
EXTENDING UFDS TO PIDS WITHOUT ADDING UNITS

KEITH A. KEARNES

ABSTRACT. If U is a UFD, then there is a PID P containing U that has the same unit
group as U . Moreover, P can be taken so that its field of fractions is a pure transcendental
extension of the field of fractions of U with transcendence degree at most |U |.

1. Introduction. At a recent conference, Anna Romanowska raised the question of whether
there is a PID P such that (i) P is a proper subring of the real numbers, (ii) P properly contains
the ring of integers, and (iii) P has unit group P× = {±1}. She was presenting her joint paper with
Gábor Czédli, [2], which studies convex sets in generalized affine spaces. A classical real affine space
may be described algebraically as an R-module equipped with the affine operations ax+(1−a)y for
a ∈ R. The convex subsets are those closed under those operations ax + (1 − a)y where a ∈ [0, 1].
The Czédli-Romanowska generalization replaces R with a subring P ≤ R that is a PID. Affine
spaces over P are P -modules equipped with the operations ax + (1 − a)y, a ∈ P , and convex
subsets of such faithful spaces are the subsets closed under those operations ax + (1 − a)y where
a ∈ P ∩ [0, 1]. It turns out that any invertible element in P ∩ [0, 1] gives rise to a congruence (called
an “aiming congruence”) on C ×C for each convex subset C of an affine space over P (Section 5 of
[2]). Such congruences play an essential role in the algebraic description of the topological closure
of C. This explains the source of Romanowska’s question: Can the PID P ⊆ R be chosen so that
its notion of convexity is nontrivial (i.e., P 6= Z), and such that all aiming congruences are trivial
(i.e., P× = {±1})?

In this note Romanowska’s question is considered as a question of pure commutative ring theory,
and the question is answered affirmatively. In fact, it will be shown that if U is any UFD, then there
is a PID P containing U that has the same unit group as U . Moreover, P can be taken so that its
field of fractions is a pure transcendental extension of the field of fractions of U with transcendence
degree at most |U |. This answers Romanowska’s question as follows: Z[π] is a UFD that is a subring
of R that properly contains Z and has only ±1 as units. Extend Z[π] to a PID P without adding
units using the theorem of this paper. The field of fractions of P will be a pure transcendental
extension of Q(π) of countable degree, hence will be embeddable in R since the field extension
R/Q(π) has uncountable transcendence degree. Hence there is a PID P contained properly between
Z and R whose only units are ±1.

The main result is proved in Section 2. This note concludes with Section 3 where the following
observations are explained: (i) if P is any PID answering Romanowska’s question, then every
number in the difference P −Z must be transcendental, (ii) there are integral domains that cannot
be extended to PID’s without adding units, and (iii) there are UFD’s that can be extended to PID’s
without adding units but which cannot be extended further to Euclidean domains without adding
units.

2. The proof. If A is an integral domain, then Â denotes its field of fractions and A× denotes
its group of units. If S ⊆ A is a multiplicatively closed subset, then the localization of A at S is
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denoted S−1A, although if S = {bn}n≥0 is generated by a single element b then we typically write
Ab for S−1A.

Lemma 2.1. If U is a UFD, a, b ∈ U are coprime, and X and Y are indeterminates, then

U [X,Y ]/(aX + bY − 1)

is a UFD that extends U . The field of fractions of U [X,Y ]/(aX + bY − 1) is a pure transcendental

extension of Û of transcendence degree 1.

Proof. First let’s see that U [X,Y ]/(aX+bY −1) is a domain that extends U . U [X] is a UFD whose
prime elements are the irreducibles of U together with those polynomials in U [X] having content

1 that are irreducible over Û . One such is the linear polynomial (aX − 1), since the content is
gcd(a,−1) = 1. Now U [X,Y ] = (U [X])[Y ] is a UFD whose prime elements are the irreducibles of

U [X] together with those polynomials in U [X,Y ] having content 1 that are irreducible over Û(X).
One such is the linear polynomial bY + (aX − 1), since the content is gcd(b, aX − 1) = 1. Since
aX + bY − 1 is prime in U [X,Y ], U [X,Y ]/(aX + bY − 1) is a domain. To see that it extends U , it
suffices to note that the ideal (aX+ bY −1) restricts trivially to the subring U ≤ U [X,Y ] consisting
of constant polynomials. This follows from the fact that every nonzero element of (aX + bY − 1)
has degree at least 1 with respect to X or Y .

