ℓ-group G

 With a chosen unit u such that $e \leq u \in G$, and

 \[
 \forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n
 \]

 Varieties of ul-groups (= defined by a set of equations)

The unital ℓ-groups in any variety of ℓ-groups, and much more.

Examples: \[\forall x \]

\[
C : xu = ux
\]

\[
C_n : xu^n = u^n x
\]

\[
C_m \subseteq C_n \iff m | n
\]
Lattice-ordered group G: G is a group and a lattice, and for all $x, y, z \in G$

$$x(y \vee z) = (xy) \vee (xz) \quad \text{and} \quad (y \vee z)x = (yx) \vee (zx) \quad (\ell\text{-group } G)$$

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups.
 (accepted by Algebra Universalis)

2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. Unital lattice-ordered group (G, u) ($u\ell$-group): ℓ-group G

 With a chosen unit u such that $e \leq u \in G$, and

 $$\forall g \in G, \exists n \in \mathbb{N}, u^{-n} \leq g \leq u^n$$

 Varieties of $u\ell$-groups (\equiv defined by a set of equations)

 The unital ℓ-groups in any variety of ℓ-groups, and much more.

 Examples: $\forall x$

 $$\mathcal{C} : xu = ux$$

 $$\mathcal{C}_n : xu^n = u^n x$$

 $$\mathcal{C}_m \subseteq \mathcal{C}_n \iff m | n$$

 $$\bigvee_{n \in \mathbb{N}} \mathcal{C}_n = \text{all } u\ell\text{-groups}$$
Lattice-ordered group G: G is a group and a lattice, and For all $x, y, z \in G$
\[x(y \vee z) = (xy) \vee (xz) \text{ and } (y \vee z)x = (yx) \vee (zx) \] (\text{ℓ-group G})

Submitted papers to be discussed:
1. Darnel & Holland, More covers of the boolean variety of unital ℓ-groups. (accepted by Algebra Universalis)
2. Darnel & Holland, Minimal non-metabelian varieties of ℓ-groups which contain no nonabelian o-groups.

1. **Unital lattice-ordered group** (G, u) (ul-group): ℓ-group G

 With a chosen unit u such that $e \leq u \in G$, and
 \[\forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n \]

 Varieties of ul-groups (= defined by a set of equations)

 The unital ℓ-groups in any variety of ℓ-groups, and much more.

 Examples: \[\forall x \]
 \[\mathcal{C} : xu = ux \]
 \[\mathcal{C}_n : xu^n = u^n x \]
 \[\mathcal{C}_m \subseteq \mathcal{C}_n \iff m | n \]
 \[\bigvee_{n \in \mathbb{N}} \mathcal{C}_n = \text{all ul-group} \]

 Boolean $\mathcal{B} = \text{Var}(\mathbb{Z}, 1) = \text{smallest proper variety.}$
Varieties of \(u \)-groups

\[
x(y \lor z) = (xy) \lor (xz) \quad \text{and} \quad (y \lor z)x = (yx) \lor (zx) \quad (\ell\text{-group } G)
\]

Submitted papers to be discussed:

1. Darnel & Holland, More covers of the boolean variety of unital \(\ell \)-groups.
 (accepted by Algebra Universalis)
2. Darnel & Holland, Minimal non-metabelian varieties of \(\ell \)-groups which contain no nonabelian \(o \)-groups.

\[\boxed{1. \, \textbf{Unital lattice-ordered group } (G, u) \, (ul\text{-group}): \ell\text{-group } G}\]

 With a chosen unit \(u \) such that \(e \leq u \in G \), and

 \[
 \forall g \in G, \exists n \in N, u^{-n} \leq g \leq u^n
 \]

Varieties of \(ul \)-groups (= defined by a set of equations)

The unital \(\ell \)-groups in any variety of \(\ell \)-groups, and much more.

Examples: \(\forall x \)

\[
\mathcal{C} : xu = ux
\]

\[
\mathcal{C}_n : xu^n = u^n x
\]

\[
\mathcal{C}_m \subseteq \mathcal{C}_n \Leftrightarrow m | n
\]

\[
\lor n \in \mathbb{N} \mathcal{C}_n = \text{all } ul\text{-groups}
\]

Boolean \(B = \text{Var}(\mathbb{Z}, 1) = \text{smallest proper variety.} \)
Boolean Covers
Boolean Covers

\[
\begin{align*}
\forall \mathcal{A}^n & \\
\mathcal{A}^n & \\
\mathcal{A}^2 & \\
\mathcal{A} & \\
\mathcal{F}_{\alpha,u} & \\
\mathcal{M}_{u}^- & \\
\mathcal{M}_{u}^+ & \\
\mathcal{K}_2 & \\
\mathcal{K}_3 & \\
\mathcal{K}_5 & \\
\mathcal{K}_p & \\
\mathcal{K}_\infty & \\
\mathcal{E} & \\
\end{align*}
\]
Boolean Covers

\[\forall \mathcal{A}^n \]

\[\mathcal{A}^n \]

\[\mathcal{A}^2 \]

\[\mathcal{A} \]

\[\mathcal{F}_{\alpha,u} \]

\[\mathcal{M}_{u}^- \]

\[\mathcal{M}_{u}^+ \]

\[\mathcal{K}_2 \]

\[\mathcal{K}_3 \]

\[\mathcal{K}_5 \]

\[\mathcal{K}_p \]

\[\mathcal{K}_\infty \]

\[\mathcal{E} \]

