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Abstract

We develop the theories of the strong commutator, the rectangular
commutator, the strong rectangular commutator, as well as a solvabil-
ity theory for the nonmodular TC commutator. These theories are used
to show that each of the following sets of statements are equivalent for
a variety V of algebras.

(I) (a) V satisfies a nontrivial congruence identity.

(b) V satisfies an idempotent Maltsev condition that fails in
the variety of semilattices.

(¢) The rectangular commutator is trivial throughout V.

(IT) (a) V satisfies a nontrivial meet continuous congruence iden-
tity.

(b) V satisfies an idempotent Maltsev condition that fails in
the variety of sets.

(c) The strong commutator is trivial throughout V.

(d) The strong rectangular commutator is trivial through-
out V.

(IIT) (a) V is congruence semidistributive.

(b) V satisfies an idempotent Maltsev condition that fails in
the variety of semilattices and in any nontrivial variety of
modules.

(c¢) The rectangular and TC commutators are both trivial
throughout V.

We prove that a residually small variety that satisfies a congruence
identity is congruence modular.
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CHAPTER 1
Introduction

This monograph is concerned with the relationships between Mal-
tsev conditions, commutator theories and the shapes of congruence
lattices in varieties of algebras.

1.1. Shapes of Congruence Lattices
Carl F. Gauss, in [23], introduced the notation
(1.1) a=b (modm),

which is read as “a is congruent to b modulo m”, to mean that the
integers a and b have the same remainder upon division by the integer
modulus m, equivalently that a — b € mZ. As the notation suggests,
congruence modulo m is an equivalence relation on Z. It develops that
congruence modulo m is compatible with the ring operations of Z, and
that the only equivalence relations on Z that are compatible with the
ring operations are congruences modulo m for m € Z.

Richard Dedekind conceived of a more general notion of “integer”,
which nowadays we call an ideal in a number ring. Dedekind extended
the notation (1.1) to

(1.2) a=b (mod pu)

where a,b € C and p C C; (1.2) is defined to hold if a — b € pu.
Dedekind called a subset ¢ C C a module if it could serve as the
modulus of a congruence, i.e., if this relation of congruence modulo p
is an equivalence relation on C. This happens precisely when g is
closed under subtraction. For Dedekind, therefore, a “module” was an
additive subgroup of C.

The set of Dedekind’s modules is closed under the operations of in-
tersection and sum. These two operations make the set of modules into
a lattice. Dedekind proposed and investigated the problem of determin-
ing the identities of this lattice (the “laws of congruence arithmetic”).
In 1900, in [13], he published the discovery that if a, 3,7 C C are
modules, then

(1.3) an (B4 (@ny)) =(ang)+ (any).
1



2 1. INTRODUCTION

This 3-variable law of the lattice of modules is now called the modular
law. Dedekind went on to prove that any equational law of congru-
ence arithmetic that can be expressed with at most 3 variables is a
consequence of the modular law and the laws valid in all lattices.

Dedekind did not write the law in the form (1.3), which is an iden-
tity, but rather as a quasi-identity: for all modules o, 3,7 C C

(1.4) ady—an(B+7)=(anpg)+~.t

Dedekind also discovered a useful “omitting sublattices” version of
the modular law. It is the assertion that there do not exist modules
a, 3,7 € C which generate a sublattice isomorphic to N5 (Theorem
[.7.12 of [1]).

fta=0(+y
(0
B
gl
fRa=pNy

FIGURE 1.1. The lattice N5

More generally, a congruence on an arbitrary algebra A is an
equivalence relation on the universe of A that is compatible with the
operations of A. Equivalently, it is the kernel of a homomorphism with
domain A. The set of all congruences is a sublattice of the lattice of
equivalence relations on A. A congruence identity of A is an identity
that holds in the lattice Con(A) of all congruences of A. Dedekind’s
observation is that the modular law is a congruence identity satisfied
by C as an abelian group. In fact, it is a congruence identity of any
group, ring, vector space, Boolean algebra or lattice.

Dedekind’s result initiated many lines of research in the 20th cen-
tury, but to avoid losing focus we mention only a few. Garrett Birkhoff
observed that the congruences of any group permute, meaning that
aof3 = foa, and that any lattice of permuting equivalence relations is
modular. This “explains” Dedekind’s result to some degree, but in [22]
N. Funayama and T. Nakayama showed that the lattice of congruences
of a lattice satisfies the distributive law: for all o, (3, v

(1.5) an(B+y)=(ang)+(any),

'n fact, Dedekind used the symbols + and — instead of + and N.
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which is stronger than the modular law, yet congruences of lattices
need not permute. Thus permutability implies modularity, but not
vice versa. Bjarni Jénsson then refined the results of Birkhoff and
Dedekind by showing in [37] that any lattice of permuting equivalence
relations satisfies the arguesian law, which is stronger than the modular
law. Conversely, he showed that any complemented lattice satisfying
the arguesian law is embeddable into the lattice of congruences of an
abelian group. Here the arguesian law is the 6-variable law asserting
that for all oy, 5;, 1 =0,1,2,

(1.6) (a0+050)N(ar+61)N(az+3) < (aoN(y+a1)) + (BoN(v+51))

where v = (ap+a1)N(Bo+51)N (G0 +61), do = (ap+az)N(Fo+F2) and
01 = (a1 + ag) N (B + B2). Thus Jénsson solved the special instance
of Dedekind’s problem (of determining the laws of modules) which
concerns only complemented lattices of modules. The full problem is
still open, although in the same paper Jonsson gave an example of a
finite noncomplemented arguesian lattice that is not embeddable in the
congruence lattice of a group, and in [30] Mark Haiman proved that
lattices of permuting equivalence relations satisfy laws stronger than
the arguesian law.

1.2. Maltsev Conditions

Let R be the variety of rings and A be the variety of abelian groups.
The fact that rings have a term-definable underlying abelian group
structure may be denoted A < R, i.e., rings have the structure of
abelian groups and more. A. I. Maltsev proved in [63] that a variety V
of algebras has the property that the congruence lattices of its members
consist of permuting equivalence relations if and only if P < V where
P is the variety with one ternary basic operation symbol p that is
axiomatized by the Maltsev identities:

(1.7) plr,y,y) =2z and  p(y,y,r) =

In other words, V consists of congruence permutable algebras if and
only if there is a ternary V-term p, called a Maltsev term, such that
the identities (1.7) hold in V. Thus, one may refine Birkhoff’s earlier
explanation of Dedekind’s modularity result to: groups are congruence
modular because groups have a Maltsev term p(z,y,z) = zy~'z, so
groups have permuting congruences, and lattices of permuting equiva-
lence relations are modular.



4 1. INTRODUCTION

Let U be a finitely presented? variety. The condition on a variety V
that U <V may be expressed as “there is a finite set of V-terms cor-
responding to the basic operation symbols of U such that the finite set
of identities corresponding to the axioms of ¢ hold in V.” A condi-
tion of this type is called a strong Maltsev condition, and given
a finitely presented variety U the class {V | U < V} is the strong
Maltsev class that is defined by this condition. Given a descending
sequence - - < Uy < U; < Uy of finitely presented varieties, the class
{V | In(lh, < V)} is the Maltsev class that is defined by this se-
quence, and the Maltsev condition associated to this sequence is the
assertion that for some n there is a finite set of V-terms corresponding
to the basic operation symbols of i, such that the finite set of identities
corresponding to the axioms of U, hold in V.

After Maltsev published the condition from (1.7) defining the class
of varieties with permuting congruences, Alden Pixley found in [73]
a strong Maltsev condition defining the class of varieties with distribu-
tive and permuting congruences, B. Jénsson found in [38] a Maltsev
condition defining the class of varieties with distributive congruence lat-
tices, and Alan Day found in [8] a Maltsev condition defining the class
of varieties with modular congruence lattices. These results (and many
others like them) culminated in the theorem, obtained independently
by Pixley [74] and Rudolf Wille [79], that if € is any lattice identity,
then the class of varieties whose congruence lattices satisfy ¢ is the
intersection of countably many Maltsev classes. This proves, in par-
ticular, that if two varieties satisfy the same Maltsev conditions, then
they satisfy the same congruence identities. This result of Pixley and
Wille includes an algorithm for generating Maltsev conditions associ-
ated with congruence identities, paving the way for a deeper study of
congruence identities.

J. B. Nation discovered in [70] that there exist lattice identities
that are strictly weaker than the modular law when considered as lat-
tice identities, but equivalent to the modular law when considered as
congruence identities. That is, there exists a variety W of lattices
that strictly contains all modular lattices, yet any variety V of algebras
with the property that the congruence lattice of every algebra from
V is found in W is actually congruence modular. Nation’s Theorem
brought attention to the possibility that there might be “few” different
congruence varieties, which are varieties of lattices of the form

(1.8) CON(V) = HSP({Con(A) | A € V}).

2That is, U is a finitely axiomatized variety with finitely many basic operation
symbols.
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For example, it suddenly became plausible that the only proper nondis-
tributive congruence varieties might be those of the form Con(M)
where M is a variety of modules. Nation’s result led Ralph McKenzie
to conjecture in [66] that if £ is any nontrivial lattice identity, then &
implies modularity when considered as a congruence identity. Studies
of identities of small complexity yielded positive evidence for McKen-
zie’'s Conjecture in [9, 10, 21, 39, 69]. The most general of these
results is the theorem of Ralph Freese and J. B. Nation that any lat-
tice identity € that can be written as an inclusion of the form

/\ \/ /\ variables < \/ /\ \/ variables

implies modularity as a congruence identity. Similar results were proved
at the same time about congruence identities implying congruence dis-
tributivity, and in [17] one finds the result that any congruence identity
implying congruence modularity must also imply the stronger argue-
sian identity as a congruence identity.

McKenzie’s Conjecture was refuted by S. V. Polin in his famous
paper [75]. Polin constructed a locally finite variety P that is not
congruence modular, but satisfies a nontrivial congruence identity. To
describe a congruence identity that holds in Polin’s variety, let x, y
and z be lattice variables and let y1 =y, 21 = 2, Yns1 =y + (¥ N 2,)
and 2,11 = 2+ (r Ny,). Let J, be the weakened distributive law:

zN(y+2)=(@Ny,) + (xNz).

The identity 6; is the usual distributive law. Although d, is strictly
weaker than distributivity as a lattice identity, it implies distributivity
as a congruence identity.> Polin’s variety satisfies d3 as a congruence
identity.* Since it does not satisfy d», and since any lattice variety
that satisfies 63 and not d9 is nonmodular, Con(P) is an example of a
proper, nondistributive congruence variety that differs from Con(M)
for any variety of modules M.? Polin’s variety was thoroughly investi-
gated by Day and Freese in [11] with the result that we now have an
efficient algorithm for determining if an identity implies modularity as
a congruence identity. In an unpublished manuscript, Day showed that

3We know this because Ralph Freese showed us that d, fails in Con(Fp(1)).
Using this observation and the main result of [11] it is easy to see that d, implies
distributivity as a congruence identity.

4Polin showed that P satisfies a different congruence identity. Alan Day was
the one to emphasize the importance of the identities d,,.

®We now know that there are continuum many different nonmodular congruence
varieties (see [36]), and even some congruence varieties of groups that differ from
any congruence variety of modules (see [72]).
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the Polin construction can be iterated® to produce varieties satisfying
weaker and weaker nontrivial congruence identities.

Not all of the preceding results were originally proved via Maltsev
conditions, but they could have been, and the analysis of Maltsev con-
ditions is a powerful method for obtaining further results like these.
Moreover, there are results on congruence identities that have been
proved by a careful analysis of the Maltsev conditions defining a given
class of varieties that seem unreachable by any other method, such as
Paolo Lipparini’s results on congruence identities satisfied by congru-
ence n-permutable varieties” in [56, 58, 60, 61, 62].

1.3. Commutator Theories

Birkhoff’s HSP Theorem asserts that if I is a class of similar alge-
bras, then any model of the identities true in I may be constructed as
a homomorphic image of a subalgebra of a product of algebras in K,
that is as B/# where B < [ A;, A; € K. Replacing each A; by the
projection of B onto the ¢-th factor, we find that a typical model has
the form B /6 where B is a subdirect product of subalgebras of members
of IC. It is therefore important to know how to construct congruences
on subdirect products. The case of two factors is already difficult.
If B <gq Aj; x Ay and «; € Con(A;), then the restriction of ay X s
to B is a product congruence on B. All other congruences are skew.
For example, the congruence lattice of the group B = Zy x Z, is pic-

1x1

0x1 1x0

0x0
FIGURE 1.2. Con(Zs x Zs)

tured in Figure 1.2. There is one skew congruence, A, which is the
congruence that has the diagonal subgroup of Zy X Z, as a class.

6This and other modifications of Polin’s construction were rediscovered and
appear in [54] and [71].

Congruences « and 3 are said to n-permute if the alternating composition
aopff=aofoa---, with n — 1 occurrences of o, equals 3 o, . A variety is
congruence n-permutable if the congruences on all members n-permute.
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To understand skew congruences like this one, let us attempt to
describe a typical “diagonal congruence” on a typical “diagonal sub-
algebra” B of A? for some algebra A in a congruence permutable va-
riety V. Here a “diagonal subalgebra” is one containing the diagonal
of A% and a “diagonal skew congruence” is a congruence generated
by a set of pairs of elements from the diagonal. More formally, if
§: A — A%: a — (a,a) is the canonical diagonal embedding, then
B < A?is a diagonal subalgebra if 6 factors through the inclusion of
B into A%, A diagonal congruence on B is the extension to B of a
congruence on J(A).

Since we have assumed that A lies in a congruence permutable
variety, it has a Maltsev term. Hence the only diagonal subalgebras B
of A? are those whose universe B is a congruence on A, say B = f3.
Since the diagonal of A? supports a subalgebra isomorphic to A, the
only diagonal congruences on B are the extensions to B of congruences
d(a) for a € Con(A). Thus, the construction of a typical diagonal
congruence on a typical diagonal subalgebra B < A? involves a pair of
congruences «, 3 € Con(A). Specifically, we are considering B to be
the subalgebra supported by 3, and a diagonal congruence A = A, g
on B that is generated by {((u, u), (v,v)) | (u,v) € a}. We next try to
understand how A is related to the product congruences of B.

Since we have assumed that A has a Maltsev term, and B is in the
variety generated by A, Con(B) is modular. Dedekind’s analysis of
3-variable consequences of the modular law shows that the 3-generated
free modular lattice has only 28 elements, hence any 3-generated mod-
ular lattice can be easily drawn. In particular, the modular lattice with

FIGURE 1.3. (n1, 1m0, A | m1 Ny = 0)

the presentation (1, n9, A | n1Nne = 0) is the one in Figure 1.3. Hence
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the sublattice of Con(B) that is generated by the projection kernels
m = 0x1and 7, =1 x 0 together with A = A, g is a homomorphic
image of this lattice. The smallest product congruence containing A,
the “product cover” of A, is

(A+O0x1))N(A+(1x0)=axa=1.

We take the interval I[A,v], from A to its product cover, to be a
measure of the skewness of A. Meeting with 1, and joining with 7,
projects this interval in two steps to the isomorphic interval

(L9) I[m+(Anng), m+@Nm)] =I[m+(ANmn), (anb)x1],

so the interval in (1.9) can also be taken to be a measure of the skew-
ness of A. But the interval in (1.9) lies entirely in the interval above
the first coordinate projection kernel 7;, which is naturally isomorphic
to Con(A), so we can measure the skewness of A by considering the
corresponding congruence interval of A. The left lattice in Figure 1.4

(a+p) x1 a+p
ax1 6 x1 « I}
(anp) x1 ang
m+ (ANmn) ?

m=0x1 0

FIGURE 1.4. I[0 x 1,1 x 1] vs. Con(A)

indicates the interval in Con(B) above 7;, while the right lattice shows
the corresponding congruences on A. Note especially the question mark
by the right lattice, which labels the congruence on A induced by A.
This induced congruence is a function of a and (3, and will be written
[, B] and called the commutator of « and 3. For groups it is the
ordinary group commutator.® The interval from the commutator [, 3]
to the intersection o N 3 is the interval in Con(A) that measures the
skewness of A.

In analogy with group theory, we call a congruence interval o, 7]
abelian if [7, 7] < o, and call the algebra A abelian if the entire lattice
Con(A) = [0,1] is an abelian congruence interval. If 7 is defined to
be equal to a N in the last paragraph, then 7 < o and 7 < 8 so

8This means that if N, and Npg are the normal subgroups corresponding to the
subscripted congruences, then [Ny, Ng| = N4 g]-
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[7,7] < [a, B]. This shows that the interval I [[oz, Al,an ﬁ], which mea-
sures the skewness of A, is abelian. Conversely, every abelian interval
I[o, 7] is contained in an interval that measures the skewness of some
diagonal congruence, namely A, ;. Hence diagonal congruences fail to
be skew in V if and only if V omits abelian congruence intervals if and
only if the commutator trivializes throughout V in the sense that

(1.10) Va, B([a, 8] = a N B)

holds throughout V. It can be shown that for varieties with a Mal-
tsev term the commutator identity (1.10) is equivalent to congruence
distributivity, and from congruence distributivity one can derive that
there are no skew congruences of any type in finite subdirect products
of algebras in V. Thus, although it seems that we examined only a
very special instance of a diagonal skew congruence, which then re-
sulted in the definition of the commutator, this commutator controls
all skew congruences in finite subdirect products in varieties with a
Maltsev term.

In fact, the assumption that A has a Maltsev term was used only
to deduce that every diagonal subalgebra of A? has a congruence as
its universe. This fact turns out to be inessential; the theory can be
developed under the weaker hypothesis that A lies in a congruence
modular variety. The theory of this commutator was developed by
Jonathan D. H. Smith (when V has a Maltsev term) in [76], Joachim
Hagemann and Christian Herrmann in [28], Heinz-Peter Gumm in [27],
and Freese and McKenzie in [19]. The strength of the theory lies in
the representation theorem for abelian algebras, proved by Herrmann
in [31], which states that an abelian algebra in a congruence modular
variety is affine. This theorem associates to an abelian algebra or
congruence interval a module in the modern sense, i.e., a module over
aring. The fact that the commutator links every skew congruence with
a module is the key to dealing with these congruences.

To emphasize the link with what we have said earlier, the commu-
tator in congruence modular varieties encodes the existence of skew
congruences. When the commutator trivializes, skew congruences are
omitted, and this restricts the shape of the congruence lattices in
some way. In the case of the modular commutator, this restriction
on shapes is expressible by a congruence identity stronger than modu-
larity, namely the distributive law.

When V is not congruence modular the types of skew congruences
multiply. Different commutator theories have been invented which
deal with this. The TC-commutator is a commutator based on the
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term condition (Section 2.5). It was invented to generalize the mod-
ular commutator. As such it encodes the existence of diagonal skew
congruences. A useful and completely general representation theorem
for abelian algebras and congruences is not likely to exist, but Keith
Kearnes and Agnes Szendrei extended Herrmann’s representation the-
orem for congruence modular varieties to any variety satisfying some
nontrivial idempotent Maltsev condition in [53].

McKenzie next introduced the strong term condition in [67, 34],
a concept similar in spirit to the ordinary term condition. He proved
its usefulness in many ways, but he did not develop a commutator
theory for it. Later McKenzie defined the concept of rectangulation
(see [55]), and established its usefulness. His definition was slightly
short of a term condition for rectangulation, and he did not develop a
corresponding commutator theory.

In the early 1990’s, we (= Kearnes and Kiss) worked on the problem
of developing a commutator theory for McKenzie’s strong term condi-
tion. We found that certain “cross-diagonal” skew congruences occur
naturally in algebras. These are congruences on symmetric diagonal
subalgebras B < A? generated by pairs of the form {(u,v), (v,u)). The
behavior of this type of skew congruence is encoded in a commutator
we call the strong rectangular commutator. It is so named because
it has an associated term condition related to McKenzie’s description
for rectangulation. We developed the theory of this commutator in [49]
and proved a representation for its abelian algebras and congruences.
We found that McKenzie’s strong term condition was exactly the con-
junction of his original term condition (T'C) and our term condition for
strong rectangulation, therefore a commutator theory for the strong
term condition follows from the theories of the TC-commutator and
the strong rectangular commutator without further effort.

In this monograph we introduce a term condition for rectangulation,
develop the theory of the rectangular commutator, and prove a repre-
sentation theorem for its abelian algebras and congruences (Chapter 5).

There are actually many more commutators than the four described
above, but the others that are known seem to be approximations to
these four. Each of these commutators has an ideal model of an
abelian algebra. For the TC commutator, the ideal model is an abelian
group expanded by unary endomorphisms, i.e., a module over a ring.
For the strong commutator it is a set expanded by unary endomor-
phisms, i.e., a unary algebra. For the rectangular commutator it is a
semilattice expanded by unary endomorphisms, which is a natural type
of semimodule. For the strong rectangular commutator it is a reduct
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to an antichain of a semilattice expanded by unary endomorphisms.
The strangeness of this fourth notion of ‘abelianness’ is a reminder
that these commutator theories do not begin by postulating the struc-
ture of an ideal abelian algebra, but rather by identifying a natural
type of skew congruence.