Next let’s see that U [X,Y ]/(aX+bY −1) satisfies the ascending chain condition on principal ideals
(ACCP). Suppose that (d1) ⊆ (d2) ⊆ · · · is an ascending chain of principal ideals in U [X,Y ]/(aX+
bY − 1). Choose elements ek+1 ∈ U [X,Y ]/(aX + bY − 1) such that dk = dk+1ek+1. Writing
U [X,Y ]/(aX + bY − 1) in the form U [X, 1−aXb ], consider it to be a subring of the localization

(2.1) (U [X, 1−aXb ])b = Ub[X].

In the larger ring, Ub[X], which is a UFD, the chain must stabilize. Assume that (dk) = (dk+1) = · · · ,
so for sufficiently large k there exist elements fk/b

nk ∈ Ub[X] with fk ∈ U [X,Y ]/(aX+bY −1) such
that dk ·(fk/bnk) = dk+1. Since Ub[X] is a domain in which dk = dk+1ek+1 and dk ·(fk/bnk) = dk+1,
it must be that ek+1 · (fk/bnk) = 1 in Ub[X], or ek+1fk = bnk in U [X,Y ]/(aX + bY − 1). This
shows that for sufficiently large k the element ek+1 divides a power of b in U [X,Y ]/(aX + bY − 1).
A similar argument shows that for sufficiently large k the element ek+1 divides a power of a in
U [X,Y ]/(aX+ bY −1). Since aX+ bY = 1 in U [X,Y ]/(aX+ bY −1), ek+1 is a unit for sufficiently
large k. Since dk = dk+1ek+1 it follows that (dk) = (dk+1) = · · · in U [X,Y ]/(aX + bY − 1) for
sufficiently large k.

Next we claim that if q is a prime divisor of b in U , then q remains prime in U [X,Y ]/(aX+bY −1),
i.e., (q) is a prime ideal in U [X,Y ]/(aX+bY −1). For this it suffices to establish the primeness of the
ideal (q, aX+bY −1) = (q, aX−1) in U [X,Y ]. Now U [X,Y ]/(q, aX−1) ∼= U/(q)[X,Y ]/(aX−1) ∼=
U/(q)[Y ]a, where the last ring may be constructed in steps: form the quotient U/(q); form the
polynomial ring U/(q)[Y ]; then localize at the powers of a, U/(q)[Y ]a. U itself was a domain,
factoring by the prime ideal (q) preserves/creates the domain property, forming the polynomial ring
U/(q)[Y ] preserves the domain property, then localizing at the nonzero element a, U/(q)[Y ]a, also
preserves the domain property. (That a is nonzero in U/(q)[Y ] follows from the fact that q does not
divide a in U , since q | b and gcd(a, b) = 1.) This shows that U [X,Y ]/(q, aX − 1) is a domain, so
(q, aX − 1) is prime in U [X,Y ] and so q is prime in U [X,Y ]/(aX + bY − 1).

Nagata’s Criterion states that if A is an integral domain with ACCP, S is a multiplicatively closed
subset of A that is generated by prime elements, and the localization S−1A is a UFD, then A itself
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is a UFD. Apply this to the ring A = U [X,Y ]/(aX + bY − 1) with S equal to the multiplicatively
closed subset of U [X,Y ]/(aX + bY − 1) that is generated by the set of all prime divisors of b in U .
Here it helps to write A = U [X,Y ]/(aX + bY − 1) in the form U [X, 1−aXb ]. It has been shown that

A has ACCP. In the localization S−1A the element b is a unit, hence

S−1A = S−1(U [X, 1−aXb ]) = S−1U [X, 1− aX] = S−1U [X],

which is a UFD since it is a localization of a polynomial ring over a UFD. By Nagata’s Criterion,
A = U [X,Y ]/(aX + bY − 1) is itself a UFD.

