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Abstract. We show that if P is an infinite poset whose proper order ideals have

cardinality strictly less than |P |, and κ is a cardinal number strictly less than |P |,
then P has a principal order ideal of cardinality at least κ. We apply this result to
characterize the possible sizes of unary Jónsson algebras.

1. Introduction

If (P,≤) is a finite poset, then the average size of a principal order ideal is the

same as the average size of a principal order filter. Namely, it is the number of

pairs in the relation ≤ divided by the number of elements in P . The situation

is more asymmetric for infinite posets: If λ is an infinite cardinal and [λ]<ω is

the set of finite subsets of λ, then the principal order ideals of ([λ]<ω,⊆) are

finite (so, they are very small) while the principal order filters each have size

λ (which is as large as possible).

In this note, we present a nontrivial connection between the sizes of principal

order ideals and principal order filters. We begin with the following definition.

Definition 1.1. Let κ ≤ λ be cardinals with λ infinite. A poset P = (P,≤)

is a (κ, λ)-Jónsson poset if and only if

(1) |P | = λ,

(2) any principal order ideal of P has size < κ, and

(3) the complement of any principal order filter of P has size < λ.

We shall prove that a (κ, λ)-Jónsson poset exists if and only if κ = λ. This

means that, while it is easy to construct infinite posets whose principal order

ideals are small and whose principal order filters are large in cardinality, if we

insist that the principal order filters be large in the sense of having a small

complement, then the least bounds on the sizes of the principal order ideals

and order filters must be nearly the same. This result is easily seen to be

equivalent to the statement that if P is an infinite poset whose proper order

ideals have cardinality strictly less than |P |, and κ is a cardinal number strictly

less than |P |, then P has a principal order ideal of size at least κ.

The terminology that we have selected for the posets we study is motivated

by an application to the problem of determining the possible sizes of unary

Jónsson algebras. We say that an infinite algebra A has the Jónsson property

if |B| < |A| whenever B is a proper subuniverse of A. Recall that a Jónsson
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algebra is an algebra with the Jónsson property, which is defined in a language

with countably many function symbols. Jónsson’s Problem is the problem of

determining for which infinite cardinals λ there exists a Jónsson algebra of size

λ. If there is no Jónsson algebra of size λ, then λ is called a Jónsson cardinal.

The study of Jónsson’s Problem is part of the investigation of large cardinals.

It is known, for example, that every measurable cardinal is a Jónsson cardinal.

On the other hand, ZFC + (V = L) (the axiom of constructibility) implies

that there are no Jónsson cardinals. We refer the reader to Jech [2] for results

on Jónsson cardinals and to Coleman [1] for a survey of Jónsson algebras.

We employ our result on Jónsson posets to answer the following three ques-

tions:

(1) For which pairs of cardinals (µ, λ) is there an algebra of size λ with the

Jónsson property, defined in a language with µ-many unary function sym-

bols?

(2) For which pairs of cardinals (µ, λ) from the preceding question can the

algebra be constructed so that all unary operations commute with one

another?

(3) For which pairs of cardinals (µ, λ) from question (1) can the algebra be

constructed so that the deletion of any single operation from the signature

results in a loss of the Jónsson property?

2. Jónsson posets

Recall from the Introduction that, if κ ≤ λ are cardinals with λ infinite,

then P = (P,≤) is a (κ, λ)-Jónsson poset if

(1) |P | = λ,

(2) any principal order ideal of P has size < κ, and

(3) the complement of any principal order filter of P has size < λ.

We will soon show that a (κ, λ)-Jónsson poset exists exactly when κ = λ.

First, we introduce some notation and terminology. If (P,≤) is a poset and

p ∈ P , then we write (p] for the principal order ideal generated by p (that is,

{x ∈ P : x ≤ p}) and [p) for the principal order filter generated by p (that is,

{x ∈ P : p ≤ x}). If δ is a cardinal, we call a set “δ-small” if it has size < δ.

A subset of a set X will be called “δ-large” if its complement in X is δ-small.