1.4. The Results of This Monograph

The theorem which prompted us to write this monograph was our
1999 discovery that a variety satisfies a nontrivial congruence iden-
tity if and only if it satisfies an idempotent Maltsev condition that
fails in the variety of semilattices (Theorem 7.15). David Hobby and
Ralph McKenzie proved in Chapter 9 of [34] that a certain Maltsev
condition, that we will call in this introduction “HM”, defines the class
of all varieties satisfying an idempotent Maltsev condition that fails
in the variety of semilattices. HM is a disjunction \/ HM,, of strong
Maltsev conditions. The proof of the 1999 theorem is based on a care-
ful analysis of various Maltsev conditions equivalent to HM. A novel
feature of the proof is that it deals only with the local effects of HM
on nonsolvable intervals in congruence lattices of algebras in a vari-
ety V satisfying some HM,,. Namely, we prove that every nonmodular
interval in a congruence lattice contains what we call a “solvability ob-
struction”. We use HM,, to introduce a rank function on solvability
obstructions that appear in congruence lattices of algebras in V. Then

g

FIGURE 1.5.

we prove that for every solvability obstruction that appears in the in-
terval I3, a] of some copy of N5 in some congruence lattice there is
associated a solvability obstruction of strictly smaller rank in the inter-
val I[o,v] (cf. Figure 1.5). By iterating this observation, one obtains
that deeply nested copies of N5, as depicted in Figure 1.6, can appear
as a sublattice of a congruence lattice of an algebra in V' only if solvabil-
ity obstructions of large rank exist. We complete the proof by proving
that the complexity of HM,, induces a uniform (finite) bound on the
rank of solvability obstructions throughout V), hence for some /¢ it is
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F1GURE 1.6. The lattice Ny 5

not possible to embed N5 into the congruence lattice of any mem-
ber of V. This fact is converted into a nontrivial congruence identity
satisfied by V.?

This theorem gives a simple answer to the question “Which varieties
satisfy nontrivial congruence identities?” But more importantly, the
effort to prove the theorem answers the questions “Which varieties
have trivial rectangular commutator?” and “What kinds of restrictions
on congruence lattice shapes are linked to having trivial rectangular
commutator?”, since the combination of Theorems 5.25 and 7.15 prove
that a variety V satisfies a nontrivial congruence identity if and only if
the rectangular commutator is trivial throughout V.

This monograph contains many characterizations of the class of va-
rieties whose rectangular commutator is trivial: by the shapes of con-
gruence lattices in these varieties and by the Maltsev conditions they
satisfy (see, for example, Sections 5.3, 7.2 and 8.2). But it also contains
characterizations of other classes of varieties with parallel descriptions.
Namely, we consider the classes of varieties (i) whose strong commuta-
tor is trivial (Sections 3.1, 4.2 and 4.3), (ii) whose strong rectangular
commutator is trivial (Sections 3.2, 4.2 and 4.3), (iii) whose TC com-
mutator is trivial (Section 8.1), and (iv) whose rectangular and TC
commutators are both trivial (Section 8.3). These characterizations of
classes of varieties are also in terms of the shapes of congruence lattices

Mt is interesting that Dedekind’s investigation into the arithmetic of congru-
ences of (C; +, —, 0) led to the law postulating the omission of sublattices isomorphic
to N5, while the natural extension of that investigation to arbitrary algebras leads
to “generalized modular laws” postulating the omission of sublattices isomorphic
to Nyy5 for some /.
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in these varieties and the Maltsev conditions they satisfy. One byprod-
uct of this investigation is our first real understanding of congruence
join semidistributivity: a variety V is congruence join semidistributive
if and only if it is congruence meet semidistributive and satisfies a non-
trivial congruence identity (equivalently, if all commutators trivialize
throughout V).

We end the monograph with a chapter on residually small varieties
satisfying congruence identities (Chapter 9). The main result of this
chapter is that a residually small variety satisfies a congruence identity
if and only if it is congruence modular, hence McKenzie’s Conjecture
is true for residually small varieties. We apply the main result of the
chapter to show that there is no “almost congruence distributive” va-
riety that satisfies a nontrivial idempotent Maltsev condition.

A number of problems are posed in this monograph. Those posed
in the text are restated after Chapter 9 (see page 199), together with
some new problems.






CHAPTER 2
Preliminary Notions

Here we fix notation and introduce definitions and results with the
purpose of providing a bridge from standard material to the material
in this monograph.

In this chapter and the sequel we use the following conventions
concerning notation. The set of natural numbers is w. The first natural
number is 0. Sequences or tuples of elements from a set X are written
in boldface, as in x € X (or x € X™ if the length n is to be specified).
The i-th coordinate of the tuple x is written in italic as z;. If two
sequences X,y € X have the same length and R is a binary relation
on X, then we may write x =y (mod R) or x =g y or x Ry to
mean that (z;,y;) € R for all i. If R is a binary relation on X, then
the set X"[R] consists of the tuples x € X" such that z; =g x; for all
1 <14 < j <n. The projection of a subset S C Hiel X, onto a subset
of coordinates J C [ is denoted 7;: S — HjeJ X, and its kernel is
denoted n;. If 0 is an equivalence relation on [ e Xj, then 0 ; denotes
7;71(0) (so 05 = ny). When J = {j}, then we write m;, n; and 6,
instead of m;, ng;) and 6;;. Expressions A := B or B =: A mean
“A is defined by B”.

2.1. Algebras, Varieties, and Clones

An algebra is a model of a 1-sorted first-order algebraic language.
To fix conventions, an algebraic signature is a pair o := (F, a) where
F is a set (of operation symbols), and a: F' — w is a function (assigning
arity). An algebra of signature o is a pair A := (A; F') where A is
a nonempty set, called the universe of A, and for each f € I with
a(f) = k there is an assigned k-ary operation fA: A¥ — A. The
operations f# are called the basic operations of A.

If Y is a set that is disjoint from F', then T'(Y") is the smallest set
of words in the alphabet F'UY satisfying

i) Y CT(Y), and
(i) if f € F, a(f) = k and ¢1,...,gx € T(Y), then the word
for-- g € T(Y).
15
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When YV = X = {z; | 1 <i < w}, then T(X) is the set of terms
of signature o, and its members are called terms. Similarly, if
Y =X, = {x1,...,2,}, the members of T'(X,,) are n-ary terms.

The set T(Y) has a canonical structure of an algebra of signa-
ture 0. Namely, if f € F has arity k, then in the term algebra
T = T(Y) the operation fT is defined so that if g;,...,gx € T, then
fg1,--,98) = fg1- g € T. If A is an algebra of signature o and
Y = X or X, then an assignment in A of the variables Y is a
function v: Y — A. It follows from the unique readability of terms
that any assignment v extends uniquely to an algebra homomorphism
v: T — A; that is, T is free over Y in the class of all algebras of
signature o. If t € T, then both ¥(¢) and #(v) denote the image of ¢
under .

If A is an algebra of signature o and t € T'(X,,), then ¢ determines
an n-ary term operation on A, the function t4: A® — A is defined
by (ay,...,a,) — t(v) where v: X,, — A is the assignment x; — a;.
These remarks apply in the case where A = T = T(X,,), and show
that, if t € T(Xy) and ¢1,...,9xr € T(X,), then there is a term
t(g1,---,g1) == tY(g1,...,gr) € T(X,). It can be proved by induc-
tion that, in this notation, the term t(xq,...,x) is simply ¢ itself.

The language L associated with the signature o is the set of first-
order formulas in this signature. Parentheses may be added to formulas
to improve readability. An identity in the language L is an atomic
L-formula, which is a formula of the form p ~ ¢ where p,q € T(X,)
for some n. An algebra A satisfies p ~ ¢, written A | p = g,
if p(v) = q(v) for every assignment in A (equivalently if pA = ¢?).
A class of algebras in the language L is a variety if it is definable as
the class of all L-algebras satisfying some set of identities. The smallest
variety containing an algebra A is denoted V(A).

A quasi-identity is an open first-order formula of the form

where p =~ ¢ and each p; ~ ¢; is an identity. A class of L-algebras is a
quasi-variety if it is definable by some set of quasi-identities.

A clone is a multisorted structure C = (Cy, C1, . ..; F), with sorts
indexed by w, where

(i) Each of the sorts C;, i € w, is a set.
(i) F={rl|n€w,1<i<n}U{comp | m,n € w} is a set of
operations between the C;.
(iii) Each 7! is a 0-ary operation (a constant) in C,,.
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(iv) comp™: C,, x (C,)™ — C,, is an (m + 1)-ary operation.
(v) comp(f, ..., w2) = f and compl(x", f1,.... fr) = fi
(vi) comp?, (f,comp? (g1, h1,...,hy),...,comp(gp, hi, ... hy)) =
comp?n(comp{;(f, 91y Gp)s Py ey hn).

For an example of a clone, take C), to be the set of n-ary L-terms, take
7' to be z;, and take comp]’ to be the composition of an m-ary term
with m n-ary terms. This is the clone of L-terms. The clone of A
when A is an algebra is defined similarly using the term operations
of A instead of the L-terms.

It is evident that clones are multisorted algebras defined by identi-
ties, hence the class of clones is a multisorted variety. This implies that
the usual algebraic notions apply to clones. In particular, a sequence

h:(hg,hl,...):C—>D

is a homomorphism between clones if each h;: C; — D; is a func-
tion, and the sequence h preserves the clone operations of composition
and projection. The notions of kernel and quotient are defined in the
obvious way.

Let V be a variety of 1-sorted algebras in the language L. The
clone of V, denoted Clo(V), is that quotient of the clone of L-terms
that is obtained by identifying terms p, ¢ € C,, if p = ¢ is satisfied by all
algebras in V. The correspondence V — Clo(V) is essentially bijective.
Namely, each variety V is assigned the clone Clo(V), and each clone
C is assigned a variety Var(C) which we define now. The operation
symbols of Var(C) are J,., C; where the arity of f € C, is defined to
be n. The identities defining Var(C) are of two types:

(i) projection identities: n}*(xy,...,z,) ~ x; for each 1 < i < n,
and
(ii) composition identities:

floy,... x,) ~ g(hl(ajl, ey )y ey B (T, ,xn))
whenever the equality f = comp”(g, hq,...,h,) holds in C.

It can be shown that C = Clo(Var(C)) holds for any clone C, while V is
definitionally equivalent to the variety Var(Clo(V)) for any variety V.

We write Y <V if there is a homomorphism h: Clo(U/) — Clo(V).
This notation is used to express the fact that the algebras in V have
an underlying U-structure.

2.2. Lattice Theory

A partial lattice is a structure P = (P;V, A, <) where (P; <) is
a partially ordered set and V and A are partial binary operations on P
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(called join and meet respectively) such that, if a VV b is defined, then
it is the least upper bound of a and b in (P; <), and if a A b is defined,
then it is the greatest lower bound of @ and b in (P; <). A lattice is a
total algebra L = (L; vV, A) on which there is a partial order < making
(L;V, A, <) a partial lattice.

If < y in some lattice L, then the interval between them is
Iz, y] == {2z | < z < y}. A lattice ideal of L is a subset I C L
closed under join (r,y € I = xVy € I) and closed downward
(x €I & 2 <x = z € I). The dual concept is a lattice filter.
The principal ideal determined by = € L is (z] := {2z | 2 < z}. The
collection Z(L) of all ideals of L, ordered by inclusion, is the ideal
lattice of L. If I,J € Z(L), then I A J =1NJ and

Ivi={z|Fwel,yeJz<zVy)}.

Lattice terms may be called words. If p and ¢ are n-ary lattice
words, then the inclusion p < ¢ is satisfied by a lattice L if and only if
p¥ < ¢ in the pointwise order. Therefore L satisfies p ~ ¢ if and only
if it satisfies both p < g and ¢ < p. Note also that p < ¢ is satisfied
by L if and only if the identity p ~ p/Aq is satisfied by L. It follows that
a class of lattices is definable by identities if and only if it is definable
by inclusions. The variety of all lattices is denoted L.

If @ is the lattice quasi-identity A(p; = ¢;) — (p = q), then the
(Q-configuration is a pair (P(Q), p A q) where P(Q) is the natural
partial lattice of subterms of terms of (). That is, P(Q) is the partial
lattice presented by (G | R) where G is the set of subterms of terms
appearing in ) and R consists of relations of the following types: if
s, t and sV t are subterms, then R contains a relation expressing that
sVt is equal to the join of s and ¢, R contains similar relations for
meet, and for each premise p; & ¢; of () the set R contains the relation
pi = ¢;. It is not assumed that R contains p = ¢ where p ~ ¢ is the
conclusion of ). This definition exists to make the following statement
true: an assignment of the variables of () in a lattice L which satisfies
the premises of () determines and is determined by a homomorphism
of partial lattices ¢: P(Q) — L, and the assignment will satisfy Q

precisely when ¢(p) = ¢(q).

DEFINITION 2.1. The meet semidistributive law is the quasi-
identity

(2.1) ((p/\q)zs)&((p/\r)zs)—>((p/\(q\/r))zs),

and the join semidistributive law is the dual quasi-identity.
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Quasi-identity (2.1) is equivalent to
(2.2) (pAg)=s) & ((pAr)=s) & ((gVvr)>p) = (p=rs).
The reason this is so is that any assignment of variables which fails to
satisfy (2.2) will also fail to satisfy (2.1), while conversely if p +— a,
qg+— b, r— c, s+ dis an assignment of variables in some lattice that
fails to satisfy (2.1), then p+— a A (bV ), g — b, 7+ ¢, s — d is an
assignment that fails to satisfy (2.2).

The SD,-configuration is the ()-configuration where @) is quasi-
identity (2.2). More explicitly, let P(SD,) be the partial lattice gen-
erated by {p,q,r,m,j} where m = pAg=pArand j=qVr>p.
Then the SDx-configuration is (P(SDA), p = m). An SD,-failure
in a lattice L is an interval of the form I = I[p(m),¢(p)] where
¢: P(SDs) — L is a homomorphism of partial lattices. This SD-
failure is trivial if I has one element and is nontrivial otherwise.
The SDy-configuration and SD,-failures are defined dually. Thus
a lattice is meet semidistributive if and only if it has no nontrivial
SD ,-failures.

For finite lattices, or for varieties of lattices, the meet and join
semidistributive laws are characterized in the following theorem.

THEOREM 2.2.

(1) (Cf. [7]) A finite lattice is meet semidistributive if and only
if it has no sublattice isomorphic to Mz, D1, E{, Es and G.
(These are five of the following six lattices.)

b g S
¢ Q<

FIGURE 2.1.
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(2) (Cf. [41]) A variety of lattices consists of meet semidistributive
lattices if and only if it does not contain Mz, D1, Eq, Es or G.

The dual results hold for join semidistributivity in place of meet semidis-
tributivity.

DEFINITION 2.3. Whitman’s condition, denoted by (W), is the
formula

(x ANy <uVwov)—
(z<uvwv)or(y<uVuv)or (zAy<u)or(zAy<v)).
This condition may be written a little more compactly as:
r Ay <uVwv implies {z,y,u,v}NI[xAy,uVz]#0.
All lattices depicted in Theorem 2.2 satisfy (W).

DEFINITION 2.4. A quasi-identity A/, (p; = ¢) — (p = ¢) in
k variables satisfies (W) if the lattice with the presentation (G | R)
satisfies (W), where G = {¢1,..., 9}, & = (g1,...,9x) and R =

{ri(g) = q1(g), -, p(g) = au(g)}-

Note that whether or not a quasi-identity satisfies (W) depends only
on its premises. It is proved in [6] that a quasi-identity () satisfies (W) if
and only if the associated partial lattice P(Q) satisfies (W). Since P(Q)
is finite, this yields an algorithm for testing a quasi-identity for (W).
It is noted in [6] that the meet semidistributive law satisfies (W), and
that more generally any quasi-identity whose premises are free of joins
(as in form (2.1) of the meet semidistributive law) satisfies (W). These
remarks also apply to the join semidistributive law.

DEFINITION 2.5. A surjective lattice homomorphism A: K — L is
upper bounded if each kernel class h™'(a), a € L, has a largest ele-
ment, is lower bounded if each kernel class has a least element, and
is bounded if it is both lower and upper bounded. A lattice L is (up-
per, lower) bounded if there is a surjective (upper, lower) bounded
homomorphism h: F,(xq,...,2,) — L from a finitely generated free
lattice onto L.

Any lower bounded lattice is join semidistributive (Theorem 2.20
of [16]). Chapter 2 of [16] describes an effective algorithm for testing
if a finite lattice is lower or upper bounded. We shall not have cause to
use this algorithm, but for later reference we point out that D, is the
only lower bounded lattice depicted in Theorem 2.2. The others are
excluded because they are not join semidistributive, while the lower
boundedness of D; is proved one way in Example 2.74 of [16] and
differently in Table 3 of [65].
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DEFINITION 2.6. An algebra P is projective relative to a variety V
if whenever o: A — B is a surjective homomorphism between algebras
of Vand ¢: P — B is a homomorphism, then there is a homomorphism
©: P — A such that c o p = ¢.

<l

P
7
R

»
A—=B

o

When V is a variety of lattices, we may call a partial lattice P pro-
jective relative to V if it satisfies the homomorphism lifting property
of this definition.

THEOREM 2.7. If V is a variety of algebras and P is subdirectly
wrreducible and projective relative to V, then there is an identity € such
that for all A € V it is the case that A = € if and only if A has no
subalgebra isomorphic to P.

We call the identity € the conjugate identity for P.

PROOF. Let U consist of all members of V that have no subalgebra
isomorphic to P. Then U is closed under the formation of homomor-
phic images because P is projective relative to V, U is closed under
subalgebras by definition, and U is closed under products because P is
subdirectly irreducible. By Birkhoff’s HSP Theorem, U/ is a subvariety
of V. Since P ¢ U, there is an identity ¢ that is satisfied in & but not
by P. Necessarily ¢ fails in every member of V — U, so this identity
has the property stated in the theorem. O

We shall have occasion to refer to the following closely-related re-
sult.

THEOREM 2.8. If Q is a quasi-identity and P(Q) is projective rel-
ative to V), then the class of lattices in V that satisfiy () is a subvariety

of V.

PROOF. As above, let U consist of all members of V that satisfy Q).
Then U is closed under the formation of homomorphic images because
P(Q) is projective relative to V, U is closed under subalgebras and
products because @) is a quasi-identity. U



22 2. PRELIMINARY NOTIONS

2.3. Meet Continuous Lattice Theory

A lattice is meet continuous if it is complete and the binary meet
operation distributes over arbitrary up-directed suprema. That is, for
every up-directed set D,

(2.3) x/\\/yz\/x/\y.

yeD yeD

Every algebraic lattice is meet continuous (Lemma VIIL.5.2 of [1]).
The language of meet continuous lattices has operation symbols
{V,A} where \/ is a class of k-ary join operations for all kK > 0 and
A is binary meet. The 0-ary join is a constant that interprets as the
least element and is denoted 0. The fact that A is a meet operation is
expressible by identities in the same way that it is expressed in lattice
theory. As with binary join, it is easy to express with identities the
fact that k-ary \/ is k-ary join with respect to the A-order. To show
that meet continuity is expressible by identities one must show that
the distributive law in (2.3) can be rewritten with quantification over
arbitrary sets rather than up-directed sets. This is done by replacing
an arbitrary join with the up-directed supremum of its finite sub-joins:

Ay~ (m\/y).

yeF FoCF yeFo
_7:0 finite

The category Ly¢ of meet continuous lattices with join complete
homomorphisms has a forgetful functor F': Ly;c — L to lattices that
forgets all join operations except the binary join. Theorem 2.9, which
is essentially due to Ralph Freese, asserts that this functor has a left
adjoint given by the ideal lattice functor. Here if h: K — L is a ho-
momorphism between lattices, then Z(h): Z(K) — Z(L) is defined by

Z(h)(I)={z€L|3zel(z<h(z))}.
THEOREM 2.9. Restriction to L is a natural bijection
|: Lame(Z(L),K) — L(L, F(K)).

(We are identifying L with the sublattice of Z(L) consisting of prin-
cipal ideals.)

Proor. If h: Z(L) — K is a meet continuous lattice homomor-
phism, then the restriction hly,: L — F(K) is evidently a lattice ho-
momorphism (since lattices are reducts of meet continuous lattices).
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If g: L — F(K) is a lattice homomorphism, then it is proved in
Lemma 5.1 of [15] that the function

g: (L) — K: Il—>\/{g(x) |z €I}

is a meet continuous lattice homomorphism whose restriction to L is g.
It is the unique extension of g to Z(L), since Z(L) is generated under \/
by L. This proves that restriction to L is a bijection between hom-sets.
The naturality is left as an exercise. (See Chapter IV of [64] for the
method.) O

The adjunction from £ to L£y;c may be composed with the adjunc-
tion from SE7T to L (given by the free lattice and forgetful functors) to

produce a left adjoint SET free p L, Lyrc to the composite forgetful
functor Ly — L — SET. This adjoint establishes the existence and
structure of free meet continuous lattices.

COROLLARY 2.10. If F = F,(X) is the free lattice generated by X,
then Z(F) is a free meet continuous lattice over the set {(x] | x € X}.

Since Ly;c is definable by identities and has free algebras of all
ranks, Birkhoff’s HSP theorem is valid for £,,c: a subclass of Lyc is
definable by identities if and only if it is closed under the formation
of homomorphic images, subalgebras and products. Hence the proof
of Theorem 2.7 is valid for varieties of meet continuous lattices. Us-
ing known methods it can be shown that the projective subdirectly
irreducible members of £,,c are the finite, lower bounded, subdirectly
irreducible lattices satisfying (W). This includes all lattices that are
projective and subdirectly irreducible in £, along with some others
(such as Dy).

2.4. Maltsev Conditions

A strong Maltsev condition is a primitive positive sentence in
the language of clones. This means that it is a first-order sentence
of the form “3 A (atomic)” about clones. A Maltsev condition is a
countably infinite disjunction \/,_ o; where the o; are strong Maltsev
conditions that get weaker as i increases (i.e., o; F o;;; for all 7).
A variety satisfies a (strong) Maltsev condition if its clone does.

The concept of a Maltsev condition can be reformulated in terms
of clone homomorphisms. To each strong Maltsev condition 3F A\ X
corresponds a finite presentation (F' | ¥) of a clone. If U is a variety
whose clone has this presentation, then ) satisfies the strong Maltsev
condition IF A ¥ if and only if 4/ < V. Similarly, to each Maltsev con-
dition \/iEW o; corresponds a sequence - -- < Uy < U; < U, of varieties
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with finitely presented clones. A variety V satisfies \/,. o; if and only
if U; <V for some i.