Komori 1981

\[\mathcal{K}_p = \text{Var}(\mathbb{Z}, p) \]

\[\mathcal{K}_\infty = \text{Var}(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \]
Boolean Covers

\[\mathcal{F}_{\alpha, u} \]

\[\mathcal{M}^-_u, \mathcal{M}^+_u \]

\[\mathcal{K}_2, \mathcal{K}_3, \mathcal{K}_5, \ldots, \mathcal{K}_p, \ldots, \mathcal{K}_\infty \]

\[\mathcal{E} \]

Medvedev (H) 2005

Komori 1981

\[\mathcal{K}_p = \text{Var}(\mathbb{Z}, p) \]

\[\mathcal{K}_\infty = \text{Var}(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \]
Boolean Covers

\[\bigvee A^n \]

\[A^n \]

\[A^2 \]

\[A \]

\[B \]

\[F_{\alpha,u} \]

\[M_u^- \]

\[M_u^+ \]

\[K_2 \]

\[K_3 \]

\[K_5 \]

\[K_p \]

\[K_\infty \]

\[Var(\mathbb{Z}, p) \]

\[Var(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \]

Covering Layer

“Feil” (H) 2007

“Medvedev” (H) 2005

Komori 1981

Friday, April 12, 13
Boolean Covers

\[F^\alpha \]

Covering Layer

\[\forall A^n \]

\[A^n \]

\[A^2 \]

\[A \]

\[A \times A \]

\[A \times A \]

\[\mathcal{F}_{\alpha, u} \]

\[\mathcal{M}_u^- \]

\[\mathcal{M}_u^+ \]

\[\mathcal{K}_2 \]

\[\mathcal{K}_3 \]

\[\mathcal{K}_5 \]

\[\mathcal{K}_p \]

\[\mathcal{K}_\infty \]

\[\mathcal{E} \]

“Feil”

(\(H \))

2007

“Medvedev”

(\(H \))

2005

Komori

1981

\[\mathcal{K}_p = \text{Var}(\mathbb{Z}, p) \]

\[\mathcal{K}_\infty = \text{Var}(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \]
Boolean Covers

\(\mathcal{F}_{\alpha,u} \)

\(\forall A^n \)

\(A^n \)

\(A^2 \)

\(A \)

\(\mathcal{K}_p = \text{Var}(\mathbb{Z}, p) \)

\(\mathcal{K}_\infty = \text{Var}(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \)

“Feil” (H) 2007

“Medvedev” (H) 2005

Komori 1981

Friday, April 12, 13
Boolean Covers

\[F_{\alpha, u} \]

\[K_1 = \text{Var}(\mathbb{Z}, Z) \]

\[K_p = \text{Var}(\mathbb{Z}, p) \]

\[K_\infty = \text{Var}(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \]

Medvedev (H) 2005

Feil (H) 2007

Covering Layer

Friday, April 12, 13
Boolean Covers

\[\mathcal{F}_{\alpha, u} \]

\[\mathcal{H} \mathcal{M}_{\alpha, u} \]

\[\mathcal{K}_p = \text{Var}(\mathbb{Z}, p) \]

\[\mathcal{K}_\infty = \text{Var}(\mathbb{Z} \times \mathbb{Z}, (1, 0)) \]

Feil (H) 2007

Medvedev (H) 2005

Komori 1981

Var(\mathbb{Z} \times \mathbb{Z}, (1, 0))
D-H covers of \mathcal{B}:
D-H covers of \mathcal{B}: $x << y \iff \forall n \in \mathbb{Z}, x^n < y$
D-H covers of \mathcal{B}: $x << y \Leftrightarrow \forall n \in \mathbb{Z}, x^n < y$

Let $s = (s_1, s_2, \ldots, s_i, \ldots)$, $s_i \in \{-1, +1\}$.
D-H covers of \(B \): \(x << y \iff \forall n \in \mathbb{Z}, x^n < y \)

Let \(s = (s_1, s_2, \ldots, s_i, \ldots) \), \(s_i \in \{-1, +1\} \).

\((F_s, u) \) is a totally ordered group with unit \(u \) and \(e < b << u \). If \(s_1 = +1 \) then \(b << b^u \), and if \(s_1 = -1 \) then \(b^u << b \).
D-H covers of \mathcal{B}: \[x \ll y \iff \forall n \in \mathbb{Z}, \ x^n < y \]

Let \[s = (s_1, s_2, \ldots, s_i, \ldots), \ s_i \in \{-1, +1\}. \]

(F_s, u) is a totally ordered group with unit u and $e < b \ll u$. If $s_1 = +1$ then $b \ll b^u$, and if $s_1 = -1$ then $b^u \ll b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u \ll b$ and $b^u \ll (b^u)^b$, etc.
Let $s = (s_1, s_2, \ldots, s_i, \ldots)$, $s_i \in \{-1, +1\}$.