Theorem 2.1. There exists a (κ, λ)-Jónsson poset if and only if κ = λ.

Proof. It is easy to see that there exist (λ, λ)-Jónsson posets for any infinite

λ. Indeed, simply take P := (λ,∈), where ∈ is membership.

To establish the other implication, assume by way of contradiction that

P = (P,≤) is a (κ, λ)-Jónsson poset and that κ < λ. Then the principal order

ideals of P are κ-small and the principal order filters of P are λ-large.

Claim 2.2. cf(λ) ≤ κ < λ.
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We begin by showing that P does not have maximal elements. If instead

p ∈ P is maximal, then the principal order filter [p) is a singleton. But then

the complement of [p) has size λ, contradicting the assumption that P is a

(κ, λ)-Jónsson poset.

We now define a well-ordered sequence p0 < p1 < · · · < pβ < · · · in P to

be unbounded if no element of P lies above all elements of the sequence, i.e.,

if the sequence is contained in no principal order ideal. Note that unbounded

sequences exist and have order type equal to a infinite limit ordinal, since P

has no maximal elements. Moreover, if (pβ)β<α is an unbounded sequence in

P and (αi) is cofinal in α, then clearly (pαi
) is also an unbounded sequence in

P. Hence, if (pβ)β<α is an unbounded sequence in P having shortest length

α, then α must be a cardinal and must be regular.

For each p ∈ P , call the complement of the principal order filter [p) the

p-layer. (More explicitly, the p-layer is L(p) := {x ∈ P : x 6≥ p}.) It follows

easily by definition of L(p) that

p1 ≤ p2 implies L(p1) ⊆ L(p2). (2.1)

As L(p) is the complement of a principal order filter, we deduce:

|L(p)| < λ for every p ∈ P. (2.2)

Note also that ⋃
β<α

L(pβ) = P, (2.3)

since if x ∈ P −
⋃
β<α L(pβ), then x would lie above all members of the

unbounded sequence (pβ)β<α. Because the λ-element set P is the union of

α-many λ-small sets, we conclude that

cf(λ) ≤ α. (2.4)

Since P is a (κ, λ)-Jónsson poset, each principal order ideal (pβ ] has size < κ.

We claim that

α ≤ κ. (2.5)

Suppose instead that κ < α. Since κ = |{pi : i < κ}| ≤ |(pκ]| and the principal

order ideals of P are κ-small, we get κ ≤ |(pκ]| < κ, a contradiction. Putting

(2.4) and (2.5) together, we see that

cf(λ) ≤ α ≤ κ < λ, (2.6)

and the proof of Claim 2.2 is complete.

Note from (2.6) above that λ is a singular cardinal. Since λ is infinite, we

conclude that

λ ≥ ℵω. (2.7)
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We now finish the proof of Theorem 2.1. Recalling from above that (pβ)β<α
is an unbounded sequence of least length α, we let λβ denote the cardinality

of the pβ-layer L(pβ). Then (2.1) – (2.3) imply that λβ < λ for all β and the

supremum of the λβ ’s is λ. By thinning the sequence (pβ)β<α if necessary, we

may assume that (λβ)β<α is a strictly increasing sequence of infinite cardinals

with supremum λ. (Here we are relying on (2.7) to ensure that the λβ ’s can

be chosen to be infinite.) After thinning, fix the unbounded sequence (pβ)β<α
until the end of the proof.

We now choose subsets Xβ of P for β < α so that the following are true:

(i) X0 = ∅.

(ii) If β = γ + 1, then L(pγ) ⊆ Xγ+1 ⊆ L(pγ+1) and |Xγ+1| = |L(pγ)|+.

(iii) If β is limit, then Xβ =
⋃
γ<β Xγ .

(The main points to remember are that the cardinals ξβ := |Xβ | are strictly

increasing with limit λ = |P |, and that ξβ is regular when β is a successor

ordinal. The construction of the Xβ ’s is possible because the pβ-layers strictly

increase in size.)