For the final statement of the theorem, the element b becomes a unit in the field of fractions of
U [X,Y ]/(aX + bY − 1). Hence the field of fractions of U [X,Y ]/(aX + bY − 1) is the same as the
field of fractions of the ring (U [X,Y ]/(aX + bY − 1))b = Ub[X]. This field of fractions is easily seen

to be Û(X), which has transcendence degree 1 over Û . �

Lemma 2.2. Assume that U is a UFD and a, b ∈ U are coprime. If

f, g ∈ U [X,Y ]/(aX + bY − 1),

g divides f , and f ∈ U \ {0}, then g ∈ U . In particular (when f = 1), any unit of U [X,Y ]/(aX +
bY − 1) lies in U . Moreover, if f1, f2 ∈ U are coprime in U , then they remain coprime in the
extension U [X,Y ]/(aX + bY − 1),

Proof. Every element of U [X,Y ]/(aX + bY − 1) = U [X, 1−aXb ] (≤ Ub[X]) is a polynomial in X
over the localization Ub. If f ∈ U \ {0}, then f has degree zero with respect to X, hence any
divisor of f must have degree zero with respect to X. This forces g ∈ Ub. A similar argument using
the representation U [X,Y ]/(aX + bY − 1) = U [ 1−bYa , Y ] ≤ Ua[Y ] shows that g ∈ Ua. Therefore
g ∈ Ua ∩ Ub = U , where the last equality follows from the facts that U is a UFD and a and b are
coprime.

The last two assertions of the lemma follow from the first. �

Theorem 2.3. If U is a UFD, then U has an extension P that is a PID such that U and P have

exactly the same set of units. Moreover, P can be chosen so that the field of fractions P̂ is a pure

transcendental extension of Û of degree at most |U |.

Proof. In this first paragraph we describe the strategy of the proof. If U is already a PID, then
there is nothing to do. Otherwise U is infinite and contains elements a and b such that the ideal
(a, b) is not principal. If c = gcd(a, b), then a = a′c and b = b′c for some coprime elements a′ and b′

such that the ideal (a′, b′) is not principal. The proof consists of a construction designed to kill off
all such “bad pairs” of coprime elements (i.e., pairs of coprime elements that generate nonprincipal
ideals).

The proof begins now. Assume that U is an infinite UFD. Let κ = |U | and enumerate with κ a
set of coprime pairs of elements of U which includes all bad pairs of U (that is, all pairs of coprime
elements generating nonprincipal ideals). Here (1, 1) is a coprime pair, and pairs are allowed to be
reused in the enumeration, so this kind of enumeration is possible.

If the enumeration function is β : κ→ U2, then define rings Vi, i < κ, as follows.

(1) V0 = U .
(2) Vi+1 = Vi[Xi, Yi]/(aiXi + biYi − 1) if β(i) = (ai, bi).
(3) If λ ≤ κ is limit, then Vλ =

⋃
i<λ Vi.
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The statement “Vµ is a UFD and the pairs enumerated by β remain coprime in Vµ” can be
established for all µ ≤ κ by transfinite induction using Lemmas 2.1 and 2.2. When µ = 0 the
statement holds by our initial hypothesis that U is a UFD and by the definition of β. When µ = i+1
is a successor ordinal, Lemma 2.1 proves that Vµ is a UFD while Lemma 2.2 proves that the pairs
enumerated by β remain coprime in Vµ. If µ is a limit ordinal, any element f ∈ Vµ =

⋃
i<µ Vi occurs

first at some successor stage Vi+1 or else in V0, and when it first occurs all divisors of f that lie in
Vµ already exist in Vi or V0 respectively. Thus, unique factorization of elements and coprimeness of
β-enumerated pairs in Vµ is inherited from Vi+1 or V0.

Thus U1 := Vκ is a UFD containing U0 := U as a subring. Since new divisors of elements are not
introduced during the construction, no new units are introduced. Hence the UFD U1 is an extension
of U0 that has the same unit group, but all bad pairs in U0 have been “killed” in U1.

To keep track of the transcendence degree of the field of fractions as the construction progresses
we note the following:

Claim 2.4. Let κ be a cardinal and let Fi, i < κ, be a sequence of fields such that

(1) Fi+1/Fi is a pure transcendental extension with transcendence base Ti for all i < κ, and
(2) Fλ :=

⋃
i<λ Fi when λ ≤ κ is limit.