(F_s, u) is a totally ordered group with unit u and $e < b << u$. If $s_1 = +1$ then $b << b^u$, and if $s_1 = -1$ then $b^u << b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u << b$ and $b^u << (b^u)^b$, etc.

Theorem.

Let \mathcal{B}_s be the variety generated by (F_s, u). Then \mathcal{B}_s is a cover of the boolean variety \mathcal{B}, and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

$x << y \iff \forall n \in \mathbb{Z}, x^n < y$
D-H covers of \mathcal{B}: $x << y \Leftrightarrow \forall n \in \mathbb{Z}, x^n < y$

Let $s = (s_1, s_2, \ldots, s_i, \ldots)$, $s_i \in \{-1, +1\}$.

(F_s, u) is a totally ordered group with unit u and $e < b << u$. If $s_1 = +1$ then $b << b^u$, and if $s_1 = -1$ then $b^u << b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u << b$ and $b^u << (b^u)^b$, etc.

Theorem.

Let \mathcal{B}_s be the variety generated by (F_s, u). Then \mathcal{B}_s is a cover of the boolean variety \mathcal{B}, and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

Therefore, there are uncountably many of these.
D-H covers of \mathcal{B}: \[x \ll y \iff \forall n \in \mathbb{Z}, x^n < y \]

Let \(s = (s_1, s_2, \ldots, s_i, \ldots) \), \(s_i \in \{-1, +1\} \).

\((F_s, u)\) is a totally ordered group with unit \(u \)
and \(e < b \ll u \). If \(s_1 = +1 \) then \(b \ll b^u \),
and if \(s_1 = -1 \) then \(b^u \ll b \).

Similarly, if \(s_1 = -1 \) and \(s_2 = +1 \) then \(b^u \ll b \) and \(b^u \ll (b^u)^b \), etc.

Theorem.

Let \(\mathcal{B}_s \) be the variety generated by \((F_s, u)\). Then \(\mathcal{B}_s \) is a cover of
the boolean variety \(\mathcal{B} \), and if \(s \neq t \) then \(\mathcal{B}_s \neq \mathcal{B}_t \).

Therefore, there are uncountably many of these. (Darnel–Holland)
D-H covers of \mathcal{B}:

$x << y \iff \forall n \in \mathbb{Z}, x^n < y$

Let $s = (s_1, s_2, \ldots, s_i, \ldots), s_i \in \{-1, +1\}$.

(F_s, u) is a totally ordered group with unit u
and $e < b << u$. If $s_1 = +1$ then $b << b^u$,
and if $s_1 = -1$ then $b^u << b$.

Similarly, if $s_1 = -1$ and $s_2 = +1$ then $b^u << b$ and $b^u << (b^u)^b$, etc.

Theorem.

Let \mathcal{B}_s be the variety generated by (F_s, u). Then \mathcal{B}_s is a cover of
the boolean variety \mathcal{B}, and if $s \neq t$ then $\mathcal{B}_s \neq \mathcal{B}_t$.

Therefore, there are uncountably many of these. (Darnel–Holland)

Are there more covers of \mathcal{B} ?

* * * * * * * * * * * * * *
2. \(\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \quad x = x \)
\(\mathcal{N} = \text{Normal Valued} \quad (x \vee e)(y \vee e) = ((x \vee e)(y \vee e)) \land ((y \vee e)^2(x \vee e)^2) \)
\(\mathcal{R} \quad (x \vee e) \land (z^{-1}(x \land e)^{-1}z) = e \) (subdirect product of totally ordered groups)
\(\mathcal{A} = \text{Abelian} \quad xy = yx \)
\(\mathcal{E} \quad x = e \)

\(\mathcal{L} \) \(\mathcal{N} \) \(\mathcal{H M}_s \) \(\mathcal{R} \) \(\mathcal{A}^3 \) \(\mathcal{A}^2 \) \(\mathcal{M}^- \) \(\mathcal{M}^0 \) \(\mathcal{M}^+ \) \(S_2 \) \(S_3 \) \(S_5 \) \(S_p \)

covering layer.
Let \(\mathcal{L} = \text{Var} \text{(Lattice-Groups)} \) and \(x = x \).