Let β∗ be the least successor ordinal β < α such that ξβ = |Xβ | > κ

(which must exist if κ < λ = supβ<α(ξβ)). For each x ∈ Xβ∗ , the x-layer is

λ-small, so |L(x)| < |Xβ | for large enough β. Let β(x) be the least successor

ordinal β > β∗ such that |L(x)| < |Xβ | holds. The map Xβ∗ → α : x 7→ β(x)

is a function from a set Xβ∗ of regular cardinality ξβ∗ to a set α of smaller

cardinality. (Recall that ξβ∗ > κ ≥ α.) Necessarily there is a subset Y ⊆ Xβ∗

of size ξβ∗ such that x 7→ β(x) is constant on Y . Let γ < α be that constant

value. For each y ∈ Y , we have that

|L(y)| < |Xβ(y)| = |Xγ |. (2.8)

The last equality follows since β(y) = γ by definition of γ. The set Xγ −⋃
y∈Y L(y) cannot be empty since ξγ = |Xγ | is regular (since γ = β(x) for

some x and β(x) is by definition a successor ordinal), |L(y)| is ξγ-small (by

(2.8) above), and |Y | = ξβ∗ < ξγ (since γ = β(y) for some y, β∗ < β(y), and

the cardinals ξi are strictly increasing). But if z ∈ Xγ −
⋃
y∈Y L(y), then z

lies above every element of Y . Hence the principal order ideal (z] has size at

least |Y | = ξβ∗ > κ. This contradiction concludes the proof. �

Remark 2.3. It is now possible to eliminate κ from the definition of a (κ, λ)-

Jónsson poset: Call an infinite poset P a Jónsson poset (without modifying

parameters) if the complement of any principal order filter has size < |P |,
equivalently, if any proper order ideal of P is |P |-small. Theorem 2.1 then

becomes a statement about the size of principal order ideals in such posets,

namely that if P is a Jónsson poset and κ < |P |, then P has a principal order

ideal of size at least κ.

Example 2.4. (Some Jónsson posets.)
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Figure 1. Some Jónsson posets of type (λ, F )

Let λ be a cardinal and let F : λ→ λ be an order-preserving function (i.e.,

α ≤ β implies F (α) ≤ F (β)). Extend (λ,∈) to a new poset P = (P,≤) by

adding new elements and comparabilities in an arbitrary way as long as the

poset remains “of type (λ, F )”, which we define to mean:

(i) the elements of λ form a cofinal sequence in P,

(ii) for each β < λ, P = [β) ∪ (F (β)], and

(iii) the principal ideal (F (β)] is λ-small.

It is not hard to see that, for any cardinal λ and order-preserving function F ,

a poset of type (λ, F ) is Jónsson.

The smallest possibility for F is

F (β) =

{
γ if β = γ + 1;

β if β is either 0 or a limit.

The only poset of type (λ, F ) for this F is (λ,∈). This poset is indicated in

Figure 1 (a).

If we alter this smallest F to one which, for a particular successor ordinal

γ + 1, satisfies F (γ + 1) = γ + 1 instead of F (γ + 1) = γ, then we obtain a

poset like the one in Figure 1 (b). Here we have fattened (λ,∈) by adding a

λ-small set of arbitrarily-ordered elements between γ and γ + 1.

The general poset of type (λ, F ) is suggested by Figure 1 (c). The restric-

tions depicted there must hold for each β.

If P is any Jónsson poset of regular cardinality λ, then an unbounded

sequence in P must have length at least λ (by (2.6)). The first λ-many elements

of such a sequence will generate an ideal of size at least λ, which cannot be

proper, hence the sequence must be cofinal. Let (pβ)β<λ be a cofinal sequence

in P of length λ. For any β < λ, the pβ-layer has size < λ. Since λ is

regular and (pβ)β<λ is cofinal in P, there is a least F (β) such that the element

pF (β) majorizes the pβ-layer. Taking the sequence (pβ)β<λ to be a copy of

the poset (λ,∈) and endowing it with the function F just described, we see

that any Jónsson poset of regular cardinality λ is of type (λ, F ) for some

order-preserving F . Moreover, items (i), (ii), and (iii) from above hold for F .
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Remark 2.5. The statements made in the previous paragraph need not be

