Polynomial rings

Modern Algebra 1

Fall 2016

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)
More precisely, every word in $X=\{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{Z}$.

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)
More precisely, every word in $X=\{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by evaluation:

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)
More precisely, every word in $X=\{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by evaluation:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$
\mathbf{e v a l}_{r}: \mathbb{Z}[x] \rightarrow R: p(x) \mapsto p(r)
$$

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)
More precisely, every word in $X=\{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by evaluation:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$
\operatorname{eval}_{r}: \mathbb{Z}[x] \rightarrow R: p(x) \mapsto p(r)
$$

If $X=\left\{x_{1}, x_{2}, \ldots\right\}$, then $\mathbb{Z}[X]$ is the free commutative ring over X.

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)
More precisely, every word in $X=\{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by evaluation:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$
\operatorname{eval}_{r}: \mathbb{Z}[x] \rightarrow R: p(x) \mapsto p(r)
$$

If $X=\left\{x_{1}, x_{2}, \ldots\right\}$, then $\mathbb{Z}[X]$ is the free commutative ring over $X . R[X]$ is the free commutative R-algebra over X.

$\mathbb{Z}[x], \mathbb{F}[x, y], R[X]$, Chap 9

Book's definition: a polynomial over R in the variable x is a formal expression $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in R$.
What they are trying to express is that $R[x]$ is a free object in some setting. (Elements are normal forms for words.)
More precisely, every word in $X=\{x\}$ in the language of commutative rings can be reduced to a unique word of the form $a_{0}+a_{1} x+\cdots+a_{n} x^{n}, a_{i} \in \mathbb{Z}$. $\mathbb{Z}[x]$ is the free ring over $\{x\}$. The universal property is verified by evaluation:

Any function $\{x\} \rightarrow R: x \mapsto r$ extends uniquely to a ring homomorphism

$$
\operatorname{eval}_{r}: \mathbb{Z}[x] \rightarrow R: p(x) \mapsto p(r)
$$

If $X=\left\{x_{1}, x_{2}, \ldots\right\}$, then $\mathbb{Z}[X]$ is the free commutative ring over $X . R[X]$ is the free commutative R-algebra over X.

If R is a domain, then $R[x]$ is a domain.

Ideals of $\mathbb{F}[x]$

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$.

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\mathbf{e v a l}_{\alpha}\right)$.

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)$

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$,

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))$

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))(\alpha$ algebraic $/ \mathbb{F})$,

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))(\alpha$ algebraic $/ \mathbb{F})$, in either case I is principal,

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))(\alpha$ algebraic $/ \mathbb{F})$, in either case I is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F}.

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))(\alpha$ algebraic $/ \mathbb{F})$, in either case I is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F}.

What we know at this point is that I is prime.

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))(\alpha$ algebraic $/ \mathbb{F})$, in either case I is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F}.

What we know at this point is that I is prime. We also want to show that in case (ii) I is maximal.

Ideals of $\mathbb{F}[x]$

If $\mathbb{F} \leq \mathbb{K}$ are fields, and $\alpha \in \mathbb{K}-\mathbb{F}$, then we are interested in the structure of $\mathbb{F}[\alpha]=\langle\mathbb{F} \cup\{\alpha\}\rangle$. This is $\cong \mathbb{F}[x] / I$ where $I=\operatorname{ker}\left(\right.$ eval $\left._{\alpha}\right)$. Hence $\mathbb{F}[\alpha]$ has a commutative \mathbb{F}-algebra presentation

$$
\left\langle x \mid p_{1}(x)=0, p_{1}(x)=0, \ldots\right\rangle, \quad \text { for } \quad I=\left(p_{1}, p_{2}, \ldots\right)
$$

Our goal is to show that either (i) $I=(0)(\alpha$ transcendental $/ \mathbb{F})$, or (ii) $I=(p(x))(\alpha$ algebraic $/ \mathbb{F})$, in either case I is principal, and in (ii) the principal generator can be taken to be a monic, irreducible (=nonfactorable) polynomial over \mathbb{F}.

What we know at this point is that I is prime. We also want to show that in case (ii) I is maximal. So if α is algebraic over \mathbb{F}, then $\mathbb{F}[\alpha]=\mathbb{F}(\alpha)$ is a field.

Stage $\mathrm{I}: \mathbb{F}[x]$ is a Euclidean Domain

Stage $\mathrm{I}: \mathbb{F}[x]$ is a Euclidean Domain

Df. An integral domain D is Euclidean if it "possesses a division algorithm": there is a function $N: D \rightarrow \mathbb{Z} \geq 0$ satisfying $N(0)=0$ such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r
$$

with $r=0$ or $N(r)<N(b)$.

