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AFFINE SPACES AND CONVEX SETS

1. Real affine spaces

Given a vector space (or a module) A over a
subfield (or a subring) R of R:

An affine space A over R (or affine R-space)
is the algebra(

A,
n∑

i=1

xiri

∣∣∣∣ n∑
i=1

ri = 1
)
.

This algebra is equivalent to

(A, P, R),

where

R = {f | f ∈ R}

and

xyf := x(1− f) + yf =: f(x, y),

and P is the Mal’cev operation

xyzP := x− y + z =: P (x, y, z).
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The class R of all affine R-spaces is a variety.

The variety R satisfies the entropic identities

xyp ztp q = xzq ytq p

for all p, q ∈ R.

Abstractly, R is defined as the class of idempo-

tent entropic Mal’cev algebras (A, P, R) with a

ternary Mal’cev operation P and binary opera-

tions r for each r ∈ R, satisfying the identities:

xy0 = x = yx1,

xyp xyq r = xy pqr,

xyp xyq xyr P = xy pqrP

for all p, q, r ∈ R.

The variety R also satisfies the cancellation

laws

(xyp = xzp) → y = z

for all invertible p ∈ R.
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2. Convex sets and barycentric algebras

Let F be a subfield of R, Io(F ) :=]0,1[⊂ F and

I(F ) := [0,1] ⊂ F .

Convex subsets of affine F -spaces (or F -convex

sets) are Io(F )-subreducts (A, Io(F )) of affine

F -spaces.

The class Cv(F ) of F -convex sets generates

the variety B(F ) of F -barycentric algebras.

Theorem The class Cv(F ) and the quasivari-

ety C(F ) of cancellative F -barycentric algebras

coincide. Cv(F ) is a minimal subquasivariety

of the variety B(F ).
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3. Intervals of the F -line

The algebra (F, F ) is called an F -line, and in-
tervals of the F -line are closed bounded inter-
vals considered as Io(F )-algebras.

Proposition The following conditions are equiv-
alent for any non-trivial subalgebra (A, Io(F ))
of (F, Io(F )):

(a) (A, Io(F )) is a closed interval of (F, Io(F ));

(b) (A, Io(F )) is isomorphic to (I(F ), Io(F ));

(c) (A, Io(F )) is generated by two (distinct) el-
ements;

(d) (A, Io(F )) is a free algebra on two free gen-
erators in the quasivariety C(F ) and in the
variety B(F ).
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4. R-convex sets

Now assume that R is a principal ideal subdo-

main of R such that Z ⊂ R ⊆ R.

The algebra (R, P, R) is called an R-line.

Let Io(R) :=]0,1[⊂ R and I(R) := [0,1] ⊂ R.

Intervals of (R, P, R) are defined as in the case

R = F .

Note that not all intervals of the line (R, P, R)

are isomorphic to the unit interval (I(R), Io(R)),

and not all are generated by its endpoints.

However (I(R), Io(R)) is generated by the end-

points and is free on two generators, in the

quasivariety and the variety it generates.

Algebraic R-convex subsets of affine R-spaces

are Io(R)-subreducts (A, Io(R)) of faithful affine

R-spaces.

6



Geometric R-convex sets of affine R-spaces

Rn are the intersections of R-convex subsets of

Rn with the subspace Rn.

If R is a field, both concepts coincide.

If not, then the algebraic and geometric defi-

nitions of R-convex sets do not coincide.

Proposition The class Cv(R) of Io(R)-

subreducts of faithful affine R-spaces is a

(minimal) quasivariety containing the class of

geometric R-convex sets.

Cv(R) does not coincide with the quasivariety

of cancellative members of the variety gener-

ated by Io(R)-subreducts of affine R-spaces.
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MODES

An algebra (A,Ω) is a mode if it is

• idempotent:

x...xω = x,

for each n-ary ω ∈ Ω, and

• entropic:

(x11...x1nω)...(xm1...xmnω)ϕ

= (x11...xm1ϕ)...(x1n...xmnϕ)ω.

for all ω, ϕ ∈ Ω.

Affine R-spaces, R-convex sets and their sub-

reducts are modes.
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ALGEBRAIC CLOSURES OF

GEOMETRIC R-CONVEX SETS

From now on, R is a principal ideal subdomain

of R such that Z ⊂ R ⊆ R, and

Io(R) contains an invertible element s.

