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Z[x],F[x, y],R[X], Chap 9

Book’s definition: a polynomial over R in the variable x is a formal expression
a0 + a1x + · · ·+ anxn, ai ∈ R.
What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)
More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form a0 + a1x + · · ·+ anxn, ai ∈ Z.
Z[x] is the free ring over {x}. The universal property is verified by evaluation:

Any function {x} → R : x 7→ r extends uniquely to a ring homomorphism

evalr : Z[x]→ R : p(x) 7→ p(r).

If X = {x1, x2, . . .}, then Z[X] is the free commutative ring over X. R[X] is the
free commutative R-algebra over X.

If R is a domain, then R[x] is a domain.
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Ideals of F[x]

If F ≤ K are fields, and α ∈ K− F, then we are interested in the structure of
F[α] = 〈F ∪ {α}〉. This is ∼= F[x]/I where I = ker(evalα). Hence F[α] has a
commutative F-algebra presentation

〈x | p1(x) = 0, p1(x) = 0, . . .〉, for I = (p1, p2, . . .).

Our goal is to show that either (i) I = (0) (α transcendental/F), or (ii)
I = (p(x)) (α algebraic/F), in either case I is principal, and in (ii) the
principal generator can be taken to be a monic, irreducible (=nonfactorable)
polynomial over F.

What we know at this point is that I is prime. We also want to show that in
case (ii) I is maximal. So if α is algebraic over F, then F[α] = F(α) is a field.
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Stage I: F[x] is a Euclidean Domain

Df. An integral domain D is Euclidean if it “possesses a division algorithm”:
there is a function N : D→ Z≥0 satisfying N(0) = 0 such that whenever
a, b ∈ D and b 6= 0, there exists q, r ∈ R such that

a = qb + r

with r = 0 or N(r) < N(b).

1 N(x) = |x| is a norm on Z.
2 N(p(x)) = deg(p(x)) is a norm on F[x].

Note: N(r) = 0 implies r = 0 or r is a unit.
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Stage II: Euclidean Domains are PID’s (*)

Df. R a PID⇔ R is an integral domain where every ideal is principal.

Proof of (*). Let D be Euclidean and I C D, I 6= (0).

Choose b ∈ I − {0} of least norm.

If N(b) = 0, then b is a unit, so R = (b) ⊆ I, and I is principal.

Else N(b) is positive. Choose any a ∈ I and write a = qb + r with
N(r) < N(b).

r = a− qb ∈ I has smaller norm, so r = 0.
So a = qb ∈ (b). So I = (b). �
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N(r) < N(b).

r = a− qb ∈ I has smaller norm, so r = 0.
So a = qb ∈ (b). So I = (b). �
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Elements versus ideals

Throughout, D is an integral domain.

1 u is a unit iff (u) = R.
2 A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
3 A nonzero nonunit q is irreducible iff (q) is maximal among nonzero

proper principal ideals.
4 Fact: primes are irreducible.
5 Fact: in a PID, irreducibles are prime.
6 a and b are associate (=differ by a unit) iff (a) = (b)
7 a is associate to b1b2 . . . bk iff (a) = (b1b2 · · · bk) = (b1)(b2) · · · (bk)

8 Given a, b ∈ D, if (d) is the smallest principal ideal satisfying
(a) + (b) ⊆ (d), then d = gcd(a, b).

If D is a PID, gcd’s exist, and if d = gcd(a, b) then d = au + bv for some
u, v ∈ D. If D is Euclidean with effective division algorithm, then u, v, d can
be computed algorithmically with the Euclidean algorithm.
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Prime ideals in F[x]

1 Every nonzero polynomial in F[x] is associate to a monic polynomial.

2 I C F[x] is prime iff I = (0) or I = (p(x)) for some monic irreducible
p(x) ∈ F[x]

I = (0) or I is maximal.
3 If p(x) is a monic irreducible, then F[x]/(p) is a field.
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