\(\mathcal{N} = \text{Normal Valued} \quad (x \vee e)(y \vee e) = ((x \vee e)(y \vee e)) \land ((y \vee e)^2(x \vee e)^2) \)

\(\mathcal{R} \quad (x \vee e) \land (z^{-1}(x \wedge e)^{-1}z) = e \) (subdirect product of totally ordered groups)

\(\mathcal{A} = \text{Abelian} \quad xy = yx \)

\(\mathcal{E} \quad x = e \)

\(\mathcal{HM}_s \)

\(\mathcal{R} \)

\(\mathcal{A}^3 \)

\(\mathcal{A}^2 \)

\(\mathcal{A} \)

\(\mathcal{E} \)

covering layer.
2. \(\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \quad x = x \)
\(\mathcal{N} = \text{Normal Valued} \quad (x \lor e)(y \lor e) = ((x \lor e)(y \lor e)) \land ((y \lor e)^2(x \lor e)^2) \)
\(\mathcal{R} \quad (x \lor e) \land (z^{-1}(x \land e)^{-1}z) = e \quad (\text{subdirect product of totally ordered groups}) \)
\(\mathcal{A} = \text{Abelian} \quad xy = yx \)
\(\mathcal{E} \quad x = e \)

\[\text{Scrimger (1975)} \]
\[S_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \triangleright \mathbb{Z} \]
\[p = \text{a prime number} \]
2. \(\mathcal{L} = \text{Var(Lattice-Groups)} \quad x = x \)

\(\mathcal{N} = \text{Normal Valued} \quad (x \vee e)(y \vee e) = (((x \vee e)(y \vee e)) \land ((y \vee e)^2(x \vee e)^2)) \)

\(\mathcal{R} \quad (x \vee e) \land (z^{-1}(x \land e)^{-1}z) = e \) (subdirect product of totally ordered groups)

\(\mathcal{A} = \text{Abelian} \quad xy = yx \)

\(\mathcal{E} \quad x = e \)

\(\mathcal{H}_M \)

\(\mathcal{R} \)

\(\mathcal{A} \)

\(\mathcal{M}^+ = (\cdots \oplus \mathbb{Z}_i \oplus \mathbb{Z}_{i+1} \oplus \cdots) \times \mathbb{Z} \)

\(\mathcal{S}_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \leftarrow \mathbb{Z} \)

\(p = \text{a prime number} \)

Medvedev (1977)

Scrimger (1975)

\(\mathcal{S}_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \leftarrow \mathbb{Z} \)

\(p = \text{a prime number} \)
2. \(\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \quad x = x \)
\(N = \text{Normal Valued} \quad (x \vee e)(y \vee e) = ((x \vee e)(y \vee e)) \wedge ((y \vee e)^2(x \vee e)^2) \)
\(\mathcal{R} \quad (x \vee e) \wedge (z^{-1}(x \wedge e)^{-1}z) = e \) (subdirect product of totally ordered groups)
\(\mathcal{A} = \text{Abelian} \quad xy = yx \)
\(\mathcal{E} \quad x = e \)

\(\mathcal{H} \mathcal{M}_s \) is a covering layer.

\(\mathcal{M}^+ = (\cdots \oplus \mathbb{Z}_i \oplus \mathbb{Z}_{i+1} \oplus \cdots) \times \mathbb{Z} \)

Medvedev (1977) \(S_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \vartriangleright \mathbb{Z} \)

Scrimger (1975)

Bergman (1984), two varieties; H. and Medvedev (1994), continuum many.
\[\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \quad x = x \]
\[N = \text{Normal Valued} \quad (x \lor e)(y \lor e) = ((x \lor e)(y \lor e)) \land ((y \lor e)^2(x \lor e)^2) \]
\[\mathcal{R} \quad (x \lor e) \land (z^{-1}(x \land e)^{-1}z) = e \quad \text{(subdirect product of totally ordered groups)} \]
\[A = \text{Abelian} \quad xy = yx \]
\[E \quad x = e \]

\[\mathcal{L} \quad \text{Var}(\text{Lattice-Groups}) \]

\[\mathcal{N} \]

\[\mathcal{M}_s \]

\[\mathcal{R} \]

\[A^3 \]

\[A^2 \]

\[A \]

\[\mathcal{M}^- \quad \mathcal{M}^0 \quad \mathcal{M}^+ \quad S_2 \quad S_3 \quad S_5 \quad S_p \]

\[H \xleftarrow{\sim} \mathbb{Z} \quad \text{Medvedev (1977)} \quad \text{Scrimger (1975)} \]

\[\mathcal{M}^+ = (\cdots \oplus \mathbb{Z}_i \oplus \mathbb{Z}_{i+1} \oplus \cdots) \rtimes \mathbb{Z} \]

\[H \text{ totally ordered} \quad \text{Bergman (1984), two varieties; H. and Medvedev (1994), continuum many.} \]

\[S_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \rtimes \mathbb{Z} \quad p = \text{a prime number} \]
\[\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \quad x = x \]
\[\mathcal{N} = \text{Normal Valued} \quad (x \lor e)(y \lor e) = ((x \lor e)(y \lor e)) \land ((y \lor e)^2(x \lor e)^2) \]
\[\mathcal{R} \quad (x \lor e) \land (z^{-1}(x \land e)^{-1}z) = e \quad (\text{subdirect product of totally ordered groups}) \]
\[\mathcal{A} = \text{Abelian} \quad xy = yx \]
\[\mathcal{E} \quad x = e \]

More?

\[\mathcal{M}^- \quad \mathcal{M}^0 \quad \mathcal{M}^+ \quad S_2 \quad S_3 \quad S_5 \quad S_p \]

Feil \[R_{\alpha} \leftrightarrow \mathbb{Z} \quad (1980) \]

(file) \[R_{\alpha} \subset \mathbb{R} \quad \alpha \in \mathbb{R} \]

covering layer.