All R-convex sets (C, Io(R)) are assumed to

be geometric subsets of an affine R-space A

isomorphic to (Rk, P, R) for some k = 1,2, ....

For (a, b) ∈ C × C,

〈a, b〉 denotes the Io(R)-subalgebra generated

by a and b, and

〈a, b〉o := 〈a, b〉 \ {a, b}.
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1. Algebraic s-closures

The pair (a, b) is called s-eligible, if for each

x ∈ 〈a, b〉o there is a y ∈ C with b = xys.

Es(C) denotes the set of s-eligible pairs of

(C, Io(R)).

Lemma The set Es(C) forms a subalgebra of

(A×A, Io(R)).

Lemma Let (a, b) ∈ C × C. Then (a, b) is an

s-eligible pair of (C, Io(R)) if and only if

xb1/s ∈ C for each x ∈ 〈a, b〉o.

An R-convex subset (C, Io(R)) of an affine R-

space A is called algebraically s-closed if for

each s-eligible pair (a, b) ∈ C × C, there is a

c ∈ C such that b = acs.
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Proposition An R-convex subset (C, Io(R)) of

an affine R-space A is algebraically s-closed if

and only if ab1/s ∈ C for each s-eligible pair

(a, b) ∈ C × C.

Let

Cs := {ab1/s | (a, b) ∈ Es(C)}.

The set Cs is called the algebraic s-closure

of (C, Io(R)).

Lemma The s-closure Cs of an R-convex

subset (C, Io(R)) of an affine R-space A is a

subalgebra of (A, Io(R)).

Lemma Let s and t be any two invertible

elements of Io(R). Then Cs and Ct coincide.
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2. Algebraic closures

The s-closure Cs of C will be called the
algebraic closure or simply the closure of C,
and will be denoted by C.

Proposition Let C be a k-dimensional geo-
metric convex subset of the affine R-space Rk.
Then its closure C is also a geometric
k-dimensional convex subset of Rk, and it co-
incides with the convex hull convR(C) of C.

Proposition The following hold for the clo-
sures B and C of R-convex subsets (C, Io(R))
and (B, Io(R)) of an affine R-space Rk.

(a) C ≤ C;

(b) If (B, Io(R)) ≤ (C, Io(R)),
then (B, Io(R)) ≤ (C, Io(R));

(c) C = C.
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ALGEBRAIC AND OTHER CLOSURES

Consider an affine R-space (A, P, R). Define

the following relation ∼s on the set A×A:

(a1, b1) ∼s (a2, b2) iff a1b2s = a1a2s b1s.

Lemma (a) The relation ∼s is a congruence

relation of the affine R-space (A×A, P, R).

(b) The mapping

ϕ : A → (A×A)∼s ; a 7→ (a, a)∼s

is an embedding of affine R-spaces.

(c) The relation ∼s is a congruence relation of

Io(R)-subreducts of (A×A, P, R), in particular

of each R-convex set (C × C, Io(R)).

Lemma Let (A, Io(R)) be the Io(R)-reduct of

an affine R-space (A, P, R). Then

(Es(A), Io(R))∼s ∼= (A, Io(R))

.
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1. Algebraic closures and aiming congru-

ences

The congruence ∼s of (C × C, Io(R)) is called

the aiming congruence.

Proposition Let (C, Io(R)) be an R-convex

subset of an affine R-space (A, P, R). Then

(Cs, I
o(R)) ∼= (Es(C), Io(R))∼s.

Corollary The following conditions are equiv-

alent for a k-dimensional geometric R-convex

subset C of the affine R-space Rk, where k =

1,2, . . . , and an invertible element s ∈ Io(R):

(a) (C, Io(R)) is algebraically closed,

(b) (C, Io(R)) ∼= (C, Io(R)),

(c) (C, Io(R)) ∼= (Es(C), Io(R))∼s.
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2. Algebraic and topological closures

We consider the usual Euclidean topology on

Rk, and Rk as a topological subspace of Rk.

Its closed (open) sets are simply closed (open)

subsets of Rk intersected with Rk.

For a geometric convex subset C of Rk, let

Ctc
R be its topological closure in Rk, and Ctc

R its

topological closure in Rk.

Theorem Let (C, Io(R)) be a k-dimensional

geometric convex subset of an affine R-space

(Rk, P, R). Then the algebraic closure C of

C and the topological closure Ctc
R of C in Rk

coincide:

C = Ctc
R .
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