true if λ is singular. We claim that if λ is singular, then there exists a Jónsson

poset P of cardinality λ but with no cofinal sequence of length λ. To see this,

let λ be an infinite cardinal and S be a set of ordinals cofinal in λ. For i ∈ λ,

let i be the least element s of S (with respect to the usual ∈-order on the

ordinals) such that i ∈ s. Now define an order < on λ by i < j if and only if

i ∈ j. One checks easily that P := (λ,≤) is a Jónsson poset with the property

that any strictly increasing sequence has size at most |S|. Our claim follows.

3. Unary Algebras with the Jónsson Property

Say that A is a µ-unary algebra if A is an algebra defined in a language with

µ-many function symbols, all unary. If λ is infinite and µ ≥ λ, then it is easy to

see that there is a µ-unary algebra of size λ with the Jónsson property. Indeed,

let X be a set of size λ. For c ∈ X, let fc : X → X be defined by fc(x) := c

for all x ∈ C. Now interpret λ-many of the function symbols as the constant

functions fc, where c ranges over X, and the remaining function symbols (if

any) arbitrarily. The resulting algebra has no proper subuniverses and so

trivially has the Jónsson property. The next result concerns the existence of

µ-unary algebras of size λ with the Jónsson property when µ < λ.

Theorem 3.1. If µ < λ are infinite cardinals, then the following are equiva-

lent.

(i) There is a µ-unary algebra of size λ with the Jónsson property.

(ii) There is a (µ+, λ)-Jónsson poset.

Moreover, if (i) or (ii) holds, then λ = µ+.

Proof. [(i)⇒(ii)]

Assume that A is a µ-unary algebra of size λ with the Jónsson property.

Let P be the poset of cyclic (i.e. 1-generated) subuniverses of A ordered by

inclusion. Since every cyclic subuniverse has size at most µ and A is the union

of all cyclic subuniverses, it is easy to see that |P | = λ. We now show that

every principal order ideal of P has size at most µ. Let ϕ : A → P be the

surjective function a 7→ 〈a〉. Consider an arbitrary principal order ideal (〈a〉].
Note that 〈x〉 ∈ (〈a〉] iff 〈x〉 ⊆ 〈a〉 iff x ∈ 〈a〉. Thus ϕ

∣∣
〈a〉 : 〈a〉 → (〈a〉] is a

surjection. We conclude that |(〈a〉]| ≤ |〈a〉| ≤ µ.

Now let p ∈ P be arbitrary. We must show that the complement of [p) has

size less than λ. Note that the complement of [p) is just the p-layer L(p) of

P. Furthermore, as A is a unary algebra, ϕ−1(L(p)) is a proper subuniverse

of A. Thus by the Jónsson property it has cardinality < λ. Hence the p-

layer L(p) = ϕ(ϕ−1(L(p))) has cardinality < λ, and we have established the

implication.

[(ii)⇒(i)]
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Let (P,≤) be a (µ+, λ)-Jónsson poset. Every principal order ideal has size <

µ+, hence has size ≤ µ. Therefore, for each p ∈ P there is a surjective function

fp : µ→ (p]. Define a sequence of unary functions (Fν)ν<µ by Fν(p) = fp(ν).

This produces a µ-unary algebra A = (P, {Fν : ν < µ}) whose subuniverses

are exactly the order ideals of (P,≤). If B ⊆ P is a proper subuniverse of

A, then it is a proper order ideal of (P,≤). But then B is disjoint from

some principal order filter of (P,≤), whence B is λ-small. This establishes the

Jónsson property for A.

If (ii) holds, then Theorem 2.1 implies that λ = µ+. This completes the

proof. �

Corollary 3.2. If µ is infinite, then any µ-unary algebra with the Jónsson

property has size at most µ+. Moreover, there exist µ-unary algebras with the

Jónsson property of size µ+.