Our practice will be to express Maltsev conditions informally. For
example, we will express the fact that variety V satisfies the strong
Maltsev condition
24)  3p (compi(p, w7 md) 7 & compl(p, nd ) ~ 7).
which expresses the fact that )V has a Maltsev term, by saying that
V has a ternary term p such that the identities p(x,y,y) ~ x and
p(y,y,x) =~ z hold in V.

An n-ary element f of a clone C is idempotent if

Comp?(fv 7[_%7 ﬂ%a e ,W%) = 71'% .
If C is the clone of a variety V, this means that f(z,z,...,z) = = is

satisfied in V. The idempotent elements of C form a subclone, 1d(C).
The idempotent reduct of V is the variety Id(V) := Var(Id(Clo()V)))
that is associated to the idempotent subclone of Clo(V). A (strong)
Maltsev condition is idempotent if for each term f in the condition
the identity f(z,z,...,x) = z is a consequence of the identities of the
Maltsev condition.

Two (strong) Maltsev conditions are equivalent if they define the
same class of varieties.

LEMMA 2.11. Any idempotent strong Maltsev condition is equiva-
lent to one of the form 3F N\ where F' = {h,k}, h is n-ary and k is

n?-ary, and X consists of the identities

(i) h(z,x,...,z) = x,

(1) k(z11, - Tpn) = h(h(xn, ey 1)y e BT, ,xm)), plus
(iil) finitely many identities of the form k(variables) ~ k(variables).

The proof of this lemma is part of the proof of Lemma 9.4 of [34].

A strong Maltsev condition IF' A ¥ is linear if each identity in X
has the form p(variables) & ¢(variables) where p,q € F' U {variables},
while a Maltsev condition \/ZEW o; is linear if each o; is.

LEMMA 2.12. Any idempotent linear strong Maltsev condition is
equivalent to one of the form IF \ X where ' = {f}, and ¥ consists
of the identities

(i) f(z,z,...,z) ~ x, plus
(i) finitely many identities of the form f(variables) ~ f(variables).

This is proved by slightly modifying the proof in [34] of the preceding
lemma.
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All of the Maltsev conditions considered in this monograph are
idempotent and linear, and will usually be expressible in the form
described in Lemma 2.12 using only two variables. We introduce a
notation for such 2-variable Maltsev conditions now.

Let f be an n-ary operation symbol and let N = {1,...,n}. For
each U C N, let fy(z,y) denote the term obtained from f(z1,...,z,)
by substituting = for z; if i € U and y for z; if j ¢ U. Observe that
any identity of the form

f(variables) ~ f(variables)

that uses only the variables z and y may be rewritten in the form
fu(z,y) = fy(x,y) where U is the set of positions where x appears on
the left of the identity and V' is the set of positions where x appears
on the right. This particular identity may be abbreviated by U = V.
In order to encode a family F of 2-variable identities of the form
f(variables) ~ f(variables), we define B(f) to be the Boolean alge-
bra of subsets of N equipped with an equivalence relation E where
U =g V holds if and only if fy(z,y) =~ fv(z,y) is a consequence of the
identities in F.

ExAMPLE 2.13. The statement that p is a Maltsev term for V
may be expressed by saying that ) satisfies identities of the form
p(variables) ~ p(variables) if the idempotence of p is assumed, namely
by p(x,y,y) = p(z,z,x) and p(y,y,x) = p(x,z,z). Here N = {1,2,3}
and B(p) is the Boolean algebra of Figure 2.2 with an equivalence rela-

FIGURE 2.2. B(p)

tion £ where N =g {1} =g {3}, since p(z, z,2) = p(z,y,y) = p(y, y, x)
are consequences of the starting identities, and ) =g {1,2} =g {2, 3},
since p(y,y,y) = p(x,z,y) =~ p(y, z, x) are also consequences.
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A subset of B(f) is closed if it is a union of E-classes. The next
theorem is due to Walter Taylor.

THEOREM 2.14. The following are equivalent for a variety V.

(1) V satisfies a nontrivial idempotent Maltsev condition (i.e., one
that fails in some variety).

(2) V satisfies an idempotent Maltsev condition that fails in the
variety of sets.

(3) For somemn, V has an idempotent n-ary term f such that B(f)
has no closed ultrafilter.

PROOF. See Corollary 5.3 of [78]. O

We will make frequent use of Theorem 2.14, so we introduce the
following terminology.

DEFINITION 2.15. A term f is a Taylor term for a variety V if
V satisfies f(z,z,...,x) &~ x and enough other identities of the form
fu(z,y) = fy(x,y) so that B(f) has no closed ultrafilter.

Note that the word ‘linear’ does not appear in Conditions (1) and (2)
of Theorem 2.14 although the Maltsev condition from (3) is linear. The
fact that any variety satisfying a nontrivial idempotent Maltsev condi-
tion also satisfies one that is linear is the nontrivial part of the theorem.

Condition (3) of Theorem 2.14 means that if ¢/ is the ultrafilter
of subsets of N containing the singleton {i}, then U is not closed.
Therefore there is some U € U and some V' ¢ U such that V satisfies
fu(z,y) = fy(x,y). Another way to express Condition (3) is that
V satisfies an identity of the type f(variables) ~ f(variables) for each
1 < i < n, where all variables are x or y, and x appears in the i-th
position on the left while y appears in the i-th position on the right.
An identity of this type will be called an i-th Taylor identity for f.

A result similar to Taylor’s was discovered by David Hobby and
Ralph McKenzie.

THEOREM 2.16. The following are equivalent for a variety V.

(1) V satisfies an idempotent Maltsev condition that fails in the
variety of semilattices.

(2) For somen, V has an idempotent n-ary term f such that B(f)
has no closed, proper, nonempty lattice filter.

PROOF. See Lemma 9.5 of [34]. O

DEFINITION 2.17. A term f is a Hobby—McKenzie term for a
variety V if V satisfies f(z,z,...,x) &= x and enough other identities
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of the form fy(x,y) = fy(z,y) so that B(f) has no closed, proper,
nonempty lattice filter.

The term p from Example 2.13 is a Hobby-McKenzie term, and
therefore also a Taylor term. To see this, suppose that F is a closed,
proper, nonempty lattice filter of B(p). Then since F is a nonempty
filter it contains the top element N. Since F is closed it must contain
{1} (=g N) and also {3} (=g N). Since F is a lattice filter, it contains
{1} N {3} = 0. But any lattice filter containing () is improper.

2.5. The Term Condition

Let A = (A; F) be an algebra. An n-ary relation R C A™ is com-
patible if it is a subalgebra of A™. If B is a subalgebra of A, then
the restriction of a relation R C A™ to Bis R|g := RN B™. If § is
a congruence on A, then R/§ := {(a1/9,...,a,/9) | (a1,...,a,) € R}.
Both R|g and R/ are compatible if R is. If 4 is a congruence, then
R is 0-closed if R=00Rod. (Ile.,ifadb Rcddimpliesa Rd.)

A compatible, reflexive, symmetric binary relation is called a tol-
erance. We will usually denote tolerances by upper case italic letters:
R, S, T,.... A compatible equivalence relation (i.e., a transitive tol-
erance) is a congruence, and congruences will usually be denoted by
lower case Greek letters: «, 3, 7, .... The tolerance or congruence gen-
erated by a set X C A x A is usually denoted by Tg®*(X) or Cg®(X)
respectively, although if X contains only a few pairs then we may write,
for example, Cg” (a, b) or CgA((a, b), (c, d)) instead. If T is a tolerance
on A, then a maximal subset B C A such that B x B C T is called a
block of T'. If T"is in fact a congruence, then a block is the same thing
as a congruence class. A tolerance or congruence is trivial if it is the
equality relation and nontrivial otherwise.

The collection of congruences on A, ordered by inclusion, is an al-
gebraic lattice which is denoted Con(A). Its least and largest elements
are denoted 0 and 1. Meet and join are denoted A and V and are com-
puted by a A3 = anfand aV = tr.cl.(aU3) where tr.cl. represents
transitive closure.

An m-ary polynomial operation of A is an operation f: A™ — A
such that f(z1,...,2m) = t*(21, ..., Tm, a) for some (m-+n)-ary term ¢
and some tuple a € A™.

If S and T are tolerances on A, then an S, T-matrix is a 2 x 2
matrix of elements of A of the form

7] 6



28 2. PRELIMINARY NOTIONS

where f(x,y) is an (m + n)-ary polynomial of A, a S b, and u T v.
The set of all S, T-matrices is denoted M (S, T").

Since tolerances are compatible with all polynomial operations, any
two elements in the same row of an S, T-matrix are T-related and any
two elements in the same column are S-related.

The fact that S and 7" are symmetric relations implies that M (S, T")
is closed under interchanging rows or columns:

s T

[f z} GM(S,T)@{; S}GM(S,T)@{Q p}eM(S,T).

If S =T, then M(S,T) = M(T,T) is also closed under transpose, as
one sees by interchanging the roles of x and y in the polynomial f(x,y)
that defines a given matrix.

DEFINITION 2.18. Let S and T be tolerances on an algebra A, and
let d be a congruence on A. If p =5 ¢ implies that » =5 s whenever

(2.5) [p ‘Sf] e M(S,T),

r
then we say that C(S,7T;0) holds, or S centralizes 7" modulo §.

By interchanging the rows of matrices one sees that C(S,T’; 0) holds

if and only if
P =sq < r=s§S
for every S, T-matrix in (2.5).

The S, T-term condition is the condition C(S,7;0). There are
other similar conditions called term conditions that we will meet later,
but this is the original one.

When establishing that the implication defining C(S, T’; §) holds, or
when making use of the fact, we may use underlining to highlight places
in equations or expressions where changes are to be made. For example,
we may write the implication defining C(.S,T’;¢) in the following form:
If

f(§7 u) =5 f(ga V) ’
then
f(b? 11) =5 f(ba V) :

The relation C( , ; ) is called the centralizer relation. The
reason that this terminology is used is that when A is a group and
S, T and § are congruences on A, then C(S,T;d) holds if and only if
[S,T] < § (see Chapter 1 of [19]).

The basic properties of the centralizer relation are enumerated in
the following theorem.
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THEOREM 2.19. Let A be an algebra with tolerances S, S', T, T’
and congruences «, oy, 3, 0, 8, 6;. The following are true.

(1) (Monotonicity in the first two variables) If C(S,T;6) holds
and 8" C S, T" C T, then C(S",T';0) holds.

(2) C(S,T;6) holds if and only if C(Cg™(S),T;6) holds.

(3) C(S,T;6) holds if and only if C(S,d0T 0§;0) holds.

(4) If TNo=TnNJ¢, then C(S,T;9) < C(S5,T;¢).

(5) (Semidistributivity in the first variable) If C(a;,T';0) holds
for alli € I, then C(\/,c; o, T;6) holds.

(6) If C(S,T;9;) holds for all j € J, then C(S,T; \\;c;9;) holds.

(7) If TN (So(T'Nd)oS) Cd, then C(S,T;6) holds.

(8) If BA (a Vv (ﬂ/\é)) < 0, then C(a, 3;0) holds.

(9) Let B be a subalgebra of A. If C(S,T;0) holds in A, then
C(S‘B,T‘B, 5‘]3) holds in B.

(10) If &' < 6, then the relation C(S,T;9) holds in A if and only

if C(S/d',T/d8;6/0") holds in A/

PROOF. Item (1) follows from the fact that M (S",T") C M(S,T).

For (2), C(Cg*(5),T;0) = C(S,T;0) follows from (1), since
S C Cg”(S). For the reverse implication (and also for the proof of
item (5)), we will argue that if S; is a tolerance, C(S;,T’; ) holds for
all i € I, and « := tr.cl. (Uz‘e] SZ-), then C(«,T;6). (To complete the
proof of (2) we need this only when |I| = 1, while in (5) we need it
only when the S; are congruences.)

Choose any matrix in M (o, T'). If it is

(7 0] [faw fan]

then a is related to b by tr.cl. (Uiel Si). It is easy to see that there
exist tuples a = ag S;, a1 S;, -+ 5;, a, = b. These tuples determine
matrices

[ Pk Gk ] ::{ flag,u)  f(ag,v) ] € M(S;

T).
Pk+1 Qe+l flagi,v)  f(ag, v) )

k+1)
We must show that p =5 ¢ implies r =5 s, so assume that p =5 ¢. Thisis
the same as py =5 qo, and so by induction (using that C(S;,,T"; ) holds
for all k) we get that pp =5 qx for all k. Therefore r = p, =5 ¢, = s.
This completes the proofs of (2) and (5).

For (3), the implication C(S,5 0 T 0d;0) = C(S,T;0) follows

from (1), since T'C 6 o T o §. For the reverse implication, assume that
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C(S,T;0) holds, that
pog|_| flau) fl(av)
[ ros } - [ flbow) flb,v) | €MS00To0).
and that p =5 ¢. There exist tuples u’ and v’ such that ud o’ T'v' 6 v.

The matrix
pod | _ | flad) flav')
rost ] f(bu) f(b, V)
is an S, T-matrix. Moreover,
p'=flau)d flau)=pdg=flav)df(av)=q".
Since C(S,T};0) holds, it follows that ' =5 s’. Hence
r=f(byu)d f(b,u)=1r"§s = f(b,v)d f(b,v) =5,

or r =5 s. This establishes C(S,0 0T 0 §;9).
For (4), recall that elements in the same row of an S, T-matrix are

T-related. So if [ f z } € M(S,T), then since TNdé =TNJ¢ we get
that

P=sq <~ P=rmsqd < P=rmyqd < P=s4q,
and

r=sS <= I'=rs S <= ISy S <= I'=g 5.

Therefore the implication p =5 ¢ = r =; s is equivalent to the
implication p =5 ¢ = r =4 s.

For (6), assume that {f z] € M(S,T). If p = ¢ (mod A9;),

then p = ¢ (mod J,) for all j. Since C(S,T';6;) holds for all j we get
that r = s (mod 6;) for all j, or equivalently that » = s (mod A ;).
This shows that C(S,T; A\, ;) holds.

For (7), choose an S, T-matrix M = Z; Z . Assume that p =5 q.

Since the elements in the same row of M are T-related and the elements
in the same column are S-related, we have r S p T'Nd ¢ S s. Moreover,
r T s since these elements belong to the same row. Together this yields
that r TN (So(T'Nd)oS) s. By the assumption in (7), this implies
that r =5 s. This proves (7).

For item (8), if A (oz\/(ﬁ/\é)) < 6, then 5N (OzO(ﬁﬂé)oa) <4,
so C(a, ;6) holds by (7).

Item (9) holds because any instance of the implication in Defini-
tion 2.18 defining C(S|g,T|s;d|p) in B is an instance of the implica-
tion defining C(S,7;0) in A.
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For item (10), it suffices to observe that, when §' <4,

DU e sy

if and only if there exist p =5 p/, ¢ =5 ¢/, r =5 ', and s =5 s’ with

H g] e M(S,T),

and that p =5 ¢ & p'/§' =50 ¢ /0 and r =5 s & 1[0 =55 s'/6'. O

DEFINITION 2.20. The commutator of S and T, denoted by [S, T,
is the least congruence § such that C(S,T;0) holds. T is abelian if
[T, T] = 0. An algebra A is abelian if its largest congruence is.

By Theorem 2.19 (6), the class of all § such that C(S,T";d) holds
is closed under complete meet, so there is a least such d. This implies
that [S, T exists for any two tolerances S and T'.

It is a well known fact, easily derivable from the definitions, that
A is abelian if and only if the diagonal of Ax A is a class of a congruence

of A x A.

DEFINITION 2.21. The centralizer of T modulo ¢, denoted by
(0 : T), is the largest congruence o on A such that C(a,7’;6) holds.

By Theorem 2.19 (5), the class of all « such that C(a, T ) holds
is closed under complete join, so there is a largest such a. This im-
plies that (§ : T') exists for every 6 and 7. By Theorem 2.19 (2),
the centralizer (0 : T') contains every tolerance S such that C(S,T};)
holds.

2.6. Congruence Identities

If V is a variety of algebras, then any lattice identity that holds
in the class {Con(A) | A € V} of congruence lattices of algebras
in V is called a congruence identity of V. The congruence va-
riety of V, denoted CON(V), is the subvariety of L generated by
{Con(A) | A € V}, or alternatively is the variety of lattices axiom-
atized by the congruence identities that hold in V. Similarly, a lattice
quasi-identity that holds in congruence lattices of members of V is a
congruence quasi-identity of V.

The following theorem will be used in several places in this mono-
graph.

THEOREM 2.22 (Cf. [6]). Let Q be a quasi-identity satisfying (W).
The class of varieties satisfying QQ as a congruence quasi-identity is
definable by a set of idempotent Maltsev conditions.
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Since congruence lattices are algebraic, and therefore meet con-
tinuous, it is reasonable to discuss meet continuous congruence
identities, which we define to be meet continuous lattice identities
considered as congruence identities. A meet continuous congruence
identity is trivial if it holds in the congruence lattice of every algebra
and nontrivial otherwise. It follows from Corollary 2.10 that free meet
continuous lattices are algebraic, so they are isomorphic to congruence
lattices according to the Gratzer—Schmidt Theorem [26]. Therefore a
meet continuous lattice identity is nontrivial as a congruence identity
if and only if it is nontrivial as a meet continuous lattice identity. Both
statements mean the identity fails in some algebraic lattice.

It is proved in [5] that the class of varieties that satisfy the meet
semidistributive law as a congruence quasi-identity is definable by a
set of idempotent Maltsev conditions. An examination of that argu-
ment reveals that what is really proved is that, modulo the axioms
defining Ly, the meet semidistributive law is equivalent to a meet
continuous lattice identity.! In the next theorem, we prove that many
different quasi-identities, including SD,, are equivalent to meet contin-
uous identities.

THEOREM 2.23. Letp, q, 1, s, x1,...,x, be lattice variables. Define
t:=pA(qVr). Letwip,qr), 1 <i<m, beternary lattice words
such that w;(p,q,r) < q for some i, wi(p,q,r) < r for some j, and
wi(p,q,r) < t for all k in the free lattice F.({p,q,r}). For each i
let xf = (z; V. s) At. For arbitrary n-ary lattice words u and v, the
quasi-identity
26) A (wilp )~ s) = ulz,. .., ~ 0@, ., 77)

i=1
15 equivalent to an identity in Lyc.

PROOF. Let f;(x) denote the polynomial w;(p,qV x,r V x) of the
free meet continuous lattice Fo = Fr,,.({p,q,r}) (where 1 <i < m).
If z<t=pA(qVr), then the idempotence of lattice words implies
that for any ¢ between 1 and m

z=wi(2,2,2) Swi(p,qV 2,1V z)= fi(2)
(2.7) <wi(p,gVit,rVvit) <wi(p,gqVr,qgVr)
<pA(lgvr)V(gvr))=t.
The underlined elements indicate why the principal ideal generated
by t = p A (qVr) is closed under each f;, and each f; is an increasing

'In fact, what is really shown is that the partial lattice P(SD,) in the SDx-
configuration is projective relative to Lys¢.
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function on this ideal. It follows from this that the set of all elements of
the form f; o---0f;,(0),4; € {1,...,m}, is an updirected set of elements
below t. The supremum of this set, % (p, q,r) € Fo, w := (wy, ..., W),
is therefore the least common fixed point in F( of the polynomials f;.
Since t = p A (¢ V r) is a common fixed point of the f; it follows that
oV < tin Fy. Now, if ¢: Fyg — L is a surjective homomorphism of meet
continuous lattices for which a = ¢(p), b = ¢(q) and ¢ = ¢(r), then
©(0™(p,q,7)) = 6%(a, b, c) is the supremum of all fFo---o fE(0), where
fE(x) == wl(a, bV x,cVx). By an argument like the one in (2.7), each
fF is increasing on the principal ideal generated by t“(a, b, ¢) = aA(bVc)
and maps this ideal into itself. Hence 0% (a,b,c) is the least common
fixed point of the polynomials f& in L.

For each variable x;, set «f := (x; V 6¥(p,q,7)) A ¢, which is an

element of F :=F,.,,.({p,q, 7, s,21,...,2,}). We are now prepared to
argue that quasi-identity (2.6) is equivalent to the identity

(2.8) uw(zl, .. xf)~v(z],. .. zh)

in /CMC’-

Assume first that L is a meet continuous lattice satisfying (2.8).
To show that L satisfies (2.6), choose any assignment of the variables
{p,q,r,s,x} — L that satisfies the premises of quasi-identity (2.6), and
let ¢): F — L be the extension of this assignment to a homomorphism.
Equivalently, choose a homomorphism 1) so that if

(¥(p), ¥(q), ¥(r), ¥(s), ¥(x)) = (a,b,c,d,g),

then wl(a,b,c) = d for all i. Define e := 9(t) = a A (b V ¢) and
g; == (x}) = (g: Vd) A e. We must show that v¥(g*) = v¥(g*).

Since w;(p,q,r) < q for some i, w;(p,q,r) < r for some j, and
wi(p,q,7) < (pA(qVr)) <pforall kin Fy, it follows that

d = wj(a,b,c) =w;(a,b,c) = w(a,b,c) <aAbAc

in L. Since d = wy(a,b,c) > a ANb A c we even have d = a A b A c.
Therefore f(d) = wr(a,bVd,cVd) = wr(a,b,c) = d for all i, yielding
that d is a common fixed point of the f; in L. Since the meet continuous
sublattice Ly < L that is generated by a, b and ¢ contains d and has
0W(a,b,c) as its least common fixed point of the f;’s, it follows that
0¥(a,b,c) <d. Sinced=aAbAc< f1(0) <6%(a,b,c), we even have
d = 6% (a,b,c). This implies that ¢ (z;) = ¢(x}) = gf. This gives us
the desired result

ut(g") = ¢ (u(x")) = ¥ (v(x")) = v™(g"),
where the middle equality is from (2.8).