Stage $\mathrm{I}: \mathbb{F}[x]$ is a Euclidean Domain

Df. An integral domain D is Euclidean if it "possesses a division algorithm": there is a function $N: D \rightarrow \mathbb{Z} \geq 0$ satisfying $N(0)=0$ such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r
$$

with $r=0$ or $N(r)<N(b)$.
(1) $N(x)=|x|$ is a norm on \mathbb{Z}.

Stage $\mathrm{I}: \mathbb{F}[x]$ is a Euclidean Domain

Df. An integral domain D is Euclidean if it "possesses a division algorithm": there is a function $N: D \rightarrow \mathbb{Z} \geq 0$ satisfying $N(0)=0$ such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r
$$

with $r=0$ or $N(r)<N(b)$.
(1) $N(x)=|x|$ is a norm on \mathbb{Z}.
(2) $N(p(x))=\operatorname{deg}(p(x))$ is a norm on $\mathbb{F}[x]$.

Stage $\mathrm{I}: \mathbb{F}[x]$ is a Euclidean Domain

Df. An integral domain D is Euclidean if it "possesses a division algorithm": there is a function $N: D \rightarrow \mathbb{Z} \geq 0$ satisfying $N(0)=0$ such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r
$$

with $r=0$ or $N(r)<N(b)$.
(1) $N(x)=|x|$ is a norm on \mathbb{Z}.
(2) $N(p(x))=\operatorname{deg}(p(x))$ is a norm on $\mathbb{F}[x]$.

Stage $\mathrm{I}: \mathbb{F}[x]$ is a Euclidean Domain

Df. An integral domain D is Euclidean if it "possesses a division algorithm": there is a function $N: D \rightarrow \mathbb{Z} \geq 0$ satisfying $N(0)=0$ such that whenever $a, b \in D$ and $b \neq 0$, there exists $q, r \in R$ such that

$$
a=q b+r
$$

with $r=0$ or $N(r)<N(b)$.
(1) $N(x)=|x|$ is a norm on \mathbb{Z}.
(2) $N(p(x))=\operatorname{deg}(p(x))$ is a norm on $\mathbb{F}[x]$.

Note: $N(r)=0$ implies $r=0$ or r is a unit.

Stage II: Euclidean Domains are PID's

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal. Proof of (*).

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal. Proof of $\left(^{*}\right)$. Let D be Euclidean and $I \triangleleft D, I \neq(0)$.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of $\left(^{*}\right)$. Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of (*). Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.
If $N(b)=0$, then b is a unit, so $R=(b) \subseteq I$, and I is principal.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of (*). Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.
If $N(b)=0$, then b is a unit, so $R=(b) \subseteq I$, and I is principal.
Else $N(b)$ is positive.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of $(*)$. Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.
If $N(b)=0$, then b is a unit, so $R=(b) \subseteq I$, and I is principal.
Else $N(b)$ is positive. Choose any $a \in I$ and write $a=q b+r$ with $N(r)<N(b)$.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of $\left(^{*}\right)$. Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.
If $N(b)=0$, then b is a unit, so $R=(b) \subseteq I$, and I is principal.
Else $N(b)$ is positive. Choose any $a \in I$ and write $a=q b+r$ with $N(r)<N(b)$.
$r=a-q b \in I$ has smaller norm, so $r=0$.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of $(*)$. Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.
If $N(b)=0$, then b is a unit, so $R=(b) \subseteq I$, and I is principal.
Else $N(b)$ is positive. Choose any $a \in I$ and write $a=q b+r$ with $N(r)<N(b)$.
$r=a-q b \in I$ has smaller norm, so $r=0$.
So $a=q b \in(b)$.

Stage II: Euclidean Domains are PID's

Df. R a PID $\Leftrightarrow R$ is an integral domain where every ideal is principal.
Proof of $(*)$. Let D be Euclidean and $I \triangleleft D, I \neq(0)$.
Choose $b \in I-\{0\}$ of least norm.
If $N(b)=0$, then b is a unit, so $R=(b) \subseteq I$, and I is principal.
Else $N(b)$ is positive. Choose any $a \in I$ and write $a=q b+r$ with $N(r)<N(b)$.
$r=a-q b \in I$ has smaller norm, so $r=0$.
So $a=q b \in(b)$. So $I=(b)$. \square