Proof. The first assertion follows immediately from Theorem 3.1. As for ex-

amples, recall from the remarks at the beginning of Section 2 that (µ+,∈) is

a (µ+, µ+)-Jónsson poset. Theorem 3.1 implies that there exists a µ-unary

algebra of size µ+ with the Jónsson property. �

We now turn our attention to determining the possible sizes of commutative

unary algebras with the Jónsson property (we say that a unary algebra A is

commutative if its operations pairwise commute).

Proposition 3.3. If A is a commutative µ-unary algebra of size λ with the

Jónsson property, then ℵ0 ≤ λ ≤ µ+ ℵ0 and µ 6= 0. Moreover, examples exist

for any choice of cardinals satisfying ℵ0 ≤ λ ≤ µ+ ℵ0 and µ 6= 0.

Proof. We apply the phrase “Jónsson property” to infinite algebras only, so

ℵ0 ≤ λ holds. Any infinite 0-unary algebra is a structureless set, hence has

proper subuniverses of the same cardinality. Thus we must have µ 6= 0.

To prove the rest of the first statement, suppose by way of contradiction

that there exists a commutative µ-unary algebra A of size λ with the Jónsson

property and that µ + ℵ0 < λ. If µ is finite, expand the language so that

it is countably infinite, either by introducing new functions symbols for each

of the unary terms or by introducing ℵ0-many new function symbols that

interpret as the identity function. Now we are in a setting where we may

apply Corollary 3.2, and it tells us that λ = µ+.

Partition the basic operations as F := S∪N , where S is the set of surjective

basic operations and N is the set of nonsurjective basic operations. Let Y :=⋃
f∈N f [A]. Since the operations in F commute, f [A] is a subuniverse of A

for every f ∈ F . It follows that Y is the union of fewer than µ+ subuniverses

each of size less than µ+. Since µ+ is regular, we see that |Y | < µ+. Let

a ∈ A−Y be arbitrary, and let B be a subuniverse of A maximal with respect

to containing Y and avoiding a. As A has the Jónsson property, it follows

that
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|B| < µ+. (3.1)

Let x ∈ A−B be arbitrary. The maximality of B implies that a ∈ B ∪ 〈x〉.
Since a /∈ B, we deduce that a ∈ 〈x〉. Thus a = t(x) for some term operation t.

If t = fi1 ◦ · · · ◦ fik for basic operations fij ∈ F , then each fij must be from S,

since all operations from N have range in the subuniverse Y and t(x) = a /∈ Y .

Thus, if T is the set of term operations composed of surjective basic operations,

then we have shown that A−B ⊆
⋃
t∈T t

−1(〈a〉), equivalently

A = B ∪
⋃
t∈T

t−1(〈a〉). (3.2)

Each term operation t is an endomorphism, so each set t−1(〈a〉) is a subuniverse

of A, and there are at most |T | ≤ µ of them. Hence (3.2) expresses A as a

union of at most µ-many subuniverses. Since |A| = µ+ is regular, |B| < µ+

and A is Jónsson, we conclude that A = t−1(〈a〉) for some t ∈ T . This

yields t[A] ⊆ 〈a〉. However, since t is a composition of surjective functions,

A = t[A] (⊆ 〈a〉). We have arrived at the contradiction µ+ = |A| ≤ |〈a〉| ≤ µ,

completing the proof of the first assertion of the proposition.

We give examples with ℵ0 ≤ λ ≤ µ+ℵ0 and µ /∈ {0, 1}. (The case µ = 1 and

λ = ℵ0 is described in Corollary 3.4.) Let G be an abelian group of cardinality

λ that is µ-generated as a monoid. Since we do not assume that generators are

distinct, such groups G exist for any ℵ0 ≤ λ ≤ µ+ℵ0 and any µ /∈ {0, 1}. (See

the proof of Lemma 4.2 for more detail.) For each generator g, let fg : G→ G

be defined by fg(x) := gx. The algebra G := (G, {fg}) has size λ, is µ-unary,

and is commutative. Since it has no proper nontrivial subuniverses, it has the

Jónsson property. �

We now recall from the Introduction that an infinite algebra is a Jónsson

algebra provided it has the Jónsson property and is defined in a language with

countably many function symbols.