Then Fκ/F0 is a pure transcendental extension with transcendence base
⋃
i<κ Ti.

To prove the claim, one argues by transfinite induction on λ that
⋃
i<λ Ti is algebraically inde-

pendent and, together with F0, generates Fλ as a field. �

Applying Claim 2.4 to the situation where Fi = V̂i, i < κ, we obtain that Û1/Û0 is a pure
transcendental extension of transcendence degree κ. (In particular, |U1| = κ = |U |.)

We may iterate the construction from above to produce a chain U = U0 ≤ U1 ≤ · · · where each
Ui is a UFD with the same group of units as U , in each Ui+1 all bad pairs from Ui have been killed,
any divisor of an element that first appears at the ith stage also exists at the ith stage, and each

Ûi+1 is a pure transcendental extension of Ûi of degree κ = |U |. The union P =
⋃
i<ω Ui is therefore

a UFD with no bad pairs. Such a ring is necessarily a PID, as the following argument shows. No pair
of coprime elements in P can generate a nonprincipal ideal, so P is a Bezout domain. To show that
P is a PID, it suffices to show that it is Noetherian. If this is not the case, then there is a strictly
increasing chain of ideals I0 ( I1 ( · · · in P . This can be adjusted to a strictly increasing chain of
principal ideals, as follows. Choose di+1 ∈ Ii+1\Ii for all i. Now choose fi so that (fi) = (d1, . . . , di)
in P for all i. This is possible since P is Bezout. The chain (f1) ( (f2) ( · · · of principal ideals in
P has been constructed so that it is strictly increasing. This is impossible, since P is a UFD.

Applying Claim 2.4 to the chain Û = Û0 ≤ Û1 ≤ · · · ≤
⋃
i<ω Ûi = P̂ we obtain that P̂ is a pure

transcendental extension of Û of transcendence degree ω · κ = κ = |U |. �

3. Problems and discussion. If D is a subcategory of a category C, one may ask if each C-
object has a morphism to some D-object. If the inclusion functor D → C has a left adjoint, then
indeed each C-object has a universal morphism to a D-object given by the unit of the adjunction.
This is the case, for example, when C is the category of integral domains equipped with embeddings
and D is the full subcategory of fields. The universal embedding of an integral domain into a field
is its embedding into its field of fractions.
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It may happen that each C-object has a morphism to a D-object, but not a universal such
morphism, such as when C is the category of fields and D is the full subcategory of algebraically
closed fields. The author does not know a conventional term for this situation, so (borrowing a term
from order theory) let’s call D a cofinal subcategory if each C-object has a morphism to a D-object.

Every ring homomorphism ϕ : R→ S preserves units in the sense that u ∈ R× implies ϕ(u) ∈ S×.
Say that ϕ reflects units if v ∈ S× implies that ϕ−1(v) is a nonempty subset of R×. Thus a unit-
reflecting embedding ϕ : R→ S restricts to an isomorphism between unit groups.

The theorem of this paper may be expressed as follows: if C is the category of UFD’s equipped
with unit-reflecting embeddings, then the full subcategory of PID’s is cofinal. This paper does not
resolve the more general question:

Question 3.1. Does the inclusion functor from the category of PID’s (with unit-reflecting embed-
dings) into the category of UFD’s (with unit-reflecting embeddings) have a left adjoint? Is there a
universal unit-reflecting embedding of a UFD into a PID?

Now we turn to another observation and question. Recall that Romanowska’s original question
was whether there is a subring P ≤ R of the field of real numbers such that

(1) P properly contains Z,
(2) P is a PID, and
(3) the only units of P are +1 and −1.