34 2. PRELIMINARY NOTIONS

Now suppose conversely that L satisfies (2.6). To verify that L sat-
isfies (2.8), choose any variable assignment in L and extend it to a ho-
momorphism ¢: F — L. We must show that ¢ (u(x")) = ¢ (v(x")).
Since the variable s does not appear in (2.8) we need only consider
homomorphisms 1 for which ¥(s) = w(éw(p,q,r)), i.e., those of the
form

(V(p), ¥(a), ¥(r), ¥ (s), ¥(x)) = (a,b,¢,6%(a,b,¢), g).
Under such homomorphisms
V() = o)) = (9: V6% (a,b,¢)) AaA(bVe)).

The element § := 0% (a,b,c) is the least common fixed point of
the polynomials fF(z) := w%(a,bV x,cV x) in the meet continuous
sublattice of L generated by a, b and c¢. Thus, if ° := bV § and
& :=cV 4§, we get that

0= sz(é) = wi(a’a bV 57 cV 5) = wi<a7 b57 Cé)
for all i. Thus, each premise w;(a,b’,c’) = § of quasi-identity (2.6) is
satisfied by the variable assignment ¥°: (p,q,7,s,%) — (a,b’,c,6,g).
Since L satisfies (2.6), we get that

(2.9 (4 (x7)) = o (4 ("))
holds in L, where
V() = (g V) A (an (B V).

But % (p,q,7) <pA(gVr)inFr,.({p,qr}), so

d=0"(a,b,c) <an(bVec)
in L. This yields the last equality in

aN(bVe)<an@VES)=an(bVeVvd)=aA(bVe).
This shows that a A (b° V ?) =a A (bV ¢), so
W) = (V) A (an BV ) = v(a?).
From this and (2.9) we derive that
D (u(x)) = (6 () = o (00(x)) = 6 (o(x7))

as desired. This proves that (2.8) holds in L. O

REMARK 2.24. If L is a meet continuous lattice, then for every
homomorphism ¢ : F — L for which (p,q,r,s,x) — (a,b,c,d,g) and
w;(a, b, c) = d for all 4, it must be that d is below (t) = aA(bVe) =: e,
since w;(p, q,r) < t. Call I := I[d, e] a “bad interval” in L if it arises in
this way from elements satisfying the premises of quasi-identity (2.6).
For each i we have ¢(x}) = (g;Vd) Ae € I, and conversely for any h € I
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we have h = ¢ (x}) if ¢ assigns h to x;. Thus, 1(z}) may be viewed as a
typical element of /. Altogether this means that the premises of (2.6)
identify which intervals are bad, and the quasi-identity itself asserts
that all bad intervals satisfy the identity u ~ v.

If we choose m = n = 2, wi(p,q,7) = pAq, wa(p,q,r) = pAr,
then the bad intervals are the SDj-failures. If u(xy,z5) = x; and
v(x1,T9) = X9, then (2.6) asserts precisely that all SD-failures satisfy
r1 & g9, i.e., they are trivial. These choices for w;, u and v show
that the meet semidistributive law is equivalent to a quasi-identity of
type (2.6), hence to a meet continuous identity.

Consider choosing the premises of (2.6) in the same way as in the
previous paragraph, but allowing v &~ v to be some other lattice iden-
tity. We obtain from Theorem 2.23 that the class of meet continuous
lattices whose SD ,-failures satisfy v ~ v is a subvariety of L.

Now consider modifying the choice of the premises of (2.6) from our
earlier choice, but keeping u(z1,x2) = x; and v(xy,23) = x9. In this
case, (2.6) still asserts that the bad intervals are trivial, but the bad
intervals need not be the SDx-failures. Instead, the bad intervals are
those of the form I[d, e] where for some a, b, ¢ € L we have w;(a,b,c) = d
for all i and e = a A (bV ¢). A more direct way of asserting that I[d, ¢]
is trivial is to assert that e = d (where e = a A (bV ¢)). This is achieved
by rewriting quasi-identity (2.6) in the form

(2.10) (wi(p,q,r) = s) = ((pA(gVr))=5s).

=1

Quasi-identity (2.10) is equivalent modulo the identities defining lattice
theory to quasi-identity (2.6) when u(zq,x2) = 1 and v(zq,x2) = 2.
In particular, Theorem 2.23 proves that a quasi-identity obtained from
the meet semidistributive law,

(pAg)=s)& ((pAr)=s)— ((pA(gVr))=s),

by adding additional premises w;(p, q,r) ~ s (where w;(p,q,r) < t) is
equivalent to a meet continuous identity.

By examining the proof of Theorem 2.23 one finds that the bad
intervals in L associated to a quasi-identity of type (2.6) or (2.10) are
those of the form I[d,e] where for some a,b,c € L it is the case that
d = 0"(a,b,c) and e = a A (bV ¢). Since quasi-identity (2.10) asserts
only that bad intervals are trivial, a simpler meet continuous identity
equivalent to (2.10) is

(2.11) 0¥ (p,a;r) = (pA(gVT)).
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It is not hard to describe explicitly the meet continuous identity that
is equivalent to the meet semidistributive law. Define lattice words in
the variables p, ¢, r by o = ¢, ro = 7, ¢us1 = ¢V (p A 1y,), and
Tnp1 =7V (PAG). Let g =V, o, ¢ and let 7, =\, _ 7.

COROLLARY 2.25. A meet continuous lattice is meet semidistribu-
tive if and only if it satisfies the identity

(2.12) pA(gVr)=pAq,.

PrRoOOF. This is an instance of the comments in the final para-
graph of Remark 2.24 above. For the choices wi(p,q,7) = p A ¢ and
wa(p, q,7) = p A r the polynomials f; that occur in the proof of Theo-
rem 2.23 are fi(z) = pA(qVx) =: g(z) and fo(z) = pA(rVe) =: h(z).
Since these are idempotent polynomials of F.,,.(p, ¢, 1), the words of
the form f; o---of;,(0) that occur in the preceding proof reduce to alter-
nating compositions (gh)*(0), (hg)*(0), g(hg)*(0), or h(gh)*(0). The
join of these words is 6% (p, q,7) = ;. (97)*(0) = V. (hg)*(0). But
9(0) = pAqo, h(0) = pAro, g(PATR) = PAGui1 and M(pAGy) = pATR4,
s0 OV (p,q,7) = Vi oaaP NGk = P A g by meet continuity, and also
(P, ¢:7) = Vi cven ? N Tk = D A7y, Hence the meet semidistributive
law is equivalent to p A g, = pA(qVr)ortopAr,~pA(qVr) for
meet, continuous lattices. 0

This proof shows that p A ¢, =~ p A r,, so identity (2.12) can be
written as a weakened distributive law:

pA(gVr)=(pAg)V(pAT,).



CHAPTER 3
Strong Term Conditions

In this chapter we introduce the term conditions that define strongly
abelian and strongly rectangular congruences. Our purpose is to show
that a variety satisfies a nontrivial idempotent Maltsev condition if and
only if it has no member with a nonzero strongly abelian congruence,
or equivalently has no member with a nonzero strongly rectangular
congruence.

3.1. Varieties Omitting Strongly Abelian Congruences

Ralph McKenzie introduced the notion of “strong abelianness” in
[67], and, with David Hobby, showed in [34] that it is a natural and
useful concept in the study of finite algebras. McKenzie also discovered
a quite different abelianness concept, called “rectangulation” in [55],
which made sense for finite subdirectly irreducible algebras with non-
abelian monolith, and which has applications to the study of residually
small varieties.

In [49], we required a commutator theory associated to the strong
abelianness concept. In the process of developing one, we discovered
a new natural and useful type of abelianness resembling McKenzie’s
rectangulation concept that we will call in this monograph “strong
rectangulation”. In [49] we developed a commutator theory for strong
rectangulation, too. In this chapter we explore these two theories fur-
ther. In Chapter 5 we will introduce a new definition for McKenzie’s
original rectangulation concept that makes sense for any algebra, and
initiate the development of a commutator theory for it.

It is important to draw attention to the fact that we used the term
“rectangulation” in [49] for what will henceforth be called “strong rect-
angulation”.

DEFINITION 3.1. Let S and T be tolerances on an algebra A, and
let 0 be a congruence on A. If ¢ =5 r implies that r =5 s whenever

(3.1) “f z] e M(S,T),

37
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then we say that SR(S,T; ) holds, or S strongly rectangulates T
modulo 6. We say that S(S5,7;0) holds, or S strongly centralizes
T modulo ¢ if SR(S,T;9) and C(S,T;4) both hold.

A tolerance T is strongly rectangular if SR(7,7T;0) holds, and
is strongly abelian if S(7',7;0) holds.

By interchanging the rows and columns of matrices one sees that
SR(S,T;0) holds if and only if

q=sT <= P=§q=sTr=sS <= pP=sS5

for every S, T-matrix in (3.1). It follows from this that SR(S,T;0) is
equivalent to SR(T', S;9).

Now, and later, we must consider the issue of whether nonobvious
relationships hold among the term conditions that we introduce. For
example, is every abelian tolerance strongly abelian?! There is an all-
purpose example for answering this type of question, which may be
used to demonstrate the independence of any combination of the term
conditions that we define in this monograph.

EXAMPLE 3.2. Let X be a set and let M C X?*2 be a set of 2 x 2
matrices with entries in X. For M € M, let Yy = {a, by, unr, var}-
Let Y = Uy e Yar- Let A be the disjoint union X UY U{0}. For each

M = [ f g } € M define a binary operation fy; on A by

p if (‘Tvy) :(aM’uM)v

q if ($ay):(aM’UM)7
fM(xay) = roif (may):(bMauM)v

s if (z,y) = (bar, vur); and

0 otherwise.

Let A(M)=(A; {fu | M € M}), R = Tg*™ ({(ar,bu) | M € M}),
S = TgA(M)({(uM,UM) | M € M}), and T = Tg*™M(RU S).

CrLAM 3.3. The following hold.

(1) The set M(R,S) consists only of the trivial R,S-matrices,
namely those of the form

I
q q r s
with (p,q) € R and (r,s) € S, together with the closure of M

under interchanging rows and columns.

INo.
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(2) M(T,T) consists only of the trivial T, T -matrices together with
the closure of M under interchanging rows and columns and
under transpose.

We leave the proof of this claim as an exercise, guided by the fol-
lowing comments.

(i) The trivial matrices come from using a projection operation
as the term in the matrix.

(ii) Any nontrivial composition of fy,’s is zero, so only fu(z,y)
and fu/(y, ) can be used to create a nontrivial matrix. How-
ever fy(y,x) does not produce any nontrivial R, S-matrices.

We also leave the verification of the following as an exercise: the claim
remains true if you replace R, .S and T' by the congruences they gener-
ate. And, as a final exercise: any failure of any term condition intro-
duced in this monograph must involve a nontrivial R, .S or T, T-matrix.

What this means is that when considering relationships between
term conditions we may ignore any algebraic considerations and think
completely set-theoretically. If it is possible to write down matrices
whose patterns of entries formally conflict with the satisfaction of one
term condition but do not formally conflict with the satisfaction of
another, then it is possible to build an algebra that has matrices with
these properties (subject to the restrictions of (1) and (2) of Claim 3.3).

For example, to show that there exists an algebra that has an
abelian tolerance that is not strongly abelian, it is enough to observe
pqgf|_|01
rs| |10
conflicts with the satisfaction of SR(T,T;0) (since ¢ = r # s), but
does not formally conflict with C(7,T’;0) (even after interchanging the
rows or columns, or taking the transpose). This suggests that we take
X ={0,1} and M = {M}. By Claim 3.3, the nontrivial 7', T-matrices

of A(M) are
01 10
[ 10 } and { 01 } .

This implies that the tolerance T' on A (M) is abelian but not strongly
rectangular (hence not strongly abelian).

that any T, T-matrix of the form M = formally

In Lemma 2.2 of [49] we state and prove a result for SR( , ; )
similar to Theorem 2.19 for C( , ; ). These two results can be com-
bined to produce a similar result for S( , ; ). Here we describe only
the results about the strong centrality relation and the strong rectan-
gulation relation that will be used in this chapter.
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THEOREM 3.4. Let A be an algebra with tolerances S, S, T, T’
and congruences 9, &', 6;. Let Q =S or SR. The following are true.

(1) If Q(S,T;9) holds and S" C S, T" C T, then Q(S',T";0)
holds.

(2) If Q(S,T750;) holds for all j € J, then Q(S,T5 \;c; ;) holds.

(3) Let B be a subalgebra of A. If Q(S,T;6) holds in A, then
Q(S’B,T’B;(HB) holds in B.

(4) If &' <6, then the relation Q(S,T;4d) holds in A if and only
if Q(S/8',T/0";6/8") holds in A/

(B) If TN ((SeT)Néd)oS) C 4, then SR(S,T;6) holds. If
TN(So(T'Nd)oS) C 6 also holds, then S(S, T 8) also holds.

PROOF. Items (1)-(4) are proved in exactly the same way as items
(1), (6), (9) and (10) of Theorem 2.19.

For item (5), choose any S, T-matrix M = [ ]; g } Assume that

r =s q. Since the elements in the same row of M are T-related and
the elements in the same column are S-related, we have r S p T ¢
and 7§ ¢, sor (SoT)Né q. Hencer (SoT)NdqgS sandr T s
imply (r,s) € TN (((SoT)Néd) oS) C 4 Since M was chosen
arbitrarily, SR(S, T 8) holds. If now TN (So (T'Nd)oS) C 6 also
holds, then C(S, T ) also holds by Theorem 2.19 (7). Hence S(S,T}; )
also holds. O

Theorem 3.4 (2) implies that for Q = S or SR there is a least §
such that Q(S,T;¢) holds, and we denote the least such § by [, Tq.

LEMMA 3.5. Let V be a variety, F = Fy(x,y) the free V-algebra
over X = {z,y}, and § = Cg¥(z,y). If Q = S or SR, then the
following are equivalent.

(1) There exists an algebra A € V that has a nonzero Q-abelian
congruence (i.e., a congruence o such that [, a]q = 0).
(2) (,9) ¢ 10,0q-
Now let T be the tolerance on F generated by the pair (x,y). The
following are equivalent.

(3) There exists an algebra A € V that has a nonzero Q-abelian
tolerance (i.e., a tolerance S such that [S,S|q = 0).

(4) (z,y) ¢ [T, Tlq-

PRrROOF. Both halves of the lemma are proved in the same way, so
we prove the first half only.

Assume that a is a nonzero Q-abelian congruence on A. Choose
(a,b) € a with a # b. Then from Theorem 3.4 (3) and (1) we get that
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if B is the subalgebra of A generated by {a, b} and 8 = Cg®(a,b), then
0 is Q-abelian. Let h: F — B be the homomorphism sending = to a
and y to b. This homomorphism is surjective since B is generated by a
and b. Let k = ker(h) and A = h™'(3). As (h(z), h(y)) = (a,b) € B\ 0
we have (z,y) € A\ &, which means that § < X\ and § £ x. From
Theorem 3.4 (4) we know that Q(\, A\;x) holds in F if and only if
Q(A/k,A/k;0) holds in F/k. But it does, since A/ corresponds to (3
under the natural isomorphism of F/xk with B. Therefore, by The-
orem 3.4 (1), we derive that Q(0,0; ) holds. We have Q(0,6;0) by
Theorem 3.4 (5), and therefore Q(6, 0; x A #) by Theorem 3.4 (2). This
proves that [0,0]lq < kA0 <0, s0 (x,y) & [0,0]q-

On the other hand, if (z,y) ¢ [0, 0]q, then Theorem 3.4 (4) guaran-
tees that 6/[0, 0]q is a Q-abelian congruence on F/[f,0]q that relates
the distinct elements z /[0, 0]q and y/[0,6]q. This shows that V con-
tains an algebra with a nonzero Q-abelian congruence. O

Our goal in this section is to prove that the four conditions of
Lemma 3.5 are equivalent to each other, and that when Q = S the
conditions hold for a variety if and only if the variety has no Taylor
term (Definition 2.15). This is also true when Q = SR, and that will
be proved in the next section. To prove the equivalence of (1) and (2)
with (3) and (4) we start by analyzing the relationship between the
congruence # and the tolerance T" from Lemma 3.5. This is done in a
little more generality than is immediately necessary, in that the next
lemma considers free algebras on more than two variables, but this will
allow us to avoid the need to generalize the result later.

LEMMA 3.6. Let V be any variety and let F = F(X) be the free
V-algebra generated by X. Let E be an equivalence relation on X, and
7: X — X a transversal for E. That is, T is a function from X to X
satisfying

(i) x E 7(x), and
(i) e By = 7(x) =71(y).

Let § = Cg"(E) and T = Tg" (E). The following hold.

(1) 0 is the kernel of the endomorphism h: F — F induced by
T: X — X.

(2) (a,h(a)) €T for anya € F.

(3) ToT =9.

(4) If B := {u(x) € F | uis an idempotent term}, £ = X x X,
and 7(X) = {z}, then B = z/0 and B s the unique T-block
containing .
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PROOF. Observe that the fact that 7 is a transversal for F implies
that 7 o7 =7 and E = ker(7).

We prove (2) first. If a € F, then a = t(xy,...,x,) for some term t.
Since T is a compatible relation containing (xi, T(IZ)) for every 1, it also
contains t((z1, 7(x1)), . .., (xn, T(z0))) = (t(x), h(t(x))) = (a, h(a)).

For (1), the fact that h is induced by an idempotent function on
generators implies that h is an idempotent endomorphism, therefore
h is a transversal for ker(h). Since ker(7) C ker(h) we have 6 C ker(h).
It follows that every #-block contains at most one element of im(h). On
the other hand, every #-block contains at least one element of im(h),
since if a is in a #-block B, then h(a) is certainly in im(h), while
(a,h(a)) € T C @by (2). Thus h(a) € im(h)N B. This shows that h is
also a transversal for 6. Since comparable equivalence relations with a
common transversal are equal, § = ker(h).

For (3), ToT C Cg®(T) = 6, so it is enough to show that ToT D 6.
If (a,b) € 0, then h(a) = h(b). By (2), we have

aT h(a)=h(b) TV,

proving that (a,b) € T o T, indeed.

For (4), it is clear that (z,u(z1,...,2,)) € 0 = ker(h) if and only if

u(z,z,...,x) =h(u(z,...,5,)) =h(z) =2
in F, which holds if and only if w is idempotent. Thus B = z/0,
as claimed. If u(xy,...,2,) and v(zy,...,x,) are arbitrarily chosen
idempotent terms, then using the term
u(v(xn, e 1)y e U( Xy ,xm)) ,

and the fact that (z;,2;) € E CT for all i and j, we derive that

w(zy, ..., x,) = u(v(ml,...,xl),...,v(xn,...,xn))
=r u(v(xl, . ,xn),...,v(xl,...,a:n))
=0(T1,..., %) .

Thus B is contained in a T-block. That it is the unique 7-block con-
taining z follows from the fact that B = x/6 is a 6-block (so no element
in F' — B is T-related to any element of B). U

LEMMA 3.7. Let V be a variety and ¥ = Fy(z,y) the free V-algebra

generated by {x,y}. Let 0 = Cg¥(x,y) and T the tolerance of F gen-
erated by (x,y). Let B =x/0.

(1) Let p be a congruence on F such that SR(T,T; p) holds. If

[f g} e M(6,0)
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and p,q,r,s € B, then ¢ =, r = r =, s.
(2) Let p be a congruence on F such that S(T,T;p) holds. If

S

[fq]eM@@

and p,q,r,5s € B, thenp=,q = r =, s.

ProOF. Choose any 6, f-matrix
p q|_|tac) iad)
r s | | t(b,c) t(b,d) |~
Let h: F — F be the endomorphism determined by = +— z, y — =x.
The assumption a =y b is equivalent to h(a) = h(b), and similarly
¢ =y d is equivalent to h(c) = h(d) (where by h(a), etc., we mean that

we apply the function A componentwise). Consider the following 4 x 4
matrix:

= t(a,h(d) t(a,d)
t(h(c‘";’l), c) t(h a)H, h(c)) = t(h a)” h(d)) t(h(j),d)
t(h(b),c) t(h(b),h(c)) = t(h(b),h(d)) t(h(b),d)

t(b,c) t(b,h(c)) = t(b,h(d)) t(b,d)

We claim that the four elements in the middle are equal to x. Indeed,
the assumption p,q,r, s € B implies h(p) = h(q) = h(r) = h(s) = =.
Therefore, for example,

t(h(b), h(d)) = h(t(b,d)) = h(s) = .

Note also that the four 2 x 2 matrices in the corners are T, T-matrices,
since u and h(u) are T-related componentwise by Lemma 3.6 (2). All
elements of this 4 x 4 matrix are contained in B, because all elements
are f-related, the corners are in B by assumption, and B is a block
of 4.

Next, let k: F — F be the endomorphism of F that sends x to y
and y to y. Consider the analogous 4 x 4 matrix with respect to k.
All the statements above remain true with & in place of h, with the
exception that in this case the four elements in the middle are equal
to y, not . Now apply ¢(z,y) to these two matrices, the first matrix
in the first argument, the second matrix in the second argument. This
produces a 4 x 4 matrix which, after deleting one of the doubled middle
columns and one of the doubled middle rows, is a 3 x 3 matrix with
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certain known entries:

J=

n SR

)
q
m

S L3

Indeed, the middle element is g(x,y) = ¢, the element in the upper
left corner is ¢(p, p) = p, since ¢ is idempotent, and a similar argument
proves that in the other corners we get ¢, » and s. It will not matter
in this argument what i, 7, £, m are. The four 2 x 2 matrices in the
corners of the 3 x 3 matrix J are still T, T-matrices.