H. and Medvedev (1994), continuum many.

Bergman (1984), two varieties; H. and Medvedev (1994), continuum many.

Medvedev (1977)

\[\mathcal{M}^+ = (\cdots \oplus \mathbb{Z}_i \oplus \mathbb{Z}_{i+1} \oplus \cdots) \ltimes \mathbb{Z} \]

H totally ordered

\[H \leftrightarrow \mathbb{Z} \]

Scrimger (1975)

\[S_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \ltimes \mathbb{Z} \quad p = \text{a prime number} \]
2. \(\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \) \(x = x \)
\(N = \text{Normal Valued} \) \((x \lor e)(y \lor e) = ((x \lor e)(y \lor e)) \land ((y \lor e)^2(x \lor e)^2) \)
\(\mathcal{R} \) \((x \lor e) \land (z^{-1}(x \land e)^{-1}z) = e \) (subdirect product of totally ordered groups)
\(A = \text{Abelian} \) \(xy = yx \)
\(\mathcal{E} \) \(x = e \)

\[\begin{align*}
\mathcal{L} & \quad \text{Var}(\text{Lattice-Groups}) \\
\mathcal{N} & \\
\mathcal{H}\mathcal{M}_s & \\
\mathcal{R} & \\
A^3 & \\
A^2 & \\
? & \\
\mathcal{M}^- & \mathcal{M}^0 & \mathcal{M}^+ & S_2 & S_3 & S_5 & \cdots & S_p \\
H & \xleftarrow{\times} \mathbb{Z} & H \text{ totally ordered} & \text{Medvedev (1977)} & \epsilon & \text{Scrimger (1975)} & S_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \xleftarrow{\times} \mathbb{Z} & p = \text{a prime number} \\
& & Bergman (1984), \text{two varieties;} \ H. \text{ and Medvedev (1994), continuum many}.\end{align*} \]
2. $\mathcal{L} = \text{Var}(\text{Lattice-Groups}) \quad x = x$
$\mathcal{N} = \text{Normal Valued} \quad (x \lor e)(y \lor e) = ((x \lor e)(y \lor e)) \land ((y \lor e)^2(x \lor e)^2)$
$\mathcal{R} \quad (x \lor e) \land (z^{-1}(x \land e)^{-1}z) = e \quad \text{(subdirect product of totally ordered groups)}$
$\mathcal{A} = \text{Abelian} \quad xy = yx$
$\mathcal{E} \quad x = e$

\mathcal{L}

\mathcal{N}

\mathcal{R}

\mathcal{A}^3

$?\quad ?$

\mathcal{A}^2

\mathcal{M}^-

\mathcal{M}^0

\mathcal{M}^+

\mathcal{S}_2

\mathcal{S}_3

\mathcal{S}_5

\mathcal{S}_p

$\mathcal{H}\mathcal{M}_s$

Feil $\quad R_\alpha \leftrightarrow \mathbb{Z}$ (1980)

(H. and Medvedev (1994), continuum many.

More?

Bergman (1984), two varieties; H. and Medvedev (1994), continuum many.

Feil (file) $\quad R_\alpha \subset \mathbb{R}$

$\alpha \in \mathbb{R}$

covering layer.

$\mathcal{M}^+ = (\cdots \oplus \mathbb{Z}_i \oplus \mathbb{Z}_{i+1} \oplus \cdots) \times \mathbb{Z}$

Medvedev (1977)

$H \leftrightarrow \mathbb{Z}$

H totally ordered

Scrimger (1975)

$S_p = (\mathbb{Z}_1 \oplus \cdots \oplus \mathbb{Z}_p) \leftrightarrow \mathbb{Z}$

$p = \text{a prime number}$

Friday, April 12, 13
Metabelian ℓ-group V: \mathcal{A}^2
Metabelian ℓ-group V: A^2

There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.
Metabelian \(\ell \)-group \(V \): \(A^2 \)

There exists a normal abelian convex \(\ell \)-subgroup \(A \subseteq V \) such that \(V/A \) is abelian.

The collection \(A^2 \) of all metabelian \(\ell \)-groups is a variety with \(A \subset A^2 \).
Metabelian \(\ell \)-group \(V \): \(\mathcal{A}^2 \)

There exists a normal abelian convex \(\ell \)-subgroup \(A \subseteq V \) such that \(V/A \) is abelian.

The collection \(\mathcal{A}^2 \) of all metabelian \(\ell \)-groups is a variety with \(A \subset \mathcal{A}^2 \).

\[\mathcal{A}^2 \]

minimal non-abelian

= covering layer of \(A \)
Metabelian ℓ-group V: A^2

There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.

The collection A^2 of all metabelian ℓ-groups is a variety with $A \subset A^2$.