Elements versus ideals

Throughout, D is an integral domain.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
((Fact: primes are irreducible.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
(Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
(Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.
(0) a and b are associate (=differ by a unit) iff $(a)=(b)$

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
(ㅇ) Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.
(6) a and b are associate (=differ by a unit) iff $(a)=(b)$
(1) a is associate to $b_{1} b_{2} \ldots b_{k}$ iff $(a)=\left(b_{1} b_{2} \cdots b_{k}\right)=\left(b_{1}\right)\left(b_{2}\right) \cdots\left(b_{k}\right)$

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
((Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.
(0) a and b are associate (=differ by a unit) iff $(a)=(b)$
(1) a is associate to $b_{1} b_{2} \ldots b_{k}$ iff $(a)=\left(b_{1} b_{2} \cdots b_{k}\right)=\left(b_{1}\right)\left(b_{2}\right) \cdots\left(b_{k}\right)$
(8) Given $a, b \in D$, if (d) is the smallest principal ideal satisfying $(a)+(b) \subseteq(d)$, then $d=\operatorname{gcd}(a, b)$.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
((Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.
(0) a and b are associate (=differ by a unit) iff $(a)=(b)$
(1) a is associate to $b_{1} b_{2} \ldots b_{k}$ iff $(a)=\left(b_{1} b_{2} \cdots b_{k}\right)=\left(b_{1}\right)\left(b_{2}\right) \cdots\left(b_{k}\right)$
(8) Given $a, b \in D$, if (d) is the smallest principal ideal satisfying $(a)+(b) \subseteq(d)$, then $d=\operatorname{gcd}(a, b)$.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
((Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.
(0) a and b are associate (=differ by a unit) iff $(a)=(b)$
(1) a is associate to $b_{1} b_{2} \ldots b_{k}$ iff $(a)=\left(b_{1} b_{2} \cdots b_{k}\right)=\left(b_{1}\right)\left(b_{2}\right) \cdots\left(b_{k}\right)$
(8) Given $a, b \in D$, if (d) is the smallest principal ideal satisfying $(a)+(b) \subseteq(d)$, then $d=\operatorname{gcd}(a, b)$.
If D is a PID, gcd's exist, and if $d=\operatorname{gcd}(a, b)$ then $d=a u+b v$ for some $u, v \in D$.

Elements versus ideals

Throughout, D is an integral domain.
(1) u is a unit iff $(u)=R$.
(2) A nonzero nonunit p is a prime iff (p) is a nonzero prime ideal.
(3) A nonzero nonunit q is irreducible iff (q) is maximal among nonzero proper principal ideals.
(ㅇ) Fact: primes are irreducible.
(3) Fact: in a PID, irreducibles are prime.
(0) a and b are associate (=differ by a unit) iff $(a)=(b)$
(1) a is associate to $b_{1} b_{2} \ldots b_{k}$ iff $(a)=\left(b_{1} b_{2} \cdots b_{k}\right)=\left(b_{1}\right)\left(b_{2}\right) \cdots\left(b_{k}\right)$
(8) Given $a, b \in D$, if (d) is the smallest principal ideal satisfying $(a)+(b) \subseteq(d)$, then $d=\operatorname{gcd}(a, b)$.
If D is a PID, gcd's exist, and if $d=\operatorname{gcd}(a, b)$ then $d=a u+b v$ for some $u, v \in D$. If D is Euclidean with effective division algorithm, then u, v, d can be computed algorithmically with the Euclidean algorithm.

Prime ideals in $\mathbb{F}[x]$

(1) Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.

Prime ideals in $\mathbb{F}[x]$

(1) Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.
(2) $I \triangleleft \mathbb{F}[x]$ is prime iff $I=(0)$ or $I=(p(x))$ for some monic irreducible $p(x) \in \mathbb{F}[x]$

Prime ideals in $\mathbb{F}[x]$

(1) Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.
(2) $I \triangleleft \mathbb{F}[x]$ is prime iff $I=(0)$ or $I=(p(x))$ for some monic irreducible $p(x) \in \mathbb{F}[x]$

Prime ideals in $\mathbb{F}[x]$

(1) Every nonzero polynomial in $\mathbb{F}[x]$ is associate to a monic polynomial.
(2) $I \triangleleft \mathbb{F}[x]$ is prime iff $I=(0)$ or $I=(p(x))$ for some monic irreducible $p(x) \in \mathbb{F}[x] I=(0)$ or I is maximal.
(3) If $p(x)$ is a monic irreducible, then $\mathbb{F}[x] /(p)$ is a field.