To prove (1), we have assumed that ¢ =, r. We have also assumed

that SR(T, T p) holds, so from the T', T-matrix [ ; % } in the upper

m
the lower left corner of J (and the assumption that ¢ =, r) we get that
r =, m. Thus { =, ¢ =, r =, m, so since the cross diagonal entries

right corner of J we derive that ¢ =, {. From the matrix { i q } in

of the T, T-matrix { 7(7]1 i in the lower right corner are p-related we

deduce that m =, s. Thus r =, m =, s, and (1) is proved.

To prove (2), we have assumed that p =, ¢g. We have also assumed
that S(T,T; p) holds, and therefore SR(T,T;p) and C(T,T;p) both

hold. From the T, T-matrix [ ; % ] in the upper right corner of J
we get by strong rectangulation that ¢ =, ¢. From the T, T-matrix

[ (Z] ? ], which is obtained from the T, T-matrix in the upper left

corner of J by switching columns, we get (from p =, ¢) that ¢ =, j.
Now that we have j =, ¢ and ¢ =, ¢ , we apply C(T,T;p) to the

matrices
RS P
rom m S
from the bottom two corners of J to obtain r =, m and m =, s.
Therefore r =, m =, s, and (2) is proved. O

Our next task is to describe how to construct the Q-commutator
[S,T]q of two tolerances where Q = S or SR. Fix the choice of
Q € {S,SR}. Let A be an algebra, and let S and T be tolerances
of A. Inductively define binary relations 7,, on A as follows. Let 7y be
the equality relation. If 7, is defined, let 7,,,1 be the symmetric and
transitive closure of the set of all pairs that can be obtained in one of
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the following two ways. For each matrix

[p "} € M(S.T),
ros

(1) if Q =S or SR and ¢ =,,, r, then put the pair (r, s) into 7,,1;
(2) if Q =S and p =,, ¢, then also put the pair (7, s) into 7,,41.

Let 7=, _.7

n<w ‘N

LEMMA 3.8. [S,T]q =T.

PRrROOF. The set of S, T-matrices is closed under the componentwise
application of unary polynomials of A, so inductively the same property
holds for every 7,. Since 7, is a symmetric, transitive relation and is
closed under the application of unary polynomials, it is a congruence.

Cramm 3.9. 7, < 7y1 for all n.

The argument is by induction. It is clear that 7o < 71, since 7y is the
equality relation. Suppose that 7, < 73,1 holds for some k. Suppose
that (r, s) is a generator of 7,41 because, say, there is some

{p q] e M(S,T),
ros

such that ¢ =, r (reason (1) preceding the statement of the lemma).
Then since 7, < 711 we have ¢ =, r, which shows that the same
matrix witnesses that (r, s) is a generator for 74 19. Since 742 contains
the generators of 741, we have 741 < 719, proving the claim.

Since 7, < T,41 for every n, the union 7 = J_ __ 7, is also a con-
gruence on A.

Let § =[5, T]|q. We argue by induction that 7, < for all n. This
is trivially true if n = 0, so suppose that 7,, < ¢ for some fixed n and
that (r,s) is one of the generators of 7,.1. If (r,s) € 7,41 because
of reason (1) preceding the statement of this lemma, then there is a

matrix

nw

{p q] e M(S,T),
ros

such that ¢ =, r. We have ¢ =5 r (since 7, < ¢) and also Q(S,T}; )
(hence SR(S, T 6)) since § = [9,T]q. Therefore we have (r,s) € 6. If
(r,s) € Thy1 because of reason (2), then we must have Q = S and so
C(S,T;6) holds. Now a similar argument shows that (r,s) € §. Thus
0 contains all the generators of 7,1, so 7,11 < d. By induction 7, <9
for all n, so 7 < § =[5, T)q.
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To finish the proof we must verify that [S,T|q < 7, and for this it
suffices to show that Q(S,T’;7) holds. Choose any S, T-matrix

B

and assume that ¢ =, r. Then ¢ =,, r for some n, so from item (1) pre-
ceding the lemma we have (r,s) € 7,41 < 7. Thus SR(S,T;7) holds,
and [S,T]q = 7 when Q = SR. If Q = S, then a similar argument
using (2) in place of (1) shows that C(S,7’; 7) holds, so S(S,T’; 7) holds
(and so [S,T]|q = 7 when Q = S). O

Now we can prove that the four conditions of Lemma 3.5 are equiv-
alent.

LEMMA 3.10. Let V be any variety, and let Q = S or SR. The
following are equivalent.

(1) Some algebra in'V has a nonzero Q-abelian congruence.
(2) Some algebra in V has a nonzero Q-abelian tolerance.

PROOF. Denote by F the free V-algebra generated by {z,y}, by T
the tolerance of F generated by (x,y), and by 6 the congruence of F
generated by (z,y). Let B = z/6. According to Lemma 3.5, we must
establish that (z,y) ¢ [0,6]q if and only if (z,y) ¢ [T,T]q. Since
x,y € B, this will follow if we show that the restrictions of the relevant
congruences to B are equal, i.e., if we show that,

[979]Q|B = [Tv T]QlB'

We proceed to do this.

Since T' C 6 we have [T, T]q|s C [0, 0]q|s, so we only need to verify
the reverse inclusion. Let p = [T, T]q. Build 7 = [¢,0]q according to
the recipe described preceding Lemma 3.8. We argue by induction
that 7,|p C p. This is clear for n = 0. Suppose that n > 0 and that
Tolp C p. Choose any (u,v) € 7,11|p. By the definition of 7,4, there
exists a chain u = wuy, us, ..., ur = v such that for every 1 <i < k the
pair (u;, u;+1) or the pair (u;41,u;) is produced by rule (1) or (2) of the
definition of 7,,.;. That is, there exists a 6, f-matrix

7t

such that {u;,u;.1} = {r, s}, and either (¢,r) or (p,q) is contained
in 7,,. We want to show that u; =, u;41.

Aswu € Band 7 <6, every u; belongs to B. Hence the entries of the
6, 0-matrix above are in B, too. In the first case, when (¢,7) € 7, we
therefore have that (g, ) € p by the induction assumption. Then (1) of



3.1. VARIETIES OMITTING STRONGLY ABELIAN CONGRUENCES 47

Lemma 3.7 shows that (r,s) € p as desired. In the second case, when
(p,q) € 7, (which only arises when Q = S) we use (2) of Lemma 3.7
to reach the same conclusion. Thus the induction step, and hence the
proof of the lemma is complete. O

The next task we set for ourselves is to show that a variety has no
member with a strongly abelian tolerance if and only if the variety has
a Taylor term. To prove this we need a description of the T, T-matrices
where T is the tolerance on Fy(x,y) generated by (z,y).

LEMMA 3.11. Let V be a variety, F = Fy(x,y) the free V-algebra
generated by {x,y}, and let T be the tolerance of F generated by (z,y).
The T, T-matrices in ¥ are exactly the matrices of the form

[ fryy,z,y,2,y) flo,z,2,9,9,y) ]
fy,y,z,z,2,y) fly,z,z,2,v,y)

where f is a sizary term.

PROOF. A typical T, T-matrix has the form

{ g(a,c) g(a,d) }
g(b,c) g(b,d)

where (a;,0;) € T, (¢j,d;) € T, and (we may assume) ¢ is a term. Since
T is the subuniverse of F? generated by (z,v), (y, ), (z,z) and (y,y),
a typical pair in 7" has the form

r((z,y), (y,2), (2, 2), (y,9)) = (r(z, y,2,9),7(y, 2, 2,9))
for some 4-ary term r. Therefore a typical T, T-matrix may be written
as

{ggr(%y,x,y),S(w,y,w,y)g ggr(x,y,x,y),S(y,z,x,y)g } .

g(r(y,x,z,y),8(x,y,7,y) g(r(y,z,z,y),s(y, z,7,y)
If we define f(xq,...,x¢) := g(r(a:l,x4,xg,azg),s(x5,x2,x3,$6)), then
this matrix is the one described in the lemma. O

LEMMA 3.12. If no algebra in the variety V has a nonzero strongly
abelian tolerance, then V satisfies a nontrivial idempotent Maltsev con-
dition.

PROOF. Let F be the free V-algebra generated by {w, z}, let T' be
the tolerance of F generated by (w,z), and let B be the T-block
w/Cg® (w, 2). For each element u € F choose and fix a binary term
u(x,y) such that u(w,z) = w. Build 7 = J,_, 7 = [T,T]s using
the method described before Lemma 3.8. For each pair (u,v) € 7
we shall define a finite set of equations X(u,v). If (u,v) € 79, let
Y(u,v) = {u(z,y) = v(z,y)}. To define 3X(u, v) when (u,v) € 711 —Tn,
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choose and fix a finite sequence u = wuy,us, ..., uxy; = v of elements
of F such that for each i either (u;,u;11) or (u;y1,u;) is a generating
pair for 7,1. Generating pairs for 7,11 come from T, T-matrices, and
we know from Lemma 3.11 that the T, T-matrices in F are exactly the
matrices of the form

p q| | flwz,w z,w,z) flw,ww,z, z2)

ros || flzz,www ) fzw,ww,z,2)

Therefore for each ¢ between 1 and £ there is a sixary term f; such that

(32) {uia ui+1} = {’I"Z', Si} = {fZ(z7 Z, W, w,w, Z)v fz(zv w, w, w, 2, Z)}
where one of the following “side conditions” holds:
(3.3) (fi(w,w,w,z,z,z),fi(z,z,w,w,w,z)) = (gi,7i) € T, oOr
(3.4) (fz-(w,z,w,z,w,z),fi(w,w,w,z,z, z)) = (pi, Gi) € Ta-
Let (15,7) :== (i, s;) if (14, 8) = (us, ui41) and let (r9,s7) = (s;,7;) if
(riy8:) = (wip1,u;). In either case, 1y = u; and s§ = u;41 in F.
Define ¥ (u, v) to be the set of the following identities.
(1) u(z,y) ~ ri(z,y) and sp(z, y) = v(z, y).
(i) sf(z,y) =15, (z,y) for each 1 <i < k.
(111) pi(xw y) ~ fz(l’, Y, Y, T, y): qi(xv y) ~ fl(w> T, T, Y, Y, y)v
Ti(x’y) ~ fi(yayaxa$7x7y>’ and Si(xvy) ~ fi(yax7xax7yay)'
(iv) The identities in X(g;, ;) for each ¢ whose side condition is
(3.3), along with
qi('xa y) ~ fl(x7 ,2,Y,Y, y) and
7’@'(37, y) ~ fz(y7 Y, T, T, T, y)
(v) The identities in (p;, q;) for each i whose side condition is
(3.4), along with
pi(z,y) = filz,y,z,y,x,y) and
qi(xv y) ~ fz(‘ra T, T,Y,Y, y)
The identities in (i) and (ii) express that the pairs (r{(w, z), s7(w, z))
form a directed chain connecting u to v, the identities in (iii) express
that (rf(w,z), s(w, z)) is the bottom row of a T, T-matrix, while the
identities of type (iv) and (v) express that the relevant 7', T-matrices
satisfy side conditions sufficient to guarantee that (ri(w,z), si(w, z))
is a generator of 7,,11. These identities hold in V), since they become
equalities if we substitute the free generators w and z of F for the
variables x and y.

Induction on n may be used to prove that ¥(u,v) is a finite set
of identities for every (u,v) € 7,11 — Tn, and that if u € B then all
terms appearing in the identities in ¥(u, v) are idempotent. Moreover,
induction on n also shows that if (u,v) € 7, then for any pair (a,b)
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from any tolerance S on an algebra A € V the pair (u(a,b),v(a,b))
belongs to the strong commutator [S, S]s.

We have assumed that no algebra in V' has a nontrivial strongly
abelian tolerance, so by Lemma 3.5 we have (w, z) € [T, T]s = |,,, T
that is, (w, z) € 7,41 — T, for some n. Therefore V satisfies the finite
set of idempotent identities in ¥ (w, z). These identities constitute an
idempotent Maltsev condition which, when satisfied by a variety W,
forces the following property: for any pair (¢, d) from any tolerance R
on an algebra B € W the pair (w(c,d), z(c,d)) = (c,d) belongs to
the strong commutator [R, R]s. Using the monotonicity of the strong
commutator (Theorem 3.4 (1)), this is equivalent to the property that
(c,d) € [Tg®(c,d), Tg®(c,d)]s. Using Lemma 3.5 again we derive that
if this Maltsev condition holds in W, then no algebra in YV has a non-
trivial strongly abelian tolerance. Since every tolerance on every mem-
ber of the variety of sets is strongly abelian, this idempotent Maltsev
condition fails in the variety of sets, hence is nontrivial. O

THEOREM 3.13. Let V be a variety. The following are equivalent.

(1) V has no member with a nonzero strongly abelian congruence.
(2) V has no member with a nonzero strongly abelian tolerance.
(3) V satisfies a nontrivial idempotent Maltsev condition.

PROOF. We proved in Lemma 3.10 that items (1) and (2) are equiv-
alent, and in Lemma 3.12 that (2) = (3). It remains to prove that
(3) = (1).

Assume that (3) holds, and let f(z1,...,x,) be a Taylor term for V.
Arbitrarily choose and fix an algebra A € V), a strongly abelian congru-
ence a € Con(A), and a pair (a,b) € a. Let f;(x,y) be an n-ary term
obtained from f by reordering the variables so that z; is first. (That is,
f(zq,...,x,) = fi(x;,y) where y is an ordering of {z1,...,z,}\ {z;}.)
The i-th Taylor identity implies that f;(a,u) = f;(b, v) for some (n—1)-
tuples u and v consisting of a’s and b’s. Therefore

P q _ fi(avv) fz(bav)
[r s} - [fi(a,u) fi(b,u) € M(a, o)
is an «, a-matrix with ¢ = r. Since « is strongly abelian it is strongly
rectangular, so fi(a,u) = r = s = f;(b,u). Now choose w € {a,b}"""
arbitrarily. The matrix
P Q _ fi<a7 ll) fz(b> Ll)
{R S } = {fi(a,w) fib,w) | € Ml@wa)

is an «, a-matrix with P = (). Since « is strongly abelian, it is abelian,
so fila,w) =R =S8 = fi(b,w).
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What this says about the original Taylor term is that, for every
1 <i<n,ifc,d € {a,b}" are tuples that agree in every coordinate
except possibly the i-th, then f(c) = f(d). This statement is true for
all 7, so

a= fla,a,a,...,a)
= f(b,a,a,...,a)
= f(b,b,a,...,a)

= f(b,b,b,...,b) =b,

forcing a = b. Since (a,b) was chosen arbitrarily, we conclude that no
A €V has a nontrivial strongly abelian congruence. U

3.2. Join Terms

In the previous section we showed that a variety omits strongly
abelian congruences or tolerances if and only if it satisfies a nontrivial
idempotent Maltsev condition (Theorem 3.13). In this section we will
prove that the varieties with these properties are exactly the varieties
that omit strongly rectangular congruences or tolerances. The obvious
approach to this result is to note that if a variety omits strongly rect-
angular congruences or tolerances, then it must omit strongly abelian
congruences or tolerances, and therefore must satisfy a nontrivial idem-
potent Maltsev condition. Thus, the only thing to show is that it is
possible to modify the proof of Theorem 3.13 (3) = (1) so that it
only uses the assumption of strong rectangulation.

It must be possible to obtain the result in this way, but in this sec-
tion we choose another path. We instead develop machinery for dealing
with stongly rectangular congruences and tolerances that makes the
proof of the desired result a triviality. Although the path we choose
does not lead to the result more quickly or more simply than the path
sketched in the previous paragraph, we feel that developing the ma-
chinery for strong rectangulation is more important than the target
result.

DEFINITION 3.14. Let A be an algebra, let T" be a tolerance on A
and let § be a congruence on A. A (T,T)-triple is a triple (b, c;d)
such that there is a matrix

a b
[ . d} e M(T,T).
A (T, T;d)-pair is a pair (c,d) € A% such that there is a (T, T)-triple
(b, ¢;d) with b =5 c.
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Observe that the set of all (T, T)-triples is a subuniverse of A3, and
the set of all (T, T; §)-pairs is a subuniverse of AZ.

DEFINITION 3.15. Let T be a tolerance on an algebra A. For any
block B of T write a >p b (or b <p a) to mean that there exist
(T, T;0)-pairs (ug,us),. .., (u,_1,u,) such that a = uy, b = u,, and
u; € B for all ©. Write a ~g5 b to mean a >g b and a <g b.

Write a >7 b (or b <r a) if there is some T-block B for which
a >p b. Similarly, write a ~7 b if 3B(a ~p b).

There is a potential ambiguity in the notation >pg, because a sub-
set B may be a block of more than one tolerance, but this issue will
not arise in this monograph.

LEMMA 3.16. Let T be a tolerance on an algebra A. The following
hold.

(1) If B is a block of T, then >p is a quasi-order on B, and ~p
18 the induced equivalence relation on B. Both relations are
compatible with the idempotent polynomials of A.

(2) The relation > is a reflexive compatible relation of A, and
~71 18 a tolerance on A.

(3) If SR(T,T;0) holds, then > is the equality relation on A.

(4) If B is a block of T and is also a block of Cg™(T), then >p
equals the restriction to B of >r1 and also equals the restriction
to B of the transitive closure of the set of (T,T};0)-pairs.

(5) If T is a congruence, then >t is a quasi-order of A, which is
the transitive closure of the set of (T,T;0)-pairs. The rela-
tion ~r 1s the equivalence relation induced by >7, which is a
congruence on A contained in T'.

PROOF. For this proof, let S denote the set of (T',T;0)-pairs of A.
For item (1), the matrix { Z Z ] belongs to M (T, T) for any u € A,

so the trivial pair (u,u) is a (T,T;0)-pair for any u € A. This is
enough to show that >p is reflexive on B. It is clear from Defini-
tion 3.15 that >p equals tr.cl.(S|g), hence >p is transitive as well.
This proves that >p is a quasi-order on B; it follows from Defini-
tion 3.15 that ~p is the induced equivalence relation. If p(zy,...,z,)
is an idempotent polynomial of A, then p(B,..., B) is a subset of A
containing B and consisting of pairwise T-related elements. Since B
is a block, p(B,...,B) = B. As S is compatible with all polynomials
of A, the fact that p(B,...,B) = B implies that S| is compatible
with p. Therefore >p= tr.cl.(S|p) is also compatible with p, as is the
intersection ~p of this relation with its converse.
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Now we prove item (2). Since > equals the union over all blocks B
of the relations >p, it follows that >r is reflexive. Similarly, ~r is re-
flexive and symmetric. It is only necessary to prove that >7 and ~¢ are
compatible relations. We will prove the following slightly stronger fact.

Cramv 3.17. Let f(x1,...,x,) be an n-ary basic operation of A.
Assume that By, ..., By, B are T-blocks such that f(B,...,B,) C B.
If a; >p, b; holds for all i, then

f(al,...,an) ZB f(blaabn)

The same statement is true with ~ in place of > .

The arguments are essentially the same for > and ~, so we prove
the claim only for >. By our assumption a;, >p, b;, so there exist
(T, T;0)-pairs (uj,u?), ..., (u]""", u") such that a; = u}, b; = u]", and

17 (2 (] ) (2
all u] lie in B;. There is no a priori reason to expect that the number
of such pairs is the same for all 7, but this can be arranged to be so
by adding trivial pairs of the form (u,u) to the end of any sequence of
pairs that is shorter than the longest sequence. For each ¢, the pairs

(u!,u/™) define a chain of m elements in B; connecting a; to b;. We

17 7

write these chains as rows of an array, and apply f to the columns of
the array.

— 1 2 3 mo_
al—u% u% u%) ul® = by
— m o __
as = Uy uj us ul = by
(3.5) :
an, = ub u? ul u™ = b,

fla)=f(u') f(u?) f) --- f(u™)=f(b)
Each pair (f(u?), f(u/*!)) is a (T,T};0)-pair, since the set S of all
(T,T;0)-pairs is a subalgebra of A2. The block B contains f(u’) for
all j, so the bottom row of (3.5) is a sequence that witnesses the fact
that f(a) >p f(b).

The compatibility of > follows immediately from this claim. For
example, if a; >7 b; for i = 1,...,n, then there exist T-blocks B; such
that a; >p, b; for all i. If f is an n-ary basic operation of A, then the
set f(By,. .., By) consists of T-related elements, hence can be extended
to a block B. The claim now applies to prove that f(a) > f(b), hence
that f(a) >7 f(b).

Item (3) follows from the fact that SR(7,T’;0) holds if and only if
all (T, T;0)-pairs are trivial.

To prove item (4) observe that for any T-block B the transitive
closure of S|p equals >p, which is contained in >7, which is contained
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in the transitive closure of S. If we restrict these relations to B we get

But since B is also assumed to be a block of Cg®(T) in item (4), we
get that tr.cl.(S|p) = (tr.cl.(S))]|p, so all relations in (3.6) are equal.
For item (5), the fact that 7" is an equivalence relation containing
>r, together with the fact proved in item (4) that >7 is transitive on
any block of T' = Cg®(T), implies that > is transitive on A. Since T
contains the set S of all (T, T; 0)-pairs and the relation > agrees with
tr.cl.(S) on each block of T, it follows that >7 agrees with tr.cl.(S)
on A. But each element of A is contained in a unique block of the
congruence 1'; so ~7 agrees with ~g on any block of 7. Thus a ~g b
holds if and only if @ >7 b and a <7 b, which implies that ~r is the
equivalence relation induced by >7. It is a congruence by item (2), and
is contained in 7" because all (T, T;0)-pairs are contained in 7T O

LEMMA 3.18. Let T be a tolerance on an algebra A. The following
hold.
(1) If (b,c) €T, then (b,c;b) and (b, c;c) are (T,T)-triples.
(2) Let p be a k-ary polynomial, and suppose that (b;,c;;d;) are
(T, T)-triples for 1 < i < k. If p(by,...,b,) = plc1,...,Cn),
then (p(cl, cesCn)yp(dy, . ,dn)) is a (T,T;0)-pair.
(3) Let f be a binary idempotent polynomial of A, and assume

{‘CL Z} e M(T,T).