Corollary 3.4. Suppose that A is a unary Jónsson algebra. Then either

|A| = ℵ0 or |A| = ℵ1. If A is commutative, then |A| = ℵ0. Moreover, there

exists a commutative 1-unary Jónsson algebra of size ℵ0 and a 2-unary Jónsson

algebra of size ℵ1 (but no 1-unary Jónsson algebra of size ℵ1).

Proof. Let A be a µ-unary Jónsson algebra. If µ is finite, expand the language

by adding ℵ0-many unary function symbols which interpret as the identity on

A. The resulting algebra is still Jónsson. Thus we may assume without loss

of generality that A is ℵ0-unary. Corollary 3.2 implies that |A| ≤ ℵ1. If A is

commutative, then |A| = ℵ0 by the previous proposition.

As for the examples, consider A := (N, {P}), where P (n) := n−1 for n > 0

and P (0) is defined arbitrarily. It is readily checked that A is Jónsson. For

a 2-unary example of size ℵ1, we refer the reader to Jónsson [3], pp. 128-129
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(this example is attributed to Galvin). Note that there is no 1-unary Jónsson

algebra of size ℵ1, since any such algebra would be commutative. �

Remark 3.5. It is known that the algebras A := (N, {P}) (as defined in the

proof of the previous corollary) are the unique 1-unary Jónsson algebras up to

isomorphism (Corollary 4.2 of Oman [4]).

We conclude this section by giving a Jónsson-themed characterization of

the structure (N, P,≤), where P : N → N is the predecessor function on N
(as defined in the proof of the previous corollary) and ≤ is the usual order

relation.

Proposition 3.6. Let (X,≤) be an infinite poset and let f : X → X be a

function. Then (X, f,≤) ∼= (N, P,≤) if and only if the following hold:

(1) (X, {f}) is a Jónsson algebra.

(2) (X,≤) is a Jónsson poset.

(3) For all x, y ∈ X: If x ≤ y, then f(x) ≤ f(y).

(4) For all x, y ∈ X: If f(x) < f(y), then x < y.

Proof. We assume that (X, f,≤) satisfies (1)–(4). Remark 3.5 implies that

there exists a pairwise-distinct enumeration of X, say x0, x1, x2, . . . such that

f(xn) = xn−1 for every n > 0, (3.3)

while f(x0) = xk for some k ∈ N. It will be demonstrated that k = 0. First,

we claim

x0 ≤ x1. (3.4)

Since the complement of the principal order filter [x0) is finite, there exists

0 < m ∈ N such that x0 ≤ x1+m(k+1). Condition (3) yields the inequality

fm(k+1)(x0) ≤ fm(k+1)(x1+m(k+1)). (3.5)

We conclude from (3.3) and the fact that f(x0) = xk that fm(k+1)(x0) = x0

and fm(k+1)(x1+m(k+1)) = x1. Thus (3.5) is just x0 ≤ x1, which was to be

shown. We now establish that

xn ≤ xn+1 for all n ∈ N. (3.6)

We just proved that x0 ≤ x1. Claim (3.6) follows by induction and Condi-

tion (4). Since ≤ is a partial order, we deduce that for all m,n ∈ N: xm ≤ xn
if and only if m ≤ n. Recall above that f(x0) = xk. It remains to show that

k = 0. Suppose by way of contradiction that 0 < k. Then x0 ≤ xk, and

applying Condition (3), fk(x0) ≤ fk(xk). But this reduces to x1 ≤ x0, and

we have a contradiction to (3.4). �



10 K. A. Kearnes and G. Oman Algebra univers.

4. Minimal unary algebras with the Jónsson property

If (A,F ) has the Jónsson property and G is a collection of operations on A

containing F , then (A,G) also has the Jónsson property. Call (A,F ) minimal

if (A,F ) has the Jónsson property but (A,F ′) does not have the Jónsson

property whenever F ′ ( F . In this section we consider the following question:

For which cardinal pairs (µ, λ) (with λ infinite, as usual) does there exist a

minimal µ-unary algebra A of size λ with the Jónsson property? We answer

this question through a sequence of lemmas. Throughout the section, if A

is an algebra and f is a basic operation, the algebra A−f denotes the algebra

obtained from A by deleting f from the signature.

