Polynomial rings

Modern Algebra 1

Fall 2016

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

More precisely, every word in $X = \{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in \mathbb{Z}$.

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

More precisely, every word in $X = \{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by **evaluation**:

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

More precisely, every word in $X = \{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by **evaluation**:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$\operatorname{eval}_r \colon \mathbb{Z}[x] \to R \colon p(x) \mapsto p(r).$$

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

More precisely, every word in $X = \{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by **evaluation**:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$\operatorname{eval}_r \colon \mathbb{Z}[x] \to R \colon p(x) \mapsto p(r).$$

If $X = \{x_1, x_2, \ldots\}$, then $\mathbb{Z}[X]$ is the free commutative ring over *X*.

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

More precisely, every word in $X = \{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by **evaluation**:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$\operatorname{eval}_r \colon \mathbb{Z}[x] \to R \colon p(x) \mapsto p(r).$$

If $X = \{x_1, x_2, ...\}$, then $\mathbb{Z}[X]$ is the free commutative ring over *X*. R[X] is the free commutative *R*-algebra over *X*.

Book's definition: a *polynomial* over *R* in the variable *x* is a formal expression $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in R$.

What they are trying to express is that R[x] is a free object in some setting. (Elements are normal forms for words.)

More precisely, every word in $X = \{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_0 + a_1x + \cdots + a_nx^n$, $a_i \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by **evaluation**:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$\operatorname{eval}_r \colon \mathbb{Z}[x] \to R \colon p(x) \mapsto p(r).$$

If $X = \{x_1, x_2, ...\}$, then $\mathbb{Z}[X]$ is the free commutative ring over *X*. R[X] is the free commutative *R*-algebra over *X*.

If *R* is a domain, then R[x] is a domain.

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$.

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$.

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x \mid p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0)

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}),

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x))

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x)) (α algebraic/ \mathbb{F}),

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x)) (α algebraic/ \mathbb{F}), in either case *I* is principal,

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x)) (α algebraic/ \mathbb{F}), in either case *I* is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F} .

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x)) (α algebraic/ \mathbb{F}), in either case *I* is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F} .

What we know at this point is that *I* is prime.

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x)) (α algebraic/ \mathbb{F}), in either case *I* is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F} .

What we know at this point is that I is prime. We also want to show that in case (ii) I is maximal.

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K} - \mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha] = \langle \mathbb{F} \cup \{\alpha\} \rangle$. This is $\cong \mathbb{F}[x]/I$ where $I = \ker(\operatorname{eval}_{\alpha})$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F} -algebra presentation

$$\langle x | p_1(x) = 0, p_1(x) = 0, \ldots \rangle$$
, for $I = (p_1, p_2, \ldots)$.

Our goal is to show that either (i) I = (0) (α transcendental/ \mathbb{F}), or (ii) I = (p(x)) (α algebraic/ \mathbb{F}), in either case *I* is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F} .

What we know at this point is that *I* is prime. We also want to show that in case (ii) *I* is maximal. So if α is algebraic over \mathbb{F} , then $\mathbb{F}[\alpha] = \mathbb{F}(\alpha)$ is a field.

Df. An integral domain *D* is *Euclidean* if it "possesses a division algorithm": there is a function $N: D \to \mathbb{Z}^{\geq 0}$ satisfying N(0) = 0 such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$

Df. An integral domain *D* is *Euclidean* if it "possesses a division algorithm": there is a function $N: D \to \mathbb{Z}^{\geq 0}$ satisfying N(0) = 0 such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$

•
$$N(x) = |x|$$
 is a norm on \mathbb{Z} .

Df. An integral domain *D* is *Euclidean* if it "possesses a division algorithm": there is a function $N: D \to \mathbb{Z}^{\geq 0}$ satisfying N(0) = 0 such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$

Df. An integral domain *D* is *Euclidean* if it "possesses a division algorithm": there is a function $N: D \to \mathbb{Z}^{\geq 0}$ satisfying N(0) = 0 such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$

Df. An integral domain *D* is *Euclidean* if it "possesses a division algorithm": there is a function $N: D \to \mathbb{Z}^{\geq 0}$ satisfying N(0) = 0 such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$a = qb + r$$

with r = 0 or N(r) < N(b).

Note: N(r) = 0 implies r = 0 or r is a unit.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*).

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D, I \neq (0)$.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

If N(b) = 0, then *b* is a unit, so $R = (b) \subseteq I$, and *I* is principal.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

If N(b) = 0, then *b* is a unit, so $R = (b) \subseteq I$, and *I* is principal.

Else N(b) is positive.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

If N(b) = 0, then *b* is a unit, so $R = (b) \subseteq I$, and *I* is principal.

Else N(b) is positive. Choose any $a \in I$ and write a = qb + r with N(r) < N(b).