If B 1s a block of T containing a, b, ¢ and d, then
f(ba C) >B f(f(b7 d)v f(a7 C)) .

(4) Let q be an n-ary idempotent polynomial of A. If B is a block
of T containing elements ay,...,an_1, b1,...,b,_1 and c, then

q(a,q(b,c)) >g q(a,q(a, c)) .

(5) Let F be an n-ary idempotent polynomial of A. Let B be a
block of T containing elements u;; (where 1 <i,j <n) and w,
and let u' = (U, ..., Uin). If uzy >pw for 1 <i<mn, then

F(F(u'),F(u?),....,F(u") > w.
PRrROOF. Item (1) follows from the fact that
{ c b } and { b b }
c b c c

are (T, T)-matrices if (b,c) € T.
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To prove (2) suppose that (b;, ¢;;d;) are (T, T)-triples for 1 <7 < k.
They come from some (7', T')-matrices

a; bz
¢ d; |-

Apply p to these matrices componentwise. We get a T\, T-matrix whose
off-diagonal entries are p(by,...,b,) and p(cy,...,c,). If these entries
are equal, as is assumed in (2), then (p(cl, cesCp),p(dy, . ,dn)) is a
(T, T;0)-pair by definition.

To prove (3), we will apply item (2) to the polynomial

p(x1,$2,$3,33’4) = f(f(xlaxQ)a f($37$4)) :

The (T, T)-triples that we will use are (b,b;b), (b,¢;d), (c,b;a) and
(¢, ¢;¢). The first and last of these triples are (T, T')-triples by item (1),
the second is a (7', T)-triple since we have assumed that

[ﬁg}eMﬁiy

and the third is a (7', T)-triple since we can interchange the rows and
columns of this matrix to obtain that

[zs}eM@j)

Item (2) guarantees that since

p(bb,c,c) = f(f(b,D), f(e.c)) = f(f(bic), f(b,c)) = p(b,c,b,c)
we have that (p(b7 ¢, b,¢),p(b, d,a,c)) is a (T,T;0)-pair. But B is
closed under f, since f is idempotent and B is a tolerance block, and

(f(bc), f(f(b,d), flasc))) = (p(b,c,b,¢),p(b,d,a,c)), so
f(bv C) >B f(f(b7 d)v f(a7 C)) )

as claimed.

For item (4), let ¢ = ¢(a, q(b,c)) and write t for the (n — 1)-tuple
(t,t,...,t). Since ¢ is idempotent and all a;, b; and ¢ belong to B,
we get that both ¢ and ¢(b,c) belong to B. Apply item (2) using
p(x,y,2) = q(x,q(y,z)) and the 2n — 1 (T, T)-triples (a1,¢;a1), ...,
(@n-1,t;an-1), (b1,a1;a1), ..., (bu_1,an_1;an-1), (¢,q(b, c);c) (these are
(T, T')-triples, by item (1)). Item (2) guarantees that since

p(a,b,c) = q(a, q(b, c))

=t

q(t, 1)

q(t, q(a, q(b,c)))
D t,a,q(b,c))
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the pair (q(a,q(b,c)).q(a q(a,c)) = (p(t,a,q(b,c)),p(a a,c)) is a
(T, T;0)-pair. Since these elements belong to B we have

Q(au Q(b7 C)) >B Q(a) Q<a7 C)) :
This proves (4).
Finally we prove (5). We show that

F(F(u'),...,F(u),w,w,...,w) >pw

by induction on ¢. This statement follows from the idempotence of F

when ¢ = 0, and for ¢« = n yields the desired statement. All elements

considered will be in B, because F' is idempotent and B is a T-block.
As an inductive assumption suppose that

F(F(u'),...,Fu" ") wuw,... ,w)>pw

holds. Now apply (4) in the i-th variable. By this we mean cyclically
permute the last n —i+ 1 variables of F' to obtain an n-ary idempotent
polynomial ¢ whose last variable corresponds to the ¢-th variable of F':

q(z1,. . xy) = F(oy, o 21, Ty Ty oo T 1)
then apply (4) to g. Choose (n — 1)-tuples
a= F(ul),...,F(ui_l),w,...,w),
b = (wit, ..., UiGi-1), Wi(i+1)s - - - ,um) ,

and choose ¢ = u;;. With these choices ¢(b, ¢) = F(u’). The conclusion
of (4) informs us that

¢(a,q(b,c)) = F(F(u'),...,F(u "), F(u'),w,...,w)
is > q(a, q(a, c)), which equals
F(F(ul),...,F(uiil),F(F(ul),...,F(uifl),%,ww..,w),w,...,w).

Using the assumption u;; >p w, we see that this element is > p-related
to the element

F(F(u'),...,F(u"),F(Fu'),...,Fu ") ww,...,w),w,...,w).
Using the inductive assumption twice we find that this element,
F(F(u'),...,F(u"),F(Fu'),....,Fu' ) wuw,... w),w,... w),
is > p-related to
F(F'),...,Fu " ww,... w) >puw.

By the transitivity of > on B we get that

F(F(u'),...,F(u'™"),Fu),w,...,w) >pw,
which completes the proof of (5). O
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DEFINITION 3.19. A join term for a variety V is an idempotent
binary term s(z,y) such that for every A € V, tolerance T of A, and
pair (u,v) € T it is the case that s(u,v) >r u and s(u,v) > v.

In order to investigate this concept we need to understand the re-
lation >7 in the generic setting.

LEMMA 3.20. Let V be a wvariety, let F = Fy(x,y) be the free
V-algebra generated by {x,y}, let T be the tolerance of F generated
by (x,y), let § = Cg¥ (x,y), and let B=2/6. If u,v € B, thenu >p v
if and only if there exists an m > 1, and sixary terms fi,..., fm such
that V satisfies the following identities:

(1) u(z,y) = fi(y, y, z, 2, 7,y),

() fuly, 2,202, 9,9) ~ vlx.y),

(i) iz, 2, 2.9,9.9) ~ fily. .0, v, 0.9), 1< i <m,

(IV) fz(yaxaxvxvyay) fi+1(y7yaxvm7x7y>7 1SZS7’I’L—1

PROOF. By Theorem 3.6 (4), B is a block of the congruence . By
Lemma 3.16 (4), the restriction of >7 to B equals the restriction of
the transitive closure of the set of (T',7’;0)-pairs to B. It follows from
Lemma 3.11 that the (7', 7';0)-pairs are exactly the pairs of the form
(f(y,y,x,x,w,y),f(y,x,:v,x,y,y)) for which V satisfies the identity
flz,z,z,y,y,y) = f(y,y,x,z,2,y). Therefore, the identities enumer-
ated in the statement of this lemma express exactly that (u,v) is in
the transitive closure of the set of (T, T'; 0)-pairs. O

THEOREM 3.21. The following are equivalent for a variety V.

(1) V satisfies a nontrivial idempotent Maltsev condition.

(2) V has a join term.

(3) V satisfies the following Maltsev condition: there exist m > 1,
n > 1, idempotent sizary terms fi,..., fm, 91,---,Gn, and a
binary term s such that the following identities hold in V:

(i) s(z,y) = fi(y,y, %, 2, 2,9),
(i) f(ys 2,2, 4, ) ~ 2,

(iii) fz(x 52,0, 0 ) ~ fily, g a e, y), 1<i <m,

(1V) (y,ZE x,T,Y, y) fi+1(y,y,x,x,x,y), ]-SZSm_l;

V) ( )Ngl(y y,ZL‘,J],[E,y),
)
1)

(vi gn(y,x:vxyy)~y, .
(vii) gi(z, 2,2, 9,9,9) = ¢:i(y,y, x,z,z,y), 1 <i<n,
(viii) ¢;(y, 2,2, 2,9,y) = gis1(y, ¥, v, 2, 2,y), 1 <i<n—1.

ProOOF. To prove (1) = (2) assume that a variety V has a Taylor
term f. The Taylor identities may be written in the form

f(xila"‘vxin) zf(yilw-'ayin)?



3.2. JOIN TERMS 57

where 1 < i <n, z;;,y;; € {z,y}, and z;; = = while y;; = y. Consider
the binary term

s(z,y) = f(f(x11, -, T1n)s s f(Tnts o oo, Tan)) -

The term s is idempotent, since f is. Applying Lemma 3.18 (5) to
F = f a block B of some tolerance 7' on some A € V), and elements
u,v € B, shows that s(u,v) >p u. On the other hand, the Taylor
identities imply that the identity

3(1',?/) ~ f(f(ylla---7y1n)a---;f(ynla-"aynn))

holds in V, and so Lemma 3.18 (5) shows that s(u,v) >p v holds as
well. Thus, s is a join term in V, and (2) is proved.

Now suppose that a variety V has a join term s. Then we have
s(z,y) >7r x and s(z,y) >r y in the free algebra F = Fy(z,y) for
the tolerance T generated by (x,y). It follows from Lemma 3.20 that
V satisfies the idempotent Maltsev condition defined in (3). This proves
that (2) = (3). This Maltsev condition expresses the fact that s is
a join term in ). The variety of sets does not have a join term, since
the relation >7 is the equality relation in sets. Therefore this Maltsev
condition is nontrivial, and (3) = (1). O

According to Definitions 3.15 and 3.19, s(z,y) is a join term for V
if it is idempotent and for every A € V), tolerance T on A, and pair
(u,v) € T, there exist blocks By and Bs such that s(u,v) >p, u and
s(u,v) >p, v. It is a consequence of the previous theorem that the
blocks By and By may be chosen to be equal, as we now explain.

COROLLARY 3.22. Let V be a variety with a join term s(z,y). If
A €V, T is a tolerance on A, and B is any T-block containing u
and v, then s(u,v) >p u and s(u,v) >p v.

PROOF. Since B is a T-block, it is closed under all idempotent
term operations of A, in particular it is closed under s and all the f;
and g; from Theorem 3.21 (3). If we substitute u for z and v for y in
these term operations we obtain a sequence of elements of B which,
according to the equations of that theorem, witness that s(u,v) >p u
and s(u,v) >p v. O

THEOREM 3.23. Let V be a variety. The following are equivalent.

(1) V has no member with a nonzero strongly rectangular congru-
ence.

(2) V has no member with a nonzero strongly rectangular toler-
ance.

(3) V satisfies a nontrivial idempotent Maltsev condition.
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PROOF. As noted at the beginning of this section, the only part of
this theorem that remains to be proved is (3) = (1).

Assume that (3) holds, and let s be a join term for V. Choose an
algebra A € V), a strongly rectangular congruence a on A, and a pair
(a,b) € a. Since s is a join term we have s(a,b) >, a and s(a,b) >, b.
By Lemma 3.16 (3) the relation >, is the equality relation when « is
strongly rectangular, so a = b. Hence a = 0 and (1) holds. O

3.3. Abelian Tolerances and Congruences

In the earlier part of this chapter we saw that a variety has a Taylor
term if and only if its members have no strongly abelian tolerances or
congruences. Taylor terms do not conflict with the existence of nontriv-
ial (ordinary) abelian tolerances and congruences, but do improve their
behavior. In this section we will see that if a variety has a Taylor term,
then abelian tolerances generate abelian congruences, and also that a
congruence interval perspective with an abelian congruence interval is
itself abelian.

THEOREM 3.24. Assume that V satisfies a nontrivial idempotent
Maltsev condition. If A € V has a tolerance T and a congruence §

such that C(T,T;8) holds, then C(Cg™(T),Cg™(T);0) holds.

PRroOF. It suffices to prove this theorem in the case when 6 = 0,
for if C(T',T’;0) holds, then C(7'/4,7/9;0) holds in A/d, according to
Theorem 2.19 (10). If the above theorem is true when § = 0, then
we get that C(a, a;0) holds for the congruence a := Cg®/°(T/§). But
then o = Cg®/%(Cg™(T)/6), too, so again using Theorem 2.19 (10)
we get that C(Cg®(T), Cg®(T); 6) holds, which is the statement of the
theorem. We therefore assume that T is an abelian tolerance, and make
it our task to prove that T generates an abelian congruence.

Write T for the subalgebra of A% whose universe is A%[T], which is
just the set T' (cf. the first paragraph of Chapter 2), and write A for
the congruence on T generated by the set

{{(a,a), (b,)) | (a,b) €T} .

Define tolerances on T by Ry := {{(a,b), (a,¢)) € T*| (b,c) € T} and
Ry :={{(a,c), (b,c)) € T?*| (a,b) € T}.

Cram 3.25. AN R; is the equality relation for both i =1 and 2.

It is sufficient to prove this claim for ¢ = 1 only, so choose a pair
((a,b),(a,c)) € AN Ry. We must prove that b = c. Let f(z1,...,2,)
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be a Taylor term for V. The ¢-th Taylor identity has the form

flxy, .o x) = f(yr, -y Un)

where (z;,9;) € {(z,2), (z,9), (y,2), (y,9)} for all j, and (we may as-
sume that) (z;,v;) = (z,y). Partition N = {1,...,n} into blocks
{Bjy,...,Bs}, some of which might be empty, as follows:

(1) B consists of those j € N for which (z;,y;) = (z, x),

(2) Bs consists of those j # i for which (z;,y;) = (z,y),

(3) Bs = {i},

(4) By consists of those j € N for which (z;,y;) = (v, z), and

(5) Bs consists of those j for which (z;,y;) = (v, y).

Now substitute the variable z; for the variable x; of f(x1,...,z,)
if j € By, 29 if j € By, and so on. This produces a 5-ary term
fi(z1, 29, 23, 24, 25). With this notation, the i-th Taylor identity is now
filz,x,z,y,y) = fi(x,y,y,x,y), where the third argument of f; corre-
sponds to the ¢-th argument of f. Define unary polynomials of T by

pi((ma y)) = fiT((av CL), (a7 b)? (xa y)v (b’ a)? (b’ b)) .

The i-th Taylor identity ensures that p; ((a, b)) lies on the diagonal of T.
The property that T is abelian is equivalent to the property that the
diagonal of T is a union of A-classes, so, since pi((a, b)) A pi((a, c)),
we get that p;((a,c)) lies on the diagonal of T. Since p;((a,b)) and
pi((a, c)) have the same first coordinate, and both lie on the diagonal,
we get pi((a, b)) = pi((a, c)) Equating second coordinates yields

fila;b,b,a,b) = fi(a,b,c,a,b).

Since (a,b), (b,c) € T and T is abelian, we still have equality after
changing the underlined a’s to b’s:

fl(é? b7 b7l_)7 b) = fz(l_)a b7 C7l_)7 b) .
For the original Taylor term this means that
b= f(bb,...,0) = f(b,...,b,e,b,....b)

where only one ¢ occurs, and it occurs on the right hand side in the i-th
position. We show by induction that, for alli, b = f(c,c,...,c,b,...,b),
where ¢ occurs in the first ¢ positions and b occurs elsewhere. For i = 1
this follows from the last displayed line. For later values of ¢ we apply
the T, T-term condition to change b to ¢ in the following underlined
positions:

f(bab)"'ab)babw”ab):f(bvl_)v"‘vl_)vcabv"wb)'
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We obtain
f(g7g7"'7g7b’b7""b):f(g7g7"'7g7c7b""7b)7

which shows that the desired result with ¢ in the first ¢ — 1 positions
implies the result for ¢ in the first ¢ positions.

Continuing to the end, we finally have b = f(c,c,...,c) = ¢ by the
idempotence of f. This proves the claim.

CLAIM 3.26. A is abelian.

From Claim 3.25 and Theorem 2.19 (8) we get that C(R;, A;0)
holds for ¢ = 1 and 2. This and Theorem 2.19 (2) and (5) imply
that C(CgT(R1 U Ry), A; 0) holds. Suppose that (a,b) € T. Then
(a,a) Ry (a,b) Ry (b,b), so {(a,a),(b,b)) € CgT(R; U Ry). This shows
that each generator of A belongs to Cg™ (RURy), so Cg™ (RURy) > A.

From the monotonicity of the centralizer in its first two variables we
get that C(A, A;0) holds in T. This proves the claim.

Let D be the image of the diagonal embedding i: A — T, where
a — (a,a). Since A is an abelian congruence of T, it follows from
Theorem 2.19 (9) that that A|p is an abelian congruence of D. But
i: A — D is an isomorphism, so the congruence i~*(A|p) is an abelian
congruence of A. Since i(T") is the generating set for A, it follows that
T C i '(Alp), and therefore T' is contained in the abelian congruence
i~'(Alp). Hence Cg®(T) is abelian, proving Theorem 3.24. O

THEOREM 3.27. Assume that V satisfies a nontrivial idempotent
Maltsev condition and that A € V. If a, € Con(A), then

Cla,a;aNp) <= ClaV p,aVp;F).

Proor. If C(aV g3, aV3; 3) holds, then C(«, «; 3) holds, by mono-
tonicity. From this and C(«, «v; «v) we get that C(«, a; a A 3) holds, by
Theorem 2.19 (4).

Now assume that C(a, a;a A ) holds. Using Theorem 2.19 (4)
again we derive that C(a, a; 5) holds. By Theorem 2.19 (8), C(f3, a; 3)
holds, so we get that C(aV 3, «; §) and then C(aV 3, foao 3; 3) hold
by parts (5) and (3) of Theorem 2.19. This and the monotonicity
of the centralizer yield that C(7,T;3) holds for T'= o a0 . Since
Cg®(T) = a Vv we get ClaV3,aV3;3) holds from Theorem 3.24. [

REMARK 3.28. It is not possible to strengthen the implication in
Theorem 3.24 to

(3.7) C(8,T;0) = C(Cg™(S),Ce™(T);4)
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assuming only that V has a Taylor term. If implication (3.7) holds
for V, then arguing as in the proof of Theorem 3.27 we would have

C(a,3;0) = C(aV§,6Vd;0)

for any a, 3,6 € Con(A), A € V. In particular, since C(a, 3;9) holds
whenever «, 3 and § generate a sublattice isomorphic to N5, labeled
as in Figure 3.1, we would also have C(a Vv §,5V §;0), and therefore

FIGURE 3.1.

C(a, a;9) by the monotonicity of the commutator. Altogether this
shows that if V has a Taylor term and satisfies implication (3.7), then
the critical quotient of any N5 in a congruence lattice of a member of
V is abelian.

Thus, for example, the variety of semilattices has the Taylor term
f(z,y) = x Ay, but cannot satisfy implication (3.7) since some semi-
lattices have sublattices isomorphic to N5 in their congruence lattices
but no semilattice has a nontrivial abelian congruence interval.






CHAPTER 4

Meet Continuous Congruence Identities

The class of all congruence lattices of algebras in a variety V is
usually too complicated to describe in any nontrivial way. There is
more hope for a description of the class £(V) of lattices embeddable in
congruence lattices of algebras in V. It is evident that £(V) is closed
under the formation of isomorphic lattices and sublattices. Moreover,
the map

(4.1) H Con(A;) — Con(H AZ-) 2 (0:)ier — O,
iel iel
where a © b if a; 0; b; for all ¢ and a; = b; for all but finitely many j, is
an embedding, so £(V) is closed under the formation of products. This
makes L£(V) a prevariety, which we call the congruence prevariety
of V.
Any prevariety is axiomatizable by a class of formulas of the form

(4.2) Neix) = =(x)

iel
where e(x) and each ¢;(x) is an identity and x and I may be infinite (see
Theorem 9.2.2 of [35]). Therefore, in studying the shapes of congruence
lattices in varieties, it is natural to start by considering the satisfaction
of sentences of this form. The most obvious problems are still unsolved.

PROBLEM 4.1. Which congruence prevarieties are first-order ax-
iomatizable?

In other words, for which varieties V is it true that £()) can be
axiomatized by sentences like (4.2) where x and I are finite? Equiva-
lently, when is £(V) a quasi-variety? It is known that if )V is congru-
ence n-permutable for some n, then £()) is first-order axiomatizable,
(5, 32, 33]. It is also known that if V has a Taylor term but does not
satisfy a nontrivial congruence identity, then £(V) is not first-order
axiomatizable, [52]. The full answer to Problem 4.1 is not yet known.
We do not even know the answer to the following special case.

PROBLEM 4.2. Is the congruence prevariety of a congruence mod-
ular variety first-order axiomatizable?

63



64 4. MEET CONTINUOUS CONGRUENCE IDENTITIES

The congruence prevariety is first-order axiomatizable if and only
if it is a quasi-variety, so it is a natural problem to consider the satis-
faction of congruence quasi-identities.

PROBLEM 4.3. Is the class of varieties satisfying a given set of
congruence quasi-identities definable by (idempotent, linear) Maltsev
conditions?

Problem 4.3 is known to have a positive answer when posed for
identities in place of quasi-identities. A. Pixley [74] and R. Wille [79]
each described an algorithm to produce a family of idempotent linear
Maltsev conditions defining the class of varieties satisfying a given con-
gruence identity. By suitably modifying the Pixley—Wille algorithm,
partial results have been obtained for special types of quasi-identities
(cf. [3, 4, 5, 6, 40]). The strongest of these is the result we have
recorded as Theorem 2.22, which states that Problem 4.3 has an affir-
mative answer for quasi-identities satisfying (W). The most that one
could hope for is that if & and V satisfy the same idempotent Maltsev
conditions, then they have the same congruence prevariety. The most
attractive special case of this is the case where U = SET, since it fol-
lows from Whitman’s Theorem (that every lattice is embeddable into
a lattice of equivalence relations, cf. Section VIL.8 of [1]) that £L(SET)
is the class £ of all lattices.