Lemma 4.1. If A = (A,F ) is an infinite (not necessarily unary) algebra with

|A| = λ and |F | = µ and λ < µ, then for some f ∈ F the algebra A−f has the

same subuniverses as A.1

Hence, if A is a minimal µ-unary algebra of size λ which has the Jónsson

property, then λ ≥ µ.

Proof. The second assertion of the lemma follows from the first, so we prove

the first only.

Case 1. There exists some n-ary f ∈ F such that for any a ∈ An there is

some n-ary term ta, not involving f , for which f(a) = ta(a).

If B ⊆ A is a subset closed under F − {f}, then it is easily seen that B is

closed under f , too. For, if a ∈ Bn is arbitrary, then for the appropriate f -free

term ta we have f(a) = ta(a) ∈ B. This shows that subuniverses of A−f are

subuniverses of A in Case 1.

Case 2. For every n-ary f ∈ F there exists af ∈ An such that f(af ) 6= t(af )

for any n-ary f -free term t.

Define ϕ : F →
⋃
n∈ω(An ×A) by ϕ(f) := (af , f(af )). If f 6= g and

(af , f(af )) = ϕ(f) = ϕ(g) = (ag, g(ag)),

then af = ag and f(af ) = g(af ), contrary to the fact that f(af ) 6= t(af ) for

any f -free term t. Hence ϕ is one-to-one, which shows that

µ = |F | ≤ |
⋃
n∈ω

(An ×A)| = λ.

Hence Case 2 cannot arise when µ > λ. This completes the proof. �

Lemma 4.2. For any cardinal number µ 6= 0, there exists a minimal commu-

tative µ-unary algebra of size µ+ ℵ0 which has the Jónsson property.

1In fact, something stronger than this is true: If (A,F ) is an infinite algebra with |A| = λ,
then there is a subset F0 ⊆ F with |F0| ≤ λ such that the powers (A,F )k and (A,F0)k have

the same subuniverses for every finite k.
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Proof. We consider three cases.

Case 1. µ = 1.

In this case, the algebra (N, {P}) defined in Corollary 3.4 is such an example.

Case 2. 1 < µ < ℵ0.

Let n := µ−1, and let G be the free abelian group of rank n (written multi-

plicatively). Fix a basis {b1, b2, . . . , bn} for G, and let bn+1 := (b1b2 · · · bn)−1.

Then {b1, b2, . . . , bn, bn+1} generates G as a monoid. For each i, 1 ≤ i ≤
n+ 1 = µ, let fi : G→ G be defined by fi(g) := big and consider the algebra

A := (G, {fi : 1 ≤ i ≤ µ}). Since the bi generate G as a monoid, it is clear that

A has no proper nontrivial subuniverses, whence is trivially Jónsson. If one

deletes any fi from the signature, then the cyclic subuniverse 〈1〉 is a proper,

infinite subuniverse of A−fi . We conclude that A is minimal.

Case 3. ℵ0 ≤ µ.

Let G be the free abelian group of rank µ, and let {bi : i < µ} be a basis.

Then the set S := {bi : i < µ} ∪ {b−1
i : i < µ} generates G as a monoid. As

above, for s ∈ S, we define fs : G → G by fs(g) := sg. Also as above, one

checks easily that the algebra A := (G, {fs : s ∈ S}) has no proper nontrivial

subuniverses, hence has the Jónsson property. If one removes any fs from the

signature, then the cyclic subuniverse 〈1〉 is a proper, infinite subuniverse of

A−fs of size µ, and the proof is complete. �

Lemma 4.3. If µ is infinite, then there exists a minimal µ-unary algebra of

size µ+ which has the Jónsson property.

