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Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.
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(Elements are normal forms for words.)

Modern Algebra 1 (Fall 2016) Polynomial rings



Zlx, Flx,y], RIX

Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.

What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)

More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form ag + ajx + - - - + a,x"*, a; € Z.

Modern Algebra 1 (Fall 2016) Polynomial rings



Z|x],Fx,y], R[X], Chap 9

Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.

What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)

More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form ag + ajx + - - - + a,x"*, a; € Z.
Z[x] is the free ring over {x}. The universal property is verified by evaluation:

Modern Algebra 1 (Fall 2016)



Z|x],Fx,y], R[X], Chap 9

Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.

What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)

More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form ag + ajx + - - - + a,x"*, a; € Z.
Z[x] is the free ring over {x}. The universal property is verified by evaluation:

Any function {x} — R: x — r extends uniquely to a ring homomorphism

eval,: Z[x] — R: p(x) — p(r).

Modern Algebra 1 (Fall 2016) Polynomial rings



Z|x],Fx,y], R[X], Chap 9

Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.

What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)

More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form ag + ajx + - - - + a,x"*, a; € Z.
Z[x] is the free ring over {x}. The universal property is verified by evaluation:

Any function {x} — R: x — r extends uniquely to a ring homomorphism

eval,: Z[x] — R: p(x) — p(r).

If X = {x1,x2, ...}, then Z[X] is the free commutative ring over X.

Modern Algebra 1 (Fall 2016) Polynomial rings



Z|x],Fx,y], R[X], Chap 9

Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.

What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)

More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form ag + ajx + - - - + a,x"*, a; € Z.
Z[x] is the free ring over {x}. The universal property is verified by evaluation:

Any function {x} — R: x — r extends uniquely to a ring homomorphism

eval,: Z[x] — R: p(x) — p(r).

If X = {x1,x2, ...}, then Z[X] is the free commutative ring over X. R[X] is the
free commutative R-algebra over X.

Modern Algebra 1 (Fall 2016) Polynomial rings



Z|x],Fx,y], R[X], Chap 9

Book’s definition: a polynomial over R in the variable x is a formal expression
apg+ajx+ -+ a,x",a; € R.

What they are trying to express is that R[x] is a free object in some setting.
(Elements are normal forms for words.)

More precisely, every word in X = {x} in the language of commutative rings
can be reduced to a unique word of the form ag + ajx + - - - + a,x"*, a; € Z.
Z[x] is the free ring over {x}. The universal property is verified by evaluation:

Any function {x} — R: x — r extends uniquely to a ring homomorphism

eval,: Z[x] — R: p(x) — p(r).

If X = {x1,x2, ...}, then Z[X] is the free commutative ring over X. R[X] is the
free commutative R-algebra over X.

If R is a domain, then R[x| is a domain.
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Ideals of [F[x]

If F < K are fields, and o € K — F, then we are interested in the structure of
Fla] = (FU {a}).
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Ideals of [F[x]

If F < K are fields, and o € K — F, then we are interested in the structure of
Fla] = (FU {a}). This is = F[x]/I where I = ker(eval, ). Hence F[a] has a
commutative F-algebra presentation

<x|p1(x):0,p1(x):O,...), for I:(pl,pg,...).

Our goal is to show that either (i) I = (0) (« transcendental/F), or (ii)

I = (p(x)) (o algebraic/F), in either case [ is principal, and in (ii) the
principal generator can be taken to be a monic, irreducible (=nonfactorable)
polynomial over F.

What we know at this point is that / is prime. We also want to show that in
case (ii) / is maximal. So if « is algebraic over F, then F[a| = F(«) is a field.
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Stage I: IF[x] is a Euclidean Domain

Df. An integral domain D is Euclidean if it “possesses a division algorithm™:
there is a function N: D — Z=9 satisfying N(0) = 0 such that whenever
a,b € D and b # 0, there exists ¢, ¥ € R such that

a=qgb+r
with r = 0 or N(r) < N(b).
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Stage I: IF[x] is a Euclidean Domain

Df. An integral domain D is Euclidean if it “possesses a division algorithm™:
there is a function N: D — Z=9 satisfying N(0) = 0 such that whenever
a,b € D and b # 0, there exists ¢, ¥ € R such that

a=qgb+r

with r = 0 or N(r) < N(b).

©Q N(x) = |x| is anorm on Z.
@ N(p(x)) = deg(p(x)) is a norm on F[x].

Note: N(r) = 0 implies r = 0 or r is a unit.
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Choose b € I — {0} of least norm.

If N(b) = 0, then b is a unit, so R = (b) C I, and [ is principal.
Else N(b) is positive.
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Stage II: Euclidean Domains are PID’s

Df. R a PID < R is an integral domain where every ideal is principal.

Proof of (*). Let D be Euclidean and I < D, I # (0).
Choose b € I — {0} of least norm.
If N(b) = 0, then b is a unit, so R = (b) C I, and [ is principal.

Else N(b) is positive. Choose any a € I and write a = gb + r with
N(r) < N(b).

r = a — gb € I has smaller norm, so r = 0.
Soa=gqbe (b).Sol=(b).O
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@ a and b are associate (=differ by a unit) iff (a) = (D)
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Elements versus ideals

Throughout, D is an integral domain.
Q uisaunitiff (u) =R.
@ A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.

@ A nonzero nonunit g is irreducible iff (¢) is maximal among nonzero
proper principal ideals.

© Fact: primes are irreducible.

© Fact: in a PID, irreducibles are prime.

@ a and b are associate (=differ by a unit) iff (a) = (D)

@ aisassociate to b1by ... by iff (a) = (b1by---by) = (b1)(b2) - - - (k)

© Given a,b € D, if (d) is the smallest principal ideal satisfying
(a) + (b) C (d), thend = gcd(a, b).

If D is a PID, gcd’s exist, and if d = gcd(a, b) then d = au + by for some
u,v € D. If D is Euclidean with effective division algorithm, then u, v, d can
be computed algorithmically with the Euclidean algorithm.
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Prime ideals in [F[x]

@ Every nonzero polynomial in F[x] is associate to a monic polynomial.

@ I < F[x] is prime iff I = (0) or I = (p(x)) for some monic irreducible
p(x) € Flx] I = (0) or I is maximal.

@ If p(x) is a monic irreducible, then F[x]/(p) is a field.
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