PROBLEM 4.4. Suppose that a variety V satisfies no nontrivial
idempotent Maltsev condition. Is it true that £(V) = L7 Is it true at
least that £()) contains the lattice I14 of all equivalence relations on a
4-element set?

We expect a negative answer to both questions asked in Problem 4.4,
but see Theorem 4.18 for a positive partial result.

The purpose of this chapter is to explain how the presence or ab-
sence of a Taylor term affects the shapes of congruence lattices in a
variety. The Pixley-Wille algorithm shows that any variety that satis-
fies a nontrivial congruence identity in the language of lattices satisfies
a nontrivial idempotent linear Maltsev condition and therefore has a
Taylor term. The converse is not true; congruence identities are not
flexible enough to say anything nontrivial about varieties satisfying
very weak idempotent Maltsev conditions. In order to make nontrivial
statements about the shapes of congruence lattices in arbitrary varieties
with a Taylor term, we need to consider sentences other than lattice
identities. In this chapter we will describe congruence lattice shapes
in three different ways: by using quasi-identities in the language of
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ordinary lattices, by using identities in the language of meet continu-
ous lattices, and by identifying omitted sublattices. We will exhibit a
nontrivial quasi-identity o in the language of lattice theory such that
V has a Taylor term if and only if £(V) = o (Theorem 4.12 (2)). We
will prove that there is a nontrivial identity 7 in the language of meet
continuous lattice theory such that )V has a Taylor term if and only if
L(V) = 7 (Theorem 4.12 (4)). Finally, we will exhibit a finite lattice L
such that V has a Taylor term if and only if L ¢ £()) (Theorem 4.23).

4.1. Maltsev Conditions From Congruence Identities

If V is a variety, let Lyc(V) be the class of all meet continuous
lattices L for which there is a meet continuous embedding of L into
Con(A) for some A € V. The class Ly;c(V) is the meet continuous
analogue of the congruence prevariety of V. It is also a prevariety,
since the mapping described in (4.1) preserves complete joins. It seems
appropriate to us to identify the study of shapes of congruence lattices
in varieties with the study of Ly;c(V). In this short monograph we
only begin to scratch the surface. In this chapter we will show that a
variety has a Taylor term if and only if £y;c(V) satisfies a nontrivial
meet continuous identity.

In this section we will show that the Pixley-Wille algorithm can
be extended to meet continuous identities, which will show that the
class of varieties satisfying a given meet continuous congruence iden-
tity is definable by idempotent linear Maltsev conditions. The proof is
straightforward, but is included because there is a compactness condi-
tion associated to Maltsev conditions that we establish by proving the
somewhat nonobvious fact that any meet continuous identity is equiv-
alent to a set of identities involving only finitely many variables apiece.

Using the same arguments as those used for ordinary lattice identi-
ties (cf. the third paragraph of Section 2.2), it can be shown that any
family of meet continuous lattice identities is equivalent to a family
of inclusions of the form P < () where P and () are meet continuous
lattice words. Modulo the identities defining meet continuous lattices,
we may identify P and () with elements from some free meet continu-
ous lattice, hence with ideals from some free lattice. Now, an inclusion
P < @ between ideals is equivalent to a family of inclusions (p] < @,
p € P, where the included ideal is principal, therefore any family of
meet continuous lattice identities is equivalent to a family of inclusions
of the form p < () where p and ) are meet continuous lattice words with
no infinitary join occurring in p. We refine this in the following lemma.
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LEMMA 4.5. Any family of meet continuous lattice identities is
equivalent, modulo the identities defining the variety of meet contin-
uwous lattices, to a family of inclusions of the form p < @) where both
p and Q) are meet continuous lattice words in finitely many variables,
and no infinitary join occurs in p.

PrOOF. We work modulo the identities defining the class of meet
continuous lattices, so we may assume that p and () are elements in the
free meet continuous lattice F generated by some set {x1, zo, x3,...}.
A meet continuous lattice L satisfies the inclusion p < @ if for ev-
ery meet continuous homomorphism ¢: F — L it is the case that
o(p) < o(Q). Assume that this holds for L. Since p has no infinitary
joins, we may assume that the variables that appear in p are among
{z1,...,2,}. Let € be the meet continuous endomorphism of F defined
on the generators by x; — z; if 1 <7 <n and x; — 0 otherwise. Then
poe: F — L is a meet continuous homomorphism, so

poe(p) <poe(Q)

by the assumption on L. But ¢ is a retraction of F onto its meet
continuous sublattice generated by {zi,...,x,}, and this sublattice
contains p, so £(p) = p. Thus p(p) < ¢(Q') where Q' := (¢(Q)). Since
¢ was arbitrary, this shows that if p < @ holds in L, then p < @’
holds in L. The converse is obvious: ¢ is decreasing on generators, so
Q' =¢Q) < QinF, and so p < Q' implies p < @. Therefore, a
meet continuous lattice satisfies p < @ if and only if it satisfies p < @'.
The inclusion p < @' involves elements of the (free) sublattice of F
generated by {x1,...,z,}, so our original inclusion p < @ is equivalent
to one in a finite set of variables. U

Lemma 4.5 implies that there are at most 22" varieties of meet
continuous lattices, since there are at most 2% inequivalent inclusions
of the form p < @) in finitely many variables. We do not know if this
upper bound is attained, but it is not hard to see that there are at least
2% varieties of meet continuous lattices. (Argument: If V is a variety of
lattices, then the subclass of meet continuous lattices in V generates V
since it contains the ideal lattices of members of V. This subclass is a
variety in the language whose nonlogical symbols are {\/, A}, since it
is closed under H,S and P. This proves that there are at least as many
meet continuous lattice varieties as there are ordinary lattice varieties,
and it is well known that are 2% ordinary lattice varieties.)

PROBLEM 4.6. Determine the number of meet continuous lattice
varieties.
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THEOREM 4.7. The class of varieties satisfying a given set of meet
continuous congruence identities is definable by a family of idempotent
linear Maltsev conditions.

PROOF. It suffices to prove that the class of varieties whose con-
gruence lattices satisfy a single inclusion p < @), where p is an ordinary
lattice word and () is a meet continuous lattice word in the same set
of variables, is definable by a family of idempotent linear Maltsev con-
ditions.

If p=op(x1,...,2,) and 04,...,0, are congruences on an algebra,
then
p(0r, ... 0,) = pi(61.....0,)
1€w

where p; is the term in the signature {o, A} obtained from p by replacing
each occurrence of binary join with the i-fold relational product and
keeping each occurrence of A. For example, if p = 21 A (22 V x3), then
p1 = T1 AT, pr =1 A(22023), p3 =11 A (x2013027), etc. Now, the
inclusion p(bs,...,0,) = Upi(01,...,0,) < Q(64,...,0,) holds in some
congruence lattice if and only if p;(61,...,0,) € Q(04,...,0,) holds for
every . We will show that for any single ¢ the inclusion p; C @ can be
characterized by a single Maltsev condition.

As noted in Corollary 2.10, there is a natural identification of Q)
with an ideal in the free lattice generated by {z1,...,x,}. This free
lattice is countable, so the ideal associated to () has a cofinal se-
quence ¢° < ¢' < ¢* < -+ of lattice words. Let ¢} be the word in
{o,A} obtained from ¢* by replacing each join with j-fold alternat-
ing o-composition and keeping each occurrence of A. For example, if
q" = (z1 Awg) V (1 Axs), then ¢f = (11 Axo) o (z1 Axs)o (g Axs). Let
r; = q?oq}o- . -oqj. If6y,...,0, are congruences on some algebra, o rep-
resents relational product, and A represents intersection of relations,
then ¢¥(01,...,0,) Cri(01,...,0n) € ¢ (01,...,0,) for all k < j, so

Q(O1....,0,) = Jri(01,....0,).
JEW
We will argue that

(a) any variety satisfying the congruence inclusion p; C Q = |Jr;
must satisfy a congruence inclusion of the form p; C r; for
some j, and that

(b) the class of varieties satisfying any particular inclusion p; C r;
is definable by an idempotent linear strong Maltsev condition.

If this strong Maltsev condition is denoted o;, then o; F 0,41 (since
ri(01,...,0,) C rjp1(bs,...,0,) for any choice of the #’s). Therefore,
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(a) and (b) will show that the class of varieties satisfying p; C @ is
definable by the Maltsev condition \/ o;.

Next we concern ourselves with the problem of constructing an
idempotent linear strong Maltsev condition associated to a congruence
inclusion p C r where p and r are terms in the signature {o, A}. The
construction is a straightforward generalization of Maltsev’s construc-
tion of a strong Maltsev condition defining congruence permutability,
which many readers will already know. We will illustrate the construc-
tion by deriving the Maltsev condition associated with the congruence
inclusion

(4.3) 0y A (02 005) C (6, A6y)o (01 NB3),

which is p C r for the {o, A}-terms p(xy, z2,23) = 1 A (22 0 23) and
r(z1, X2, x3) = (1 A x2) 0 (T1 A x3).

We begin the construction by building a directed labeled graph
associated to a {o, A}-term p. Start with a graph G;(p) having two
vertices y; and y, connected by an edge (y1,y2) directed from left to
right and labeled with p, as depicted in Figure 4.1. From a partially

Y1 p Y2
o —r——=0

FIGURE 4.1.

completed graph G;(p) the construction continues by selecting an edge
directed from left to right, labeled by a term w, and connecting vertices
y; and y;. If w = u A v, then G;11(p) is the graph obtained from G;(p)

u
R e
(%

FIGURE 4.2.

by replacing the edge labeled w with two edges directed from left to
right, labeled u and v respectively, connecting the same vertices in
parallel, as in Figure 4.2. If instead w = w o v, then construct G;,1(p)

i uov ; i u v ;
FIGURE 4.3.

by replacing the edge labeled w with two edges directed from left to
right, labeled v and v, connecting the same vertices in serial through



4.1. MALTSEV CONDITIONS FROM CONGRUENCE IDENTITIES 69

a new vertex, as in Figure 4.3. If neither of the above steps can be
performed, then all edges are labeled by variables and the construction
is complete. The construction will eventually end since each step alters
the complexity of exactly one edge label, and reduces the complexity
of that label without introducing any more labels of the same or larger
complexity.

In our illustrative example the term p equals z1 A (22 0 x3) and the
graphs that arise in the three steps of the construction are depicted in
Figure 4.4.

x
T
n b Y2 o W Y2 U Y2
— » ¢ o e
i) xT3
T9 O XT3
Gi(p) Ga(p) Gs(p)

FIGURE 4.4. The construction of G(p) for p = x1 A (25 0 x3)

Call the final graph in the construction G(p). We may assume
that the vertices are Y = {y1,...,yn} and that the edge labels are the
variables occurring in p, which are among the variables x4, ..., x,. The
key features of G(p) are stated in Claim 4.8.

CrAamm 4.8. Let A be an algebra and o; € Con(A) for 1 <i <n.

(1) If Y — A:ys — as is an assignment with the property that
(a;,a;) € ap whenever (y;,y;) is an xi-labeled edge of G(p),
then (a1, a2) € p(ag, ..., an).

(2) Conwversely, given any (ai,as) € p(ai,...,an), there is an
assignment Y — A:y, — as extending y; — aq, Y — ao
such that (a;,a;) € oy, whenever (y;,y;) is an xy-labeled edge

of G(p).

To prove item (1), choose and fix assignments Y — A: y, — ag
of vertex labels of G(p) to elements of A and X — Con(A): x5 — as
of edge labels to congruences on A. With respect to these choices,
consider the following property of some G,(p): “For each w-labeled
edge (y;,y;) the pair (a;,a;) is in w(@) = w(ay,...,0,).” Item (1)
asserts that if this property holds for G(p), then it holds for G(p).
Therefore, it is enough to show that if the property holds for G, (p),
then it holds for G,(p). For a construction step of the ‘parallel type’
(Figure 4.2) this is a consequence of the fact that if (a;, a;) € u(@) and
(a;,a;) € v(@), then (a;,a;) € u Av(a). For a construction step of
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the ‘serial type’ (Figure 4.3) this is a consequence of the fact that if
(a;, ar) € u(@) and (ax, a;) € v(@), then (a;,a;) € uov(@).

For (2), choose and fix an assignment X — Con(A): z; — as.
Consider this property of an assignment ¥ — A: y, — a4 of vertex
labels of Gy(p) to elements of A: “For each w-labeled edge (y;,y;) the
pair (a;,a;) is in w(@).” Item (2) asserts that any assignment y; — ay,
y2 — ag of Gi(p) which satisfies this property can be extended to an
assignment of the vertex labels of G(p) which satisfies this property. It
is enough to prove that if an assignment of the vertex labels of G,(p) has
the property, then this assignment can be extended to an assignment of
the vertex labels of Gyy1(p) that has the property. This is trivial for a
construction step of the parallel type (Figure 4.2), since no new vertex
labels are introduced and the assignment y, — a, that witnesses the
satisfaction of the property for G,(p) also witnesses it for Gy.1(p). For
a construction step of the serial type (Figure 4.3), a new vertex with
label yj, is introduced to replace an edge (y;, y;) labeled wov with edges
(y1,yk) and (yk,y;) labeled u and v respectively. In this case, extend
the witnessing assignment ys — a, for G;(p) by defining y; — a; where
ay is chosen so that (a;,ax) € u(@) and (ax,a;) € v(@). It is possible
to make such a choice, since u o v(@) = u(@) o v(@), and such a choice
witnesses the desired property for Gy, 1(p). Thus the claim is proved.

Now construct a directed graph G(r) for 7 in exactly the same way,
except use z’s instead of y’s for the vertices. See Figure 4.5 for G(r)
when r equals (x1 A x2) o (21 A x3).

I T
21 : z3 : Z9
T2 XT3

FIGURE 4.5. G(r) for r = (x1 0 x9) A (21 0 x3)

If the set of vertex labels for G(r) is {z1,..., 2/}, then consider the
following strong Maltsev condition associated to p C r: There exist
m-ary terms Fi, ..., I} for which the following identities are satisfied:

(1) Fl(yh s 7ym) ~ Y1,
(H) F2<y17 s 7ym) ~ Y2, and
(iii) an identity of the form Fj(variables) ~ Fj(variables) for each
edge (2, z;) in G(r). The pattern of the variables is determined
as follows. Given a variable x, let Ey be the equivalence
relation on the set Y of vertex labels of G(p) defined by y; Ej y;
if y; and y; belong to the same “zj-component”, by which we
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mean that there is an undirected path from y; to y; in G(p)
consisting of x;-labeled edges. Let 7,: Y — Y be a transversal
for Ej. Now, if (z;,z2;) is labeled by wx, then the identity
associated with (z;, z;) is

Fi(me(y1), - me(ym)) = Fj (1), - - - Te(ym)) -

This is a linear strong Maltsev condition. The idempotence of Fy, i.e.,
Fi(z,...,z) =~ x, is a consequence of identity (i) from above. There is
a directed path in G(r) from the vertex labeled z; to any other vertex,
and for any (z;,2;) in such a path the identity from (iii) above has
the consequence Fj(z,...,x) ~ F;(z,...,x). Thus, the idempotence of
each Fj follows from the identities (i) and (iii).

In our illustrative example, (4.3), we have p = x; A (22 0 23) and
r = (x1 Axg) o (z1 Axs), and G(p) and G(r) are depicted in Figures 4.4
and 4.5. The associated Maltsev condition involves three ternary terms
Fy, F, and Fj, corresponding to the z’s in Figure 4.5. The equivalence
relation Ej on the vertex labels of G(p) associated to the x;-component
can be read off Figure 4.4; we represent them by their partition of
v, y2, 3} By < y1y2/ys, By < y1ys/ya, and E3 < y1/yoys. The
transversals we choose for these equivalence relations are the func-
tions 7, which assign to each element of Y the Ej-related element
whose subscript is smallest. With these choices, the Maltsev condition
asserts that the following identities hold.

L4 F1<y17y27y3) ~ Y1,

o I5(Y1, Yo, Y3) = Yo,

e and corresponding to 7y, 7o, and 73:
— Fi(y1, 1, u3) = Fo(y1, y1, v3) = F5(y1, y1,3),
— Fi(y1,y2,v1) = F5(y1,y2,v1), and
— Fo(y1, 92, ¥2) = F3(y1, Y2, Y2)-

Next we argue that the congruence lattices of algebras in a variety V
satisfy p C r if and only if V satisfies the strong Maltsev condition
defined above in (i)—(iii). We begin by saying what we will mean by
a “generic” pair (u,v) € p. Let F = Fy,(Y) be the free algebra in V
generated by Y = {y1,...,yn}. For each edge label z; in G(p) let
0y be the congruence on F generated by all pairs (ys, y;) that are edges
in G(p) with label zy, i.e., 0, = Cg¥ (E}) where E}, is defined as above.
This is the least congruence on F that relates generators y; and y; if
y; is connected to y; in G(p) by edges labeled xj. By Lemma 3.6 (1),
0) is the kernel of the retraction 7;: F — F induced by the function
Tr: Y — Y defined in (iii) above. It is the pair (yi,y2) =: (u,v) that
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will be called a generic pair (u,v) € p. The fact that a “generic pair
in p” actually is in p(6y, ..., 0,) follows from Claim 4.8 (1).

If V satisfies the congruence inclusion p C r, then the generic pair
in p must belong to r, i.e., (y1,y2) € 7(61,...,0,) in F. Using only
the fact that (yi,y2) € (64, ...,0,) we will prove that V satisfies the
Maltsev condition described above. By Claim 4.8 (2), the fact that
(y1,y2) € 7(01,...,0,) implies that there exist f; = v, fo = o,
f3,.-., fe € F such that the assignment z;, — f; has the property
that (fi, fj) € 0x whenever (z;, z;) is an zx-labeled edge of G(r). Since
F is generated by Y = {y1,...,ym}, there exist terms F; such that
fi=Fi(y1,...,ym) for all i. Since Fi(y1,...,ym) = y1 holds as a rela-
tion among the free generators of F, it follows that Fi(y1,...,ym) =
holds as an identity in V. Similarly, F5(v1,...,¥m) =~ y2 holds in V.
For each zj-labeled edge (z;, z;) we have

F(men)s - i(ym)) = To(Fi(y1s - Ym))

7(fi)

= 7(f5)

= E(Tk(yl)v s 7Tk(ym)) )
= F(

because (f;, f;) € O, = ker(7,). Since Fi(7(y)) = Fj(7x(y)) holds
as a relation among free generators, F; (Tk(y)) ~ I (Tk(y)) holds as
an identity in V. Altogether this shows that )V satisfies the Maltsev
condition described in (i)—(iii) above.

Conversely assume that V satisfies the Maltsev condition we have
described. Choose any A € V and congruences aq,...,a,. To show
that p(aq,...,an) Cr(ai,...,a,), choose (a1, az) € p(ay, ..., a,). Ac-
cording to Claim 4.8 (2), there is an assignment v: Y — A: y, — as
of the variables of G(p) in A such that (a;,a;) € oy if (y;,y;) is labeled
by zx. If v: F,(Y) — A is the extension of v to a homomorphism, and
0r is the congruence generated by all pairs (y;,y;) whose edge label
in G(p) is @, then 0(6y) C oy since T((y;,y;)) = (a;,a;) € oy for any
generating pair (y;,y;) of 8.

Now consider the assignment Z — F': z; — Fi(y1,...,yn) where
Z = {z,...,2}. The identities (i)—(iii) of our Maltsev condition
guarantee respectively that

(1) 21 = Fl(Y) = Y1,
(i) 2 Fa(y) = ys, and
(iii) if (27, 2;) is an zy-labeled edge of G(r), then (Fi(y), F;(y)) € 6.

By Claim 4.8 (1), these conditions yield (yi,y2) € r(61,...,0,), hence

(a1,a2) =0((y1,92)) € 0(r(b1,...,6,)) Cr(ar,..., o).
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Since the pair (aj,as) € p(ay,...,q,) was arbitrary, we derive that
p C r holds throughout V.

Recall that we reduced the proof of Theorem 4.7 to two claims:
(a) any variety satisfying the congruence inclusion p; € Q = Jr;
must satisfy a congruence inclusion of the form p; C r; for some j,
and that (b) the class of varieties satisfying any particular inclusion
p; € r; is definable by an idempotent linear strong Maltsev condition
(see page 67). We have just completed the proof of a strong form of (b):
the class of varieties satisfying p; C r; is definable by an idempotent
linear strong Maltsev condition which expresses the fact that (u,v) € r;
for a generic pair (u,v) of p;. Thus, we obtain (a) as well: a variety V
that satisfies p; C Q = (Jr; must satisfy (u,v) € r; for some j and
some generic pair (u,v) of p;, and for this ¢ and j we have p; C r;. O

For future reference we point out that this proof shows that the class
of varieties satisfying a congruence inclusion of the form p C r, where p
and r are {o, A}-terms, is definable by a strong Maltsev condition, and
that the class of varieties satisfying a congruence inclusion of the form
p € U,e,, 7> where p and r; are {o, A}-terms is definable by a Maltsev
condition, provided the r;’s are increasing.

COROLLARY 4.9. If a variety satisfies a nontrivial meet continuous
congruence identity, then it satisfies a nontrivial idempotent Maltsev
condition.

4.2. Congruence Identities From Maltsev Conditions

We prove the converse to Corollary 4.9 in Theorem 4.12 of this
section.

THEOREM 4.10. Let V be a variety that satisfies a nontrivial idem-
potent Maltsev condition. If A € V has congruences «, 3,7, satisfying
(1) an(Boy)N(yoB) CdCal BVy and
(2) C(BV 7, 36),
then 6 = «.