Proof. Assume µ is infinite, and consider the (µ+, µ+)-Jónsson poset P :=

(P,≤) := (µ+,∈). For each p ∈ P , we let fp : µ → (p] be a surjection, and

for ν < µ, we define Fν : P → P by Fν(p) := fp(ν). Recall from Theorem 3.1

that A := (P, {Fν : ν < µ}) is a µ-unary algebra of size µ+ with the Jónsson

property. Now let T := {ti : i < µ} be a set indexed by µ which is disjoint

from P . Let B := T ∪ P , and for each i < µ, define Gi on B as follows:

(1) Gi(x) := ti for all x ∈ T ∪ µ, and

(2) Gi(y) := Fi(y) if µ ≤ y < µ+.

We claim that the algebra B := (B, {Gi : i < µ}) has the Jónsson property.

Suppose B′ is a subuniverse of B of size µ+. Since |T | = µ, it follows that

B′ ∩ P = B′ ∩ µ+ has size µ+, hence is cofinal in P = (µ+,∈). Choose any

z ∈ B′ ∩ P such that µ ≤ z, and then choose any β < z. Recall from above

that fz : µ→ (z] is a surjection. Since β < z, it follows that there exists some

γ < µ such that fz(γ) = β. But by definition of the Fi and Gi above we get

β = fz(γ) = Fγ(z) = Gγ(z). Since B′ is closed under Gγ , and z ∈ B′, we

conclude that β ∈ B′. This argument holds for any β majorized by some z

in the cofinal subset B′ ∩ P of (µ+,∈), implying that P = µ+ ⊆ B′. It now

follows from (1) above that T ⊆ B′ also, so B′ = B. This proves that B is

Jónsson.
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Finally, for i < µ, the set B − {ti} is a proper subuniverse of B−Gi
having

size µ+, proving that B is minimal. �

Lemma 4.4. If 1 < µ ≤ ℵ0, then there exists a minimal µ-unary algebra of

size ℵ1 which has the Jónsson property.

Proof. Let β be the cardinal number satisfying 2 + β = µ, and let A =

(A, {f, g}) be a 2-unary Jónsson algebra (such as Galvin’s example) of size

ℵ1. As above, we let T be a set of size β which is disjoint from A, and we let

B := T ∪ A. For t ∈ T define ht : T → T by ht(x) := t for all x ∈ T . Since,

by Corollary 3.4, (A, {f}) is not Jónsson, there exists a proper f -subuniverse

C of A of size ℵ1. Let c ∈ C be arbitrary. Now extend f to T by defining

f(t) := c for all t ∈ T . Analogously, since (A, {g}) is not Jónsson, there exists

a proper g-subuniverse D of A of size ℵ1. Let d ∈ D be arbitrary. Extend

g to T by defining g(t) := d for all t ∈ T . Lastly, extend each ht to B by

defining ht(α) := t for all α ∈ A. We now show that the resulting algebra

B is Jónsson. Indeed, we suppose by way of contradiction that E is a proper

subuniverse of B of size ℵ1. Then E∩A is a subuniverse of A of size ℵ1. Since

A is Jónsson, we deduce that E ∩ A = A, that is, A ⊆ E. But since E is

closed under each ht, it follows that T ⊆ E as well. Thus E = B, and we have

reached a contradiction. We have shown that B is Jónsson. We now show

that B−f is not Jónsson. Toward this end, consider D ∪ T . It follows from our

above definitions that D∪T is a proper subuniverse of B−f of size ℵ1. We now

claim that B−g is not Jónsson. This follows analogously by considering C ∪ T .

Finally, let t ∈ T . We must show that B−ht
is not Jónsson. This follows by

considering B − {t}. Hence B is minimal, and the proof is complete. �

Putting these results together, we obtain the following theorem:

Theorem 4.5. Let µ and λ be cardinals with µ nonzero. There exists a

minimal µ-unary algebra of size λ with the Jónsson property if and only if

µ+ ℵ0 ≤ λ ≤ µ+ + ℵ1.
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