Covering layer of A under A^2:

minimal non-abelian
$= \text{covering layer of } A$

Covering layer of A under A^2:
Metabelian ℓ-group V: \mathcal{A}^2

There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.

The collection \mathcal{A}^2 of all metabelian ℓ-groups is a variety with $A \subset \mathcal{A}^2$.

Covering layer of A under \mathcal{A}^2:

minimal non-abelian

= covering layer of A

Medvedev varieties $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$
Metabelian ℓ-group V: A^2

There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.

The collection A^2 of all metabelian ℓ-groups is a variety with $A \subset A^2$.
Metabelian ℓ-group V: \mathcal{A}^2

There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.

The collection \mathcal{A}^2 of all metabelian ℓ-groups is a variety with $A \subset \mathcal{A}^2$.

A variety \mathcal{V} is *minimally non-metabelian* if there is no variety \mathcal{W} with $\mathcal{V} \cap \mathcal{A}^2 \subset \mathcal{W} \subset \mathcal{V}$.

- Medvedev varieties $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$
- Scrimger varieties \mathcal{S}_p, p prime.

Covering layer of A under \mathcal{A}^2: minimal non-abelian $=\text{covering layer of } A$
Metabelian ℓ-group V: A^2

There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.

The collection A^2 of all metabelian ℓ-groups is a variety with $A \subset A^2$.

A variety V is minimally non-metabelian if there is no variety W with $V \cap A^2 \subset W \subset V$.

U is minimal non-metabelian if for all $W \subset U$, $W \subseteq A^2$.

Covering layer of A under A^2: Medvedev varieties M^-, M^0, M^+

Scrimger varieties S_p, p prime.

minimal non-abelian = covering layer of A
There exists a normal abelian convex ℓ-subgroup $A \subseteq V$ such that V/A is abelian.

The collection A^2 of all metabelian ℓ-groups is a variety with $A \subset A^2$.

A variety V is \textit{minimally non-metabelian} if there is no variety W with $V \cap A^2 \subset W \subset V$.

U is \textit{minimal non-metabelian} if for all $W \subset U$, $W \subset A^2$.

If U is minimal non-metabelian, it is minimally non-metabelian.
The Scrimger ℓ-groups:
The Scrimger ℓ-groups:

$$S_n = \mathbb{Z} \times \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \times \sum_{i=0}^{n-1} H$$
The Scrimger \(\ell \)-groups:

\[
S_n = \mathbb{Z} \times \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \times \sum_{i=0}^{n-1} H
\]

For \(a, b \in S_n \)

\[
ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1}))
\]

\[
= (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \ldots, a_{n-1} + b_{n-1-a'}))
\]
The Scrimger ℓ-groups:

\[S_n = \mathbb{Z} \times \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \times \sum_{i=0}^{n-1} H \]

For \(a, b \in S_n \)

\[ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1})) = (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \ldots, a_{n-1} + b_{n-1-a'})) \]

A useful representation of \((k, (m_0, m_1, \ldots, m_{n-1})) \in S_n\) is:
The Scrimger ℓ-groups:

\[S_n = \mathbb{Z} \times \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \times \sum_{i=0}^{n-1} H \]

For \(a, b \in S_n \)

\[ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1})) = (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \ldots, a_{n-1} + b_{n-1-a'})) \]

A useful representation of \((k, (m_0, m_1, \ldots, m_{n-1})) \in S_n\) is:

\[k \]

\[m_0 \quad m_1 \quad \cdots \quad m_{n-1} \]
The Scrimger ℓ-groups:

$$S_n = \mathbb{Z} \times \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \times \sum_{i=0}^{n-1} H$$

For $a, b \in S_n$

$$ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1}))$$

$$= (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \ldots, a_{n-1} + b_{n-1-a'}))$$

A useful representation of $(k, (m_0, m_1, \ldots, m_{n-1})) \in S_n$ is:

$$S_n \in \mathcal{A}^2$$

is metabelian.
The Scrimger ℓ-groups:

\[S_n = \mathbb{Z} \rtimes \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \rtimes \sum_{i=0}^{n-1} H \]

For \(a, b \in S_n \)

\[ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1})) = (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \ldots, a_{n-1} + b_{n-1-a'})) \]

A useful representation of \((k, (m_0, m_1, \ldots, m_{n-1})) \in S_n\) is:

\[S_n \in A^2 \text{ is metabelian.} \]

An extension is \(S_{m,n}\) with \(H\) in \(S_n\) replaced by \(S_m\).
The Scrimger ℓ-groups:

$$S_n = \mathbb{Z} \rtimes \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \rtimes \sum_{i=0}^{n-1} H$$

For $a, b \in S_n$

$$ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1}))$$

$$= (a' + b', (a_0 + b_0 - a', a_1 + b_1 - a', \ldots, a_{n-1} + b_{n-1} - a'))$$

A useful representation of $(k, (m_0, m_1, \ldots, m_{n-1})) \in S_n$ is:

$$S_n \in \mathcal{A}^2$$ is metabelian.