Claim: If P is such a ring, then any algebraic number in P must be a rational integer. To see this,
choose any algebraic number α ∈ P . The rings K := Q[α] (a field) and P (a PID) are integrally
closed, so the intersection I := K ∩ P is integrally closed and lies between Z[α] and P . It follows
that I contains the integral closure of Z in K, which is the ring OK of algebraic integers in K. By
Dirichlet’s Unit Theorem, the group of units in OK is the product of a finite group of roots of unity
and a free abelian group of rank r + s − 1 where r is the number of real embeddings of K and s
is the number of pairs of conjugate complex embeddings. Since OK ≤ I ≤ P has +1 and −1 as
its only units, it follows that r + s − 1 = 0. Since K is real, it follows that r ≥ 1, while of course
s ≥ 0, hence r = 1, s = 0, and K has inclusion as its unique embedding into C. If d is the degree
of the minimal polynomial of α over Q, then there are at least d embeddings of K into C, so d = 1
and α is rational. If α = p/q where gcd(p, q) = 1, then choose u, v ∈ Z such that pu + qv = 1, or
αu+ v = 1/q. Since α, u, v, q ∈ S, we get q, 1/q ∈ P , hence q = ±1, hence α ∈ Z.

Thus if P is any PID answering Romanowska’s question, then any number in P − Z is transcen-
dental. This suggests:

Question 3.2. Given a UFD U , what is the minimum transcendence degree of the extension P̂ /Û
where P is a PID that contains U and satisfies P× = U×? Is it always possible to find a PID P

such that the transcendence degree of P̂ /Û is finite? Is it always possible to find a PID P such that

the transcendence degree of P̂ /Û is 1?

The strategy used in this paper to construct a PID satisfying Z ( P ( R and P× = {±1} is to
first adjoin a transcendental number to Z (forming, say, Z[π]), and then to eliminate all occurrences
of nonprincipal ideals via a sequence of extensions. But observe that this must be done carefully.
If, for example, at some point of the construction we have a ring containing the transcendentals
π, π

1
2 , π

1
4 , π

1
8 , . . ., then the ring cannot be further extended to a PID without adding units. More

generally, if at some point of the construction we have a domain containing any strictly increasing
sequence of principal ideals (d1) ( (d2) ( · · · , then in any larger domain with no additional units
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this chain remains a properly increasing chain. This can’t happen in a PID. A stronger statement
is true: If P ≤ R answers Romanowska’s question, then in any subring of P any principal ideal is
contained in only finitely many other principal ideals.

Let’s change the question. Rather than extending a UFD to a PID without adding units, can
we extend a UFD to a Euclidean domain without adding units? Interestingly, this is not always
possible: there exist UFD’s that cannot be extended to Euclidean domains without adding units.

For example, it is well known that P = Z[(1 +
√
−19)/2] is a PID that is not a Euclidean domain

(see pages 277 and 282 of [3]). This ring P cannot even be extended to a Euclidean domain without
adding units. This can be established by a slight modification (described below) of the argument
used on page 277 of [3] to show that P is not a Euclidean domain.

Suppose that ϕ : P → E is a unit-reflecting embedding of P into a Euclidean domain E. E has
nonunits, so E is not a field. Therefore E has an element u of least Euclidean norm among elements
in E − (E× ∪ {0}). Such an element u ∈ E is a universal side divisor for E, which means that
every nonzero coset of the ideal (u) contains a unit. In particular, E/(u) has cardinality at most
|E× ∪ {0}| = |E×|+ 1. E/(u) has cardinality at least 2, since u is not a unit, so

2 ≤ [E : (u)] ≤ |E×|+ 1.

The units of P = Z[(1 +
√
−19)/2] are only ±1, as one can show with a norm argument. If

ϕ : P → E is a unit-reflecting embedding, then E× = {±1}. The previous displayed line becomes

2 ≤ [E : (u)] ≤ 3,

so E must have an ideal (u) of index 2 or 3. Restricting (u) to P we obtain an ideal (u)|P = ϕ−1((u))
of index 2 or 3 in P . But there is no such ideal in Z[(1 +

√
−19)/2], as can be shown by a norm

argument (page 277 of [3]). Thus there is no unit-reflecting embedding of the PID Z[(1 +
√
−19)/2]

into a Euclidean domain.

Question 3.3. What conditions on a PID P are necessary for there to exist a unit-reflecting
embedding from P into a Euclidean domain?

Problem 3.4. Let ID be the category of integral domains equipped with unit-reflecting embed-
dings. Discover interesting instances (C,D) of pairs of full subcategories where C ) D and D is
cofinal in C.

For example, this paper shows that (C,D) = (UFD’s,PID’s) is an instance, while
(PID’s,Euclidean domains) is not an instance.
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