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

If N(b) = 0, then *b* is a unit, so $R = (b) \subseteq I$, and *I* is principal.

Else N(b) is positive. Choose any $a \in I$ and write a = qb + r with N(r) < N(b).

 $r = a - qb \in I$ has smaller norm, so r = 0.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

If N(b) = 0, then *b* is a unit, so $R = (b) \subseteq I$, and *I* is principal.

Else N(b) is positive. Choose any $a \in I$ and write a = qb + r with N(r) < N(b).

 $r = a - qb \in I$ has smaller norm, so r = 0. So $a = qb \in (b)$.

Df. *R* a PID \Leftrightarrow *R* is an integral domain where every ideal is principal.

Proof of (*). Let *D* be Euclidean and $I \triangleleft D$, $I \neq (0)$.

Choose $b \in I - \{0\}$ of least norm.

If N(b) = 0, then *b* is a unit, so $R = (b) \subseteq I$, and *I* is principal.

Else N(b) is positive. Choose any $a \in I$ and write a = qb + r with N(r) < N(b).

 $r = a - qb \in I$ has smaller norm, so r = 0. So $a = qb \in (b)$. So I = (b). \Box

Throughout, D is an integral domain.

• u is a unit iff (u) = R.

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- Sact: in a PID, irreducibles are prime.

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- Sact: in a PID, irreducibles are prime.
- *a* and *b* are associate (=differ by a unit) iff (a) = (b)

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- Sact: in a PID, irreducibles are prime.
- **(a)** a and b are associate (=differ by a unit) iff (a) = (b)
- *a* is associate to $b_1b_2...b_k$ iff $(a) = (b_1b_2...b_k) = (b_1)(b_2)...(b_k)$

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- S Fact: in a PID, irreducibles are prime.
- *a* and *b* are associate (=differ by a unit) iff (a) = (b)
- **2** *a* is associate to $b_1b_2...b_k$ iff $(a) = (b_1b_2...b_k) = (b_1)(b_2)...(b_k)$
- Given a, b ∈ D, if (d) is the smallest principal ideal satisfying
 (a) + (b) ⊆ (d), then d = gcd(a, b).

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- S Fact: in a PID, irreducibles are prime.
- *a* and *b* are associate (=differ by a unit) iff (a) = (b)
- **2** *a* is associate to $b_1b_2...b_k$ iff $(a) = (b_1b_2...b_k) = (b_1)(b_2)...(b_k)$
- Given a, b ∈ D, if (d) is the smallest principal ideal satisfying
 (a) + (b) ⊆ (d), then d = gcd(a, b).

Throughout, D is an integral domain.

- u is a unit iff (u) = R.
- **2** A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- S Fact: in a PID, irreducibles are prime.
- **(a)** *a* and *b* are associate (=differ by a unit) iff (a) = (b)
- **2** *a* is associate to $b_1b_2...b_k$ iff $(a) = (b_1b_2...b_k) = (b_1)(b_2)...(b_k)$
- Given a, b ∈ D, if (d) is the smallest principal ideal satisfying
 (a) + (b) ⊆ (d), then d = gcd(a, b).

If *D* is a PID, gcd's exist, and if d = gcd(a, b) then d = au + bv for some $u, v \in D$.

Throughout, D is an integral domain.

- u is a unit iff (u) = R.
- ② A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
- 3 A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
- Fact: primes are irreducible.
- Sact: in a PID, irreducibles are prime.
- *a* and *b* are associate (=differ by a unit) iff (a) = (b)
- *a* is associate to $b_1b_2...b_k$ iff $(a) = (b_1b_2...b_k) = (b_1)(b_2)...(b_k)$
- Given a, b ∈ D, if (d) is the smallest principal ideal satisfying
 (a) + (b) ⊆ (d), then d = gcd(a, b).

If *D* is a PID, gcd's exist, and if d = gcd(a, b) then d = au + bv for some $u, v \in D$. If *D* is Euclidean with effective division algorithm, then u, v, d can be computed algorithmically with the Euclidean algorithm.

• Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.

- Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.
- *I* ⊲ 𝔽[*x*] is prime iff *I* = (0) or *I* = (*p*(*x*)) for some monic irreducible *p*(*x*) ∈ 𝔼[*x*]

- Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.
- *I* ⊲ 𝔽[*x*] is prime iff *I* = (0) or *I* = (*p*(*x*)) for some monic irreducible *p*(*x*) ∈ 𝔼[*x*]

- Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.
- I ⊲ F[x] is prime iff I = (0) or I = (p(x)) for some monic irreducible p(x) ∈ F[x] I = (0) or I is maximal.
- So If p(x) is a monic irreducible, then $\mathbb{F}[x]/(p)$ is a field.