An extension is $S_{m,n}$ with H in S_n replaced by S_m.

$$S_{m,n} \in \mathcal{A}^3$$
The Scrimger ℓ-groups:

\[S_n = \mathbb{Z} \times \sum_{i=0}^{n-1} \mathbb{Z} = \mathbb{Z} \times \sum_{i=0}^{n-1} H \]

For \(a, b \in S_n \)

\[ab = (a', (a_0, a_1, \ldots, a_{n-1}))(b', (b_0, b_1, \ldots, b_{n-1})) = (a' + b', (a_0 + b_{0-a'}, a_1 + b_{1-a'}, \ldots, a_{n-1} + b_{n-1-a'})) \]

A useful representation of \((k, (m_0, m_1, \ldots, m_{n-1})) \in S_n\) is:

\[S_n \in A^2 \text{ is metabelian.} \]

An extension is \(S_{m,n} \) with \(H \) in \(S_n \) replaced by \(S_m \).

\[S_{m,n} \in A^3 \]

\[\text{Var}(S_n) = S_n \text{ and Var}(S_{m,n}) = S_{m,n} \]
Theorem. Let p, q be positive prime integers. Then $\mathcal{S}_{p,q}$ is a minimal non-metabelian variety.
Theorem. Let p, q be positive prime integers. Then $\mathcal{S}_{p,q}$ is a minimal non-metabelian variety.

So, $\mathcal{S}_{p,q}$ covers $\mathcal{S}_{p,q} \cap A^2$.

(D - H)
Theorem. Let \(p, q \) be positive prime integers. Then \(\mathcal{S}_{p,q} \) is a minimal non-metabelian variety.

So, \(\mathcal{S}_{p,q} \) covers \(\mathcal{S}_{p,q} \cap \mathcal{A}^2 \). \hfill (D - H)

Theorem. If \(p \) and \(q \) are distinct positive prime integers, then \(\mathcal{S}_{p,q} \cap \mathcal{A}^2 \) is the Scrimger variety \(\mathcal{S}_{pq} \). \hfill (D - H)
Theorem. Let p, q be positive prime integers. Then \mathcal{S}_p,q is a minimal non-metabelian variety. So, \mathcal{S}_p,q covers $\mathcal{S}_p,q \cap A^2$.

(D - H)

Theorem. If p and q are distinct positive prime integers, then $\mathcal{S}_p,q \cap A^2$ is the Scrimger variety S_{pq}.

(D - H)

Theorem. The family $\{\mathcal{S}_p,q : p, q \text{ positive prime integers}\}$ is a countable infinite set of minimal non-metabelian ℓ-group varieties which contain no nonabelian o-groups.

(D - H)
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.
\[H_{1,n} = S_n, \text{ a Scrimger } \ell\text{-group of width } n \text{ and shift by 1.} \]

In general, \(H_{r,s} \) is a generalized Scrimger \(\ell \)-group of width \(rs \) and shift by \(r \).
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.

In general, $H_{r,s}$ is a generalized Scrimger ℓ-group of width rs and shift by r.

$M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.

In general, $H_{r,s}$ is a generalized Scrimger ℓ-group of width rs and shift by r.

$M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$M_{n,r,s} = \mathbb{Z} \times \sum_{i=0}^{n-1} H_{r,s}$
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.

In general, $H_{r,s}$ is a generalized Scrimger ℓ-group of width rs and shift by r.

$M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \times \sum_{i=0}^{n-1} H_{r,s}$$

$\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.
\[H_{1,n} = S_n, \] a Scrimger \(\ell \)-group of width \(n \) and shift by 1.

In general, \(H_{r,s} \) is a generalized Scrimger \(\ell \)-group of width \(rs \) and shift by \(r \).

\[M_{n,r,s} \text{ is the definition of } S_n \text{ with } H \text{ replaced by } H_{r,s}. \]

\[M_{n,r,s} = \mathbb{Z} \rightarrow \sum_{i=0}^{n-1} H_{r,s} \]

\[M_{n,r,s} \text{ is the variety generated by } M_{n,r,s}. \]

Theorem. Let \(p \) be a positive prime integer and \(k \) any positive integer.
\[H_{1,n} = S_n, \text{ a Scrimger } \ell\text{-group of width } n \text{ and shift by 1.} \]

In general, \(H_{r,s} \) is a generalized Scrimger \(\ell\text{-group of width } rs \text{ and shift by } r. \)

\[M_{n,r,s} \text{ is the definition of } S_n \text{ with } H \text{ replaced by } H_{r,s}. \]

\[M_{n,r,s} = \mathbb{Z} \times \sum_{i=0}^{n-1} H_{r,s} \]

\(M_{n,r,s} \) is the variety generated by \(M_{n,r,s}. \)

Theorem. Let \(p \) be a positive prime integer and \(k \) any positive integer.

The varieties \(M_{p,p,p^k} \) are minimal non-metabelian varieties.
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.

In general, $H_{r,s}$ is a generalized Scrimger ℓ-group of width rs and shift by r.