PRrROOF. Let f(xy,...,x,) be a Taylor term for the variety ), and
let N = {1,...,n} be the set of subscripts of variables in this term. The
i-th Taylor identity has the form f(xy,...,x,) = f(y1,...,yn) Where
(:Ejvyj) € {(.I, l’), (xvy)a (ya l‘), (ya y)} for all j7 and (mia yl) - (xay) As
in the proof of Theorem 3.24, partition N into blocks {B, ..., Bs}:

(1) By consists of those j € N for which (z;,y;) = (z, z),
(2) Bs consists of those j # i for which (z;,y;) = (z,y),

(3) Bs = {i},
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(4) By consists of those j € N for which (z;,y;) = (y,z), and

(5) Bs consists of those j for which (x;,y;) = (y,y).
Let fi(z1, 20, 23, 24, 25) be the 5-ary term obtained from f by substi-
tuting the variable z; for the variable z; of f(xy,...,2,) if j € By,
29 if 7 € By, and so on. The i-th Taylor identity can be written as

fi($,$,l’,y,y> ~ fi<x7y7yaxvy)'

Now suppose that A € V has congruences «, (3, v, ¢ satisfying all
the hypotheses of the theorem, and also satisfying o # §. Then, since
§ < a < BV, there is a least k such that a N (3o, v) € §.' This k is
at least 2 since

(anp)ulany) Can(fey)n(yof) 4.
By interchanging the roles of 3 and ~ if necessary we may assume that
an(Bog_17v) Cdand an(yor_1 B) C4.
Choose (u,v) € aN (F ok ) — ¢, and suppose that
u=wugugyug - U =0
is a (Jopy-chain connecting u to v. If p(z,y, z) = fi(u, x,y, z,u1), then
for k > 2 the sequence
r = p(u, ur, up) v p(us, ug, uo) B p(uo, uz, ur)
7 p<u07 'LL4,U1) ﬁ T p(UOa Uk, ul) =S
is a 7y og_1 B-chain. Moreover, the i-th Taylor identity implies that
p(uo, uo, ur) = fi(uo, uo, uo, u1, ur)
- fi(u07 Uy, Uy, Ug, ul) - p(u17 Uy, U’O) )

so r = p(ug, up, u1) is a-related to s = p(ug, uk, u1) (since (ug, uy) € a).
Thus (r,s) € aN(yor_1 B) €6 when k > 2. If k = 2, then the same
conclusion (that (r,s) € d) may be reached as follows. Starting with
the same (3 oy y-chain v = ug 3 u; v us = v, and the same polynomial
p(z,y,2) = fi(uo, z,y, z,u;), we obtain a chain

r= p(u17u17u0) 7p<u17u27u0> 5p(U0,U2,U/1> = S.

This chain is not shorter (it has length k& = 2 also), but it begins with
~ instead of 3. All other conclusions from the k > 2 case remain valid,
in particular we have

r= p(UhUhUO) = p(UmUo,Ul) « p(uﬂauk,ul) =S.

This shows that (r,s) € a N (yo ). But since (r,s) is an image of
(up, u2) = (u,v) under the polynomial p(ug,z,u;), and (u,v) € Fo7,
we even have (r,s) € anN(Boy)N(yopB) Co.

'Recall that o,y = Boyof---, with k — 1 occurrences of o.
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We now have

fi<u07u07u07u17u1> = p(UOJU’Oaul) =T
and
fi(u07u07ukau17ul) :P(onuk,m) =S5,
so from (r,s) € § we get
f’i(u07 Ug, Ug, U7, ﬂ) o f’i(u07 U, ukaﬂ?ﬂ) .

Since C(8V 7, «; 0) holds, we may change underlined values from wu; to
ug to obtain

fi(u07 Ug, Ug, U, @) d f’i(u07 Ug, Uk, Ug, @) )

which we write as
filu,uyu,uyu) 6 fi(u,u,v,u,u) .

This implies that for our original Taylor term f we have

flu, ..o uyvu, .o u) d flu,u, .. u) =u
where the v occurs in the i-th argument of f. This holds for every i.
We now argue that the relation

flo,.. vu, ..o u) 0w,
where the last v occurs in the i-th argument of f, also holds for every i.
The facts that (u,v) € « < V7 and C(8V v, a;d) imply that we

may change the underlined u to v in

flo,.. o v,uu,. o u) du= fu,...,u,u,u,...,u)
to obtain

flo, .. ov,uu, .o u) du= flu,...,u,v,u,...,u).
By our earlier conclusions, the value f(u,...,u,v,u,...,u) on the right
side is d-related to u. By induction and the idempotence of f we get
that v = f(v,v,...,v) d u, which is a contradiction. O

The hypotheses of the previous theorem are consequences of purely
order-theoretic conditions. For the statement of the next lemma, let
(p,q,7) be a triple of lattice variables, and define lattice words

P =D, qo) == ¢, T =T,
Plin+1] =Dl A (@) V) s Q1] 2= ) A (P V 7))
Tln+1] 7= T A (P} V Q) -
If (o, B,7) is a triple of congruences on A, then let

Up) = p[n](av 57 ’Y) ) 5[71] = Q[n](a7 57 7) y o V) = T[n](a) 67 7) .
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LEMMA 4.11. Let («a, 3,7) be a triple of congruences on A, and
let 0 be a congruence on A. The following two conditions imply the
corresponding conditions of Theorem 4.10.

(1) oy <0 < < BV for some n.
(2) aNB=aNny=9.

PROOF. Choose (u,w) € a N (B o), then there is a v such that
u vy w. Fork = 0, these three elements are related as in the
following triangle:

FIGURE 4.6.

If u, v and w are related in this way for some k£ > 0, then we have
(u,w) € ap N (B V Yw) = ety and similarly (u,v) € Bpqq) and
(v,w) € Y41y This shows that a N (B o) C apy for all k. If o) <6
holds for some n, then

an(Boy)N(yoB) Can(fon) Cap €9,
so the first condition of this lemma implies the first condition of The-
orem 4.10.

Now if a A f = o Ay = 0, then we have C(8, a;d) and C(v, a;9)
according to item (8) of Theorem 2.19. By the semidistributivity of
the centralizer in its first variable (Theorem 2.19 (5)) we derive that
C(B V v,a;9d) holds. This shows that the conditions of this lemma
imply those of Theorem 4.10. U

Now we are prepared to prove the main result of this section.
THEOREM 4.12. The following conditions on a variety V are equiv-

alent.
(1) V satisfies an idempotent Maltsev condition that fails in the
variety of sets.
(2) The quasi-identity
(44) ((prhg) = s) & ((pAr)=s) & (pg=s) — ((pA(gVr)) = s)

holds in the congruence lattices of algebras in V (the lattice
word piy is defined on page 75).
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(3) Quasi-identity (4.4) holds in the meet continuous congruence
variety of V.

(4) V satisfies a nontrivial meet continuous congruence identity.

(5) V satisfies a congruence inclusion of the form

an(fosy) Cwla,B,7)

for some lattice word w(p, q,r) such that w(p,q,r) < pA(qVr)
in the free lattice Fo({p,q,7}).
(6) For some k > 4,V satisfies a congruence inclusion of the form

an (Bok’)/) g w(Oé?ﬁ?’Y)?
where ’U)(p,q,?") <p A (q \% T) in FC({pa(LT})'

A seventh equivalent condition is described in the remarks following
the proof.

ProoOF. To see that (1) = (2), choose an assignment of variables
p—a,q— B, r— 7, s+— 6in Con(A) for some A € V for which
the premises of quasi-identity (4.4) are satisfied. Then the congruences
o == aN(BVy), B, v and ¢ satisfy the conditions of Lemma 4.11. (This
uses the fact that o < «, so 0/[2] <ap = J.) Hence by Theorem 4.10
we have o A (B V y) = o = 6, which shows that the conclusion of
quasi-identity (4.4) is satisfied by this assignment.

To show that (2) <= (3) we argue that quasi-identity (4.4) is
equivalent to a meet continuous lattice identity. This will follow from
Theorem 2.23 if we verify that the lattice words wi(p,q,7) := p A g,
wa(p,q,7) == p Ar, and ws(p,q,r) = pyg satisfy the hypotheses of
Theorem 2.23. For this we must check the comparabilities w; < ¢,
wy < rand w; < pA(gVr)in the free lattice over {p,q,r}. The only
nontrivial thing to verify is that pjg) < p A (¢ V r). This follows from
the definition pjg := ppy A (g V rpy) <pppi=pA(gVr).

The implication (3) == (4) follows from the fact that quasi-identity
(4.4) fails in some meet continuous lattice, e.g. the lattice Dy defined in
Theorem 2.2. The implication (4) = (1) is Corollary 4.9, so we have
proved that the first four statements of this theorem are equivalent.

By Remark 2.24, quasi-identity (4.4) is equivalent to the meet con-
tinuous identity

(4.5) ™ (p,q,r) =pA(gVT)

for some meet continuous lattice word 6%, computed from the premises
of (4.4), which satisfies 0% (p, ¢, 7) < pA(qVr)inFr,,.({p,q,r}). Since
this identity is nontrivial, 6% (p,q,r) is in fact strictly smaller than
pA(qVvr)inF,,,.({p,q,r}). Because of the equivalence of the first four
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statements of this theorem, we may assume that the meet continuous
congruence identity referred to in statement (4) is identity (4.5).

To prove (4) = (5) we need to show that V satisfies the congru-
ence inclusion o N (G o4 v) C w(a, 3,7) for some word w satisfying
w(p,q,r7) <pA(qVr). We begin with a generic occurrence of the sit-
uation “(u,v) € aN(Boys7)” in V. That is, we let F = Fy(u, v, x,y, 2)
be the free V-algebra on five generators, and define a = Cg®(u,v),
G = CgA((u,x), (y,z)), and v = CgA((x,y), (z,v)). The free genera-
tors are related as shown in Figure 4.7. Since aN(Bosy) Can(GVy)

«

N

u g oy oy o2 v v

FIGURE 4.7.

and V satisfies (4.5) as a congruence identity we get that

(u,v) €aN(Bogy) Can(BVy)=d8(a,53,7).

Under the identification of F.,,.({p,q,r}) with the ideal lattice of
F:({p,q,r}) the word 6% (p, q,) corresponds to an ideal D of ordinary
lattice words w(p, q,r), each of which is strictly less than p A (¢ V r)
(since w(p,q,7) < ™ (p,q,7) < pA(qVr)). The assignment p — «,
q — [, r +— 7 extends to a homomorphism ¢: Fr,,.({p,q,r}) —
Con(F) into the congruence lattice of the 5-generated free algebra
of V. This homomorphism assigns to each w € D the congruence
w(a, f,7), and assigns to 6% the union J, ., w(a, 3,7) = % (a, 3,7).
Since (u,v) € ¥(a, 3,7), we must have (u,v) € w(a,3,7) for some
w € D. Since (u,v) is a generic element of o N (5 o4 7y) the inclusion
an(Bosy) C w(a, B,7) holds throughout V. This completes the proof
that (4) = (5).

The implication (5) = (6) is trivial; we now prove that (6) = (1).
Item (6) asserts that V satisfies a certain congruence inclusion in the
signature {V, A, o}. The class of varieties satisfying any such inclusion
is definable by idempotent Maltsev conditions. To prove that at least
one of the defining Maltsev conditions satisfied by V' is nontrivial it
suffices to prove that the congruence inclusion in (6) fails in the variety
of sets. To show this, let A = ({ag,a1,...,a;};0) be a (k+ 1)-clement
set, and define o = Cg®(ag, az), 8 = Cg®({(a;,a;41) | i even}) and
v = Cg®({(a;,aiy1) | i 0odd}). Then «, 8 and v relate the elements
of A asindicated in Figure 4.8. These congruences generate a sublattice
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o
a [ a Yy ax B az v a4 ay
FiGURE 4.8.

of Con(A) = Eq(A) isomorphic to Dy, labeled as in Figure 4.9. Let
v: Fr({p,q,7}) — Con(A) be the lattice homomorphism determined
by p — «, ¢ — 3, r +— . Since im(¢) = D is a finite lower bounded
lattice, for each a € im(y) there is a least element b € F.({p,q,r})
such that ¢(b) > a. There is a procedure described in Lemma 2.7

1

FIGURE 4.9.

of [16] for calculating this least b. Applying it to our situation shows
that the least b € Fs({p, ¢, 7}) such that p(b) > aisb=pA (¢ Vr).
Since we assume in (4) that w(p,q,7) < p A (qV r), we get that

w(e, B,7) = e(w(p, q,1)) # a=Cg*(u,v).

Hence (u,v) € aN(foyvy) —w(a, 3,7), which proves that the inclusion
in (5) fails in the variety of sets. O

REMARK 4.13. Quasi-identity (4.4) satisfies (W). (Recall from Sec-
tion 2.2 that to check that a quasi-identity @ satisfies (W) it suffices to
check that (W) holds in the partial lattice P(Q) of the Q-configuration.
For (4.4) this partial lattice has only twelve distinct elements, so the
verification is not difficult. In fact, if one first uses the axioms of lattice
theory to simplify pg = ppy A (g V rpp) to

pAlgyVry) =pAlah@Vr)V(rA(Vae)l,

then the associated partial lattice only has nine elements.) The theo-
rem just proved, together with Theorem 2.22, shows that quasi-identity
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(4.4) is the weakest congruence quasi-identity in the collection of non-
trivial congruence quasi-identities satisfying (W). That is, if @ is any
nontrivial quasi-identity satisfying (W) and @ holds in all congruence
lattices of algebras in some variety V), then V satisfies a nontrivial idem-
potent Maltsev condition by Theorem 2.22. Now, from (1) = (2) of
Theorem 4.12 we get that quasi-identity (4.4) is also satisfied by all
congruence lattices of algebras in V. Thus any variety satisfying ) as
a congruence quasi-identity also satisfies (4.4).

PROBLEM 4.14. Is there a weakest congruence quasi-identity (not
necessarily satisfying (W))?

Problem 4.14 is related to Problems 4.3 and 4.4.

REMARK 4.15. It is natural to be curious about the effect of re-
placing pjg) with some other pp, in item (2) of Theorem 4.12. The
quasi-identities

Qn: ((pAg) =s)&((pAr)~s) & (pm~s) — ((PA(gVT)) = s)

become formally stronger as n increases, since

(pAg) =s) & ((pAT)~s) & (P = s) = (D = 5)

holds in all lattices. But @), is a tautology, and for n > 2 all @),, are
equivalent. For, if some assignment p +— a, ¢ — b, r — ¢, s — d
witnesses a failure of @, but not @Q,_, then p — ap,_g, ¢ = by,_g,
T+ Clp—g], S — d is an assignment witnessing a failure of Q.

It is also natural to be curious about the effect of replacing the
numbers 4 and k (> 4) in items (5) and (6) of Theorem 4.12 with
smaller numbers. It happens that there is a slightly more complicated
condition for £ = 3 that is equivalent to the other conditions of Theo-
rem 4.12, but there is no similar condition for & = 2.

To state the condition for k = 3, recursively define ternary lattice
words as follows: p° = p, r¥ =1,

P =pA(gvr®), and " =rA(qVp").
The equivalent condition for k = 3 is:

(7) V satisfies a congruence inclusion of the form

an(fosy) Cwla,B,7),

where w(p, q,r) is a lattice word such that w(p,q,r) 2 p" for
any n in the free lattice F({p,q,r}).
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To see why it is necessary to phrase item (7) in this more compli-
cated way, suppose that (u,v) € anN(Bo~yo ). Then, for k = 0, there
are elements r and y related to v and v as in Figure 4.10. But it is
easy to see that if u, v, x and y are related in this way for some k, then

r Y
p 5
U oF v
FI1GURE 4.10.

(u,v) € o N (BVAF) = o and (2,9) € ¥ N (BV a*) = +**1 By
induction a N (B o37) C oF for all k. This shows that if a lattice word
w(p, q,r) is above p" for some n, then a N (Go3vy) C o™ C w(a, F,7)
holds in any lattice of equivalence relations. Thus, for an inclusion
anN(fozvy) Cw(a,3,v) to be nontrivial, we must have w(p, q,r) 2 p"
for every n. On the other hand, if £ > 4, then inclusions of the form
an(Borvy) € w(a,,7) are nontrivial as soon as the single inequality
w(p,q,7) 2 p* =pA(qVr) is satisfied.

Fortunately, that is the only modification of the condition on w
that is needed. To prove (4) = (7), observe that the assignment of
variables in E; defined by p — «, ¢ — 3, r — 7, s — 0 is one that
satisfies the premises but not the conclusion of quasi-identity (4.4).

0

FIGURE 4.11. The lattice E;

An examination of the third paragraph of the proof of Theorem 2.23
reveals that the same assignment must therefore witness a failure of
the equivalent identity (4.5). Thus, if ¢: Fz,,.({p,q,7}) — E; is the
extension of the assignment p — «, ¢ — (3, r — v to a homomorphism,
then (6% (p,q,7)) < ¢(p A (¢V 1)) = . On the other hand, an
easy induction shows that ¢(p™) = « for all n. Hence % (p,q,7) 2 pn
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for all n in Fg,,.({p,q,7}). Now, as in the proof of Theorem 4.12
(4) = (5), the word w(p, ¢, ) lies below 6% (p,q,r) in Fr,,.({p,¢.7}),
hence satisfies w(p,q,r) 2 p™ for all n in Fz({p,q,r}). This proves
(4) = (7).

One can prove that (7) = (1) in essentially the same way we
proved (6) = (1) using the number 3 in place of k. This time, define
A = <{00>a1,a2,a3};@>a Q& = CgA(CLo,a:a), B = CgA<(aD>al)>(a2aa3))
and v = CgA(al, az). These congruences on A generate a sublattice
of Con(A) isomorphic to the lattice E;, therefore E; should be used
in the argument in place of D;. Unlike Dy, the lattice E; is not lower
bounded. However it can be shown (using Theorems 2.2 and 2.3 of [16])
that if ¢: Fz({p,q,7}) — Con(A) is the lattice homomorphism deter-
mined by p — «, ¢ — [, 7 +— =, then the set of all b € F.({p,q,7})
such that ¢(b) > « is the filter {t | t(p,q,r) > p", for some n}. If w
satisfies the conditions given in item (7), then w is not in this filter, so
o(w) # . As in the proof we gave for (6) = (1), this implies that
the congruence inclusion aN(Boz7y) C w(a, B,7) fails in A, hence fails
in the variety of sets.

There is no analogous condition for £ = 2 that is equivalent to
the other conditions of Theorem 4.12. The reason for this is that the
condition that a N (B ov) C w(a,B,7) is trivial if w(p,q,r) > pp, for
some n, as we showed in the first paragraph of the proof of Lemma 4.11.
On the other hand, Theorems 2.2 and 2.3 of [16] can be used to show
that if w(p,q,7) 2 pp for all n, then ¢(w) 2 « for the homomor-
phism h : F:.({p,q,7}) — M3 : p — «a, ¢ — [, r — -, where
M3 is labeled as in Figure 4.12. Therefore, if the congruence inclu-

FIGURE 4.12. The lattice M3

sion a N (B ov) C w(a,3,7) is nontrivial and holds throughout V, then
whenever «, # and v are congruences on some A € )V that generate a
copy of M3 it must be that a N (o) C anw(w,3,7) S a. In partic-
ular, the idempotent Maltsev condition associated with the inclusion
an(Bovy) Cw(a,B,7v) precludes the possibility that «, 5 and v gen-
erate a copy of M3 where o~ = 3V . Such an idempotent Maltsev



4.3. OMITTED SUBLATTICES 83

condition must fail in any nontrivial variety of modules, since any non-
trivial variety of modules contains members whose congruence lattices
contain sublattices of permuting congruences isomorphic to Mj3. But
we will prove in Theorem 8.1 (10) = (1) that any idempotent Mal-
tsev condition that fails in every nontrivial variety of modules implies
congruence meet semidistributivity. This shows that a congruence in-
clusion of the type a N (G o) C w(a,3,7) for some lattice word w
is trivial if w(p,q,7) > py,) for some n, and implies congruence meet
semidistributivity if w(p, ¢,7) 2 ppy for all n. Therefore any such inclu-
sion is either too weak or too strong to be equivalent to the existence
of a Taylor term.

We emphasize, however, that this conclusion was reached under
the assumption that w is a lattice word. There do exist expressions
W (p, q,r) in the symbols V, A and o such that the congruence inclusion
an(foy) C W(a,,) is nontrivial but does not imply congruence
meet semidistributivity for a variety. (E.g., Theorem 8.13 (2) of this
monograph, or Theorem 4.8 (2) and (3) of [53].)

4.3. Omitted Sublattices

In this section we are going to show that if a variety V has a Taylor
term, then certain lattices cannot be embedded in congruence lattices
of algebras in V.

THEOREM 4.16. Let V be a variety that satisfies a nontrivial idem-
potent Maltsev condition and let A be a member of V.

(1) The lattices in Figure 4.13 do not occur in the meet continuous
congruence variety of V.

FIGURE 4.13.
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(2) The lattices in Figure 4.14 with the given centralities do not
occur as sublattices of Con(A).

C(B,a;9) or C(B,5;BN9) C(r,7;0)

e

5 2

FIGURE 4.14.

(3) The lattices in Figure 4.15 do not occur as sublattices of
Con(A).

i E 17 i Iv
B g
) 5

E,
FIGURE 4.15.

PrROOF. For the first claim of this theorem, the fact that V satisfies
a nontrivial idempotent Maltsev condition implies that the congruence
lattices of algebras in V satisfy quasi-identity (4.4) of Theorem 4.12 (2).
But in the proof of Theorem 4.12 we explained why that quasi-identity
is equivalent to a meet continuous identity, so in fact all members of
the meet continuous congruence variety of V satisfy quasi-identity (4.4).
Item (1) of this theorem follows from the fact that Dy, E; and G all
fail quasi-identity (4.4) of Theorem 4.12. (In each case the assignment
pr—a,q— (B, r+— 7, s— 0 witnesses a failure.)

For the second claim, observe that ajg < 0 < a < 3V holds for
the indicated congruences in both N5 and Dy. By Lemma 4.11, this
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is enough to establish the first condition of Theorem 4.10. To show
that t