$M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

\[M_{n,r,s} = \mathbb{Z} \rightarrow \sum_{i=0}^{n-1} H_{r,s} \]

$\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer.

The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

Like $\mathfrak{S}_{p,q}$ they contain no nonabelian o-groups.
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.

In general, $H_{r,s}$ is a generalized Scrimger ℓ-group of width rs and shift by r.

$M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$M_{n,r,s} = \mathbb{Z} \rightarrow \sum_{i=0}^{n-1} H_{r,s}$

$\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer.

The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

Like $\mathcal{S}_{p,q}$ they contain no nonabelian o-groups.

Every minimal non-metabelian variety which contains no nonabelian o-groups must be either $\mathcal{S}_{p,q}$ or \mathcal{M}_{p,p,p^k}. (D - H)
$H_{1,n} = S_n$, a Scrimger ℓ-group of width n and shift by 1.

In general, $H_{r,s}$ is a generalized Scrimger ℓ-group of width rs and shift by r.

$M_{n,r,s}$ is the definition of S_n with H replaced by $H_{r,s}$.

$$M_{n,r,s} = \mathbb{Z} \times \sum_{i=0}^{n-1} H_{r,s}$$

$\mathcal{M}_{n,r,s}$ is the variety generated by $M_{n,r,s}$.

Theorem. Let p be a positive prime integer and k any positive integer.

The varieties \mathcal{M}_{p,p,p^k} are minimal non-metabelian varieties.

Like $\mathcal{S}_{p,q}$ they contain no nonabelian o-groups.

Every minimal non-metabelian variety which contains no nonabelian o-groups must be either $\mathcal{S}_{p,q}$ or \mathcal{M}_{p,p,p^k}.

(D - H)
Questions
Questions

The known covers of the abelian variety of ℓ-groups are:
Questions

The known covers of the abelian variety of \(\ell \)-groups are:

 Scrimger \(S_p, p \) a prime (Scrimger, 1975)
Questions

The known covers of the abelian variety of ℓ-groups are:

- Scrimger S_p, p a prime (Scrimger, 1975)
- M^-, M^0, M^+ (Medvedev, 1977)
Questions

The known covers of the abelian variety of ℓ-groups are:

- Scrimger S_p, p a prime (Scrimger, 1975)
- M^-, M^0, M^+ (Medvedev, 1977)
- $H_r \ncong \mathbb{Z}$, continuum many (Holland, Medvedev, 1994)
Questions

The known covers of the abelian variety of \(\ell\)-groups are:

Scrimger \(S_p\), \(p\) a prime \hspace{1cm} (Scrimger, 1975)

\(M^{-}, M^{0}, M^{+}\) \hspace{1cm} (Medvedev, 1977)

\(H_r \cong \mathbb{Z}\), continuum many \hspace{1cm} (Holland, Medvedev, 1994)

Is that all?
Questions

The known covers of the abelian variety of ℓ-groups are:

- Scrimger S_p, p a prime (Scrimger, 1975)
- $\mathcal{M}^-, \mathcal{M}^0, \mathcal{M}^+$ (Medvedev, 1977)
- $H_r \leftarrow \mathbb{Z}$, continuum many (Holland, Medvedev, 1994)

Is that all?

Every known cover of \mathcal{B} is generated by a totally ordered ul-group. of the form $H \leftarrow \mathbb{Z}$.
Questions

The known covers of the abelian variety of ℓ-groups are:

- Scrimger S_p, p a prime (Scrimger, 1975)
- M^-, M^0, M^+ (Medvedev, 1977)
- $H_r \rightarrow \times \mathbb{Z}$, continuum many (Holland, Medvedev, 1994)

Is that all?

Every known cover of B is generated by a *totally* ordered ul-group of the form $H \rightarrow \times \mathbb{Z}$.

Is that all?
Questions

The known covers of the abelian variety of \(\ell \)-groups are:

- Scrimger \(\mathcal{S}_p \), \(p \) a prime \hspace{1cm} (Scrimger, 1975)
- \(\mathcal{M}^{-}, \mathcal{M}^{0}, \mathcal{M}^{+} \) \hspace{1cm} (Medvedev, 1977)
- \(H_r \leftarrow \mathbb{Z} \), continuum many \hspace{1cm} (Holland, Medvedev, 1994)

Is that all?

Every known cover of \(\mathcal{B} \) is generated by a \textit{totally} ordered \(\mathcal{U}\ell \)-group.

Is that all?

??
Some References

5. Darnel and Holland, *Minimal non-metabelian varieties of \(\ell \)-groups which contain no nonabelian o-groups*, submitted.
u ℓ-groups \[\Psi \text{MV-algebras} \]
$u\ell$-groups

$\Psi\text{MV-algebras}$
$u \ell$-groups

ΨMV-algebras
- u ℓ-groups
- ?

ΨMV-algebras
- ?

Come on, guys. Cooperate!
u ℓ-groups

ΨMV-algebras

Thank You!!

Come on, guys. Cooperate!